Solution Topics

1. Consider the matrix $A=\left[\begin{array}{ccc}2 & -6 & 2 \\ 0 & 5 & -1 \\ 0 & -1 & 5\end{array}\right]$
(a) Compute all eigenvalues of A.

The eigenvalues of A are the solutions to the polynomial equation $|A-\lambda I|=0$.

$$
\begin{aligned}
|A-\lambda I|=0 & \Leftrightarrow(2-\lambda)\left((5-\lambda)^{2}-1\right)=0 \\
& \Leftrightarrow \lambda=2 \vee(5-\lambda)^{2}=1 \\
& \Leftrightarrow \lambda=2 \vee \lambda=4 \vee \lambda=6
\end{aligned}
$$

(b) Determine the eigenvectors associated to the eigenvalue with smallest absolute value.

The eigenvalue with smallest absolute value is $\lambda=2$. The associated eigenvectors are the solutions to the linear system $A v=2 v$.

$$
\left\{\begin{array} { r l }
{ 2 v _ { 1 } - 6 v _ { 2 } + 2 v _ { 3 } } & { = 2 v _ { 1 } } \\
{ 5 v _ { 2 } - v _ { 3 } } & { = 2 v _ { 2 } } \\
{ - v _ { 2 } + 5 v _ { 3 } } & { = 2 v _ { 3 } }
\end{array} \Leftrightarrow \left\{\begin{array} { r l }
{ v _ { 3 } } & { = 3 v _ { 2 } } \\
{ v _ { 3 } } & { = 3 v _ { 2 } } \\
{ v _ { 2 } } & { = 3 v _ { 3 } }
\end{array} \Leftrightarrow \left\{\begin{array}{ll}
& - \\
v_{3} & =0 \\
v_{2} & =0
\end{array}\right.\right.\right.
$$

All eigenvectors associated to $\lambda=2$ satisfy $v_{2}=v_{3}=0$, and $v_{1} \in \mathbb{R}$. They can be written in the form

$$
v=t(1,0,0), \quad t \in \mathbb{R} .
$$

2. Consider the quadratic form defined by $Q(x, y, z)=2 x^{2}+(1-k) y^{2}+(1+k) z^{2}+2 y z$. Classify it in terms of the parameter $k \neq 0$.

The quadratic form can be written as $Q(x, y, z)=\left[\begin{array}{ll}x y & z\end{array}\right]^{T} A\left[\begin{array}{ll}x & y \\ z\end{array}\right]$, where

$$
A=\left[\begin{array}{ccc}
2 & 0 & 0 \\
0 & (1-k) & 1 \\
0 & 1 & (1+k)
\end{array}\right]
$$

The principal minors of A are given by $\Delta_{1}=2>0, \Delta_{2}=2(1-k)$ and $\Delta_{3}=$ $-2 k^{2}<0$. Since $\Delta_{3} \neq 0$ and the full sequence of minors does not correspond to Q being positive definite or negative definite, we can conclude that the quadratic form is indefinite, for all $k \neq 0$.
3. Let $f: D_{f} \subseteq \mathbb{R}^{2} \rightarrow \mathbb{R}$ be defined by $f(x, y)=\frac{\ln \left(1-x^{2}\right) \sqrt{9-x^{2}-y^{2}}}{\ln x}$.
(a) Determine the domain of f, D_{f}, and represent it graphically.

$$
\begin{aligned}
D_{f} & =\left\{(x, y) \in \mathbb{R}^{2}: 1-x^{2}>0 \wedge 9-x^{2}-y^{2} \geq 0 \wedge x>0 \wedge \ln x \neq 0\right\} \\
& =\left\{(x, y) \in \mathbb{R}^{2}:-1<x<1 \wedge x^{2}+y^{2} \leq 3^{2} \wedge x>0 \wedge x \neq 1\right\} \\
& =\left\{(x, y) \in \mathbb{R}^{2}: 0<x<1 \wedge x^{2}+y^{2} \leq 3^{2}\right\}
\end{aligned}
$$

(b) Determine the interior and the boundary of D_{f}. Show that D_{f} is bounded but not compact.

$$
\begin{aligned}
\operatorname{Int}\left(D_{f}\right)= & \left\{(x, y) \in \mathbb{R}^{2}: 0<x<1 \wedge x^{2}+y^{2}<9\right\} \\
\operatorname{Bdy}\left(D_{f}\right)= & \left\{(x, y) \in \mathbb{R}^{2}: 0 \leq x \leq 1 \wedge x^{2}+y^{2}=9\right\} \cup \\
& \left\{(x, y) \in \mathbb{R}^{2}: x=0 \wedge-3 \leq y \leq 3\right\} \cup \\
& \left\{(x, y) \in \mathbb{R}^{2}: x=1 \wedge x^{2}+y^{2} \leq 9\right\}
\end{aligned}
$$

The set D_{f} is bounded because it is contained in a Ball, for example $D_{f} \subset$ $B_{4}(0,0)$. However, the set is not compact because it is not closed (the dashed lines belong to the adherence of D_{f} but not to D_{f}).
4. Consider the function $f(x, y)=\left\{\begin{array}{cc}\frac{x y^{2}}{x^{4}+y^{2}} & \text { if } x \neq 0 \\ 0 & \text { if } x=0\end{array}\right.$
(a) Discuss the continuity of f at $(0,0)$.

Since $f(0,0)=0$, the function will be continuous at $(0,0)$ if and only if $\lim _{(x, y) \rightarrow(0,0)} f(x, y)=0$. We need to consider two limits:

$$
\lim _{\substack{(x, y) \rightarrow(0,0) \\ x=0}} f(x, y) \quad \text { and } \quad \lim _{\substack{(x, y) \rightarrow(0,0) \\ x \neq 0}} f(x, y)
$$

The first limit is zero, as f is identically zero over the set $B_{1}=\left\{(x, y) \in \mathbb{R}^{2}\right.$: $x=0\}$. It remains to show that

$$
\lim _{\substack{(x, y) \rightarrow 0 \\ x \neq 0}} f(x, y)=\lim _{(x, y) \rightarrow(0,0)} \frac{x y^{2}}{x^{4}+y^{2}}=0 .
$$

But this last result is also trivial, if we note that

$$
\left|\frac{x y^{2}}{x^{4}+y^{2}}-0\right|=\frac{|x| y^{2}}{x^{4}+y^{2}} \leq \frac{|x|\left(y^{2}+x^{4}\right)}{x^{4}+y^{2}}=|x| \underset{(x, y) \rightarrow(0,0)}{\longrightarrow} 0 .
$$

(b) Compute $\frac{\partial f}{\partial y}(0,0)$.

$$
\frac{\partial f}{\partial y}(0,0)=\lim _{h \rightarrow 0} \frac{f(0, h)-f(0,0)}{h}=\lim _{h \rightarrow 0} \frac{0-0}{h}=0
$$

5. Let $f(x, y, z)=x^{2}+x y+z \sin (x y)$. Show that

$$
\begin{gathered}
\frac{\partial f}{\partial x}+\frac{\partial f}{\partial y}+\frac{\partial f}{\partial z}=z(x+y) \cos (x y)+3 x+y+\sin (x y) \\
\frac{\partial f}{\partial x}=2 x+y+y z \cos (x y) \\
\frac{\partial f}{\partial y}=x+x z \cos (x y) \\
\frac{\partial f}{\partial z}=\sin (x y) \\
\frac{\partial f}{\partial x}+\frac{\partial f}{\partial y}+\frac{\partial f}{\partial z}=(2 x+y+y z \cos (x y))+(x+x z \cos (x y))+\sin (x y) \\
=z(x+y) \cos (x y)+3 x+y+\sin (x y)
\end{gathered}
$$

