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1. Each week an individual consumes quantities X, Y of two given goods and works

for L hours, with a satisfaction level measured by the function

S(X, Y, L) =
1

4
lnX +

1

4
lnY +

1

2
ln(40− L), (X, Y, L > 0, L < 40).

His budget is determined by the number of working hours, according to the relation

2X + 4Y = 8L.

(a) Show that the satisfaction function S(X, Y, L) does not have global extrema

over the set Ω = {(X, Y, L) ∈ R3 : X > 0, Y > 0, L > 0, L < 40}.

Solution: We will show that S can take arbitrarily large positive or negative

values over Ω. We can do so by considering the partial function given by

f(X) = S(X, 1, 39) = 1
4

lnX, which can take any real value, since it is a

continuous function of X > 0 such that

lim
X→0+

f(x) = −∞ and lim
X→+∞

f(X) = +∞.

(b) Assuming that there exists a triplet (X∗, Y ∗, L∗) that locally maximizes S(X, Y, L),

given the budgetary restriction, determine it.

Solution: We are searching for local maximum points of S(X, Y, L), subject

to the restriction 2X + 4Y − 8L = 0. Both the objective function and the

restriction are continuously differentiable functions over the set Ω defined in

(a), and the Jacobian matrix of the restrictions J = [2, 4,−8] has maximal

rank, and so a local maximum must occur at a critical point of the Lagrangian

L(X, Y, L, λ) =
1

4
lnX +

1

4
lnY +

1

2
ln(40− L)− λ(2X + 4Y − 8L)





L′X = 0

L′Y = 0

L′L = 0

L′λ = 0

⇔



1
4X
− 2λ = 0

1
4Y
− 4λ = 0

−1
2

1
40−L + 8λ = 0

2X + 4Y − 8L = 0

⇔



X = 1
8λ

Y = 1
16λ

L = 40− 1
16λ

1
4λ

+ 1
4λ
− 320− 1

2λ
= 0

⇔

Now, the last equation yields λ = 1/320 and substituting in the previous

equations we get a candidate (X∗, Y ∗, L∗) = (40, 20, 20). In order to show

that this critical point is in fact a local maximum, we assemble the bordered

Hessian matrix

H(X, Y, L, λ) =


0 −2 −4 8

−2 − 1
4X2 0 0

−4 0 − 1
4Y 2 0

8 0 0 − 1
(40−L)2

 .

Considering the number of variables and restrictions, the critical point may be

classified using the minors ∆3 = 1
200

> 0 and ∆4 = − 3
160000

< 0, that satisfy

(−1)1∆3 < 0 and (−1)4∆4 > 0. This shows that (40, 20, 20) is in fact a local

maximum. The optimal strategy in this situation consists in working 20 hours

per week and buying 40 units of the first good and 20 units of the second, with a

satisfaction level of S(40, 20, 20) = 1
4

ln 40+ 1
4

ln 20+ 1
2

ln 20 = 3
4

ln 20 ≈ 2.2468.

Note: Since i. we were told to assume the existence of a local maximum; ii.

the local maximum must occur at a critical point of the Lagrangian and iii.

the Lagrangian has a single critical point; the proof using the bordered hessian

was not strictly necessary.

2. Compute

∫∫
Ω

(xy + 1)dx dy, where Ω is the region bounded by the curves y = x2

and y = x, for x ∈ [0, 1].

Solution:∫∫
Ω

(xy + 1)dxdy =

∫ 1

0

∫ x

x2
xy + 1dydx =

∫ 1

0

[
xy2

2
+ y

]y=x

y=x2
dx

=

∫ 1

0

(
x3

2
+ x− x5

2
− x2)dx =

[
x4

12
+
x2

2
− x6

12
− x3

3

]x=1

x=0

=
1

6



3. Solve the initial value problem y′′ + 2y′ + y = 4et, with y(0) = 1, y′(0) = 2.

Solution: Using the superposition principle, the general solution of this second

order linear differential equation with constant coefficients can be written has

y(t) = yh(t) + y∗(t), where yh(t) is the general solution of the associated homoge-

neous equation and y∗(t) is a particular solution of the equation.

i. Determination of yh(t).

y′′h + 2y′h + 2yh = 0⇔(D2 + 2D + 1)yh = 0⇔ (D − 1)2yh = 0

⇔yh(t) = (C1 + C2t)e
−t

ii. Determination of y∗(t).

Since the second member of the equation is et, we will try a particular solution

of the form y∗(t) = Ket. Substituting in the differential equation we get,

(Ket)′′ + 2(Ket)′ +Ket = 4et ⇔ 4Ket = 4et ⇔ K = 1,

and we conclude that y∗(t) = et is a particular solution.

iii. From i. and ii. we can write the general solution of the equation, given by

y(t) = yh(t) + y∗(t) = (C1 + C2t)e
−t + et

and we can also compute

y′(t) = C2e
−t − (C1 + C2t)e

−t + et

iv. Finally, we can compute C1, C2 using the initial conditions y(0) = 1

y′(0) = 2
⇔

 C1 + 1 = 1

C2 − C1 + 1 = 2
⇔

 C1 = 0

C2 = 1

and get the solution

y(t) = te−t + et.

4. Solve the differential equation x2y′ + (x2 − 1)y3 = 0, for x ≥ 1, considering the



initial condition y(1) = 1.

Solution: The differential equation can be rewritten as

x2y′ + (x2 − 1)y3 = 0⇔ x2dy = −(x2 − 1)y3dx⇔ 1

y3
dy =

1− x2

x2
dx

and is therefore a differential equation with separable variables. The solution is

implicitly defined by the equation∫
1

y3
dy =

∫ (
1

x2
− 1

)
dx⇔ − 1

2y2
= −1

x
− x− C ⇔ 1

2y2
− 1

x
− x+ C = 0.

Since y(1) = 1 the value of C can be computed from

1

2× 12
− 1

1
− 1 + C = 0⇔ C =

3

2
,

and the solution is given implicitly by

1

2y2
− 1

x
− x− 3

2
= 0,

or, computing y explicitly in terms of x, by

y =

√
x

2x2 + 3x+ 2
.

Point values: 1. (a) 1.0 (b) 2.5 2. 2.0 3. 2.5 4. 2,0



Part I

1. Classify the following statements as true or false, providing a proof or a counter-

example, respectively.

(a) If v ∈ Rn \ {0} is an eigenvector of A ∈ Rn×n, it cannot be associated with two

different eigenvalues.

Solution: The statement is true. Let us suppose that v 6= 0 is associated to

two different eigenvalues of A, λ1 6= λ2. In this case we have that

(A− λ1)v = 0, (A− λ2I)v = 0.

If we subtract the two previous equalities, we get (A− λ1I − A + λ2I)v = 0,

or simply (λ1 − λ2)v = 0. Since λ1 6= λ2 we should have v = 0, which is a

contradiction. Therefore we conclude that v must be associated to a single

eigenvalue.

(b) If λ = 2 is an eigenvalue of A ∈ Rn×n then A− 2I = 0.

Solution: The statement is false. For example, matrix A =

1 0

0 2

 has λ = 2

as an eigenvalue, but A− 2I =

−1 0

0 0

 6= 0.

2. Classify the quadratic form Q(x, y, z) = xy + x2 + yz + 4xz.



Solution: The symmetric matrix associated to Q is

A =


1 1/2 2

1/2 0 1/2

2 1/2 0


and the determinants of its principal minors are ∆1 = 1 > 0, ∆2 = 1× 0− 1/2×

1/2 = −1/4 < 0 and ∆3 = 2×(1/2×1/2−2×0)− 1
2
×(1×1/2−2×1/2) = 3/4 > 0.

Considering the signs of these determinants, matrix A is indefinite and so is the

quadratic form Q.

3. Let f : Ω ⊂ R2 → R be defined by the expression f(x, y) =
√
x2 − y+

√
1− x2 − y2.

(a) Determine the domain of f , Ω, analytically and geometrically.

Solution:

Ω ={(x, y) ∈ R2 : x2 − y ≥ 0 ∧ 1− x2 − y2 ≥ 0}

={(x, y) ∈ R2 : y ≤ x2 ∧ x2 + y2 ≤ 1}

The domain is represented by the dark grey region in the picture above.

(b) Determine the boundary of Ω and decide if the set is closed.

Solution:

Bdy(Ω) ={(x, y) ∈ R2 : y = x2 ∧ x2 + y2 ≤ 1} ∪ {(x, y) ∈ R2 : x2 + y2 = 1 ∧ y ≤ x2}



Since all boundary points are already in the set Ω, we have that Ad(Ω) =

int(Ω) ∪Bdy(Ω) = Ω, which means that Ω is closed.

(c) Show that f has a global maximum point (x∗, y∗) ∈ Ω and that 1 ≤ f(x∗, y∗) ≤

1 +
√

2.

Solution: As we have seen in (b), Ω is closed and, because Ω ⊂ B2((0, 0)),

Ω is also bounded. Since Ω is closed and bounded, it is compact. Also, f

is continuous, because it is the sum of two continuous functions (they are

the composition of the polynomial functions x2 − y and 1− x2 − y2 with the

continuous function
√
·). Because Ω is compact and f : Ω → R is continu-

ous, Weierstrass’s theorem guarantees that f attains a global minimum and

maximum over Ω. The maximum point (x∗, y∗) is a point where the global

maximum value is attained.

Regarding the inequalities 1 ≤ f(x∗, y∗) ≤ 1 +
√

2, we can see that i. Since

f(0, 0) = 1 and f(x∗, y∗) ≥ f(x, y), (x, y) ∈ Ω, we must have f(x∗, y∗) ≥ 1;

ii.
√
x2 − y +

√
1− x2 − y2 ≤

√
1− (−1) +

√
1− 02 − 02 = 1 +

√
2.

4. Show that f(x, y, z) =


xyz√

x2 + y2 + z2
, (x, y, z) 6= (0, 0, 0)

0 , (x, y, z) = (0, 0, 0)

is continuous in R3.

Solution: When (x, y, z) 6= (0, 0, 0) f is the quotient of two continuous func-

tions: a polynomial and the square root of a continuous positive function, where

the denominator does not vanish; and is therefore a continuous function. When

(x, y, z) = (0, 0, 0), f is continuous if

lim
(x,y,z)→(0,0,0)

xyz√
x2 + y2 + z2

= f(0, 0, 0) = 0.

Now, since∣∣∣∣∣ xyz√
x2 + y2 + z2

− 0

∣∣∣∣∣ ≤ |x||y||z|√
x2 + y2 + z2

≤ (
√
x2 + y2 + z2)3√
x2 + y2 + z2

=(x2 + y2 + z2)→ 0, (x, y, z)→ (0, 0, 0)

we conclude that f is also continuous at (0, 0, 0) and so it is continuous over R2.



5. Consider f(x, y) = x2y sin(x+ y).

(a) Compute the partial derivatives f ′x, f
′
y and show that f is differentiable in R2.

Solution:

f ′x =2xy sin(x+ y) + x2y cos(x+ y)

f ′y =x2 sin(x+ y) + x2y cos(x+ y)

The partial derivatives of f only involve sums and products of continuous

functions (polynomials, sines and cosines of polynomials) and so are continuous

in R2. This is sufficient to show that f is diffeentiable in R2.

(b) Let G(u, v) = f(uv, u− v). Using the chain rule, compute G′v(1, 1).

Solution: We start by observing that, denoting x = uv and y = u− v, when

u = v = 1 we have x = 1 and y = 0. The chain rule then yields,

G′u =
∂f

∂x
(1, 0)

∂x

∂u
(1, 1) +

∂f

∂y
(1, 0)

∂y

∂u
(1, 1)

=0× 1 + sin 1× 1 = sin 1

(c) Using Taylor’s formula approximate f by a polynomial of degree two, when

(x, y) is close to (0, 0).

Solution: Using Taylor’s formula we know that

f(x, y) ≈f(0, 0) + xf ′x(0, 0) + yf ′y(0, 0) +
1

2!

(
x2f ′′xx(0, 0) + 2xyf ′′xy(0, 0) + y2f ′′yy(0, 0)

)
=

1

2!

(
x2f ′′xx(0, 0) + 2xyf ′′xy(0, 0) + y2f ′′yy(0, 0)

)

Now,

f ′′xx(0, 0) =
(
2y sin(x+ y) + 2xy cos(x+ y) + 2xy cos(x+ y)− x2y sin(x+ y)

)
|x,y=0

= 0

f ′′yy(0, 0) =
(
x2 cos(x+ y) + x2 cos(x+ y)− x2y sin(x+ y)

)
|x,y=0

= 0

f ′′xy(0, 0) = ()|x,y=0



Point values: 1. (a) 0.75 (b) 0.75 2. 1.5 3. (a) 1.0 (b) 0.75 (c) 1.0 4. 1.5 5. (a) 1.0

(b) 1.0 (c) 0.75


