Mathematics II

Undergraduate Degrees in Economics and Management Repeat period, January 30, 2017

Part II

1. Each week an individual consumes quantities X, Y of two given goods and works for L hours, with a satisfaction level measured by the function

$$
S(X, Y, L)=\frac{1}{4} \ln X+\frac{1}{4} \ln Y+\frac{1}{2} \ln (40-L), \quad(X, Y, L>0, L<40) .
$$

His budget is determined by the number of working hours, according to the relation $2 X+4 Y=8 L$.
(a) Show that the satisfaction function $S(X, Y, L)$ does not have global extrema over the set $\Omega=\left\{(X, Y, L) \in \mathbb{R}^{3}: X>0, Y>0, L>0, L<40\right\}$.

Solution: We will show that S can take arbitrarily large positive or negative values over Ω. We can do so by considering the partial function given by $f(X)=S(X, 1,39)=\frac{1}{4} \ln X$, which can take any real value, since it is a continuous function of $X>0$ such that

$$
\lim _{X \rightarrow 0^{+}} f(x)=-\infty \quad \text { and } \quad \lim _{X \rightarrow+\infty} f(X)=+\infty
$$

(b) Assuming that there exists a triplet $\left(X^{*}, Y^{*}, L^{*}\right)$ that locally maximizes $S(X, Y, L)$, given the budgetary restriction, determine it.

Solution: We are searching for local maximum points of $S(X, Y, L)$, subject to the restriction $2 X+4 Y-8 L=0$. Both the objective function and the restriction are continuously differentiable functions over the set Ω defined in (a), and the Jacobian matrix of the restrictions $J=[2,4,-8]$ has maximal rank, and so a local maximum must occur at a critical point of the Lagrangian

$$
\mathcal{L}(X, Y, L, \lambda)=\frac{1}{4} \ln X+\frac{1}{4} \ln Y+\frac{1}{2} \ln (40-L)-\lambda(2 X+4 Y-8 L)
$$

$$
\left\{\begin{array} { r }
{ \mathcal { L } _ { X } ^ { \prime } = 0 } \\
{ \mathcal { L } _ { Y } ^ { \prime } = 0 } \\
{ \mathcal { L } _ { L } ^ { \prime } = 0 } \\
{ \mathcal { L } _ { \lambda } ^ { \prime } = 0 }
\end{array} \Leftrightarrow \left\{\begin{array} { r }
{ \frac { 1 } { 4 X } - 2 \lambda = 0 } \\
{ \frac { 1 } { 4 Y } - 4 \lambda = 0 } \\
{ - \frac { 1 } { 2 } \frac { 1 } { 4 0 - L } + 8 \lambda = 0 } \\
{ 2 X + 4 Y - 8 L = 0 }
\end{array} \Leftrightarrow \left\{\begin{array}{l}
X=\frac{1}{8 \lambda} \\
Y=\frac{1}{16 \lambda} \\
L=40-\frac{1}{16 \lambda} \\
\frac{1}{4 \lambda}+\frac{1}{4 \lambda}-320-\frac{1}{2 \lambda}=0
\end{array} \Leftrightarrow\right.\right.\right.
$$

Now, the last equation yields $\lambda=1 / 320$ and substituting in the previous equations we get a candidate $\left(X^{*}, Y^{*}, L^{*}\right)=(40,20,20)$. In order to show that this critical point is in fact a local maximum, we assemble the bordered Hessian matrix

$$
H(X, Y, L, \lambda)=\left[\begin{array}{c:ccc}
0 & -2 & -4 & 8 \\
\hdashline-2 & -\frac{1}{4 X^{2}} & 0 & 0 \\
-4 & 0 & -\frac{1}{4 Y^{2}} & 0 \\
8 & 0 & 0 & -\frac{1}{(40-L)^{2}}
\end{array}\right]
$$

Considering the number of variables and restrictions, the critical point may be classified using the minors $\Delta_{3}=\frac{1}{200}>0$ and $\Delta_{4}=-\frac{3}{160000}<0$, that satisfy $(-1)^{1} \Delta_{3}<0$ and $(-1)^{4} \Delta_{4}>0$. This shows that $(40,20,20)$ is in fact a local maximum. The optimal strategy in this situation consists in working 20 hours per week and buying 40 units of the first good and 20 units of the second, with a satisfaction level of $S(40,20,20)=\frac{1}{4} \ln 40+\frac{1}{4} \ln 20+\frac{1}{2} \ln 20=\frac{3}{4} \ln 20 \approx 2.2468$.
Note: Since i. we were told to assume the existence of a local maximum; ii. the local maximum must occur at a critical point of the Lagrangian and iii. the Lagrangian has a single critical point; the proof using the bordered hessian was not strictly necessary.
2. Compute $\iint_{\Omega}(x y+1) d x d y$, where Ω is the region bounded by the curves $y=x^{2}$ and $y=x$, for $x \in[0,1]$.

Solution:

$$
\begin{aligned}
\iint_{\Omega}(x y+1) d x d y & =\int_{0}^{1} \int_{x^{2}}^{x} x y+1 d y d x=\int_{0}^{1}\left[\frac{x y^{2}}{2}+y\right]_{y=x^{2}}^{y=x} d x \\
& =\int_{0}^{1}\left(\frac{x^{3}}{2}+x-\frac{x^{5}}{2}-x^{2}\right) d x=\left[\frac{x^{4}}{12}+\frac{x^{2}}{2}-\frac{x^{6}}{12}-\frac{x^{3}}{3}\right]_{x=0}^{x=1}=\frac{1}{6}
\end{aligned}
$$

3. Solve the initial value problem $y^{\prime \prime}+2 y^{\prime}+y=4 e^{t}$, with $y(0)=1, y^{\prime}(0)=2$.

Solution: Using the superposition principle, the general solution of this second order linear differential equation with constant coefficients can be written has $y(t)=y_{h}(t)+y_{*}(t)$, where $y_{h}(t)$ is the general solution of the associated homogeneous equation and $y_{*}(t)$ is a particular solution of the equation.
i. Determination of $y_{h}(t)$.

$$
\begin{aligned}
y_{h}^{\prime \prime}+2 y_{h}^{\prime}+2 y_{h}=0 & \Leftrightarrow\left(D^{2}+2 D+1\right) y_{h}=0 \Leftrightarrow(D-1)^{2} y_{h}=0 \\
& \Leftrightarrow y_{h}(t)=\left(C_{1}+C_{2} t\right) e^{-t}
\end{aligned}
$$

ii. Determination of $y_{*}(t)$.

Since the second member of the equation is e^{t}, we will try a particular solution of the form $y_{*}(t)=K e^{t}$. Substituting in the differential equation we get,

$$
\left(K e^{t}\right)^{\prime \prime}+2\left(K e^{t}\right)^{\prime}+K e^{t}=4 e^{t} \Leftrightarrow 4 K e^{t}=4 e^{t} \Leftrightarrow K=1,
$$

and we conclude that $y_{*}(t)=e^{t}$ is a particular solution.
iii. From i. and ii. we can write the general solution of the equation, given by

$$
y(t)=y_{h}(t)+y_{*}(t)=\left(C_{1}+C_{2} t\right) e^{-t}+e^{t}
$$

and we can also compute

$$
y^{\prime}(t)=C_{2} e^{-t}-\left(C_{1}+C_{2} t\right) e^{-t}+e^{t}
$$

iv. Finally, we can compute C_{1}, C_{2} using the initial conditions

$$
\left\{\begin{array} { r }
{ y (0) = 1 } \\
{ y ^ { \prime } (0) = 2 }
\end{array} \Leftrightarrow \left\{\begin{array} { r }
{ C _ { 1 } + 1 = 1 } \\
{ C _ { 2 } - C _ { 1 } + 1 = 2 }
\end{array} \Leftrightarrow \left\{\begin{array}{l}
C_{1}=0 \\
C_{2}=1
\end{array}\right.\right.\right.
$$

and get the solution

$$
y(t)=t e^{-t}+e^{t}
$$

4. Solve the differential equation $x^{2} y^{\prime}+\left(x^{2}-1\right) y^{3}=0$, for $x \geq 1$, considering the
initial condition $y(1)=1$.

Solution: The differential equation can be rewritten as

$$
x^{2} y^{\prime}+\left(x^{2}-1\right) y^{3}=0 \Leftrightarrow x^{2} d y=-\left(x^{2}-1\right) y^{3} d x \Leftrightarrow \frac{1}{y^{3}} d y=\frac{1-x^{2}}{x^{2}} d x
$$

and is therefore a differential equation with separable variables. The solution is implicitly defined by the equation

$$
\int \frac{1}{y^{3}} d y=\int\left(\frac{1}{x^{2}}-1\right) d x \Leftrightarrow-\frac{1}{2 y^{2}}=-\frac{1}{x}-x-C \Leftrightarrow \frac{1}{2 y^{2}}-\frac{1}{x}-x+C=0
$$

Since $y(1)=1$ the value of C can be computed from

$$
\frac{1}{2 \times 1^{2}}-\frac{1}{1}-1+C=0 \Leftrightarrow C=\frac{3}{2},
$$

and the solution is given implicitly by

$$
\frac{1}{2 y^{2}}-\frac{1}{x}-x-\frac{3}{2}=0
$$

or, computing y explicitly in terms of x, by

$$
y=\sqrt{\frac{x}{2 x^{2}+3 x+2}}
$$

Part I

1. Classify the following statements as true or false, providing a proof or a counterexample, respectively.
(a) If $\boldsymbol{v} \in \mathbb{R}^{n} \backslash\{0\}$ is an eigenvector of $A \in \mathbb{R}^{n \times n}$, it cannot be associated with two different eigenvalues.

Solution: The statement is true. Let us suppose that $\boldsymbol{v} \neq 0$ is associated to two different eigenvalues of $A, \lambda_{1} \neq \lambda_{2}$. In this case we have that

$$
\left(A-\lambda_{1}\right) \boldsymbol{v}=0, \quad\left(A-\lambda_{2} I\right) \boldsymbol{v}=0
$$

If we subtract the two previous equalities, we get $\left(A-\lambda_{1} I-A+\lambda_{2} I\right) \boldsymbol{v}=0$, or simply $\left(\lambda_{1}-\lambda_{2}\right) \boldsymbol{v}=0$. Since $\lambda_{1} \neq \lambda_{2}$ we should have $\boldsymbol{v}=0$, which is a contradiction. Therefore we conclude that \boldsymbol{v} must be associated to a single eigenvalue.
(b) If $\lambda=2$ is an eigenvalue of $A \in \mathbb{R}^{n \times n}$ then $A-2 I=0$.

2. Classify the quadratic form $Q(x, y, z)=x y+x^{2}+y z+4 x z$.

Solution: The symmetric matrix associated to Q is

$$
A=\left[\begin{array}{ccc}
1 & 1 / 2 & 2 \\
1 / 2 & 0 & 1 / 2 \\
2 & 1 / 2 & 0
\end{array}\right]
$$

and the determinants of its principal minors are $\Delta_{1}=1>0, \Delta_{2}=1 \times 0-1 / 2 \times$ $1 / 2=-1 / 4<0$ and $\Delta_{3}=2 \times(1 / 2 \times 1 / 2-2 \times 0)-\frac{1}{2} \times(1 \times 1 / 2-2 \times 1 / 2)=3 / 4>0$. Considering the signs of these determinants, matrix A is indefinite and so is the quadratic form Q.
3. Let $f: \Omega \subset \mathbb{R}^{2} \rightarrow \mathbb{R}$ be defined by the expression $f(x, y)=\sqrt{x^{2}-y}+\sqrt{1-x^{2}-y^{2}}$.
(a) Determine the domain of f, Ω, analytically and geometrically.

Solution:

$$
\begin{aligned}
\Omega & =\left\{(x, y) \in \mathbb{R}^{2}: x^{2}-y \geq 0 \wedge 1-x^{2}-y^{2} \geq 0\right\} \\
& =\left\{(x, y) \in \mathbb{R}^{2}: y \leq x^{2} \wedge x^{2}+y^{2} \leq 1\right\}
\end{aligned}
$$

The domain is represented by the dark grey region in the picture above.
(b) Determine the boundary of Ω and decide if the set is closed.

Solution:
$B d y(\Omega)=\left\{(x, y) \in \mathbb{R}^{2}: y=x^{2} \wedge x^{2}+y^{2} \leq 1\right\} \cup\left\{(x, y) \in \mathbb{R}^{2}: x^{2}+y^{2}=1 \wedge y \leq x^{2}\right\}$

Since all boundary points are already in the set Ω, we have that $\operatorname{Ad}(\Omega)=$ $\operatorname{int}(\Omega) \cup B d y(\Omega)=\Omega$, which means that Ω is closed.
(c) Show that f has a global maximum point $\left(x^{*}, y^{*}\right) \in \Omega$ and that $1 \leq f\left(x^{*}, y^{*}\right) \leq$ $1+\sqrt{2}$.

Solution: As we have seen in (b), Ω is closed and, because $\Omega \subset B_{2}((0,0))$, Ω is also bounded. Since Ω is closed and bounded, it is compact. Also, f is continuous, because it is the sum of two continuous functions (they are the composition of the polynomial functions $x^{2}-y$ and $1-x^{2}-y^{2}$ with the continuous function $\sqrt{\cdot}$). Because Ω is compact and $f: \Omega \rightarrow \mathbb{R}$ is continuous, Weierstrass's theorem guarantees that f attains a global minimum and maximum over Ω. The maximum point $\left(x^{*}, y^{*}\right)$ is a point where the global maximum value is attained.

Regarding the inequalities $1 \leq f\left(x^{*}, y^{*}\right) \leq 1+\sqrt{2}$, we can see that i. Since $f(0,0)=1$ and $f\left(x^{*}, y^{*}\right) \geq f(x, y),(x, y) \in \Omega$, we must have $f\left(x^{*}, y^{*}\right) \geq 1$; ii. $\sqrt{x^{2}-y}+\sqrt{1-x^{2}-y^{2}} \leq \sqrt{1-(-1)}+\sqrt{1-0^{2}-0^{2}}=1+\sqrt{2}$.
4. Show that $f(x, y, z)=\left\{\begin{array}{cl}\frac{x y z}{\sqrt{x^{2}+y^{2}+z^{2}}} & ,(x, y, z) \neq(0,0,0) \\ 0 & ,(x, y, z)=(0,0,0)\end{array}\right.$ is continuous in \mathbb{R}^{3}.

Solution: When $(x, y, z) \neq(0,0,0) f$ is the quotient of two continuous functions: a polynomial and the square root of a continuous positive function, where the denominator does not vanish; and is therefore a continuous function. When $(x, y, z)=(0,0,0), f$ is continuous if

$$
\lim _{(x, y, z) \rightarrow(0,0,0)} \frac{x y z}{\sqrt{x^{2}+y^{2}+z^{2}}}=f(0,0,0)=0 .
$$

Now, since

$$
\begin{aligned}
\left|\frac{x y z}{\sqrt{x^{2}+y^{2}+z^{2}}}-0\right| & \leq \frac{|x||y||z|}{\sqrt{x^{2}+y^{2}+z^{2}}} \leq \frac{\left(\sqrt{x^{2}+y^{2}+z^{2}}\right)^{3}}{\sqrt{x^{2}+y^{2}+z^{2}}} \\
& =\left(x^{2}+y^{2}+z^{2}\right) \rightarrow 0, \quad(x, y, z) \rightarrow(0,0,0)
\end{aligned}
$$

we conclude that f is also continuous at $(0,0,0)$ and so it is continuous over \mathbb{R}^{2}.
5. Consider $f(x, y)=x^{2} y \sin (x+y)$.
(a) Compute the partial derivatives $f_{x}^{\prime}, f_{y}^{\prime}$ and show that f is differentiable in \mathbb{R}^{2}.

Solution:

$$
\begin{aligned}
& f_{x}^{\prime}=2 x y \sin (x+y)+x^{2} y \cos (x+y) \\
& f_{y}^{\prime}=x^{2} \sin (x+y)+x^{2} y \cos (x+y)
\end{aligned}
$$

The partial derivatives of f only involve sums and products of continuous functions (polynomials, sines and cosines of polynomials) and so are continuous in \mathbb{R}^{2}. This is sufficient to show that f is diffeentiable in \mathbb{R}^{2}.
(b) Let $G(u, v)=f(u v, u-v)$. Using the chain rule, compute $G_{v}^{\prime}(1,1)$.

Solution: We start by observing that, denoting $x=u v$ and $y=u-v$, when $u=v=1$ we have $x=1$ and $y=0$. The chain rule then yields,

$$
\begin{aligned}
G_{u}^{\prime} & =\frac{\partial f}{\partial x}(1,0) \frac{\partial x}{\partial u}(1,1)+\frac{\partial f}{\partial y}(1,0) \frac{\partial y}{\partial u}(1,1) \\
& =0 \times 1+\sin 1 \times 1=\sin 1
\end{aligned}
$$

(c) Using Taylor's formula approximate f by a polynomial of degree two, when (x, y) is close to $(0,0)$.

Solution: Using Taylor's formula we know that

$$
\begin{aligned}
f(x, y) & \approx f(0,0)+x f_{x}^{\prime}(0,0)+y f_{y}^{\prime}(0,0)+\frac{1}{2!}\left(x^{2} f_{x x}^{\prime \prime}(0,0)+2 x y f_{x y}^{\prime \prime}(0,0)+y^{2} f_{y y}^{\prime \prime}(0,0)\right) \\
& =\frac{1}{2!}\left(x^{2} f_{x x}^{\prime \prime}(0,0)+2 x y f_{x y}^{\prime \prime}(0,0)+y^{2} f_{y y}^{\prime \prime}(0,0)\right)
\end{aligned}
$$

Now,
$f_{x x}^{\prime \prime}(0,0)=\left(2 y \sin (x+y)+2 x y \cos (x+y)+2 x y \cos (x+y)-x^{2} y \sin (x+y)\right)_{\mid x, y=0}=0$
$f_{y y}^{\prime \prime}(0,0)=\left(x^{2} \cos (x+y)+x^{2} \cos (x+y)-x^{2} y \sin (x+y)\right)_{\mid x, y=0}=0$
$f_{x y}^{\prime \prime}(0,0)=()_{\mid x, y=0}$

Point values: 1. (a) 0.75 (b) 0.75 2. 1.5 3. (a) 1.0 (b) 0.75 (c) 1.0 4. 1.5 5. (a) 1.0 (b) 1.0 (c) 0.75

