Matematics II

2014/2015

Economics and Management Exercises with solutions

1 Complements of Linear Algebra

1.1. Determine the eigenvalues of each of the following matrices and, if they are real, determine the corresponding eigenvectors together with the algebraic and geometric multiplicities.

a) $\begin{bmatrix} 2 & -7 \\ 3 & -8 \end{bmatrix}$	b) $\begin{bmatrix} 2 & 4 \\ -2 & 6 \end{bmatrix}$	c) $\left[\begin{array}{cc} 2 & 1 \\ 1 & 0 \end{array} \right]$
d) $\begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix}$	e) $\begin{bmatrix} 2 & 0 & 0 \\ 0 & 3 & 0 \\ 0 & 0 & 4 \end{bmatrix}$	$f) \begin{bmatrix} 1 & -1 & -2 \\ 0 & 3 & 0 \\ -2 & 5 & 1 \end{bmatrix}$
$g) \left[\begin{array}{rrrr} 1 & 1 & 1 \\ 1 & 1 & 1 \\ 1 & 1 & 1 \end{array} \right]$	$\mathbf{h}) \left[\begin{array}{rrrr} 1 & 1 & 1 \\ 0 & 1 & 1 \\ 0 & 0 & 1 \end{array} \right]$	i) $\left[\begin{array}{rrrr} 1 & 1 & 0 \\ 1 & 1 & 0 \\ 0 & 0 & 2 \end{array} \right]$

Solution: a) $\lambda_1 = -5$, a.m. = 1; eigenvectors u = (c, c), with $c \neq 0$, g.m. = 1; $\lambda_2 = -1$, a.m. = 1; eigenvectors u = (7/3c, c), with $c \neq 0$, g.m. = 1; b) The characteristic polynomial does not have real eigenvalues $(\lambda_1 = 4 + 2i, \lambda_2 = 4 - 2i);$ c) $\lambda_1 = 1 + \sqrt{2}$; a.m. = 1; eigenvectors $u = ((1 + \sqrt{2})c, c)$, with $c \neq 0$, g.m. = 1; $\lambda_2 = 1 - \sqrt{2}; a.m. = 1;$ eigenvectors $u = ((1 - \sqrt{2})c, c),$ with $c \neq 0, g.m. = 1;$ d) $\lambda = 0$, a.m. = 2; eigenvectors u = (c, 0), with $c \neq 0$, g.m. = 1; e) $\lambda_1 = 2$, a.m. = 1; eigenvectors u = (c, 0, 0), with $c \neq 0$, g.m. = 1; $\lambda_2 = 3, a.m. = 1$; eigenvectors u = (0, c, 0), with $c \neq 0, g.m. = 1$; $\lambda_3 = 4, a.m. = 1$; eigenvectors u = (0, 0, c), with $c \neq 0, g.m. = 1$; f) $\lambda_1 = 3$, a.m. = 2; eigenvectors u = (-c, 0, c), with $c \neq 0$, g.m. = 1; $\lambda_2 = -1$, a.m. = 1; eigenvectors u = (c, 0, c), with $c \neq 0$, g.m. = 1; g) $\lambda_1 = 0$, a.m. = 2; eigenvectors $u = (-c_1 - c_2, c_1, c_2)$, with $c_1^2 + c_2^2 \neq 0$, g.m. = 2; $\lambda_2 = 3, a.m. = 1$; eigenvectors u = (c, c, c), with $c \neq 0, g.m. = 1$; h) $\lambda = 1$, a.m. = 3; eigenvectors u = (c, 0, 0), with $c \neq 0$, g.m. = 1; i) $\lambda_1 = 2$, a.m. = 2; eigenvectors $u = (c_1, c_1, c_2)$, with $c_1^2 + c_2^2 \neq 0$, g.m. = 2; $\lambda_2 = 0$, a.m. = 1; eigenvectors u = (-c, c, 0), with $c \neq 0$, g.m. = 1.

1.2. Show that

- a) Every eigenvalue of A is also an eigenvalue of A^T .
- b) If λ is an eigenvalue of A and $|A| \neq 0$ then $\frac{1}{\lambda}$ is an eigenvalue of A^{-1} .
- c) If λ is an eigenvalue of A then λ^k is an eigenvalue of $A^k, k \in \mathbb{N}$.

1.3. Let $A = \begin{bmatrix} 1 & 4 \\ 6 & -1 \end{bmatrix}$

- a) Determine the eigenvalues and eigenvectors of A.
- b) Determine the eigenvalues and eigenvectors of A^{100} .

Solution: a) $\lambda_1 = -5$, eigenvectors u = (-2/3c, c), with $c \neq 0$, ; $\lambda_2 = 5$, eigenvectors u = (c, c), with $c \neq 0$, ; b) $\lambda = 5^{100}$, eigenvectors $u = (-2/3c_1, c_1) + (c_2, c_2)$, with c_1, c_2 not simultaneously zero;

1.4. Consider a matrix A and a vector \boldsymbol{x} given by

$$A = \begin{bmatrix} a & a & 0 \\ a & a & 0 \\ 0 & 0 & b \end{bmatrix} \qquad \mathbf{e} \qquad \mathbf{x} = \begin{bmatrix} x \\ y \\ z \end{bmatrix} \qquad (a, b \in \mathbb{R})$$

- a) Write down the characteristic polynomial $p(\lambda)$.
- b) Determine the eigenvalues and eigenvectors of matrix A.
- c) Compute $\boldsymbol{x}^T A \boldsymbol{x}$.
- d) Consider that $a, b \ge 0$. Without performing any calculations show that there exists a a vector $\boldsymbol{x} \neq \boldsymbol{0}$ such that $\boldsymbol{x}^T A \boldsymbol{x} = 0$
- e) Classify the quadratic form $\boldsymbol{x}^T A \boldsymbol{x}$ for all possible values of a, b.

Solution: a) $P(\lambda) = (b - \lambda)(-\lambda)(2a - \lambda)$; b) $\lambda_1 = b, \lambda_2 = 0, \lambda_3 = 2a$; c) $\mathbf{x}^T A \mathbf{x} = ax^2 + 2axy + ay^2 + bz^2$; e) PSD if $(a \ge 0 \ e \ b \ge 0)$; NSD if $(a \le 0 \ e \ b \le 0)$; Ind. in the remaining cases, i.e. $(a > 0 \ e \ b < 0)$ ou $(a < 0 \ e \ b > 0)$. **1.5.** Classify the following quadratic Forms:

a)
$$q(x, y) = x^2 + 2xy + y^2$$

b) $q(x, y) = x^2 - 2xy + y^2$
c) $q(x, y) = x^2 - y^2$
d) $q(x, y, z) = x^2 + 4xy - 2xz + 7y^2 - 3z^2$
e) $q(x, y, z) = x^2 - 4xy + 4xz - z^2$
f) $q(x, y) = 6x^2 + 4xy + 3y^2$
g) $q(x, y) = x^2 + 4xy + y^2$
h) $q(x, y) = 2x^2 + 6xy + 4y^2$
i) $q(x, y, z) = 3y^2 + 4xz$
j) $q(x, y) = x^2 + 4xy + ay^2$, $a \in \mathbb{R}$

Solution: a) PSD b) PSD c) Ind. d) Ind. e) Ind. f) PD g) Ind. h) Ind. i) Ind. j) Ind. if a < 4, PSD if a = 4 and PD if a > 4.

1.6. Classify the following symmetric matrices (with respect to beeing PD, PSD, ND, NSD, Ind.)

$$a) \begin{bmatrix} 3 & 1 \\ 1 & 4 \end{bmatrix} b) \begin{bmatrix} -5 & 1 \\ 1 & 5 \end{bmatrix} c) \begin{bmatrix} -5 & 1 \\ 1 & -5 \end{bmatrix} d) \begin{bmatrix} 1 & 2 \\ 2 & a \end{bmatrix}, a \in \mathbb{R} e) \begin{bmatrix} 1 & 2 & -1 \\ 2 & 7 & 0 \\ -1 & 0 & -3 \end{bmatrix}$$
$$f) \begin{bmatrix} 1 & 2 & -1 \\ 2 & 7 & -5 \\ -1 & -5 & 4 \end{bmatrix} g) \begin{bmatrix} 0 & 0 & 0 \\ 0 & 4 & 0 \\ 0 & 0 & -4 \end{bmatrix} b) \begin{bmatrix} 3 & 0 & 0 & 0 \\ 0 & 1 & a & 0 \\ 0 & a & 2 & 0 \\ 0 & 0 & 0 & 7 \end{bmatrix}, a \in \mathbb{R} i) \begin{bmatrix} -1 & 1 & 1 \\ 1 & -3 & 0 \\ 1 & 0 & -2 \end{bmatrix}$$
$$j) \begin{bmatrix} 1 & -1 & 0 \\ -1 & 1 & 0 \\ 0 & 0 & -1 \end{bmatrix}$$

Solution: a) PD b) Ind. c) ND d)Ind. if a < 4, PSD if a = 4 and ND if a > 4 e) Ind. f) PSD g) Ind. h)Ind. if $a < -\sqrt{2} \lor a > \sqrt{2}$, PD if $-\sqrt{2} < a < \sqrt{2}$ and PSD if $a = \pm\sqrt{2}$ i) ND j) Ind.