INSTITUTO SUPERIOR DE ECONOMIA E GESTÃO, UTL

Matemática 1, 2010/2011 - 1º Semestre

Exame em Época de Recurso, 24 de Janeiro de 2011

Nome: _____ N° de Aluno: _____ Classificação: _____ Curso: _ Pergunta 3 Total 2 4 1.5 1.5 Cotação 1.5 1.5 6.0 Parte I Class. Pergunta 1b 2 3 4 5a Total 1a5b5c5d5e 5f6aCotação 2.0 1.0 1.0 1.0 1.5 0.51.0 1.0 0.50.51.5 1.5 1.0 14.0 Parte II Class. PARTE I: Perguntas de escolha múltipla (6 valores) Cada resposta correcta vale 1,5 valores e cada resposta incorrecta é penalizada em 0,5 valores. A cotação mínima na primeira parte é de zero valores. 1. Sejam $\vec{u}=(1,2,0,k)$ e $\vec{v}=(3,-1,-1,-1)$. Os vectores \vec{u} e \vec{v} são ortogonais se: \square k=0 \square $k \in \mathbb{R}$ \square k=1☐ Nenhuma das respostas anteriores está correcta. 2. Seja $f: \mathbb{R} \to \mathbb{R}^+$ uma função contínua e diferenciável no seu domínio. Temos que $El_x \frac{2}{f(x)}$ é igual a: $\Box El_x [f(x)]^2$ \Box $-El_x f(x)$ \Box $2El_x f(x)$ □ Nenhuma das respostas anteriores está correcta. **3.** O valor de $\lim_{x\to 1} \frac{x^3 - 3\beta x + 3\beta - 1}{(x-1)^2}$ é: \Box 0, para qualquer $\beta > 0$ \Box ∞ , se $\beta \neq 1$ \square 3, para qualquer $\beta \in \mathbb{R}$ \square Nenhuma das respostas anteriores está correcta. **4.** A função $f(x) = \sqrt{|x| + \alpha}$, com $\alpha \ge 0$, \square é uma função linear para qualquer $\alpha \geq 0$. \square é uma função linear apenas se $\alpha = 0$. \square não é uma função linear, qualquer que seja $\alpha \geq 0$.

Duração: 2 horas

Nenhuma das respostas anteriores está correcta.

PARTE II: Perguntas de desenvolvimento (14 valores)

Justifique cuidadosamente todas as suas respostas.

- 1. Seja o sistema de equações: $\begin{cases} x+y+z=1\\ 2x+5z=1\\ x-y+\alpha z=\beta \end{cases}, \text{ com } \alpha,\beta\in\mathbb{R}.$
 - (a) Indique os valores de α e β para os quais (i) o sistema não tem solução e (ii) o sistema tem uma equação redundante.
 - (b) Considere o caso $\alpha = 0$ e $\beta = 0$. Determine x através da regra de Cramer.
- **2.** Sejam $\vec{u}, \vec{v} \in \mathbb{R}^n$. Demonstre que $\vec{u} \cdot \vec{v} = \vec{v} \cdot \vec{u}$.
- **3.** Sejam A, B, C, X matrizes quadradas de ordem n e I a matriz identidade de ordem n. Assumindo que C e A-B são invertíveis, resolva em ordem a X a equação: AXC=BXC+I.
- 4. Considere a série $\sum_{n=0}^{+\infty} \left(\frac{3x+2}{3}\right)^n$. Discuta para que valores de x a série é convergente e, sempre que possível, calcule a sua soma.
- 5. Seja $g(x) = e^{(x^2+1)}$.
 - (a) Indique o domínio de g e discuta a sua continuidade.
 - (b) Determine o(s) ponto(s) de estacionariedade de g.
 - (c) Determine o(s) ponto(s) de extremo de f através do estudo da sua segunda derivada.
 - (d) Estude a concavidade da função.
 - (e) Discuta se o, ou os, pontos de extremo obtidos anteriormente são globais.
 - (f) Calcule $\int_0^1 x g(x) dx$.
- **6.** Sabendo que $\frac{d}{dx}(\arctan x) = \frac{1}{1+x^2}$
 - (a) Estime o valor de $\arctan(0,1)$.
 - (b) Majore o erro da aproximação obtida na alínea anterior.