4 Optimization Problems

4.1. Determine and classify the critical points of the following functions from \mathbb{R}^{2} to \mathbb{R}.
a) $x^{2}+y^{2}$
b) $x^{2}-y^{2}$
c) $x^{3}+y^{3}$
d) $x^{3}-y^{3}$
e) $x^{4}+y^{4} \quad$ f) $x^{4}-y^{4}$
g) $3 x y-x^{3}-y^{3} \quad$ h) $x \ln x+y \ln y$
i) $x^{3}+y e^{y}$
j) $2 x^{3}+x y^{2}+5 x^{2}+y^{2}$
k) $x^{4}+y^{4}-4 x y+1 \quad$ l) $x^{2} y^{2}$

Solution: a) $(0,0)$ is a minimum point; b) c) d) $(0,0)$ is a saddle point ; e) $(0,0)$ is a minimum point; f) $(0,0)$ is a saddle point; g) $(0,0)$ is a saddle point and $(1,1)$ é maximizante; $h)(1 / e, 1 / e)$ is a minimum point; i) $(0,-1)$ is a saddle point; j$)(0,0)$ is a minimum point, $(-5 / 3,0)$ é maximizante, $(-1,2)$ e $(-1,-2)$ are saddle points; k$)(0,0)$ is a saddle point, $(1,1)$ e $(-1,-1)$ are minimum points; l$)(0, b) \mathrm{e}$ $(a, 0) \forall a, b \in \mathbb{R}$, are minimum points;
4.2. Determine and classify the critical points of the following functions, in terms of the parameter $a \in$ $\mathbb{R} \backslash\{0\}$

$$
\begin{array}{ll}
\text { a) } f(x, y)=e^{x^{2}-a y^{2}} & \text { b) } f(x, y)=a x^{2}-y^{2} \\
\text { c) } f(x, y)=x^{3}-a x^{2}-3 y^{2} & \text { d) } f(x, y)=\frac{16}{5} x^{5}+a y^{2}-x
\end{array}
$$

Solution: a) Critical point: $(0,0)$. if $a<0$, minimum point; if $a>0$, saddle point. b) Critical point: $(0,0)$. If $a>0,(0,0)$ is a saddle point; if $a<0,(0,0)$ is a maximum point. c) Critical points: $(0,0)$ and $\left(\frac{2 a}{3}, 0\right)$. If $a>0,(0,0)$ is a maximum point and $\left(\frac{2 a}{3}, 0\right)$ is a saddle point; if $a<0,(0,0)$ is a saddle point and $\left(\frac{2 a}{3}, 0\right)$ is a maximum point. d) Critical points: $\left(-\frac{1}{2}, 0\right)$ and $\left(\frac{1}{2}, 0\right)$. if $a<0,\left(-\frac{1}{2}, 0\right)$ is a maximum point and $\left(\frac{1}{2}, 0\right)$ is a saddle point; if $a>0,\left(-\frac{1}{2}, 0\right)$ is a saddle point and $\left(\frac{1}{2}, 0\right)$ is a minimum point.
4.3. Consider the function $f(x, y)=(y-\alpha) x e^{x}$.
a) Knowing that $(0,1)$ is a critical point, determine α and classify this critical point.
b) Show that f is unbounded.

Solution: a) $\alpha=1$. The critical point is a saddle point.
4.4. Let function $f: \mathbb{R}^{2} \longrightarrow \mathbb{R}$ be defined by $f(x, y)=4 \alpha(y-2)^{2}+\left(\beta^{2}-1\right)(2 x-2)^{2}$, where $\alpha \neq 0, \beta \neq 1$, $\beta \neq-1$. Show thate $(1,2)$ is the only critical point and classify it in terms of all possible values of α and β.

Solution: If $|\beta|<1$ and $\alpha<0$ then $(1,2)$ is a local maximum; if $|\beta|>1$ and $\alpha>0$ then $(1,2)$ is a local minimum; in all other cases it is a saddle point.
4.5. Let $f: \mathbb{R}^{2} \longrightarrow \mathbb{R}$ be defined by $f(x, y)=x^{2} e^{y^{3}-3 y}$.
a) Determine all critical points of function f.
b) Show that f attains its global minimum at points of the form $(0, b)$.
c) Justify that
(i) f is unbounded over \mathbb{R}^{2};
(ii) f has a maximum and minimum over $B=\left\{(x, y) \in \mathbb{R}^{2}: x^{2}+y^{2} \leq 9\right\}$.

Solution: a) Critical points: $(0, b)$ with $b \in \mathbb{R}$.
4.6. Determine the global extrema of f over the set M, where

$$
\begin{array}{ll}
\text { a) } f(x, y, z)=x-2 y+2 z, & M=\left\{(x, y, z) \in \mathbb{R}^{3}: x^{2}+y^{2}+z^{2}=1\right\} \\
\text { b) } f(x, y)=4 x^{2}+y^{2}, & M=\left\{(x, y) \in \mathbb{R}^{2}: 2 x^{2}+y^{2}=1\right\} \\
\text { c) } f(x, y)=x y, & M=\left\{(x, y) \in \mathbb{R}^{2}: \frac{x^{2}}{8}+\frac{y^{2}}{2}=1\right\} \\
\text { d) } f(x, y, z)=x^{2}+2 y-2 z, & M=\left\{(x, y, z) \in \mathbb{R}^{3}: x^{2}+y^{2}+z^{2}=8\right\} \\
\text { e) } f(x, y)=x^{2}+2 x y+y^{2}, & M=\left\{(x, y) \in \mathbb{R}^{2}:(x-3)^{2}+y^{2}=2\right\} \\
\text { f) } f(x, y, z)=2 x+2 y^{2}+z^{2}, & M=\left\{(x, y, z) \in \mathbb{R}^{3}: x^{2}+y^{2}+z^{2}=2\right\} \\
\text { g) } f(x, y, z)=e^{-x^{2}-y^{2}}, & M=\left\{(x, y, z) \in \mathbb{R}^{3}: x^{2}+y^{2}+z^{2}=1\right\} \\
\text { h) } f(x, y)=4 x y-2 x^{2}-2 y^{2}, & M=\left\{(x, y) \in \mathbb{R}^{2}: x^{2}+y^{2}=1\right\} \\
\text { i) } f(x, y)=x^{2}+2 x y+y^{2}, & M=\left\{(x, y) \in \mathbb{R}^{2}: x^{2}+y^{2}=8\right\}
\end{array}
$$

Solution: a) max. $=3$, min. $=-3$; b) $\max =2$, min. $=1$; c) $\max .=2$, min. $=-2$; d) max. $=10$, min. $=$ $-8 ;$ e) max. $=25, \min .=1 ;$ f) $\max .=9 / 2, \min .=-2 \sqrt{2} . \mathrm{g}) \max .=1, \min .=1 / e ; \mathrm{h}) \max .=0, \min$. $=-4 ;$ i) max. $=16, \min .=0$
4.7. Determine the global extrema of f over the set A, where

$$
\begin{array}{ll}
\text { a) } f(x, y, z)=x-2 y+2 z, & \begin{array}{l}
A=\left\{(x, y, z) \in \mathbb{R}^{3}: x^{2}+y^{2}+z^{2} \leq 1\right\} \\
\text { (note: compare with a) from previous exercise) }
\end{array} \\
\text { b) } f(x, y)=4 x^{2}+y^{2}, & \begin{array}{l}
A=\left\{(x, y) \in \mathbb{R}^{2}: 2 x^{2}+y^{2} \leq 1\right\} \\
\text { (note: compare with b) from previous exercise) }
\end{array} \\
\text { c) } f(x, y)=x^{2}+2 x y+y^{2}, & \begin{array}{l}
A=\left\{(x, y) \in \mathbb{R}^{2}:(x-3)^{2}+y^{2} \leq 2\right\} \\
\text { (note: compare with e) from previous exercise) }
\end{array}
\end{array}
$$

Solution: a) max. $=3, \min .=-3 ;$ b) max. $=2, \min .=$ é $0 ; c) \max .=25, \min .=1$.
4.8. Determine the maximum and minimum distance to the origin of the points in the ellipse $5 x^{2}+6 x y+$ $5 y^{2}=8$.

Solution: The maximum distance is 2 and the minimum distance is 1 .
4.9. Solve the optimization problem $\min (x+4 y+3 z)$ subject to the condition $x^{2}+2 y^{2}+\frac{1}{3} z^{2}=b,(b>0)$.

Solution: The minimum value is $-6 \sqrt{b}$, attained at $\left(-\frac{\sqrt{b}}{6},-\frac{\sqrt{b}}{3},-\frac{3 \sqrt{b}}{2}\right)$.
4.10. Determine the point in the ellipse $x^{2}+2 x y+2 y^{2}=2$ with smallest x coordinate.

Solution: (-2,1).
4.11. determine teh global extrema of $f(x, y)=e^{x^{2}+y^{2}+z^{2}}$ over the set $\left\{(x, y, z) \in \mathbb{R}^{3}: x^{2}+y^{2}=1\right.$, $z=2-y\}$.

Solution: The maximum value is e^{10}, attained at $(0,-1,3)$; the minimum is e^{2}, attained at $(0,1,1)$.

