Mathematics II

Undergraduate Degrees in Economics and Management Second Exam, June 25, 2015

1. Show that $\lambda=2$ is an eigenvalue of the matrix $A=\left(\begin{array}{lll}3 & 1 & 1 \\ 1 & 3 & 1 \\ 0 & 1 & 3\end{array}\right)$ and compute the corresponding eigenvectors.
2. Let Ω be the domain of $f: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ defined by $f(x, y)=\left(\frac{\sqrt{1-x^{2}}}{\ln (x-y)}, \frac{y}{x^{2}+y^{2}}\right)$. Determine Ω analytically and sketch a graphical representation. Briefly justify that Ω is not open nor convex or compact.
3. Let $f: \mathbb{R}^{2} \rightarrow \mathbb{R}$ be given by $f(x, y)=\left\{\begin{array}{cl}\frac{x^{2} y^{2}}{x^{2}+y^{2}} & ,(x, y) \neq(0,0) \\ 0 & ,(x, y)=(0,0)\end{array}\right.$
(a) Compute $\frac{\partial f}{\partial x}(x, y)$, for all $(x, y) \in \mathbb{R}^{2}$.
(b) Show that $\frac{\partial f}{\partial x}$ is continuous at $(0,0)$.
(c) If $f(a, b) \neq 0$, the partial elasticity of f with respect to y is defined by $\mathrm{El}_{y} f(a, b)=$ $\frac{b}{f(a, b)} \cdot \frac{\partial f}{\partial y}(a, b)$. Compute $\mathrm{El}_{y} f(1,1)$.
4. Let $f: \mathbb{R}^{2} \rightarrow \mathbb{R}$ be a C^{1} function and consider $g(x, y)=f\left(x^{2} y^{2}, y \sin x\right)$. Compute $\nabla g(0,0)$.
5. Consider the function $f(x, y)=\frac{1}{2}+\frac{x^{2}}{2}+\frac{y^{2}}{2}-x^{2} y$.
(a) Determine and classify all critical points of f.
(b) Justify that f attains a global maximum and minimum over $M=\left\{(x, y): x^{2}+2 y^{2} \leq 4\right\}$ and determine them.
6. Compute $\iint_{S}\left(1+x^{2} y\right) d x d y$, where $S=\left\{(x, y) \in \mathbb{R}^{2}: x \leq y \leq \sqrt{x}\right\}$.
7. Consider the differential equation $y^{\prime \prime}(x)+2 y^{\prime}(x)-3 y(x)=2 x$.
(a) Solve the initial value problem $y(0)=-4 / 9, y^{\prime}(0)=1 / 3$.
(b) Does the differential equation admit any bounded solutions? Justify.
