3 Differential Calculus in \mathbb{R}^{n}

3.1.

Determine the first order partial derivatives of the following functions, defining them in the largest possible domain.

$$
\text { a) } f(x, y, z)=3 x y+x^{2}-z y+z^{2} ; \quad \text { b) } f(x, y)= \begin{cases}x^{2}-y x, & y \neq x \\ x, & y=x\end{cases}
$$

Solution: a) $f_{x}^{\prime}=3 y+2 x ; f_{y}^{\prime}=3 x-z ; f_{z}^{\prime}=-y+2 z ; \mathcal{D} f_{x}^{\prime}=\mathcal{D} f_{y}^{\prime}=\mathcal{D} f_{z}^{\prime}=\mathbb{R}^{3}$
b) $f_{x}^{\prime}=2 x-y$ if $x \neq y$ and $f_{x}^{\prime}=0$ if $x=y=0 ; f_{y}^{\prime}=-x$ if $x \neq y$ and $f_{y}^{\prime}=0$ if $x=y=0$ $\mathcal{D} f_{x}^{\prime}=\mathcal{D} f_{y}^{\prime}=\mathbb{R}^{2} \backslash\{(a, a): a \neq 0\}$
3.2. Show that $f(x, y)=\frac{x-y+1}{x+y}$ is a solution of the equation

$$
\frac{\partial f}{\partial x}-\frac{\partial f}{\partial y}=\frac{2}{x+y}
$$

in any of the sets defined by $x+y>0$ or $x+y<0$.
3.3. Consider the function

$$
f(x, y)= \begin{cases}\frac{e^{x-y}-(x-y+1)}{x-y}, & x \neq y \\ 0, & x=y\end{cases}
$$

a) Discuss the continuity of $f(x, y)$ at $(1,1)$.
b) Check that $f_{x}^{\prime}(a, a)+f_{y}^{\prime}(a, a)=0, \forall a \in \mathbb{R}$.

Solution:

a) f is continuous at $(1,1)$.
3.4. Given the function

$$
f(x, y)= \begin{cases}\frac{x^{2}-y^{2}}{x^{2}+y^{2}} & , x^{2}+y^{2} \neq 0 \\ 0 & , x=y=0\end{cases}
$$

compute the directional derivatives at $(0,0)$, whenever they exist.

Solution: $\partial_{\vec{v}} f(0,0)$ exists for $\vec{v}=(\alpha, \alpha)$ and $\vec{v}=(\alpha,-\alpha), \alpha \in \mathbb{R} \backslash\{0\}$. In that case, $\partial_{\vec{v}} f(0,0)=0$.
3.5. Consider the function $f: \mathbb{R}^{2} \longrightarrow \mathbb{R}$ defined by

$$
f(x, y)= \begin{cases}\frac{x y^{2}}{x^{2}+y^{4}} & , x \neq 0 \\ 0 & , x=0\end{cases}
$$

a) Show that f admits a directional derivative at $(0,0)$ along any direction and compute it.
b) Show that f is not continuous at $(0,0)$.
c) Without performing any calculations, state the value of $\frac{\partial f}{\partial x}(0,0)$ and of $\frac{\partial f}{\partial y}(0,0)$.

Solution: a) $\partial_{(\alpha, \beta)} f(0,0)=\left\{\begin{array}{cc}\frac{\beta^{2}}{\alpha} & \text { se } \alpha \neq 0 \\ 0 & \text { se } \alpha=0\end{array},(\alpha, \beta) \in \mathbb{R}^{2} \backslash\{(0,0)\}\right.$. c) $\frac{\partial f}{\partial x}(0,0)=\frac{\partial f}{\partial y}(0,0)=0$.

3.6.

Study the differentiability of the following functions at the proposed points and obtain the expression of the first order differentials (in case they are differentiable).
a) $f(x, y)=x^{2}+y^{2}$, at point $(0,0)$;
b) $f(x, y)=\left\{\begin{array}{ll}x+y, & x \neq y \\ x+1, & x=y\end{array}\right.$, at $(1,1) ;$
c) $f(x, y)=\left\{\begin{array}{ll}x y-2 y+3 x, & x \neq y \\ x^{2} y^{2}+3 x-2 y, & x=y\end{array}\right.$, at $(0,0)$;
d) $y=\left(x^{2}+1, x\right)$, at $x=1$;

Solution:

a) f is differentiable at $(0,0) ; D f(0,0)(\mathbf{h})=0$;
b) f is not differentiable at em $(1,1)$;
c) f is differentiable at $(0,0) ; D f(0,0)(\mathbf{h})=3 h_{1}-2 h_{2}$;
d) y is differentiable at $x=1 ; D f(1)(\mathbf{h})=(2 h, h)$.
3.7. Write down the expressions of the first order differentials of each given function, at the proposed points:
a) $f(x, y)=y^{x}$, at a generic point (a, b), with $b>0$;
b) $f\left(x_{1}, x_{2}, x_{3}\right)=\frac{x_{1}-x_{2}+x_{3}}{\sqrt{x_{3}-1}}$, at $(1,-3,2)$.

Note: Admit that the functions are differentiable.

Solution: a) $D f(a, b)(\mathbf{h})=b^{a} \log b . h_{1}+a b^{a-1} . h_{2} \quad$ b) $D f(1,-3,2)(\mathbf{h})=h_{1}-h_{2}-2 h_{3}$.
3.8. Show that the following functions are continuous but not differentiable at the given points:
a) $f(x, y)= \begin{cases}\frac{-3 x(y-2)^{2}+x^{3}}{x^{2}+(y-2)^{2}}, & \text { if }(x, y) \neq(0,2) \\ 0, & \text { if }(x, y)=(0,2),\end{cases}$
b) $g(x, y)=\left\{\begin{array}{ll}\frac{2 x y}{\sqrt{x^{2}+y^{2}}}, & \text { if } x^{2}+y^{2} \neq 0 \\ 0, & \text { if } x=y=0,\end{array}\right.$ at $(0,0)$
c) $h(x, y)=\sqrt{|x|} \cos y$, at $(0,0)$.
3.9. Use the chain rule to compute
a) $\frac{d f}{d t}$, where $f=x^{2} y^{3}$, knowing that $x=t e^{t}$ e $y=t^{2}+1$;
b) $\frac{d f}{d t}$, where $f=u^{2}+v^{3}$, knowing that $u=\frac{x}{y}, v=(x+2 y)^{3}$ e $x=\frac{1}{t}, y=t g t$;
c) $\frac{d z}{d t}$, knowing that $z=\frac{2 x y}{x^{2}+y^{2}}$ e $x=\cos t, y=\sin t$.
d) $\nabla f(1,1)$, where $f(x, y)=\sin \left(2 u-v^{3}+w\right)$, knowing that $u=e^{x^{2}-y}, v=x y^{2}$ e $w=x^{3} y^{2}$;
e) $\frac{\partial f}{\partial y}(0,1,1)$, where $f(x, y, z)=\left(u^{2}-3 v\right)^{5}$, knowing that $u=e^{\frac{x y}{z}}$ e $v=\ln \left(y^{2} z^{3}\right)$;
f) $\nabla f(1,2,3)$, where $f(x, y, z)=g(u, v, w)$, with $u=5 x+3 z, v=8 x+2 y, w=-y+z$ and knowing that $\nabla g(14,12,1)=(4,5,6)$.

Solution:

a) $\frac{d f}{d t}=2 t e^{2 t}(t+1)\left(t^{2}+1\right)^{3}+6 t^{3} e^{2 t}\left(t^{2}+1\right)^{2}$;
b) $\frac{d f}{d t}=-2 \frac{1}{t^{3}} \frac{1}{t g^{2} t}-2 \frac{1}{t^{2}} \frac{\sec ^{2} t}{t g^{3} t}+9\left(-\frac{1}{t^{2}}+2 \sec ^{2} t\right)\left(\frac{1}{t}+2 t g t\right)^{8} ; \quad$ c) $\frac{d z}{d t}=2-4 \sin ^{2} t ; \quad$ d) $\nabla f(1,1)=$
$(4 \cos 2,-6 \cos 2) ;$ e) $\frac{\partial f}{\partial y}(0,1,1)=-30 ;$ f) $\nabla f(1,2,3)=(60,4,18)$. $(4 \cos 2,-6 \cos 2) ;$ e) $\frac{\partial f}{\partial y}(0,1,1)=-30 ;$ f) $\nabla f(1,2,3)=(60,4,18)$.
3.10. If a function $f(u, v, w)$ is differentiable at $u=x-y, v=y-z$ and $w=z-x$, show that setting $F(x, y, z)=f(x-y, y-z, z-x)$ we have

$$
\frac{\partial F}{\partial x}+\frac{\partial F}{\partial y}+\frac{\partial F}{\partial z}=0
$$

3.11. Consider the function

$$
g(x, y)= \begin{cases}\frac{(x-1)^{2} y^{2}}{(x-1)^{2}+y^{2}}, & (x, y) \neq(1,0) \\ 0, & (x, y)=(1,0)\end{cases}
$$

a) Determine the partial derivatives $g_{x}^{\prime}(x, y)$ and $g_{y}^{\prime}(x, y)$, as well as their domain of definition.
b) Show that $g_{x}^{\prime}(x, y)$ and $g_{y}^{\prime}(x, y)$ are continuous over \mathbb{R}^{2}.
c) Study the differentiability of f at $(1,0)$.
d) Discuss the continuity of f at $(1,0)$.

Solution:

a) $g_{x}^{\prime}(x, y)=\left\{\begin{array}{ll}\frac{2(x-1) y^{4}}{\left((x-1)^{2}+y^{2}\right)^{2}}, & (x, y) \neq(1,0) \\ 0, & (x, y)=(1,0)\end{array} \quad g_{y}^{\prime}(x, y)= \begin{cases}\frac{2(x-1)^{4} y}{\left((x-1)^{2}+y^{2}\right)^{2}}, & (x, y) \neq(1,0) \\ 0, & (x, y)=(1,0)\end{cases}\right.$

Therefore, $D_{g_{x}^{\prime}}=D_{g_{y}^{\prime}}=\mathbb{R}^{2}$. c) g is differentiable at $(1,0)$. d) g continuous at $(1,0)$.
3.12. Let $f: \mathbb{R}^{2} \rightarrow \mathbb{R}$ be a function defined by

$$
f(x, y)= \begin{cases}\left(x^{2}+y^{2}\right) \sin \frac{1}{\sqrt{x^{2}+y^{2}},} & \text { if }(x, y) \neq(0,0) \\ 0, & \text { if }(x, y)=(0,0)\end{cases}
$$

a) Compute $\frac{\partial f}{\partial x}(0,0)$ and $\frac{\partial f}{\partial y}(0,0)$.
b) Determine $\frac{\partial f}{\partial y}(x, y)$ and show that it is discontinuous at $(0,0)$.
c) Check that f is differentiable at $(0,0)$.
d) Compute $\partial_{\left(\frac{3}{5}, \frac{4}{5}\right)} f(0,0)$.
e)Discuss the continuity of f at $(0,0)$.

Solution:

a) $f_{x}^{\prime}(0,0)=f_{y}^{\prime}(0,0)=0$;
b) $f_{y}^{\prime}(x, y)=\left\{\begin{array}{ll}2 y \sin \frac{1}{\sqrt{x^{2}+y^{2}}}-y \frac{1}{\sqrt{x^{2}+y^{2}}} \cos \frac{1}{\sqrt{x^{2}+y^{2}}}, & (x, y) \neq(0,0) \\ 0, & (x, y)=(0,0)\end{array}\right.$; d) $0 ;$ e) f is continuous at $(0,0)$.
3.13. Use the function

$$
g(x, y)= \begin{cases}\frac{\sin x}{y}, & y \neq 0 \\ 0, & y=0\end{cases}
$$

and the point $(0,0)$ to show that a function with finite partial derivatives at a given point is not necessarily continuous at that point. Is the given function differentiable at $(0,0)$? Why?

Solution:

The function is not continuous at $(0,0)$, and so it is also not differentiable.
3.14. Considerer the function $f: \mathbb{R}^{2} \rightarrow \mathbb{R}$ defined by

$$
f(x, y)= \begin{cases}\frac{x y}{|x|+|y|}, & \text { if }(x, y) \neq(0,0) \\ 0, & \text { if }(x, y)=(0,0)\end{cases}
$$

a) Show that f is continuous at $(0,0)$.
b) Determine $\frac{\partial f}{\partial x}(0,0)$ and $\frac{\partial f}{\partial y}(0,0)$.
c) Show that f is not differentiable at $(0,0)$. Without performing any calculations, what can you conclude about the continuity of $\frac{\partial f}{\partial x}$ e $\frac{\partial f}{\partial y}$ at $(0,0)$?

Solution:

b) $f_{x}^{\prime}(0,0)=f_{y}^{\prime}(0,0)=0$
not continuous at $(0,0)$. Since f is not differentiable at $(0,0)$, at least one of the functions f_{x}^{\prime} or f_{y}^{\prime} is
3.15. Let $f: \mathbb{R}^{2} \rightarrow \mathbb{R}$ be the function defined by

$$
f(x, y)= \begin{cases}\frac{x(x-y)}{x+y} & \text { if } x+y \neq 0 \\ 0 & \text { if } x+y=0\end{cases}
$$

a) Study the continuity of f at $(0,0)$
b) Compute the partial derivative $\frac{\partial f}{\partial x}$ and discuss its continuity at $(0,0)$.
c) Study the differentiability of f at $(0,0)$.
d) Show that $\left(\frac{\partial f}{\partial x}(0,0), \frac{\partial f}{\partial y}(0,0)\right) \cdot\left(\frac{\sqrt{2}}{2}, \frac{\sqrt{2}}{2}\right) \neq \delta_{\left(\frac{\sqrt{2}}{2}, \frac{\sqrt{2}}{2}\right)} f(0,0)$. Comment on the result.

Solution:

a) f is not continuous at $(0,0)$.
b) $f_{x}^{\prime}(x, y)=\frac{x^{2}+2 x y-y^{2}}{(x+y)^{2}}$ if $x+y \neq 0$ and $f_{x}^{\prime}(x, y)=1$ if $(x, y)=(0,0)$ (it does not exist $\left.f_{x}^{\prime}(a,-a), a \neq 0\right)$; $f_{x}^{\prime}(x, y)$ is not continuous at $(0,0)$.
c) f is not differentiable at $(0,0)$.
d) The two values onlym had to be equal if f was differentiable at $(0,0)$.
3.16. Compute $\frac{\partial^{2} f}{\partial x^{2}}$ and $\frac{\partial^{4} f}{\partial x^{2} \partial z \partial y}$, for $f(x, y, z)=z^{2} x^{2} y+x y e^{z}$.

Solution: $\frac{\partial^{2} f}{\partial x^{2}}=2 y z^{2}, \frac{\partial^{4} f}{\partial x^{2} \partial z \partial y}=4 z$.
3.17. Compute $f_{x^{2}}^{\prime \prime}, f_{x y}^{\prime \prime}$ and $f_{x y x}^{\prime \prime \prime}$ for each of the following functions, indicating the corresponding domain of definition:

$$
\text { a) } f(x, y)=x \sin (x+y) ; \quad \text { b) } f(x, y)= \begin{cases}y \sin x, & y \neq 0 \\ 2, & y=0\end{cases}
$$

Solution:

a) $f_{x^{2}}^{\prime \prime}=2 \cos (x+y)-x \sin (x+y), f_{x y}^{\prime \prime}=\cos (x+y)-x \sin (x+y)$ and $f_{x y x}^{\prime \prime \prime}=-2 \sin (x+y)-x \cos (x+y)$.
b) $f_{x^{2}}^{\prime \prime}=-y \sin x, f_{x y}^{\prime \prime}=\cos x$ and $f_{x y x}^{\prime \prime \prime}=-\sin x$;
3.18. Compute the differential of order 2,3 and 4 of the function $f(x, y)=\sqrt{x y}$ at $(1,1)$.

Solution:

$$
\begin{aligned}
& D^{2} f(1,1)\left(\mathbf{h}^{2}\right)=-\frac{1}{4} h_{1}^{2}+\frac{1}{2} h_{1} h_{2}-\frac{1}{4} h_{2}^{2} \\
& D^{3} f(1,1)\left(\mathbf{h}^{3}\right)=\frac{3}{8} h_{1}^{3}-\frac{3}{8} h_{1}^{2} h_{2}-\frac{3}{8} h_{1} h_{2}^{2}+\frac{3}{8} h_{2}^{3} \\
& D^{4} f(1,1)\left(\mathbf{h}^{4}\right)=-\frac{15}{16} h_{1}^{4}+4 \frac{3}{16} h_{1}^{3} h_{2}+6 \frac{1}{16} h_{1}^{2} h_{2}^{2}+4 \frac{3}{16} h_{1} h_{2}^{3}-\frac{15}{16} h_{2}^{4}
\end{aligned}
$$

3.19. Determine the differential of order n of the function $f(x, y)=\sin (x+y)$, at the point $(0,0)$.

Solution: $D^{n} f(0,0)(\mathbf{h})=\sin (n \pi / 2) \sum_{i=0}^{n}\binom{n}{i} h_{1}^{i} h_{2}^{n-i}$
3.20. Show that $f(x, y)=\log \left(e^{x}+e^{y}\right)$ satisfies the (differential) equation

$$
\frac{\partial^{2} f}{\partial x^{2}} \frac{\partial^{2} f}{\partial y^{2}}-\left(\frac{\partial^{2} f}{\partial x \partial y}\right)^{2}=0
$$

everywhere in \mathbb{R}^{2}.
3.21. Let $f \in C^{2}\left(\mathbb{R}^{2}\right)$ be a real function such that $\frac{\partial f}{\partial u}(0,0)=\frac{\partial f}{\partial v}(0,0)=1$. Also, let $g: \mathbb{R}^{2} \longrightarrow \mathbb{R}$ be defined by

$$
g(x, y)=f\left(y \operatorname{sen} x, y^{2}\right)
$$

Show that the Hessian matrix of g at $(0,0)$ is given by $\left[\begin{array}{ll}0 & 1 \\ 1 & 2\end{array}\right]$.
3.22. Consider $f: \mathbb{R}^{2} \longrightarrow \mathbb{R}$ defined by

$$
f(x, y)=x y^{2}+g(u, v, w), \operatorname{com} u=\operatorname{sen} y^{2}, v=\ln x \text { e } w=y e^{x}
$$

Assumingt that g is of class $C^{2}\left(\mathbb{R}^{3}\right)$, compute $\frac{\partial^{2} f}{\partial y \partial x}(1,0)$.

Solution: $\frac{\partial^{2} f}{\partial y \partial x}(1,0)=e\left(\frac{\partial^{2} g}{\partial w \partial v}(0,0,0)+\frac{\partial g}{\partial w}(0,0,0)\right)$.
3.23. Show that the following functions are homogeneous or positively homogeneous. Determine in each case the degree of homogeneity and verify Euler's identity.
a) $f(x, y)=\log \frac{(x+y)^{2}}{x y}$
b) $f(x, y, z)=\frac{\sqrt{x^{2}+y^{2}}}{z^{2}}$
c) $f(x, y)=\left\{\begin{array}{ll}(x+y) \sin \left(\frac{x y}{x^{2}+y^{2}}\right), & (x, y) \neq(0,0) \\ 0, & (x, y)=(0,0)\end{array}\right.$.

Solution:

a) f is homogeneous with degree 0 ;
b) f is positively homogeneous with degree -1 ;
c) f is homogeneous with degree 1 .
3.24. Study the function $g(x, y, z)=x^{2}+x^{\alpha} y^{\beta-3}-z^{3 \alpha} y^{\beta}$ e de $h(x, y)=\frac{x^{3} y^{\alpha}+x^{\beta-1}}{y^{3-\beta}}$, with respect to its homogeneity in terms of the parameters $\alpha, \beta \in \mathbb{R}$,
a) Using the definition.
b) Using Euler's identity.

Solution:

g is homogeneous with degree 2 for $\alpha=-\frac{3}{2}$ and $\beta=\frac{13}{2}$;
h is homogeneous with degree $\alpha+\beta$ for $\beta=\alpha+4, \alpha \in \mathbb{R}$.
3.25. Assuming that $g(u, v)$ is differentiable $\left(\frac{x}{y}, \frac{z}{x}\right)$, with $x, y \neq 0$, show that

$$
f(x, y, z)=x^{2} \cdot g\left(\frac{x}{y}, \frac{z}{x}\right),
$$

satisfies the identity $x f_{x}^{\prime}+y f_{y}^{\prime}+z f_{z}^{\prime}=2$.f. Interpret this results in terms of homogeneity.
Solution: f is positively homogeneous with degree 2 .
3.26. Let $f(\mathbf{x}): \mathbb{R}^{n} \backslash\{\mathbf{0}\} \rightarrow \mathbb{R}$ be an homogeneous, nonconstant function with degree 0 . Show that $\lim _{\mathbf{x} \rightarrow \mathbf{0}} f(\mathbf{x})$ does not exist.
3.27. Consider the function $f: \mathbb{R}^{2} \longrightarrow \mathbb{R}$ definida por

$$
f(x, y)=\ln \left(\frac{x y}{x+y}\right) .
$$

Write down Taylor's formula with degree 2, around (1,1).

Solution: $\ln \frac{(1+h)(1+k)}{2+h+k}=-\ln 2+\frac{1}{2} h+\frac{1}{2} k+\frac{1}{2}\left(-\frac{3}{4} h^{2}+\frac{1}{2} h k-\frac{3}{4} k^{2}\right)+r_{3}(h, k)$.

