ISEG/ULisboa ULISBOA

Nonlinear equations

Definition

A nonlinear equation is any equation of the form

$$f(x) = 0$$

where f is a nonlinear function.

Nonlinear equations

•
$$x^2 + x + 1 = 0$$
 ($f : \mathbb{R} \to \mathbb{R}$)

•
$$(x - \cos y, 2y - \sin x) = (0, 0) \ (f : \mathbb{R}^2 \to \mathbb{R}^2)$$

• $y'(t) = \cos(y(t))$ $(f: C^1(\Omega) \to C^0(\Omega), \quad f(y) = y' - \cos(y)$

Remark

A nonlinear equation can have any number of solutions (finite, countable, uncountable)

J. Janela

Example

Suppose that in the beginning of each year a bank client makes a deposit of v euros in an investment fund (constant interest rate) and at the end of n years withdraws M euros. What was the interest rate r? Since we have

$$M = v \frac{1+r}{r} [(1+r)^n - 1],$$

the answer to our question is the solution of the equation

$$f(r) = 0$$
, where $f(r) = M - v \frac{1+r}{r} [(1+r)^n - 1]$

Example (Implied volatility)

$$C(S,t) = N(d_1)S - N(d_2)Ke^{-r(T-t)}$$

$$N(x) = \int_{-\infty}^{x} \frac{1}{\sqrt{2\pi}} \exp(-t^{2}/2) dt$$

$$d_{1} = \frac{1}{\sigma\sqrt{T-t}} \left[\ln(S/K) + (r+\sigma^{2}/2)(T-t)\right]$$

$$d_{2} = d_{1} - \sigma\sqrt{T-t}$$

C(S,t): option price, r: interest rate free of risk, T-t: time to maturity, S: value of the underlying asset, K: strike. The **implied volatility** is computed considering that every other parameter is known.

The fixed point method in \mathbb{R}

The fixed point method applies to the solution of equations in the form

$$g(x) = x$$

Any point $z \in D_g$ that satisfies the equation is called a fixed point of g. The name is due to the fact that the application of g does not change the value of z.

The fixed point method

- **1** Pick an initial guess x_0 .
- **2** Apply function g getting a sequence defined recursively by $x_{n+1} = g(x_n)$.
- **③** The solution to the equation is $z = \lim x_n$.

Remark

Does the limit exist? Is it really the solution of the equation?

Example

Introduction to Wolfram Mathematica Errors, conditioning and stability

But does this always work ??

Example

$$-\frac{x^2}{4} - \frac{x}{2} + 4 = x, \qquad x_0 = 1.97$$

Theorem (Fixed point theorem)

Let $g:[a,b] \to \mathbb{R}$ be a continuous function. Then

- **1** If $g([a,b]) \subseteq [a,b]$ then g has at least one fixed point in [a,b].
- **2** Additionally, if g is contractive * in [a,b], it has one and only one fixed point in [a,b], given by the limit of the sequence $x_{n+1} = g(x_n)$, for all $x_0 \in [a,b]$.

*Contractivity

A function $g:[a,b]\to \mathbb{R}$ is contractive if there is a constant $0\geq L<1$ such that

$$|g(x) - g(y)| \le L|x - y|, \qquad \forall x, y \in [a, b]$$

If g is differentiable this condition is equivalente to existing a constant $0 \le L < 1$ such that |g'(x)| < 1, $\forall x \in [a, b]$.

ISEG/ULisboa ULISBOA

Error bounds

Theorem (FPT: Error estimates)

Under the assumptions of the fixed point theorem, we have

1
$$|z - x_n| \le L|z - x_{n-1}|, \quad n \ge 1$$

2 $|z - x_n| \le L^n |z - x_0|, \quad n \ge 1$
3 $|z - x_n| \le \frac{L}{1-L} |x_n - x_{n-1}|, \quad n \ge 1$
4 $|z - x_n| \le \frac{L^n}{1-L} |x_1 - x_0|, \quad n \ge 1$
Estimates (1), (2) are called a priori estimation

Estimates (1), (2) are called a priori estimates whereas estimates (3),(4) are called a posteriori estimates.

Remark

- If |g'(z)| < 1 there is a neighbourhood of z where the assumptions of the FPT hold.
- If |g'(z)| > 1 the FPM diverges, unless $x_k = z$, for some k.

Monotonic convergence

Under the same conditions of the fixed point method:

- If -1 < g'(x) < 0, ∀x ∈ [a, b] the convergence is alternate and the fixed point is always between consecutive iterations.
- If 0 < g'(x) < 1 the convergence is monotonous.

Rate of convergence

A sequence $x_n \rightarrow z$ is said to converge with rate p if

$$\lim \frac{|z - x_n|}{|z - x_{n-1}|^p} = K(\neq 0)$$

The constant K is denoted as the asymptotic convergence factor.

Theorem

Let g be a function with p continuous derivatives verifying the FPT assumptions and z its fixed point. If

$$g'(z) = \cdots g^{(p-1)}(z) = 0, g^{(p)}(z) \neq 0$$

then the FPM has rate of convergence p.

Using Taylor's polynomial we can check that if a fixed point method has order \boldsymbol{p} then

$$\lim \frac{|z - x_n|}{|z - x_{n-1}|^p} = \lim_{n \to \infty} \frac{g^{(p+1)}(\eta_n)}{(n+1)!} = \frac{g^{(p)}(z)}{(p+1)!}$$

which means that

$$|z - x_n| \approx \frac{|g^{(p+1)}(z)|}{(p+1)!} |z - x_{n-1}|^p$$

Remark

If
$$p = 1$$
 we have $|e_n| \le C|e_{n-1}|$.
If $p = 2$ we have $|e_n| \le C|e_{n-1}|^2$.

Newton's method

Newton's method is a particular case of the FPM to solve equations of the type f(x) = 0. The method is based on the observation that if $f'(x) \neq 0$ then

$$f(x) = 0 \Leftrightarrow -\frac{f(x)}{f'(x)} = 0 \Leftrightarrow x = x - \frac{f(x)}{f'(x)}$$

Remark

If
$$f' \neq 0$$
, every zero of $f(x)$ is a fixed point of $g(x) = x - \frac{f(x)}{f'(x)}$

Newton's Method

- **1** Choose an initial approximation x_0
- **2** For $n \ge 0$ compute $x_{n+1} = x_n \frac{f(x_n)}{f'(x_n)}$
- 8 Repeat until convergence (up to a prescribed accuracy).

Introduction to Wolfram Mathematica Errors, conditioning and stability

Geometric interpretation

Choose the initial approximation

ISEG/ULisboa Ulisboa

Geometric interpretation

Choose the initial approximation

Take the tangent line to the graphic at $x = x_0$. The equation of the tangent is given by

$$y - f(x_0) = f'(x_0)(x - x_0)$$

Introduction to Wolfram Mathematica Errors, conditioning and stability

ISEG/ULisboa ULISBOA

Geometric interpretation

Choose the initial approximation

Take as new approximation the point of the tangent line crosses de x-axis

$$x_1 = x_0 - \frac{f(x_0)}{f'(x_0)}$$

Convergence of Newton's method

Local convergence

If $f \in C^2(V_{\varepsilon}(z))$ and $f'(z) \neq 0$ Newton's method converges to z at least with order 2. More precisely,

$$|z - x_{n+1}| = \frac{f''(\eta)}{2f'(x_n)}|z - x_n|^2 \le K|z - x_n|^2,$$

where $K = \frac{\max |f''|}{2\min |f'|}$. Applying this estimate recursively, we get

$$|z - x_n| \le \frac{1}{K} (K|z - x_0|)^{2^n}.$$

Global convergence

Suppose that $f:[a,b] \to \mathbb{R}$ is $C^2([a,b])$ and

- $f(a) \cdot f(b) < 0$
- **2** $f'(x) \neq 0, x \in [a, b]$

3
$$f''(x) \ge 0$$
 or $f''(x) \le 0$, $x \in [a, b]$

Then,

- Choosing $x_0 \in [a, b]$ such that $f(x_0)f''(x) \ge 0$, Newton's method is convergent.
- 2 If $\frac{|f(a)|}{|f'(a)|} < b a$ and $\frac{|f(b)|}{|f'(b)|} < b a$ the method converges for every initial approximation $x_0 \in [a, b]$.

ISEG/ULisboa Ulisboa

Systems of equations

Determine $x = (x_1, x_2, \cdots, x_n) \in \mathbb{R}^n$ satisfying

$$F(x) = 0 \Leftrightarrow \begin{cases} f_1(x_1, \cdots, x_n) = 0\\ f_2(x_1, \cdots, x_n) = 0\\ \cdots\\ f_n(x_1, \cdots, x_n) = 0 \end{cases}$$

or

$$x = G(x) \Leftrightarrow \begin{cases} x_1 = g_1(x_1, x_2, \cdots, x_n) \\ x_2 = g_2(x_1, x_2, \cdots, x_n) \\ \cdots \\ x_n = g_n(x_1, x_2, \cdots, x_n) \end{cases}$$

Theorem (Fixed point in \mathbb{R}^n)

Let $\Omega \subset \mathbb{R}$ a nonempty closed set and $G : \Omega \to \Omega$ a contractive function for some norm $\|\cdot\|$. Then, the system x = G(x) has one and only one solution $z \in \Omega$, the fixed point iteration $x_{x+1} = G(x_n)$ converges to z, for every $x_0 \in \Omega$ and the error bounds are similar to the ones obtained in \mathbb{R} .

Remark

A function $G: \Omega \to \Omega$ is contractive in a norm $|\cdot||$ if there exists a constant $0 \le L < 1$ such that $||G(x) - G(y)|| \le L||x - y||$

Remark

If G is differentiable, $L = \sup_{x \in \Omega} \|J_G(x)\|$.

Definition (Norm)

Let X be a real vector space. An application $\|\cdot\|:X\to\mathbb{R}^+_0$ is called a norm if:

- ||x|| = 0 if and only if x = 0.
- $\|\alpha x\| = |\alpha| \|x\|, \quad \forall x \in X, \forall \alpha \in \mathbb{R}$
- $||x + y|| \le ||x|| + ||y||, \quad \forall x, y \in X.$

Example (Norms in \mathbb{R}^n .)

$$||x||_1 = \sum_{i=1}^n |x_i|, \quad ||x||_2 = \left(\sum_{i=1}^n x_i^2\right)^{1/2}, \quad ||x||_p = \left(\sum_{i=1}^n |x_i|^p\right)^{1/p}$$

$$\|x\|_{\infty} = \max_{i=1,\cdots,n} |x_i|$$

Why should we need different norms?

$$d(A,B) = ||A - B|| = \cdots$$

ISEG/ULisboa Ulisboa

Matrix Norms

Norms in spaces of linear operators

If U and V are normed spaces then $\mathcal{L}(U,V)$ is a normed space considering the norm

$$||A|| = \sup_{x \in X \setminus 0} \frac{||Ax||_Y}{||x||_X}, \qquad \forall A \in \mathcal{L}(X, Y)$$

If $U = V = \mathbb{R}^n$, the linear operators are represented by matrices

Matrix norms

$$\|A\|_{1} = \sup_{x \neq 0} \frac{\|Ax\|_{1}}{\|X\|_{1}} = \max_{j=1,\cdots,n} \sum_{i=1}^{n} |A_{ij}|$$
$$\|A\|_{\infty} = \sup_{x \neq 0} \frac{\|Ax\|_{\infty}}{\|x\|_{\infty}} = \max_{i=1,\cdots,n} \sum_{j=1}^{n} |A_{ij}|$$

ISEG/ULisboa ULISBOA

Matrix norms

Proposition

Let λ be an eigenvalue of $A \in \mathbb{R}^{n \times n}$ and $\|\cdot\|$ any matrix norm. Then we have $\|A\| \ge |\lambda|$.

Proposition

If all the eigenvalues λ_i of $A \in \mathbb{R}^{n \times n}$ satisfy $|\lambda_i| < 1$ then, for some norm, we have ||A|| < 1.

Remark

If $G: \Omega \subset \mathbb{R}^n \to \Omega$ has enough regularity and all the eigenvalues $\lambda_i(x)$ of $J_G(x)$ satisfy $|\lambda_i(x)| < 1$, $x \in \Omega$, the system G(x) = x has one and only one solution in Ω and the fixed point method converges to this solution.

Example

A pharmaceutical company synthesises an antiviral serum based on the active substances S_1 , S_2 , S_3 and S_4 . It has been determined that if an individual is given α milligrams of the serum, after a fixed amount of time the concentration of each substance (mg/l) is given implicitly (for $\alpha \in [0, 5]$) by the relations

$$\begin{cases} 16x_1 - \cos\left(\alpha \left(x_2 - 2x_1\right)\right) = 0\\ 16x_2 + 0.75\sin\left(\alpha \left(-x_3 - 3x_1\right)\right) = 0\\ 16x_3 - \cos\left(\alpha \left(x_4 - 2x_3\right)\right) = 0\\ 16x_4 - 0.75\sin\left(2\alpha x_3\right) = 0 \end{cases}$$

Knowing that S_2 should never exceed a concentration of 0.03mg/l what is the highest safe dosaje that can be administered?

The system can be written as

$$\begin{cases} x_1 = \frac{1}{16} \cos \left(\alpha \left(x_2 - 2x_1 \right) \right) \\ x_2 = \frac{3}{64} \sin \left(\alpha \left(x_3 + 3x_1 \right) \right) \\ x_3 = \frac{1}{16} \cos \left(\alpha \left(x_4 - 2x_3 \right) \right) \\ x_4 = \frac{3}{64} \sin \left(2\alpha x_3 \right) \end{cases}$$

Observing the system we can immediately see that, if there is a solution $z\in \mathbb{R}^4,$ then

$$z \in [-\frac{1}{16}, \frac{1}{16}] \times [-\frac{3}{64}, \frac{3}{64}] \times [-\frac{1}{16}, \frac{1}{16}] \times [-\frac{3}{64}, \frac{3}{64}]$$

In fact, we can be more precise... For instance,

$$(x_1, x_2) \in [-\frac{1}{16}, \frac{1}{16}] \times [-\frac{3}{64}, \frac{3}{64}] \Rightarrow \alpha(x_2 - 2x_1) \in [\frac{-55}{64}, \frac{55}{64}]$$
$$\Rightarrow \cos \alpha(x_2 - 2x_1) \in [0.6; 1] \Rightarrow x_1 \in [0.0375; 0.0625]$$

Making similar calculations for the other variables we can choose to search a solution in the compact set

 $\Omega = [0.0375; 0.0625] \times [0.044; 0.046875] \times [0.0375; 0.0625] \times [0.0172; 0.0275] \times [0.017$

The jacobian matrix $J_G(x)$ is given by

$$\begin{pmatrix} \frac{\alpha}{8}\sin\cdots & -\frac{\alpha}{16}\sin\cdots & 0 & 0\\ \frac{9\alpha}{64}\cos\cdots & 0 & \frac{3\alpha}{64}\cos\cdots & 0\\ 0 & 0 & \frac{\alpha}{8}\sin\cdots & -\frac{\alpha}{16}\sin\cdots\\ 0 & 0 & \frac{6\alpha}{64}\sin\cdots & 0 \end{pmatrix}$$

and, therefore, $\|J_G(x)\|_{\infty} = \alpha \max\{\frac{3}{16}, \frac{3}{16}, \frac{3}{16}, \frac{3}{32}\} = \frac{3\alpha}{16} \le \frac{15}{16} < 1.$

What can we conclude?

- Since $G: \Omega \to \Omega$ is continuous and differentiable in the compact set Ω , and $||J_G(x)||_{\infty} \leq 1$ in Ω , the system has only and only one solution in this set and the fixed point method converges to this solution, for all initial approximation $x_0 \in \Omega$.
- If we take any $x_0 \in \mathbb{R}^n$ then $G(x_0) \in \Omega$, and so the convergence is guaranteed for any $x_0 \in \mathbb{R}^n$.
- We have the error bounds

$$||z - x^{(n)}||_{\infty} \le (15/16)^n ||z - x^{(0)}||_{\infty} \le \frac{1}{16} (15/16)^n$$

$$||z - x^{(n)}||_{\infty} \le \frac{15/16}{1 - 15/16} ||x^{(n)} - x^{(n-1)}||_{\infty}$$

$$||z - x^{(n)}||_{\infty} \le \frac{(15/16)^n}{1 - \frac{15}{16}} ||x^{(1)} - x^{(0)}||_{\infty}$$

i	$x_1^{(i)}$	$x_2^{(i)}$	$x_3^{(i)}$	$x_4^{(i)}$	$\ z - x^{(i)}\ _{\infty}$
1	0.0625	0.0625	0.0625	0.046875	0.315×10^{-1}
2	0.0614046	0.0319518	0.0607912	0.017169	0.123×10^{-2}
3	0.0601926	0.0314343	0.0594588	0.0167209	0.491×10^{-3}
4	0.0602878	0.0309125	0.0595855	0.0163703	$0.308 imes 10^{-4}$
5	0.0602525	0.0309561	0.0595512	0.0164037	0.129×10^{-4}
6	0.0602582	0.0309413	0.059557	0.0163947	1.964×10^{-6}
7	0.0602569	0.0309437	0.0595559	0.0163962	4.522×10^{-7}
8	0.0602571	0.0309432	0.0595561	0.0163959	8.510×10^{-8}
21	0.062571	0.0309432	0.059556	0.0163959	6.592×10^{-17}

Table: Evolution of the computational error.

Newton's method for systems

If the Jacobian matrix of F is invertible, we have that

$$F(x) = 0 \Leftrightarrow -J_F^{-1}(x) \cdot F(x) = 0 \Leftrightarrow x = x - J_F^{-1}(x) \cdot F(x)$$

Newton's method for systems of equations

- **1** Take an initial guess x_0
- **2** For each n > 0 compute the solution y_n of $J_F(x_n)y_n = -F(x_n)$ and update $x_{n+1} = x_n + y_n$.
- **8** Stop when some criteria is satisfied.

Introduction to Wolfram Mathematica Errors, conditioning and stability

Performance of Newton's method (same example)

i	$x_1^{(i)}$	$x_2^{(i)}$	$x_3^{(i)}$	$x_4^{(i)}$	$\ z - x^{(i)}\ _{\infty}$
1	0.0625	0.0625	0.0625	0.046875	0.315×10^{-1}
2	0.0604482	0.0310313	0.059709	0.0164386	$0.191 imes 10^{-3}$
3	0.0602571	0.0309433	0.0595561	0.016396	0.8329×10^{-7}
4	0.0602571	0.0309432	0.059556	0.0163959	0.1304×10^{-14}
5	0.0602571	0.0309432	0.059556	0.0163959	0.6938×10^{-17}

Table: Newton's method, evolution of the error