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GLOSSARY 

AI - Artificial Intelligence 

CO₂eq - Carbon dioxide equivalent 

CPU - Central Processing Unit 

DL - Deep Learning 

DPU - Data Processing Unit 

GHG - Greenhouse gas 

GPT - Generative Pre-trained Transformer 

GPU - Graphics Processing Unit 

ICTs - Information and Communication Technologies 

kWh - Kilowatt-hour 

LLM - Large Language Models 

ML - Machine Learning 

NLP - Natural Language Processing 

PUE - Power Usage Effectiveness 

RL - Reinforcement Learning 

t CO2eq - Tonnes of carbon dioxide equivalent 

TPU - Tensor Processing Unit 
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ABSTRACT 

Artificial intelligence (AI) has become an integral part of our lives, with its models 

increasingly used across various sectors. However, there is limited research on its 

environmental and sustainability costs. With this study, we intend to advance the 

understanding of how carbon emissions associated with AI models can be measured and 

reduced. This is done through literature review, the analysis of real-world case studies, 

and the elicitation of expert stakeholder’s perspectives. This combination of 

methodologies enables a comprehensive evaluation of the practices currently used to 

calculate the carbon emissions associated with the training and inference of AI models, 

as well as of the strategies applied to mitigate their carbon footprint. Our results show 

that: (i) current estimations of the carbon emissions of training and deploying AI models 

are flawed due to the limited understanding of their complexity, unavailability of coherent 

estimation frameworks and incomplete data availability; (ii) the adoption of standardized 

emission’s reporting among tech companies is a necessary step towards more accurate 

calculations; (iii) the implementation of carbon reduction techniques such as algorithm, 

hardware and data centre optimization can serve as possible solutions to minimize the 

carbon emissions of these models; (iv) all stakeholders involved in the AI model’s 

lifecycles need to be publicly informed about the emission impact and actively engaged 

in mitigation efforts. This thesis acknowledges the growing data and computational 

resources that accompany the current advancement of AI models and discusses how this 

trend may affect their long-term environmental sustainability. Future research and 

research policies should focus on addressing major gaps in AI model carbon emission 

calculation and on developing effective mitigation strategies and technological innovation, 

which can support companies’ efforts towards a more sustainable AI. 

KEYWORDS: AI Models; Carbon Emissions; Sustainable AI; Emission Calculators; 

Carbon Reduction Frameworks; Stakeholder Engagement 
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CARBON FOOTPRINT OF ARTIFICIAL INTELLIGENCE (AI) MODELS: 

ESTIMATION AND REDUCTION APPROACHES 

By Mina Vildan Şark 

Artificial intelligence (AI) models are widely used in several sectors, but 

research on their environmental and sustainability costs is limited. Using a 

combination of literature review, real-world case studies, and expert insights, 

this study explores how the carbon footprint of AI models can be measured and 

reduced. Findings indicate current emission estimates face challenges due to 

model complexities, inconsistent frameworks, and insufficient data. The 

importance of implementing standardized reporting, carbon reduction 

techniques, and stakeholder engagement is highlighted. Further research and 

policy developments should aim to enhance the calculation of AI carbon 

emissions and the promotion of sustainable AI innovation. 

1. INTRODUCTION 

1.1. Background 

Climate change is one of the most pressing challenges of our time, and assessing and 

reducing carbon emissions is crucial to mitigate its impact. As digital services proliferate 

across various sectors, the environmental impact of Information and Communication 

Technologies (ICTs) has become a matter of concern (Berthelot et al., 2024). Recent 

estimates claim that ICT contributes between 1.5% and 4% of global carbon emissions 

(Ayers et al., 2024). Such a wide range is due, in part, to the difficulty in accurately 

estimating emissions, given the distributed nature of the global computing infrastructure. 

Artificial Intelligence (AI) is playing a significant role in the growing carbon footprint of 

the ICT sector, particularly because of large-scale generative models (Bolón-Canedo et 

al., 2024). A recent surge in large-scale generative models, such as ChatGPT and 

DeepSeek, has attracted particular attention due to the significant computational resources 

required for their training. Additionally, their deployment increases the use of end-user 

devices, networks, and data centres, as these models are offered as web services. This 

expanded usage contributes to global warming, heightens the demand for metals, and 

increases energy consumption (Berthelot et al., 2024). Considering a real-life example on 

ChatGPT which is widely being used, and it is found that a single query on the model 

produces 0.382g CO2eq (10,000,000 queries per day is taken as a base) (Tomlinson et al., 

2024). The growing adoption of AI models like ChatGPT raises considerable concern 

about their impact on increasing carbon emissions. 
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1.2. Problem statement 

As the use of AI models become more widespread, the growing concern about their 

environmental impacts highlight the urgent need for sustainable AI, defined as the extent 

to which AI technology is developed to meet present needs without compromising future 

generations (Bjørlo et al., 2021). To address these concerns, van Wynsberghe (2021) 

outlines two critical branches of sustainable AI: AI for sustainability (e.g., when applied 

to decarbonization systems) and the sustainability of AI (i.e., which focuses on reducing 

carbon emissions and computing power). This indicates that AI can be a double-edged 

sword regarding the environment, since it can be very helpful in lowering carbon 

emissions and responding to climate change effects, while being a vast carbon emitter. 

Therefore, it is crucial that sustainability frameworks are used so that the potential 

benefits are balanced against the environmental impact of AI (Gaur et al., 2023).  

The complexity of AI models is growing and so is their demand for energy-intensive 

computational power, the amounts of data used in their training and deploying, and the 

water consumption needed to refrigerate data centres that hold training data, which results 

in significant carbon and other greenhouse gas (GHG) emissions, thus posing serious 

sustainability challenges (Bolón-Canedo et al., 2024). On the other hand, there is an 

increasing number of studies that use AI models (especially machine learning) to support 

the reduction of carbon emission across multiple societal sectors and applications, 

creating a positive environmental impact. However, many of these studies overlook the 

carbon emissions generated by the training and use of the models themselves, which may 

result in an overall negative environmental impact, as indicated by Delanoë et al. (2023).  

1.3. Research objectives 

Given the above stated challenges, this thesis focuses on the sustainability of AI, 

specifically examining the carbon emissions associated with the training and deployment 

of AI models. The primary objective is to address the research gap in understanding the 

carbon emissions generated by AI models throughout their lifecycles, particularly during 

the training and inference phases. This study also aims to raise awareness among 

technology users, researchers, policymakers, and practitioners about the environmental 

challenges posed by AI models and considering sustainable practices. By shedding light 

on the challenges and opportunities related to the carbon emissions of AI models, this 
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thesis contributes to the literature on the half of sustainable approach to AI models. It also 

informs the research policy on the need for standardized reporting, transparent methods, 

and regulatory framing for greener AI use. It contributes to more informed policies by 

analysing measurement techniques, systemic reporting challenges, and potential 

reduction strategies. 

1.4. Research questions 

As a relatively new field, research about carbon emissions associated with the training 

and deploying of AI models remains limited. To address this gap, this thesis explores how 

the carbon footprint of AI models can be measured and reduced, highlights systemic 

reporting and calculation challenges, and examines the level of involvement and 

awareness among stakeholders (e.g., AI researchers, data centre managers, and cloud 

service providers). 

Two main research questions (and sub-questions) are addressed in this thesis: 

1. How can the carbon footprint of AI models be measured? 

a. What are the systemic reporting and calculation challenges associated with the 

carbon emissions of AI models? 

To measure the carbon emissions associated with AI model lifecycles, primarily on 

training and inference phases, this question examines the methods and tools currently 

available and commonly used. It also examines the measurement factors such as model 

size, amount of data, data centre location, and type of hardware use, among others. With 

the sub-question, this thesis explores the limitations in the current implications, and lack 

of standardized reporting guidelines. 

2. How can the carbon footprint of AI models be reduced? 

a. How involved and aware are stakeholders in the effort to mitigate carbon 

emissions of AI models? 

Potential solutions and recommendations to reduce the carbon emissions of AI models 

are addressed in this question. Such techniques include the optimization of algorithms, 

energy-efficient models, the use of renewable energy sources for data centres, and 

sustainable training practices. With the sub-question, this thesis explores the current level 

of stakeholder involvement and awareness in the carbon emission reduction of AI models. 
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2. LITERATURE REVIEW 

2.1. Artificial Intelligence (AI) 

We name ourselves Homo sapiens, the wise species, highlighting the central role of 

intelligence in defining humanity. For centuries, humans have sought to understand how 

we think, exploring how a small amount of matter can perceive, comprehend, predict, and 

interact with a world far more complex than itself (Russell & Norvig, 2020). This 

curiosity gave rise to the desire to replicate human intelligence, leading to the introduction 

of “Artificial Intelligence” technology. The term AI was first introduced by John 

McCarthy in 1955, who defined it as “the science and engineering of making intelligent 

machines, especially intelligent computer programs.” (McCarthy, 2007). It goes beyond 

simply by understanding intelligence; it builds intelligent entities capable of performing 

tasks autonomously (Russell & Norvig, 2020). It is the ability of a machine to display 

human-like capabilities such as reasoning, learning, planning and creativity. This allows 

technical systems to sense their surroundings, interpret what they observe, solve problems, 

and take action to accomplish a specific goal (European Parliament, 2020). Today, AI is 

one of the most prevalent and rapidly advancing technologies. Therefore, it is important 

to learn about its sustainability, including its environmental impact (e.g., climate change) 

and implications to national and European research and innovation policies. 

2.2. The landscape of Artificial Intelligence 

The landscape of artificial intelligence is vast, incorporating machine learning, with 

deep learning and reinforcement learning representing small but increasingly important 

segments of this broader domain, driven by advancements in complex problem-solving 

and real-world applications (Sarajcev et al., 2022) (Figure 1). Machine Learning (ML) is 

a subfield of AI that includes training algorithms for making predictions based on data. It 

is applied in an extensive range of tasks, incorporating classification (categorizing data 

into predefined labels), regression (predicting continuous values), and clustering 

(segmenting similar data points together without prior labels) (Jason Bell, 2022). Deep 

Learning (DL), a subdivision of ML, incorporates training artificial neural networks to 

execute typical tasks such as image classification, speech recognition and object detection 

(Shahinfar et al., 2020). Natural Language Processing (NLP) allows computers to process 

human language, such as text or voice, and synthesize a relevant response in the form of 
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speech and natural language (Khan et al., 2023). It relies mainly on DL techniques and 

the best known and used applications are Chat GPT-4 and Google’s Gemini. 

Reinforcement learning (RL), a specialized subset of DL, trains models to respond to 

specific scenarios which is effective for decision-making tasks (Sutton & Barto, 2018).  

 

FIGURE 1 – Artificial Intelligence landscape 

Natural Language Processing (NLP), a subfield of AI, is not explicitly included since it focuses 

specifically on language processing tasks and is not a broader ML or DL methodology. 

Source: Sarajcev et al. (2022) 

2.3. Artificial Intelligence model’s lifecycle 

AI models are programs or algorithms that enable machines to analyse data, identify 

patterns, make predictions, adapt to new situations, and perform tasks like humans by 

learning from experience (Sarajcev et al., 2022). AI models usually have five common 

phases in their lifecycles: data preparation, model building, model training, model 

deployment, and model management. Figure 2 graphically depicts a typical AI model 

lifecycle (Sarajcev et al., 2022). 
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FIGURE 2 – AI model lifecycle 

Source: Sarajcev et al. (2022) 

Within this lifecycle, Berthelot et al. (2024) state that several phases focus primarily 

on data, namely: data acquisition, data production, learning, inference, and data storage, 

all of which are interconnected, especially across phases two to four. Furthermore, the 

authors distinguish the importance of data use in the training and inference phases of the 

models (steps 3 and 4). The authors explain that firstly, the most appropriate model is 

being identified, and it learns a suitable algorithm tailored to the task, then integrates the 

algorithm with the model and dataset, called the training phase. After that, when the 

model achieves the desired quality level, it becomes ready to be used with new data, 

named as inference phase (Berthelot et al., 2024).  

2.4. Need for data, computational and energy resources in the AI model training 

and inference phases 

In the lifecycle of AI models, data is an essential input since it serves as the foundation 

for model building and training, and significantly impacts their performance, accuracy, 

and complexity. As Röger et al. (2024) highlights, the quality and volume of data 

influences the accuracy of the AI models’ predictions and the complexity of the models 

themselves, and insufficient data can lead to inaccurate or incorrect predictions. 

This dependency on data extends to the parameters of AI models, which are designed 

to capture the patterns and relationships within the provided data. For instance, GPT-4 

(1.7+ trillion parameters), Gemini Pro (540+ billion parameters), and Llama (70 billion 
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parameters) rely on billions to trillions of parameters to process and learn from data 

(Zvornicanin, 2024). Model parameters are the internal variables that the model uses to 

make predictions and decisions, and including weights, biases, and activation functions. 

The effectiveness of these parameters, however, hinges on the quality and comprehension 

of the input data, enabling the models to make more accurate predictions and decisions 

(TED AI, 2024). Thompson et al. (2020) state that models with more parameters tend to 

deliver higher accurate results and better performance. However, these authors indicate 

that achieving such performance levels requires more data and computational resources. 

On the other hand, Leuthe et al. (2024) argue that a higher volume of data does not 

necessarily lead to better model performance. In fact, they reveal that smaller, simpler 

models can sometimes perform better, emphasizing the importance of data quality over 

the data volume. Moreover, Al-Jarrah et al. (2015) claim that to handle large volumes of 

data, current AI models lack efficiency and scalability so that deploying more accurate 

systems is significant as it increases the use of preference. 

AI models also require extensive calculations to properly align their parameters for 

optimal performance. These computations are carried out using various computational 

resources, which include both hardware and software components. The most used 

hardware components are CPUs (Central Processing Units), GPUs (Graphics Processing 

Units), and TPUs (Tensor Processing Units) (DataScientest, 2024). According to Strubell 

et al. (2019), advances in hardware technology for training models have significantly 

improved the result accuracy and high-demand computational models achieve better 

results due to these improvements. Achieving the desired level of accuracy, however, 

requires large-scale computational resources, which often involve substantial energy 

consumption (Strubell et al., 2019). Therefore, Cowls et al. (2023) highlights the 

differences between training and inference phases according to their computational needs.  

They explain that while training an ML model entails supplying the algorithm with a set 

of labelled data, which enables it to adjust its internal parameters and minimize errors, 

after training - in the inference phase - the model is finalized to generate predictions using 

new, unknown data, thus requiring different levels of computation in each phase. Luccioni 

et al. (2024) state that the inference phase requires significantly less computational power 

compared to the training phase, but that the former occurs much more frequently, often 

billions of times daily for popular services like Google Translate. Cho (2023) discusses 
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that in the inference phase, the energy consumption might be higher than the training 

phase and presents Google estimations that indicate that 60% of the energy consumed 

comes from the inference, while 40% belongs to the training. Moreover, Xu et al. (2021) 

state that the burden of inference is higher due to the increment in larger models and 

exemplify the finding that 90% of the infrastructure costs for ML production are attributed 

to inference.  

2.5. Carbon footprint of AI models 

A carbon footprint, expressed in terms of carbon dioxide equivalent (CO2eq), 

measures the greenhouse gas emissions (GHG) of a device or activity (Cowls et al., 2023). 

These emissions accumulate in the atmosphere and oceans, contributing to climate change, 

a major threat to our planet. The Paris Agreement was made to combat climate change, 

to keep global temperature rise to below 2°C, ideally 1.5°C, above pre-industrial levels 

(UNFCC, 2024). According to data from the EU’s Copernicus (2024) global warming has 

already breached the 1.5°C target in 2024. As climate change continues to negatively 

impact society, economically and socially, it is imperative to reduce GHG emissions to 

meet the targets set by the Paris Agreement.  

The use of AI models contributes to GHG emissions by training using large amounts 

of data, inference, and being overall computationally intensive. As AI models become 

more complex, their carbon footprints also start to be considered in the fight against 

climate change and thus calculated. For instance, researchers at the University of 

Massachusetts Amherst discovered that a single AI model produces over 284 t of CO2 

around 6 months, equivalent to the emissions of five cars over their lifetime (Cho, 2023). 

Similarly, training GPT-3 with 175 billion parameters consumed 1287 MWh of electricity, 

and emitted 502 t of CO2, which is comparable to the annual emissions of 112 gasoline-

powered cars (Patterson et al., 2021). In addition, specific tasks performed by AI models 

also contribute to energy consumption. Researchers at Hugging Face and Carnegie 

Mellon University discovered that generating an image with an AI model consumes as 

much energy as fully charging a smartphone and generating text is less energy intensive; 

Producing text 1000 times consumes only 16% of the energy required to charge a 

smartphone (Heikkilä, 2023). 
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Measuring AI model carbon emissions is a crucial step in raising awareness and 

controlling its potential environmental impact. Several factors involved in the calculation 

highlighted by recent literature: (a) hardware; (b) data centre location and the energy grid; 

and (c) complexity, length of training, and running frequency of inference tasks. 

2.5.1. Hardware 

Hardware components such as GPUs, CPUs, and memory are very power-intensive 

and consume large amounts of electricity to make the complex computations needed for 

AI models training and inference. GPUs account for approximately 70% of power 

consumption, while CPUs contribute 15%, and RAM make up 10% (Bouza et al., 2023). 

This power consumption is influenced by various factors, including the size and 

complexity of the model, dataset size, and hardware infrastructure, and can range from 

hundreds to thousands of kilowatt-hours (kWh) (Schwartz et al., 2019). According to Li 

et al. (2023), as demand for high-performance computing (HPC) systems increases, GPUs 

were found to produce notably higher carbon emissions compared to CPUs, based on a 

comparison across 500 supercomputers. Additionally, the capacity of memory and 

storage devices also influences carbon emissions, similar to compute units (e.g. CPUs, 

GPUs). Lacoste et al. (2019) argue that the computing hardware choice is crucial and 

directly impacts carbon emissions, and states that CPUs are found to be up to 10 times 

less efficient than GPUs. Moreover, these authors add that while powerful GPUs are 

readily accessible to practitioners, each new type of GPU must be trained to address 

challenges that require large datasets and extended processing times. 

2.5.2. Location of the data centre and the energy grid 

Another major factor in the carbon emissions of AI models is data centres. Their 

emissions are driven by two key factors: (i) the power consumption of servers; and (ii) 

the carbon intensity of the energy grids that supply them (Cho, 2023). Most data centres 

still rely on fossil fuels and operate 24/7, contributing approximately 1% of global GHG 

emissions, equivalent to around 330 Mt CO2eq in 2020 (Rozite et al., 2023). 

Servers in data centres consume electricity and generate heat, making cooling systems 

critical to prevent overheating. Goldman Sachs (2024) states that cooling accounts for 

40% of a data centre’s electricity usage. The authors added that in 2021, data centres 

represented 0.9% to 1.3% of global electricity consumption, with projections indicating 
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a rise to 1.9% by 2030. Further estimates done by Goldman Sachs (2024) show that, as 

AI-related energy consumption increases, Europe’s energy demand could grow by 50%, 

given that 15% of global data centres are located there and, in the U.S., data centres’ 

national power consumption is expected to climb from 3% in 2022 to 8% by 2030.  

Lacoste et al. (2019) discuss that the carbon emissions from data centres are heavily 

influenced by their location and the energy grid they rely on. These authors explain that 

data centres connected to electricity grids with a higher share of renewable energy will 

produce significantly fewer carbon emissions compared to those reliant on fossil fuels. 

Additionally, servers powered by renewable-heavy grids, like those in Quebec, Canada, 

emit as little as 20g CO2eq/kWh, while servers in Iowa, USA, where fossil fuels dominate, 

emit up to 736.6g CO2eq/kWh (Lacoste et al., 2019).  

To measure the carbon footprint of a data centre, energy consumption across power 

supply, cooling, and maintenance must be evaluated (Bouza et al., 2023). This is done by 

using Power Usage Effectiveness (PUE), representing how the data centre uses energy 

efficiently, i.e., the lower the PUE, the more efficient the data centre is. For instance, 

Google Cloud Services with a PUE of 1.1 indicates that for every 1 unit of energy used 

by the servers themselves, 1.1 units are consumed by the entire data centre (including 

infrastructure like cooling and lighting) (Lacoste et al., 2019). 

2.5.3. Complexity, length of training and running frequency of inference tasks 

Other significant factors are related to the model complexity, the length of training, 

and the running frequency of inference tasks. The complexity is correlated with how large 

the model is, while the length of training refers to the time it takes to train the model. 

Running frequency is about how frequently the model is being used to run the inference 

phase. 

During training, for instance, Large Language Models (LLMs) such as GPT-4 

constantly require new data generation, resulting in higher demand for computational 

resources and significant energy use (Castro, 2024). AI Researchers at the University of 

Massachusetts Amherst found that BERT, Google’s LLM, produced 0.6524 t of CO2 

during 79 hours of training. In addition to the training phase, Amazon Web Services 

indicates that 90% of the cost of AI models comes from the inference phase, while 

Schneider Electric estimates this at 80%. Wu et al. (2021) also found that the inference 
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phase in LLMs accounts for 65% of the emissions. Furthermore, Luccioni et al. (2024) 

state that it is challenging to find an exact equilibrium between the energy costs of the 

training and inference phases due to the energy requirements of each phase in the AI 

model’s lifecycle. However, the authors exemplifies that the energy costs of deploying 

ChatGPT would surpass its training costs in a few weeks or months of the model use. 

2.6. Carbon footprint and emission calculators 

AI emission calculators are tools that facilitate the measurement of energy use and the 

carbon emissions of AI models. Patterson et al. (2021) simplify the calculation of the 

carbon footprint of an ML algorithm using the formula below in Equation (1), which can 

be generalized to calculate the CO2 emissions for AI models as a base for the tools.  

(1)                                         (𝐶𝑎𝑟𝑏𝑜𝑛𝐹𝑜𝑜𝑡𝑝𝑟𝑖𝑛𝑡 = 

(electrical energy
train

+ queries × electrical energy
inference

) ×
CO2edatacenter

kWh
 

Equation                                         ( covers the amount of electrical energy consumed 

during the training phase of the model (electrical energy train), the total energy consumed 

during the inference phase by multiplying the queries (how many times the model is used) 

by the electrical energy consumed (electrical energy inference), and the carbon emissions 

associated with the electricity used by the data centre hosting the model (CO2datacenter) 

which depends on the energy mix of the data centre (e.g. renewable, gas, coal) (Patterson 

et al., 2021). 

Bannour et al. (2021) compare the use of six publicly available AI emission 

calculators: Carbon Tracker (CT); Green Algorithms (GA); Experiment Impact Tracker 

(EIT); ML CO2 Impact (MLCI); Energy Use (EU) and Cumulator (Cu) (see Table 1). 

These tools are widely used to calculate CO2 emissions from NLP experiments, assessing 

emissions based solely on energy consumption during the dynamic use, with the 

production and end of life phases not being considered, or being only partly considered. 

Furthermore, they observe that these tools are good at providing large emission results 

rather than pointing out the smaller contributions.  

Despite the current usage, the authors state that more research is required to 

understand the differences between these tools, the way they reach results (and how 
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accurate these are), and comprehend the sources of AI model emissions. The metrics used 

in each of the six AI model emission calculator tools are described in Table 1. 

TABLE 1  - EMISSION CALCULATOR TOOLS 

Tool Name (a) Metrics 

Power usage 

effectiveness 

(PUE) 

Carbon Tracker 

(Anthony et al., 2020) 

Hardware used, energy consumption, and the 

carbon intensity of the electricity grid 

Default PUE =  

1.67 (2019) 

Green Algorithms 

(Lannelongue et al., 

2021) 

Runtime, number of cores, memory requested, 

type of platform used (PC, local server, cloud 

computing), type of cores, location 

Default PUE = 

1.67 (2019) 

Experiment Impact 

Tracker (Henderson et 

al., 2020) 

The number of processors, energy consumed 

during computation, and hardware efficiency 

Default PUE 

(1.58) 

(adjustable) 

ML CO2 Impact 

(Lacoste et al., 2019) 

Hardware, runtime, cloud provider and location of 

the computing facilities operated 

Partly PUE 

used for few 

cloud providers 

Energy Usage (Lottick 

et al., 2019) 

Energy mix data (coal, oil, natural gas, and low 

carbon fuels) estimates CO₂ emissions based on 

grid composition 

No PUE used 

Cumulator (Trébaol, 

2020) 

Runtime, GPU load and carbon intensity, with a 

fixed value for consumption of a typical GPU 
No PUE used 

(a) These tools estimate emissions by analysing key factors such as hardware usage, energy consumption, 

runtime, and carbon intensity of electricity sources. The "Power Usage Effectiveness (PUE) Value", a 

metric, measures how efficiently energy is used in data centres, with lower values indicating better energy 

efficiency. Some tools assume default PUE values, while others allow customization or not account for it. 

Source: Bannour et al. (2021) 

To exemplify the differences between calculators, Bannour et al. (2021) look at NER 

(Named Entity Recognition) models, which are used to identify and classify named 

entities in text (such as names of people, locations, and organizations) and categorised 

them into predefined categories. The carbon emissions associated with three NER 

datasets, calculated by each of the six AI model emission calculator tools mentioned 

above are presented in Table 2.  
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TABLE 2 - NER (NAMED ENTITY RECOGNITION) MODELS CARBON EMISSION’S 

CALCULATION BY DIFFERENT TOOLS 

CO2eq (g.) (a) 

Runtime 

(minutes) 
NER 

Carbon 

Tracker 

Experiment 

Impact 

Tracker 

Energy 

Usage 
Cumulator 

ML CO2 

Impact 

Green 

Algorithms 

French 

Press 
       

Server 237.96 78 0.49 302 290 350.15 163:39 

Facility 161.16 48 0.98 222 250 260.26 118:04 

EMEA        

Server 9.7 30 0.00131 19 20 16.67 9:31 

Facility 8.07 1 0.002 13.7 10 14.31 6:51 

MEDLINE        

Server 13.44 30 0.00128 26.1 20 20.68 11:55 

Facility 10.5 1 0.0026 19.4 20 20.03 9:11 

(a) Emissions are reported in CO₂ eq (g); French Press, EMEA, and MEDLINE datasets represent different 

linguistic or subject-matter challenges for NER models. Server covers the direct energy and emissions from 

computation. Facility includes the emissions from supporting infrastructure that enables those computations.  

Source: Bannour et al. (2021) 

Bannour et al. (2021) demonstrate that while ML CO2 Impact and Green Algorithms 

present higher emissions compared to other tools, Carbon Tracker and Experiment Impact 

Tracker provide similar outcomes and Energy Usage tools give out the lowest emission 

calculation because they do not include hardware consumption. Results by Bannour et al. 

(2021) illustrate, in AI model footprint, local servers are responsible for higher emissions 

and energy use than the computing facilities.  

2.7. Systemic calculation and reporting challenges 

Currently available literature indicates that the systemic calculation and reporting of 

AI models’ carbon emissions is still challenging, mostly because of lack of data on 

lifecycle emission, energy consumption, energy sources, and the complexity of the AI 

systems. Delanoë et al. (2023) state that hardware power, cloud location, and training 

time are not always relevant information for measurement because many research papers 

fail to provide detailed specifications about the AI models used, making precise energy 

consumption evaluation difficult and leading assumptions that impact the accuracy of 
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carbon emission estimation. Thus, the authors drew attention on the lack of standardized 

reporting in carbon emission calculation, while Luccioni et al. (2024) claim that 

documentation is based on the dynamic use of power consumption, primarily during 

training, due to the ease of quantifying energy use in that phase. However, Andrews 

(2020) mentions that each training session is complex, as it draws power from different 

functions and must be untangled from other phases to be properly calculated. Despite the 

training phase being the most tractable part of the lifecycle, recent advancements have 

led AI/ML researchers to give increasing importance to the inference phase (Cho, 2023). 

Bannour et al. (2021) indicate that existing emission calculator tools provide different 

outcomes for the same AI model, and Lacoste et al. (2019) support this by stating that 

these tools only represent approximations of the true emissions due to the lack of precise 

energy consumption and carbon production data reported by organizations. Thompson et 

al. (2020) assessed 1,058 research papers on DL and concluded that most of them do not 

mention the computational requirements of AI models. These reported challenges 

contribute to the lack of standardization in systematically comparing and quantifying the 

carbon footprints of different AI models. 

2.8. Carbon footprint reduction in AI models and Sustainable AI 

Electrical energy consumption and resulting carbon footprint of AI models has led the 

AI community to adhere to a more sustainability mindset. Sustainable AI is defined by 

van Wynsberghe (2021) as the development and use of AI models that are 

environmentally accountable for our present and future societies. In addition to this 

movement, Green AI has also been gaining attention and is often used interchangeably in 

literature. According to Schwartz et al. (2019), Green AI seeks to achieve results by 

keeping the computational cost lower, while Alzoubi and Mishra (2024) define it as the 

reduction of carbon emissions and power consumption within the application of 

environmentally friendly AI systems. Leuthe et al. (2024) adds to this definition, 

including the promotion of sustainable energy sources uses, the focus on the sustainable 

design and use of AI models. To implement sustainable AI, Gaur et al. (2023) proposes 

adding a set of carbon emission reduction steps to the current phases, as presented below 

(Figure 3). 
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FIGURE 3 – Sustainable AI implementation 

Source: Gaur et al. (2023) 

2.8.1. Algorithm optimization 

To address the high computational demands of AI models, Thompson et al. (2020) 

recommend optimizing energy usage and environmental impact by prioritizing 

computationally efficient algorithms from the outset. They further argue that developing 

green algorithms reduces computational requirements through optimization techniques, 

ultimately lowering energy consumption. For instance, Wu et al. (2021) highlight the 

example of NVIDIA DeepStream SDK, which is designed to build efficient, scalable AI-

based video analytics applications, supporting multiple algorithms, and Hugging Face 

Transformers' Efficient Inference Mode, which reduces computational costs and latency 

during the inference phase of NLP models. Bolón-Canedo et al. (2024) also suggest that 

restricting the number of times a computationally expensive algorithm runs would be the 

easiest way to minimize energy use. 

Alzoubi and Mishra (2024) emphasize that improving model efficiency lowers energy 

consumption and aids in selecting more suitable models. For instance, DeepSeek's 1 

optimized distillation techniques, which transfer reasoning capabilities from larger 

models to smaller ones, resulting in reduced energy consumption without compromising 

performance (Hanbury et al., 2025). Similarly, Patterson et al. (2021) note that energy-

efficient model selection enhances output quality while significantly reducing 

computational costs and provide the findings that using sparse (models with many zero 

weights, requiring fewer computations and less memory usage) instead of dense ones 

(models where most or all parameters are non-zero, requiring more computations and 

memory usage) can decrease computational requirements by 5 to 10 times. Gaur et al. 

 
1 DeepSeek: https://www.deepseek.com/  

https://www.deepseek.com/
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(2023) further argue that models with fewer parameters enhance computational efficiency, 

making them a practical choice for sustainable AI development. 

2.8.2. Hardware optimization 

Liu and Yin (2024) suggest that using faster GPUs can lower emissions and help 

organizations become more environmentally conscious, regardless of the model being 

used. Some GPUs are more efficient, and selecting efficient hardware contributes to 

energy savings (Bolón-Canedo et al., 2024). Thompson et al. (2020) further discuss that 

more efficient hardware not only scales up computational capabilities but also enhances 

computational efficiency. These authors also state that hardware specialization, 

particularly with GPUs, TPUs, and other specialized chips has led to significant 

computational gains. Patterson (2022) also advocates that specialized processors are 

much more energy-efficient than general-purpose processors, achieving 2 to 5 times 

better performance in terms of energy consumption. For instance, TPUs improved by 1.5 

times in compute per dollar and 4.9 times in compute per watt between 2017 and 2020 

(Thompson et al., 2020). 

2.8.3. Data centre optimization 

Lacoste et al. (2019) indicate that the selection of a lower carbon-based data centre 

location, a data centre in a region where electricity generation relies more on renewable 

energy sources such as wind, solar, hydro, or nuclear power, significantly impacts its 

carbon footprint. In support of this, Henderson et al. (2020) argue that a rapid reduction 

in carbon emissions could be achieved by implementing each training phase with carbon-

efficient energy grids connected to data centres. The authors demonstrate that deploying 

tasks in Quebec, known for its clean energy sources, leads to a 30-fold reduction in 

emissions compared to Estonia. However, Lacoste et al. (2019) also note that information 

about the CO2 emissions from servers connected to energy grids is often unavailable. This 

lack of data results in assumptions that servers in the same physical area leads to ignoring 

possible variations in CO2eq emissions across different grid locations. 

Moreover, Wu et al. (2021) state that selecting carbon-neutral data centres is 

challenging due to the long-term financial investments required and restrictions on 

geography and materials (e.g. rare metals). Adding to this, Bouza et al. (2023) highlight 

that running AI models in carbon-friendly regions can be influenced by factors like the 
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time of execution during the day or the allocation of energy sources at specific moments. 

To manage such constraints, the authors suggest analysing electricity maps of the 

countries before running tasks there. Additionally, the authors draw attention to the fact 

that transferring large datasets to carbon-free locations can sometimes have a higher 

environmental cost. Therefore, decisions on data centre location should be balanced with 

benchmarks comparing staying in the same server. 

Nevertheless, most studies suggest that efficient data centres lead to 1.4 to 2 times 

better energy use and, when renewable energy is chosen, CO2 emissions can drop by a 

factor of 5 to 10 (Patterson, 2022). Lacoste et al. (2019) supports these results by noting 

that data centres powered entirely by renewable energy contribute only with 20g 

CO2eq/kWh, while fossil fuel-based centres can emit as much as 820g CO2eq/kWh. The 

authors further emphasize that a single decision regarding location can drastically reduce 

emissions, with potential reductions of up to 40 times. As an example, Evans and Gao 

(2016) demonstrate that Google’s investment in greener data centres through the selection 

of renewable energy sources and innovations in cooling systems, resulted in 3.5 times 

increase in computing power with the same energy consumption. 

2.9. Stakeholder engagement for Sustainable AI 

Wu et al. (2021) emphasize that achieving sustainability of AI models requires 

accountability from multiple stakeholders to support the development process. Similarly, 

van Wynsberghe (2021) stresses that all stakeholders must collaborate throughout the 

entire AI model lifecycle to ensure sustainable practices. Gaur et al. (2023) propose an 

approach that underscores the importance of stakeholder collaboration and coordination 

to enhance model efficiency and sustainability. 

Verdecchia et al. (2023) examine studies that focused on the carbon emissions 

associated with AI models, emphasizing the responsibility of researchers and practitioners 

to design and use models sustainably. They also highlight the role of policymakers in 

ensuring government accountability for integrating sustainability into AI use. Delanoë et 

al. (2023) further underscore the critical role of policymakers in optimizing efforts to 

reduce CO₂ emissions. They advocate engaging a broad audience, including scholars, data 

scientists, developers, managers, and institutions across various sectors relying on AI 

models.  
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Tornede et al. (2023) states that Green AI has become a community-driven initiative, 

facilitating collaboration among researchers and developers. Similarly, Rolnick et al. 

(2019) advocate for engaging domain experts to simplify complex tasks and develop 

effective strategies. They point out that making ML models accessible through a common 

language or platform, along with ensuring interpretability, allows solutions to reach the 

right audience and enables stakeholders outside the ML community to understand and 

apply these models in real-world scenarios effectively. 

While efforts to promote the sustainability of AI have increased in both literature and 

practice, challenges remain, and stakeholder engagement is critical. For instance, 

Verdecchia et al. (2023) highlight a lack of actionable insights and holistic design 

methodologies for sustainable AI. Similarly, Leuthe et al. (2024) examine how model 

developers can enhance design processes sustainably, advocating for making sustainable 

design information more accessible and applicable. Patterson (2022) recommends that 

practitioners select effective hardware in data centres powered by renewable resources 

for AI model training and deployment. Researchers are also encouraged to develop more 

efficient models, such as by integrating smaller models or reusing existing ones. 

Transparent reporting of energy usage and carbon footprints should also become standard 

practice, rather than focusing solely on model quality and accuracy (Patterson, 2022). 
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3. METHODOLOGY 

3.1. Research design 

This thesis focused on the carbon emission estimation and reduction emitted by AI 

models and a qualitative approach has been adopted based on literature, case studies and 

expert consultation. Given the complexity and recent emergence of the problem, this 

approach enabled the exploration of existing literature, recent studies and the analysis of 

relevant issues, focusing on the associated challenges and innovative solutions. 

3.1.1. Literature review 

As a first step, a systematic literature review was conducted on AI, ML and associated 

topics, and their connection to sustainability. Peer-review publications were searched and 

downloaded from Web of Science, ScienceDirect, and Google Scholar. This initial 

research revealed that most studies currently focus on how AI can reduce carbon 

emissions in various sectors, rather than addressing AI models’ own carbon emissions. It 

also revealed the limited availability of peer-reviewed papers on this topic. Out of 97 

papers found, only 23 of them were academically peer reviewed. Therefore, the research 

also relied on grey literature. Table 3 outlines the main categories and associated 

keywords used during the literature search. 

TABLE 3  - KEYWORDS SEARCHED FOR DURING LITERATURE REVIEW 

Category Keywords (a) 

General Themes 
Artificial Intelligence, Generative AI, Machine Learning, Natural Language 

Processing, Deep Learning, Large Language Models, Sustainable AI, Green AI 

Environmental 

Impact 

Carbon Footprint, Carbon Emissions, Energy Consumption, Environmental 

Sustainability, Greenhouse Gas Emissions, Carbon Neutrality 

Tools, Techniques, 

and Measurement 

Carbon Emissions Tracking, Life Cycle Assessment, CodeCarbon, Experiment 

Impact Tracker, CarbonTracker, Cumulator, Green Algorithms, Climate Change 

AI 

AI Applications 

and Sectors 
Data Centres, Cloud Computing, High-Performance Computing 

Innovations and 

Solutions 

Green Algorithms, Energy-Efficient AI, Renewable Energy Integration, Carbon-

Aware Computing, AI Model Optimization 

Challenges and 

Opportunities 

Energy Demand of AI, Trade-offs in Model Efficiency and Accuracy, 

Environmental Costs of AI Training, Policy Implications for AI Sustainability 

(a) Each category’s keywords were combined to increase the finding of relevant papers.    
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The results of this literature review are presented in section 2 above, and were 

organised into key areas of relevance, including: introduction to AI and AI model 

lifecycle; needed resources and its implications to AI carbon footprint; emission 

calculators; reporting challenges; sustainable AI; and stakeholder engagement. 

3.1.2. Case studies 

As a second step, a case study approach was applied to examine real-world 

applications of the carbon footprint calculation and reduction in AI models. This approach 

enabled the evaluation of current challenges in calculating and reporting AI model carbon 

emissions from AI models, as well as the exploration of solutions and frameworks being 

developed to reduce their emissions. 

Case study selection criteria was based on the availability of peer-review and grey 

literature about specific models and organizations, and the authors own knowledge and 

working experience with the development, training and use of AI models in the real-world.  

Case Study 1: BLOOM and its carbon emission calculation: This case study 

demonstrates how the emissions of an AI model are calculated, highlighting the factors 

considered, challenges in accurate energy consumption estimation, the importance of 

model lifecycle, and the tools and methods used for emission estimation, while addressing 

relevant reporting challenges. 

Case Study 2: Microsoft’s data centres contribution to carbon emissions: This case 

study highlights the importance of data centres in the carbon footprint, emphasizing the 

role of location and the energy required to operate the data centre, as well as the 

precautions taken to mitigate its negative impacts. 

Case Study 3: Zeus: energy-efficient models and optimization: This case study 

discusses the optimal balance between energy consumption and training speed. It leads to 

understanding the significant role of optimization techniques in reducing energy 

consumption and carbon emissions of the models in achieving sustainable AI practices. 

Case Study 4: NVIDIA hardware acceleration: This case study examines the role of 

hardware acceleration in reducing the carbon footprint of AI models by exploring the 

advancements in hardware technologies to make the computation of the models efficient 

and the challenges associated with its cost and adoption in the field. 
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3.1.3. Expert consultation 

Expert consultations were conducted with AI/ML researchers who are directly 

involved in the organisations or AI models mentioned in the case studies. Following an 

open-ended interview protocol (see Annex A), the experts were asked about the research 

questions of this thesis and encouraged to share their relevant experiences. All interviews 

were done online, by sending the questionnaire and gathering written statements. 

3.2. Research tools and procedures 

In this thesis, MAXQDA2 was utilized to analyse and organize scientific papers and 

grey literature. The software allowed for systematic coding of the papers, organizing 

relevant information under unified themes for easier analysis and citation. To find further 

relevant papers and speed up literature review, Elicit3 and Scispace4 tools were also used. 

Additionally, ChatGPT-45  and DeepL 6  were employed to enhance the thesis-writing 

process by improving flow, checking spelling, and providing paraphrasing support. 

3.3. Study limitations 

Several limitations to this study must be acknowledged. The lack of peer-reviewed 

academic papers on the AI models’ contribution to carbon emissions lead to an extended 

reliance on grey literature, which might lack formal academic evaluation. Time 

constraints and lack of responses also restricted the in-depth analysis of case studies, 

limiting the number and range of stakeholders involved.  

3.4. Ethical considerations 

This study ensures transparency and proper attribution of all data sources, adhering to 

ethical research practices. All literature and case studies were publicly available, and no 

sensitive or personal data was used. Consulted experts gave written consent for the 

material gathered during the interviews. All personal information was anonymized, 

keeping the connections between experts and case studies undisclosed to prevent 

inadvertent identification. 

 
2 MAXQDA: https://www.maxqda.com/ 
3 Elicit: https://elicit.com/welcome  
4 Scispace: https://typeset.io/  
5 ChatGPT: https://chatgpt.com/  
6 DeepL: https://www.deepl.com/en/write  

https://www.maxqda.com/
https://elicit.com/welcome
https://typeset.io/
https://chatgpt.com/
https://www.deepl.com/en/write
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4. RESULTS 

Results from the literature review analysis are presented in section 2. That analysis 

provided the basis for the development of four in-depth case studies and related expert 

consultations, where the research questions were further explored. This section presents 

the findings from the case studies and expert consultations, which experts are chosen from 

the organizations; BLOOM, Zeus, and Microsoft mentioned in the case studies.  

4.1. Case study 1: BLOOM and its carbon emission calculation 

BLOOM (BigScience Large Open-science Open-access Multilingual Language 

Model), is a 176-billion-parameter language model, created as part of the BigScience 

Workshop (2022) and trained on 1.6 terabytes of data in 46 natural and 13 programming 

languages. It was a collaborative initiative started in July 2022, involving over 1,000 

researchers from more than 60 countries. BLOOM’s carbon emissions were assessed 

using Life Cycle Assessment (LCA) approach, however, due to the limited data for each 

phase, carbon emissions are considered in equipment manufacturing for model training, 

and model deployment phases (Luccioni et al., 2022). Luccioni et al. (2022) state that the 

carbon emissions of training BLOOM are mostly connected to three main resources: 

embodied emissions, dynamic power consumption, and idle power consumption. The 

authors observe that the training phase required 1.08 million GPU hours, and that 

embodied emissions, i.e., linked to the production of computing equipment like servers 

and GPUs, contributed 11.2 t CO₂eq. Dynamic power consumption, the energy used 

during active model training, accounted for 24.69 t CO₂eq. Idle power consumption, the 

energy used by infrastructure when not actively training, added 14.6 t CO2eq. In total, 

training emitted 50.5 t CO₂eq, with dynamic consumption contributing the largest share 

(48.9%), followed by idle (28.9%) and embodied emissions (22.2%) (Luccioni et al., 

2022). In the deployment phase’s CO₂ calculation, CodeCarbon tool monitored a Google 

Cloud Platform (GCP) instance with 16 NVIDIA A100 GPUs over 18 days, processing 

230,768 real-time requests. The instance consumed 914 kWh of electricity, with GPUs 

accounting for 75.3%, RAM for 22.7%, and CPUs for 2%. Even during minimal activity, 

0.28 kWh was consumed every 10 minutes, highlighting the energy required to maintain 

BLOOM in memory. Operating in the US-central region, with a carbon intensity of 394 

g CO₂eq/kWh, the model deployment emitted 340 kg CO₂eq over 18 days, averaging 19 
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kg CO₂eq daily. Luccioni et al. (2022) state that the model inference phase remains 

understudied compared to training. The authors reveal critical challenges on the study 

requiring further attention; Insufficient lifecycle information, including embodied 

emissions from GPU manufacturing, results in imprecise estimates, necessitating the 

greater transparency; Additional research is needed to address model inference 

complexities, particularly in real-time scaling and maintenance, focusing on bridging 

gaps between chip designers and users while optimizing energy consumption and 

emissions; Transparent reporting on carbon emissions, detailing energy use, carbon 

intensity, and research and development contributions to enable meaningful comparisons 

and understanding BLOOM's environmental impact. 

4.2. Case study 2: Microsoft’s data centres contribution to carbon emissions 

Microsoft, a large US based software company, has committed to utilizing the Three 

Mile Island nuclear power plant in Pennsylvania to meet its AI energy needs (Luscombe, 

2024). As AI is projected to drive a 160% increase in data centre energy demand by 2030 

(Goldman Sachs, 2024), Microsoft aims to leverage nuclear power, to ensure that its data 

centres operate with zero emissions. According to Microsoft (n.d.), 2024 Environmental 

Sustainability Report, indirect emissions associated with the company’s value chain come 

mostly from the construction of data centres. Associated carbon emissions, embodied in 

building materials, as well as in hardware components such as semiconductors and servers, 

have risen to 30.9% since 2020. The report shows that the company is being challenged 

due to the growing demand for its cloud supply, in turn leading to the expansion of its 

data centres. To address these challenges, Microsoft underscores the critical role of 

carbon-free electricity and the potential of advanced nuclear and fusion energy in 

achieving a decarbonized energy future. To lower emissions, Microsoft takes the initiative 

of monitoring the energy consumption of its data centres. By striving for a Power Usage 

Effectiveness (PUE) ratio close to 1.0 – it currently achieves 1.12 – Microsoft aims to 

enhance data centre efficiency by designing and building sustainable data centres. 

Additionally, transitioning servers to a low-power state has enabled Microsoft to reduce 

energy usage by up to 25% on unallocated servers, saving thousands of megawatt-hours 

monthly across its global data centres. The company also prioritizes optimizing cooling 

efficiency, utilizing predictive models to anticipate water consumption based on real-time 

weather data in water-cooled facilities. These models are designed to eliminate water 
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usage for cooling, reducing reliance on freshwater resources as the AI computation 

demand continues to grow.  

4.3. Case study 3: Zeus: energy-efficient models and optimization 

Researchers at the University of Michigan developed an online optimization 

framework called Zeus for reducing carbon emissions in DL model training. They state 

that existing practices primarily target optimizing DL training for faster completion over 

energy and carbon efficiency, resulting in inefficient energy usage. Zeus seeks to provide 

a solution to the current circumstances by automatically finding the optimal balance 

between energy consumption and training speed during the process (You et al., 2022). 

Zeus configures the GPU power limit and the model’s batch size parameter (i.e. various 

workloads) to minimize power consumption and carbon emissions. The Zeus process 

starts with users submitting a request for a feasible batch size and power limit for their 

DNN training. Then, Zeus finds an optimal batch size and power limit configuration and 

launches the training. During and after training, Zeus collects statistics on DNN training 

and GPU power consumption. This feedback is used to update Zeus’ internal states. The 

training task is ended when the target metric is reached, or the stopping threshold is 

exceeded. In this automated feedback loop system, Zeus continuously learns and adjusts 

its settings to optimize energy-time costs. By using this framework, and setting a GPU 

power limit, Zeus reduces its usage and slows down model training until adjustments are 

made. After analysing a wide range of GPUs, the researchers revealed that drawing 

maximum power does not always yield the best performance, and doing so leads to 

diminishing returns in terms of efficiency. The optimal energy consumption can be 

achieved at a lower power limit, reducing energy consumption by 3.0%–31.5%. (You et 

al., 2022) On the other hand, You et al. (2022) observed that large batch sizes reduce 

training time by improving the data processing speed, leading to more energy 

consumption for the same target accuracy. Batch size controls how many training samples 

the model processes before updating its understanding of the data. Analysis of several 

valid batch sizes (ranging from 8 to the maximum batch size supported by GPU memory) 

for six DL tasks, such as NLP, speech recognition shows that the energy-optimal batch 

size can lower energy consumption by 3.4%–65.0% compared to the default batch size 

for the same target accuracy. As a result, optimizing the GPU power limit and the right 

batch size configurations can achieve energy savings of 23.8%–74.7% for diverse 
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workloads. Zeus reduces energy consumption by 15.3%–75.8% and training time by 

60.6% by simply selecting the maximum batch size and maximum GPU power limit. 

(You et al., 2022) However, some challenges remain. Identifying and navigating the 

trade-off between energy consumption and training time is complex, especially 

considering the non-linear relationships between these factors. Additionally, different 

models and GPUs have unique energy characteristics, which makes generalizing offline 

profiling results difficult. Lastly, the vast number of possible configurations, each 

demanding hours to days of evaluation, adds significant complexity to optimization.  

4.4. Case study 4: NVIDIA hardware acceleration 

NVIDIA is a US technological corporation that designs and supplies GPUs, 

considered key to drive advancements in the fields of AI and computing. NVIDIA 

develops hardware, software, and networking technology to enhance performance, energy 

efficiency and emissions reduction (Nvidia, 2024). To handle the AI models’ demanding 

workloads effectively, modern data centres increasingly depend on accelerated 

computing, which significantly enhances computation by using parallel processing to 

handle frequently occurring tasks. Unlike traditional processors that execute tasks serially, 

accelerated computing offloads demanding workloads, offering lower costs, higher 

performance, and greater energy efficiency. By completing larger workloads more 

quickly, this approach reduces energy consumption and enables systems to return to low-

power idle states faster than traditional computing. NVIDIA offers special GPUs for 

accelerating workloads to operate in parallel, which significantly enhances throughput 

while reducing the overall energy required to complete tasks. This results in considerable 

energy savings and a better total cost of ownership. Accelerated computing has 

revolutionized workloads that previously demanded tens of thousands of general-purpose 

servers, which consumed 10 to 20 times more energy, into highly efficient processes. 

While each GPU server may entail higher costs and greater power consumption, the need 

for fewer servers leads to substantial savings in both energy and expenses. For example, 

NVIDIA's CUDA GPUs accelerate Apache Spark, reducing its carbon footprint of data 

processing by up to 80% while achieving five times faster speeds and cutting computing 

costs by four times. Similarly, NVIDIA's Grace Blackwell Superchips provides 25 times 

better energy efficiency for LLMs. Additionally, NVIDIA's Blackwell GPUs demonstrate 

20 times more energy efficiency than traditional CPUs for specific AI workloads. 
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Furthermore, NVIDIA's Data Processing Units (DPUs) can achieve a 25% reduction in 

power consumption by offloading critical data centre tasks from less efficient CPUs. By 

shifting from a CPU-centric infrastructure to GPU and DPU acceleration could save 30 

trillion watt-hours of energy each year, comparable to the electricity consumption of 

nearly 4 million U.S. households. NVIDIA's accelerated computing reduces the cost and 

energy required to training AI models but additional investments in innovation are 

necessary to discover better scientific, engineering, and operational solutions that 

conserve energy, time, and costs. 

4.5. Expert consultation 

Ninety-two AI/ML experts were contacted through LinkedIn or email and invited to 

provide their views via interviews. Eleven experts indicated their interest in participating 

in the study. However, only three actively shared their insights and provided actionable 

responses: one computational linguist, one researcher and one computer scientist. 

4.5.1. Insights on carbon emission calculation 

The experts point out that the calculation process is challenging due to AI model 

complexities. The computer scientist states that accurate measuring requires complete 

access to the end-to-end process, which AI model developers do not have, and this 

necessitates many stakeholders in the supply chain (power generators, power distributors, 

data centre operators, cloud service providers, and AI companies) to collaborate. Also, 

the researcher and the scientist claim a lack of knowledge on the accuracy of carbon 

emission results due to limitations coming from the CO₂eq emissions used for each power 

source in a region's power mix, estimated power or energy consumption of computations, 

and the embodied carbon footprint of computing hardware obtained by extrapolating 

scarce existing data, resulting in as an estimate. They also indicate that any estimation 

must be accompanied by a discussion of error bounds or uncertainty for better accuracy 

results. The researcher claims that these error bounds are hardly discussed in the context 

of carbon emission, making the estimates unscientific and not practical. Further, he states 

that few people scientifically discuss this issue, and many endorse back-of-the-envelope 

guesses of carbon footprint without error quantification, which is the fundamental 

problem. Therefore, the researcher recommends that a deliberate quantification of the 
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potential errors introduced due to the lack of data availability must be done 

simultaneously, and shedding light on this problem is the most important challenge. 

On the other hand, the computer scientist states that the lack of verifiable data 

propagation throughout the supply chain and necessary policy changes to incentivize 

stakeholders remain significant issues. Experts agree on the need for more publicly 

available efficient infrastructure and public education on energy consumption (e.g., 

facilitating the average person understand energy measures and comparisons). The 

computational linguist adds that carbon consumption metrics could include variables such 

as hardware replacement (e.g., how often GPUs need to be replaced) and infrastructure 

consumption metrics (e.g., energy used for cooling servers). Also, she emphasizes that 

adopting a standard for reporting energy usage in academic training experiments for 

technical fields may mitigate calculation challenges. 

4.5.2. Insights on carbon emission reduction 

Two experts state that minimizing energy consumption directly leads to reductions in 

operational carbon emissions and is the most reliable way of avoiding carbon accounting 

discrepancies. Further, they indicate that the other ways of minimizing embodied carbon 

emissions (e.g., using fewer computing devices) and operational carbon emissions (e.g., 

using renewable energy only) must be considered. 

The computer scientist who builds large-scale distributed software systems to reduce 

AI's energy consumption underlines the importance of optimization, which requires 

careful measurement and understanding of the end metric. The researcher who created 

energy optimization methods for ML workloads states that the most challenging part is 

incentivization. Further, he claims that the time-based pricing model used by major cloud 

vendors such as Google, and Amazon do not encourage users to optimize their energy use 

in computing. Instead, users are incentivized to maximize performance during the time 

they are paying for, even if this leads to excessive or inefficient energy consumption, 

resulting in only users who pay for their electricity are motivated to optimize energy usage. 

The experts suggest focusing on power, energy, and other essential metrics instead of 

composite metrics like carbon emissions, which might remove many workarounds 

stakeholders use today to avoid solving the problem. Also, they stress the need for policy 

solutions requiring stakeholders to use the proper tools and disclose raw metrics in detail.  
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5. DISCUSSION 

5.1. Transparency and standardized reporting 

Our results reveal critical challenges and opportunities in accurately measuring and 

mitigating the carbon emissions of AI models, primarily in the training and inference 

phases. The first issue highlighted is the lack of transparency regarding the entire AI 

model lifecycle, particularly concerning embodied emissions from hardware 

manufacturing and operational energy use. This identified gap aligns with Strubell et al. 

(2019), who emphasized the importance of comprehensive lifecycle assessments to 

provide more accurate AI model carbon emission calculation figures. Transparent 

reporting and standardized metrics, as advocated by the stakeholders interviewed, are 

consistent with calls from the broader academic discourse for greater accountability and 

consistency in assessing the environmental impact of AI systems. As Patterson (2022) 

argues, transparent reporting of energy usage and carbon footprints should become 

standard practice, moving beyond the current focus on model quality and accuracy. This 

shift would enable more meaningful comparisons across models and foster a deeper 

understanding of their environmental implications, thus systematically supporting efforts 

to reduce AI's carbon footprint. 

5.2. Use of verifiable data and metrics for CO2 calculation estimations 

Our results underline the complexities of accurately calculating carbon emissions due 

to the absence of verifiable data across the supply chain. Similarly, the existing literature 

advocates the challenges for tracing energy consumption and carbon emissions through 

the supply chain. For example, Bannour et al. (2021) showcase the several outcomes from 

different emission calculators using variable metrics while Delanoë et al. (2023) state that 

the metrics used are not always relevant to the calculation. As a result, AI model carbon 

footprints are merely estimations. Consequently, experts consulted emphasized that 

quantifying error bounds and uncertainties is critical for improving the credibility of 

carbon footprint estimations. 

5.3. Mitigation approaches to carbon emission reduction 

Energy efficiency and optimization strategies surfaced as key themes, mainly through 

the lens of accelerated computing and improved hardware designs, such as NVIDIA's 

advancements in GPU technology. These findings support the conclusions of Wu et al. 
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(2021), who noted that advancements in hardware efficiency could significantly reduce 

the environmental footprint of AI models. Furthermore, Microsoft's efforts to lower 

Power Usage Effectiveness (PUE) and optimize cooling systems resonate with studies 

advocating greener data centre designs (Bouza et al., 2023). 

5.4. Stakeholder involvement and engagement 

The experts consulted provided insights into the adverse effects of time-based pricing 

models on energy efficiency provide a novel contribution, emphasizing the necessity for 

policy-level interventions and pricing reforms to promote sustainable computing practices. 

This aligns with Verdecchia et al. (2023), who advocate for holding multiple stakeholders 

accountable for the sustainable design and use of AI while emphasizing policymakers' 

role in integrating sustainability into AI governance. Furthermore, fostering public 

knowledge about the carbon emissions of AI models is essential to drive informed 

decision-making and collective action across the AI ecosystem. 
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6. CONCLUSION 

This study aimed to support a better understanding of the challenges and opportunities 

related to the calculation and reduction of AI models' carbon emissions, through the 

analysis of scientific and grey literature, case studies, and expert surveys. 

The first research question “How can the carbon footprint of AI models be measured?” 

and associated sub-question of “What are the systemic reporting and calculation 

challenges associated with the carbon emission impact of AI models?” sought to evaluate 

how these calculations are currently done, what metrics are used (e.g., hardware, data 

centre location, energy grid and energy types), how the complexity and length of training 

and inference phases is being factored in, and what is the availability of standardised 

emission calculators. It is observed that current studies focus mainly on using AI models 

to assess carbon emissions and other sustainability challenges, rather than on calculating 

(or advancing calculation protocols of) the carbon emissions emitted by the models 

themselves. Therefore, the sustainability of AI requires further dedicated scientific 

inquiry. For example, our study shows that it is not yet possible to accurately measure the 

carbon emissions of AI models due to the poor understanding of their lifecycle 

complexities, and limitations in data availability (e.g., the hardware that is used and the 

data centre infrastructures they rely on). Hence, the values currently available can be 

considered as initial, broadly informed estimates. The case study findings from BLOOM 

regarding the estimation of an open-source model and Microsoft’s carbon emission 

increment due to the data centre relying on non-renewable resources drew attention to the 

need for standardized AI model carbon emission reporting among tech companies and the 

challenges of developing coherent metrics for its calculation. 

Having elaborated on understanding the measurement of AI model carbon emissions, 

the thesis aimed to identify potential ways to mitigate them. The second research question: 

“How can the carbon footprint of AI models be reduced?” and the associated sub-question, 

“How involved and aware are stakeholders in the effort to mitigate carbon emissions of 

AI models?” aimed at analysing current proposed ways forward in sustainable AI, and 

asses the currently level of stakeholder engagement and awareness in carbon footprint 

mitigation. Our findings show that activities surrounding carbon footprint reduction are 

currently centred in lowering the computational cost, using environmentally friendly AI 
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models, decreasing energy consumption, and increasing the usage of renewable energy 

resources. Additionally, optimization techniques focused on algorithms, hardware, and 

data centres emerge as valid approaches to facilitate the reduction in power consumption 

associated with AI. The case study findings from Zeus on optimizing GPU power limits 

and batch sizes for energy-efficient training and NVIDIA’s accelerated computing 

achieving greater energy efficiency compared to traditional CPUs emphasized the 

potential energy savings in AI model training and the need for standardized practices to 

balance energy consumption, cost, and performance. Expert consultations highlighted 

that optimization is the currently possible mitigation approach, and that there is a need 

for publicly available information to consciously involve stakeholders in the carbon 

reduction process towards sustainable AI. 

The thesis acknowledges that AI models contribute to carbon emissions and that 

proper calculation, estimation and reduction techniques are crucial for mitigating the 

rapidly expanding carbon footprint of this sector. Further research on how to calculate AI 

model’s carbon emissions, applied optimization techniques for mitigation, and 

transparency in the methods used for collecting data across the AI lifecycles, is paramount 

in facilitating the development of future reporting guidelines and in increasing 

stakeholders, developers and consumers’ knowledge about the topic. 

6.1. Recommendations 

Based on the findings of this study, it is recommended that companies begin using 

publicly available emission estimation tools to provide data on their environmental impact 

from AI models, even if the results are only estimates and lack consistency. To enhance 

transparency, these calculations could include error bounds and be reflected in public 

reporting. Simple summaries of these outcomes could be analyzed and shared to raise 

awareness among all stakeholders. Additionally, efforts and investments should focus on 

optimizing existing models, with appropriate actions implemented to guide the 

development of more sustainable models in the future. 
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8. APPENDICES 

Annex A: Interview Protocol 

This annex contains the questions used during the expert consultations with AI/ML 

researchers. The following questions were included in the Survey Questionnaire aimed at 

measuring and reducing the carbon footprint of AI models. 

Survey Purpose: This survey aims to understand stakeholder engagement and awareness 

regarding the carbon footprint of AI models, as well as to gather insights on calculation 

and reduction strategies. 

Survey Questions: 

1. What is your current role in relation to AI models? 

2. Have you ever been involved in the calculation of the carbon footprint of an AI 

model? What were your observations? [Your perspective is greatly appreciated.] 

3. Have you ever been involved in the reduction of the carbon footprint of an AI 

model? What were your observations? [Your perspective is greatly appreciated.] 

4. If your answer to Questions 2 and 3 is no, how aware are you that AI models 

contribute to carbon emissions? What is your level of knowledge about this issue, 

and how do you perceive its impact? 

5. What is your experience at Zeus regarding carbon reduction and what would be 

your contribution as the main researcher for those case studies? 

6. Is there anything else you would like to add regarding the carbon footprint of AI 

models or strategies for its reduction? 

Confidentiality Statement: Your responses will be kept strictly confidential and used 

only for academic research purposes. Your participation is greatly appreciated, and your 

insights will contribute significantly to the thesis. 


