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Abstract 

This dissertation investigates the cost dynamics shaping the diffusion of renewable 

energy technologies. Using logistic regression and learning curve models, the study 

examines the evolution of key energy sources, including solar, wind, nuclear and fossil 

fuels. The findings indicate that renewable energy technologies, particularly solar and 

wind, exhibit strong learning effects and an S-curve diffusion pattern, with cost reductions 

driven by economies of scale, technological advancements and environmental 

regulations. In contrast, fossil fuels and nuclear power demonstrate cost stagnation or 

increases, suggesting a diminishing competitive advantage. Projections indicate that 

renewables will surpass fossil fuels as the primary source of electricity generation by mid-

century. However, the rate of transition remains dependent on regulatory frameworks, 

infrastructure capacity, and geopolitical factors. This research provides a quantitative 

assessment of energy technology diffusion, contributing to a broader understanding of the 

economic conditions influencing the renewable energy transition. 

 

Keywords: Global Energy Transition; Renewable Energy Technologies; Solar 

Photovoltaics; Wind Energy; Fossil Fuels; Nuclear Energy; Technology Diffusion; 

Learning Curves; Logistic Regression; Levelized Cost of Electricity. 
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Resumo 

A presente dissertação analisa a dinâmica de custos subjacente à difusão das tecnologias 

de energia renovável. Para isso, recorreu-se a modelos de regressão logística e de curvas 

de aprendizagem para avaliar a evolução de diferentes fontes energéticas, nomeadamente 

a energia solar, eólica, nuclear e combustíveis fósseis. Os resultados evidenciam que as 

tecnologias renováveis, em particular a solar e a eólica, apresentam efeitos de 

aprendizagem significativos e seguem um padrão de difusão de curva em “S”, com 

reduções de custos associadas a economias de escala, progressos tecnológicos e políticas 

ambientais. Por outro lado, os combustíveis fósseis e a energia nuclear registam 

estagnação ou acréscimos nos custos, o que sugere uma perda gradual de competitividade. 

As projeções apontam para que as renováveis ultrapassem os combustíveis fósseis como 

principal fonte de produção elétrica até 2050. Todavia, há que ter em conta que o ritmo 

da transição é condicionado pelos quadros regulamentares, pela capacidade das 

infraestruturas e pelo contexto geopolítico. Este trabalho fornece uma avaliação 

quantitativa da difusão tecnológica no setor energético, contribuindo para uma 

compreensão mais ampla das condições económicas que influenciam a transição para as 

energias renováveis. 

 

Palavras-chave: Transição Energética Global; Tecnologias de Energia Renovável; 

Energia Solar Fotovoltaica; Energia Eólica; Energia Nuclear; Combustíveis Fósseis; 

Difusão Tecnológica; Curvas de Aprendizagem; Regressão Logística; Custo Nivelado de 

Eletricidade.  
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1. Introduction 

The existing global energy system remains misaligned with socio-economic and 

environmental sustainability objectives (Roser, 2020a). While progress has been made in 

the adoption of low-carbon technologies (Ritchie, 2021a), reliance on fossil fuels persists. 

In 2023, fossil fuels accounted for more than 80% of global primary energy consumption, 

making the energy sector responsible for more than three quarters of global greenhouse 

gas (GHG) emissions (Ge et al, 2024). 

Climate models consistently warn of a narrowing window to mitigate catastrophic climate 

impacts (IPCC, 2023). The Intergovernmental Panel on Climate Change (IPCC) has 

emphasized that exceeding the 1.5°C global warming threshold, set by the Paris 

Agreement, could lead to irreversible damage, including the loss of biodiversity, threats 

to food security and the displacement of millions due to rising seas and extreme weather 

events; and argues that to limit warming to 1.5°C, global GHG emissions must reach net-

zero by mid-century. 

Inspiringly, the past two decades have witnessed a substantial decline in the costs of 

renewable energy technologies, driven by technological innovation, economies of scale 

and learning-by-doing (Rubin et al, 2015) which has brought the energy sector closer to 

achieving net-zero emissions (IRENA, 2024a).  

Given these recent developments, understanding the pace and drivers of renewable energy 

adoption is critical for advancing the transition to a low-carbon energy system. For that 

reason, this thesis aims to investigate: 

1. What are the historical trends in the relative costs of renewable energy technologies 

compared to non-renewable energy sources and at what rate have these costs declined 

over time? 

2. How have the diffusion rates of renewable energy technologies evolved and what is 

the projected timeframe for their adoption to surpass fossil fuels as the primary source of 

electricity generation? 

By addressing these research questions, this study assesses how rapidly the costs of 

renewable energy have declined over time and the extent to which this declining trend 

has influenced their adoption. Additionally, it identifies the observed patterns in the 
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diffusion of renewables and estimates the timeframe in which they are expected to 

become the dominant source of electricity generation.  

The study begins with a comprehensive literature review in Section 2, which 

contextualizes the current understanding of cost trends and adoption patterns within the 

energy sector. Section 3 describes the methodological approaches employed to ensure the 

study's replicability and transparency. Section 4 presents a detailed analysis of the results, 

elucidating their significance and interpreting the underlying economic mechanisms. 

Section 5 discusses the main findings, limitations, and implications in relation to existing 

knowledge. Finally, Section 6 concludes by summarizing key takeaways from this study 

and identifying critical areas for future research.   

2. Literature Review 

2.1. Theoretical Framework 

2.1.1. Evolutionary Economics 

In Capitalism, Socialism and Democracy (1942), Joseph Schumpeter argues that 

capitalism is inherently dynamic, characterized by continuous evolution rather than a 

static state. He asserts that the entry of innovative entrepreneurs serves as a disruptive 

force that sustains economic growth, even as it dismantles established companies and 

labourers who once benefited from older technological, organizational, regulatory and 

economic paradigms (Sidak and Teece, 2009). 

Schumpeter saw disruption not as a mere byproduct of economic change, but as a 

fundamental driving force behind progress and development (Kurz, 2012). A good 

example of this concept is the transformation of the electric power sector (Mathews, 

2017) which represents a fundamental transition in technological, economic and social 

systems, moving away from fossil fuel dependence. 

According to Fagerberg (2025), long-term technological, economic, and social changes 

result from the dynamic interaction between variation and selection, as variation 

introduces new ideas and technological advancements, selection determines which 

innovations are refined, adopted and scaled.  

Furthermore, Freeman and Perez (1988) identified a recurring pattern in techno-economic 

paradigm shifts, wherein each major industrial transformation is driven by a core enabling 
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factor - a resource or technology that is affordable, accessible and applicable. Building 

on this framework, Mathews (2013, 2014) argues that the ongoing global green transition 

mirrors historical industrial revolutions, with the declining cost of renewable energy, 

particularly wind and solar, serving as the primary driver of systemic change (see Section 

2.2). 

2.1.2. Innovation Diffusion Studies 

Diffusion studies in the subfield of rural sociology in the Midwestern United States gained 

momentum, in the late 1920s, as researchers aimed to understand how independent 

farmers adopted innovations such as hybrid seeds, new equipment and modern 

techniques.  

This ultimately led to a pivotal study conducted, in 1943, by Bryce Ryan and Neal Gross, 

rural sociologists at Iowa State University, on the adoption of hybrid corn seed, which 

formalized the diffusion research paradigm (Valente & Rogers, 1995) and became a 

foundational reference for subsequent work in the field, namely the first empirical study 

of technology diffusion conducted by an economist – a survey on the adoption of hybrid 

corn seed, in the Midwestern United States, published in 1957 by Zvi Griliches.  

According to Hall (2009), Griliches’ work revealed two main insights: the critical role of 

economic factors such as expected profits and economies of scale in explaining the 

varying rates of adoption across different states; and, that the variation in initial adoption 

timelines was influenced by the speed of customization of the seed for specific geographic 

and meteorological conditions. The latter draws attention to the interactive nature of 

technological diffusion, i.e. technologies are iteratively adapted to improve their 

suitability and performance in various contexts. 

In 1962, one of the most influential works in this field was published - Everett Rogers' 

book Diffusion of Innovations. As a professor of rural sociology at Ohio State University, 

Rogers synthesized findings from over 508 studies across multiple disciplines and 

formulated a comprehensive theory that addressed how innovations spread among 

individuals and organizations.  

According to Rogers (1962), several factors influence the rate of adoption, at the 

individual level, such as: 
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• Relative advantage, i.e. the perceived improvement the innovation offers over 

existing solutions. 

• Compatibility with the adopter's existing processes and societal norms. 

• Complexity, i.e. the perceived difficulty of understanding and using the 

innovation. 

• Trialability, i.e. the ease with which adopters can experiment with the 

innovation before adoption.  

• Observability of its benefits.  

It is important to distinguish between two related but distinct concepts: adoption and 

diffusion. Adoption refers to the decision-making process by which an individual or 

organization chooses to implement an innovation, whereas diffusion concerns the 

cumulative spread of such adoption across a social system over time, typically represented 

by an S-shaped curve in diffusion theory (see Section 2.1.4).  

According to Peres et al (2010), innovation diffusion is “the process of the market 

penetration of new products and services that is driven by social influences, which include 

all interdependencies among consumers that affect various market players with or without 

their explicit knowledge”. Without the process of diffusion, innovation would have 

minimal social or economic impact. As Josef Schumpeter, pointed out, "As long as they 

are not carried out into practice, inventions are economically irrelevant" (Schumpeter, 

1934, p. 88). 

However, diffusion is not merely a pathway for spreading innovations. A crucial aspect, 

first brought to attention by Griliches (1957) and later emphasized by Rosenberg (1982) 

is the interaction between diffusion and innovation, more specifically the interactive 

nature of technological diffusion. As new technologies spread across different 

environments, producers and users often discover new applications to optimize their 

production or usage, leading to continuous refinement and adaptation.  

Another relevant observation, pointed out by Stoneman and Battisti (2010) is that a 

country’s usage and/or ownership of technology is not inherently linked to its production 

– a typical pattern involves a country first importing a technology for local use, then 

shifting to domestic production to meet internal demand, and eventually expanding 

production capacity to export the technology, sometimes even back to the original 

innovator country.  
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2.1.3. Diffusion Modelling  

A fundamental distinction in diffusion modelling lies between equilibrium and 

disequilibrium models (Meade, 2006). Disequilibrium models often suggest that demand 

growth is self-reinforcing, meaning that adoption accelerates once a critical mass of users 

is reached. In contrast, equilibrium models take a more static view, assuming that 

adoption occurs only when expected benefits outweigh costs. 

A well-documented pattern in the adoption of new technologies is the S-shaped diffusion 

curve (Geroski, 2000), when plotted over time, adoption rates typically register this 

trajectory, characterized by three distinct phases: an initial slow uptake, a period of rapid 

growth, and eventual market saturation. This pattern is consistently observed across 

industries and geographical contexts, highlighting the universal nature of technology 

diffusion. 

One prominent explanation for this pattern is the epidemic model, which is widely applied 

in sociology, marketing (e.g. the Bass Model) and economics. This model draws an 

analogy between the spread of innovations and infectious diseases. In this framework, 

adoption occurs as interactions between adopters and non-adopters increase, i.e. the more 

exposure potential adopters have to existing users, the higher the likelihood of adoption. 

This idea was formalized in 1968, by Edwin Mansfield in his Epidemic Theory of 

Innovation Diffusion, which posits that diffusion is primarily driven by asymmetric 

information distribution. Mansfield’s model further emphasizes that much like infectious 

diseases with varying transmission rates, the speed of innovation diffusion depends on 

several factors: 

• The perceived advantages of the technology, such as cost savings or efficiency 

gains. 

• The structure of social and professional networks, which determines how quickly 

knowledge spreads. 

• The contextual factors influencing adoption decisions, such as industry norms, 

competitive pressures and institutional constraints. 

Another explanation is provided by the probit model (Geroski, 2000), which suggests that 

consumers perceive varying levels of benefit from new technologies. If the distribution 

of perceived benefits follows a normal or approximately normal curve, the adoption 
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process will still exhibit an S-shaped pattern, even in cases where technology costs remain 

unchanged or decline over time. 

These models underscore two principal mechanisms of technology adoption (Stoneman, 

2010): consumer learning, where adoption spreads via social influence and information 

exchange; and consumer heterogeneity, wherein individuals derive different levels of 

benefit from an innovation. Both mechanisms contribute to the characteristic S-curve 

diffusion trajectory. 

According to Meade (2006), there are still two other perspectives that might explain the 

S-shaped diffusion curve:   

• Density dependence models, rooted in population ecology, suggest that two 

opposing forces - legitimation and competition - govern the diffusion process. In 

the early stages, as a new technology gains legitimacy, adoption accelerates. 

However, as competition intensifies, market saturation and competitive pressures 

slow further adoption.  

• Information cascades or models of path dependence suggest that the initial 

selection of a particular variant of a new technology can influence long-term 

diffusion. Early adopters' choices create a herd effect, where later adopters follow 

suit, leading to lock-in effects that can accelerate or constrain overall technology 

adoption. 

2.1.4. Energy Technology Diffusion 

In the initial stages of their lifecycle, new energy technologies often enter niche markets 

due to high costs and low efficiency (Grubler et al, 1999). These niche applications serve 

as testing grounds, where performance rather than cost is the primary driver of adoption. 

As energy technologies mature, they move through distinct phases of growth (Wilson, 

2012). Beginning with a formative phase characterized by small-scale experimentation 

and gradual refinement of the technology. This stage is followed by the up-scaling phase, 

during which larger and more efficient units are developed to capture economies of scale. 

Over time, as cumulative production and deployment increase, costs decline through 

mechanisms such as learning-by-doing, economies of scale and process standardization. 
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As new technologies improve through scaling and learning, they compete with incumbent 

systems, gradually gaining market share and eventually displacing less efficient or more 

expensive options (Grubler, 2012). 

This dynamic is evident in the case of renewables such as solar photovoltaics (see 2.2.1), 

which experienced dramatic cost reductions over the past two decades, falling by nearly 

90% since the early 2000s; and wind energy (see 2.2.2), which Goldthau & Sovacool 

(2012) identified as one of the earliest renewable technologies to achieve cost 

competitiveness with fossil fuels in certain markets, particularly in regions with strong 

wind resources and supportive policies. 

Even though cost competitiveness has been argued as the most consequential driver, it is 

worth mentioning that there are other factors affecting energy technology adoption. 

According to Ke et al (2022) those factors are as follows: 

• availability (energy-efficient and clean technologies are not evenly accessible 

across locations and time, creating barriers to widespread adoption). 

• knowledge (lack of awareness or ability to understand the benefits of adoption can 

lead to missed opportunities, even when the technology is economically viable for 

individuals or companies). 

• affordability (high initial costs and limited access to financing hinder adoption, as 

these technologies often require significant upfront investment). 

• gain (the perceived or actual net benefit of adopting the technology is a critical 

factor influencing decisions by individuals or companies), which is closely related 

to cost competitiveness. 

• willingness to adopt/pay (which is closely tied to the other four factors and reflects 

the overall readiness of individuals or companies to embrace the technology). 

2.2. Empirical studies 

Rapid innovation is driving this transition by reducing the costs of renewable technologies 

and enabling technologies like battery storage (Ritchie, 2021b). Ram et al (2018) go as 

far as suggesting that, by 2030, all G20 countries will achieve full cost competitiveness 

for renewables. Others, such as Gielen et al (2019) suspect the share of renewable energy 

in the total primary energy supply could rise from 15% in 2015 to 63% by 2050; and 
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assert that this growth, combined with enhanced energy efficiency, could account for 94% 

of the emissions reductions required to meet the targets of the Paris Climate Agreement.  

This transition to low-carbon energy technologies offers benefits that extend beyond 

climate protection and energy security. It could drive economic growth through 

substantial cost savings (Adão et al, 2024) and by fostering job creation (IRENA, 2024d). 

While the transition demands significant infrastructure investment, particularly in 

expanding grid capacity, these initial costs are anticipated to be offset by lower long-term 

energy expenses.  

Moreover, such transition involves a structural shift from centralised, fossil fuel-based 

systems to decentralised, low-carbon energy generation, with electricity becoming the 

dominant energy sector - it is very likely that the share of electric energy will increase, 

mainly because a large share of transport will be electrified. A decentralized renewable 

energy system enhances energy autonomy, strengthens resilience to natural disasters and 

stimulates local economies (Cerdá et al, 2024). 

Despite the significant progress in reducing costs and promoting renewables, several 

barriers remain that hinder the widespread adoption of renewable energy technologies 

(Zakeri and Syri, 2015). The relative advantage of renewables has often been obscured 

by market distortions and infrastructure lock-in favouring fossil fuels due to path 

dependency (Nemet, 2009). Solar PV and wind power are both dependent on weather 

conditions, leading to variability in electricity generation, which poses a significant 

problem as current grid infrastructure in many regions was designed for centralized, fossil 

fuel-based energy generation, making it ill-suited to accommodate large-scale 

deployment of renewable energy (Sovacool and Geels, 2016). Furthermore, IEA (2024a) 

reports that financing remains a major challenge in developing economies, where high 

costs of capital and political risks discourage investment; and, the global energy market 

remains concentrated, with China accounting for more than half of global manufacturing 

capacity, which poses risks to supply chain resilience. 

In what follows we will detail relevant aspects of the fast-changing economics of each of 

the main energy technologies with greater potential to drive the current energy transition. 

Although hydrogen is not included in the scope of the analysis, it deserves an honourable 

mention due to its significant potential as a future energy carrier. 
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2.2.1. Solar power 

The modern silicon-based solar cell was invented by Bell Labs in the U.S. in 1954. 

Initially, it was used in the satellite industry and remained extremely expensive. However, 

the 1970s brought significant changes to solar technology and its industry, especially after 

the 1973 Arab Oil Embargo, which caused oil prices to quadruple in three months, making 

energy security a key issue in countries like the U.S. and Japan.  

In response, President Nixon launched "Project Independence" and the U.S. government 

invested 1.7 billion dollars in solar energy research and development (R&D) between 

1974 and 1981. During this time, institutions like the Department of Energy (DOE) and 

the Solar Energy Research Institute (SERI), later renamed the National Renewable 

Energy Laboratory (NREL), were established.  

New policies also emerged, including California’s Interim Standard Offer Contract #4, 

an early feed-in tariff later refined by Germany’s Renewable Energy Sources Act (EEG). 

However, after President Reagan took office in the 1980s and fossil fuels became cheaper 

and more abundant, solar energy lost priority and the U.S. solar program was dismantled. 

Japanese companies entered the solar photovoltaics (PV) industry around the same time 

as U.S. companies but followed a different path to success. Backed by strong and 

consistent R&D support from the 1974 Sunshine Project, they found profitable niche 

markets in consumer electronics, such as calculators and toys, to sell their PV products. 

As these niche markets became saturated, Japan's Ministry of International Trade and 

Industry (MITI) introduced a rooftop subsidy program in the 1990s, combined with net 

metering regulations, to create demand for solar installations. These initiatives helped 

Japanese solar firms dominate the global market, becoming the largest in the world until 

they lost their lead after 2005. 

Although Japan eventually lost its leadership, its contributions significantly advanced 

solar technology. Japan pioneered large-scale manufacturing processes and showcased 

the cost-reduction benefits of scaling up through initiatives like the Rooftop Project. 

These efforts set the stage for countries like Germany and China to adopt and further 

refine these technologies, enabling mass production and driving solar industry growth. 

In 1998, after two decades of building an advocacy coalition, a policy window opened 

when the Green Party became a ruling partner, leading the German Parliament to pass the 
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Renewable Energy Law (EEG) in 2000. From 2004 to 2012, the EEG supported the 

adoption of over thirty gigawatts of PV in Germany with a subsidy program that totalled 

over two hundred billion euros. The program transformed the global solar market, which 

grew by a factor of thirty, with Germany accounting for half of global PV installations.  

By 2012, the price of PV modules had dropped by 16% compared to pre-EEG levels. This 

reduction in costs was crucial because it stimulated both demand for solar PV and the 

ability for solar energy to be integrated into electric grids on a larger scale. 

The EEG has been referred to as Germany’s “Gift to the World” as it proved that 

transitioning to renewable energy was more feasible and affordable than previously 

thought, influencing Germany’s Energiewende policy in 2010 and the Paris Agreement 

in 2015.  

Activities in China, between 2000 and 2016, also contributed to cheaper PV technology. 

During this period, Chinese solar companies scaled up production by a factor of five 

hundred, establishing China as the global leader in solar manufacturing – a position it has 

maintained to this day, e.g. in 2023, China was responsible for 93% of the global 

polysilicon supply for solar cells.  

According to Nemet (2019), the main driver of China's transition from a nascent PV 

sector to a global leader was high-risk entrepreneurial activity, exemplified by Suntech. 

This pioneering company established a model that other firms followed, successfully 

engaging municipal governments, building a domestic supply chain, training a skilled 

labour force, and partnering with foreign firms to access international markets.  

A pivotal moment in China’s path to success was Suntech’s Initial Public Offering (IPO), 

in New York, in 2005. This event not only legitimized the Chinese PV industry on a 

global stage but also unlocked seven billion dollars in capital from U.S. markets for 

Chinese PV firms by 2007. 

Domestically, the 2005 Renewable Energy Law, though primarily targeting wind energy, 

signalled a commitment to long-term PV market growth and the introduction of a Chinese 

Feed-in Tariff, in 2011, helped sustain the industry after the global financial crisis and the 

slowdown of German subsidies.  

Some argue that China’s leadership in the PV industry was primarily driven by aggressive 

investments, substantial government subsidies, and strategic advantages such as access to 
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a large domestic market, low-cost coal-fired energy, and factory locations near coal mines 

to minimize logistics costs (The Economist, 2024).  

However, equally important was China’s strong foundation in semiconductor R&D, early 

PV production and expertise in high-volume manufacturing sectors like textiles. Such 

foundation alongside international collaborations and the return of Chinese scientists 

trained abroad allowed Chinese firms to strengthen their global position by meeting 

international technology standards and certifications, which helped alleviate scepticism 

among early adopters, especially in Germany.  

2.2.2. Wind power 

Wind energy has been utilized for thousands of years, with early evidence of its use dating 

back to 5,000 BC, when it was harnessed to propel boats along the Nile River. By 200 

BC, wind-powered water pumps were being used in China, and windmills were grinding 

grain in the Middle East. By the 11th century, wind-powered pumps and mills were 

utilized for food production. However, it was only in the late 1800s that small wind 

turbines were widely used for electricity generation (U.S. Energy Information 

Administration, 2023).  

Around 1900, Danish inventor La Cour, with support from the Danish government, 

initiated one of the first R&D programs focused on electricity-generating windmills. 

Denmark, like many other nations, shifted toward centralized energy systems powered by 

fossil fuels, but the vulnerabilities of these systems during World War II, particularly the 

reliance on imported fuels, prompted La Cour’s student Johannes Juel to propose a 

windmill capable of delivering electricity to the national grid. Juel’s windmill was 

completed in 1957 and operated successfully for over a decade, but Denmark continued 

to prioritize fossil fuels due to their perceived abundance and low cost (Fagerberg, 2025).  

The energy crises of the 1970s spurred governments and researchers to invest in 

renewable energy, leading to advancements in wind turbine technology, e.g. federal 

support for large-scale wind turbine R&D gave rise to the installation of thousands of 

turbines in California by the 1980s. In the following decades, tax incentives and funding 

for renewable energy contributed to significant growth in wind power, with its share of 

electricity generation in the U.S. rising from under 1% in 1990 to 10.2% in 2022.  
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Wind energy also grew rapidly at a global level, with Europe expanding wind power 

through financial incentives and China emerging as the largest producer. By 2021, at least 

128 countries generated approximately 1,808 billion kWh of wind electricity (U.S. 

Energy Information Administration, 2023).  

Denmark played a pivotal role in this expansion, overcoming early challenges like high 

costs and inconsistent turbine quality. Early efforts were supported by knowledge-sharing 

associations and grassroots initiatives, leading to the establishment of wind-turbine 

cooperatives known as "vindmøllelav". Danish policymakers introduced subsidies and 

regulatory innovations (IRENA, 2013), such as the 1984 feed-in tariff, which allowed 

turbine owners to sell excess electricity to the grid at fair prices. These measures helped 

foster a growing industry, with companies like Vestas emerging as global leaders. 

Denmark’s success influenced countries like Germany, which adopted similar policies in 

1990, contributing to the global wind energy boom. 

2.2.3. Nuclear power 

Nuclear energy, currently responsible for about 10% of global electricity production 

(Ritchie and Rosado, 2020), has been a key part of the global energy mix since the early 

1950s. In the 1970s and 1980s, nuclear power expanded rapidly as governments embraced 

it as a clean and reliable source of electricity. This growth was driven by technological 

advancements, rising energy demands, and a desire to reduce reliance on fossil fuels 

(National Grid, 2024). However, by the 1990s, safety concerns, exacerbated by high-

profile accidents, led to stricter regulations and a decline in public support for nuclear 

energy (Ritchie, 2021a). 

Today, much of the nuclear infrastructure is aging, with many plants approaching the end 

of their operational lives and addressing safety and waste management has significantly 

increased the cost of new nuclear plants. Small Modular Reactors (SMRs) have been 

proposed as more flexible and cost-effective solutions, but they face similar challenges 

as traditional reactors, including safety and waste disposal concerns. Moreover, few 

SMRs are operational and their ability to meaningfully contribute to the energy transition 

remains uncertain (Fagerberg, 2025). However, many perceive SMRs to have a future 

role as complementary to both solar and wind energy, given the intermittency of these 

renewable energy technologies (Zarębski and Katarzyński, 2023). 
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Nuclear fission remains the dominant method for generating nuclear power, though fusion 

has long been considered a promising alternative (Moynihan and Bortz, 2023). Fusion 

remains far from commercial viability, nevertheless it offers numerous benefits, such as 

abundant fuel sources from seawater and lithium and inherent safety due to its lack of 

chain reactions and reduced radioactive waste.  

A significant milestone came, in 2022, when the UK government announced plans for the 

world’s first fusion power plant, slated to begin operations by the 2040s (National Grid, 

2024). But given the lengthy development timeline, fusion is unlikely to play a significant 

role in the near-term global energy transition.  

2.2.4. Hydrogen power 

In 2022, hydrogen accounted for less than 2% of Europe’s total energy consumption, with 

its primary application being the production of chemical products such as plastics and 

fertilizers (European Commision, n.d). 

Hydrogen is a highly flammable gas with significant potential to replace fossil fuels in 

various applications (Mathews, 2022). However, the current landscape of hydrogen 

production is reliant on fossil fuels. Approximately 96% of hydrogen is produced via the 

extraction of hydrogen from natural gas, a method known as "grey hydrogen," which 

generates considerable CO₂ emissions.  

To mitigate these emissions, a method called "blue hydrogen" has been proposed, where 

the carbon dioxide produced during hydrogen extraction is captured and stored. While 

this approach reduces emissions, carbon capture and storage (CCS) technologies are both 

technically complex and financially demanding (National Grid, 2023).  

An alternative to grey and blue hydrogen is "green hydrogen," produced through the 

electrolysis of water, using renewable electricity to separate hydrogen from oxygen, 

making it a cleaner and more environmentally sustainable option (IEA, 2024b).  

According to Fagerberg (2025), the role of hydrogen remains uncertain but promising: it 

could be particularly valuable in long-distance energy transport where electricity cables 

are impractical, offering a potential solution for energy storage and transfer across vast 

distances and it could also replace fossil fuels in hard-to-decarbonize sectors like long-

haul shipping and aviation, which account for about 6 to 7% of global carbon emissions.  
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2.3. Analytical Framework 

This section examines two foundational concepts - learning curves and energy-GDP 

elasticity - that will support the analysis of both cost trends and diffusion trajectories of 

renewable energy technologies.  

2.3.1. Learning Curves 

According to Way et al (2022), fossil fuel prices have remained stable for over a century 

due to a “running-to-stand-still” dynamic, where advancements in extraction are offset by 

the need to exploit less accessible resources. Similarly, CCS has shown no cost reductions 

despite decades of commercial use, and nuclear power has even seen cost increases. 

Conversely, other studies have identified certain renewable energy sources, particularly 

solar photovoltaics, and onshore wind, as the most cost-effective sources of electricity 

based on their levelized cost of electricity (Timilsina, 2021).  

Fossil fuels continue to be cost-competitive primarily due to their lower upfront costs. 

However, renewable energy technologies are steadily gaining market share, driven by 

declining costs (Reddy, 2018). This cost reduction is attributed to learning curves, a 

phenomenon where the cost of renewable energy technologies decreases with each 

increase of cumulative installed capacity  

According to IRENA (2024b), among all renewable energy technologies, solar PV has 

seen the most significant cost reductions. From 2010 to 2023, the global weighted-

average cost of electricity from solar decreased by 90%, driven by advancements in PV 

cell efficiency, reduced silicon and other material costs, and optimized manufacturing 

processes. Wind energy has also achieved significant cost declines, though at a slower 

pace, with onshore wind costs decreasing by 70% and offshore wind by 63%, from 2010 

to 2023, due to improvements in turbine design, installation logistics and grid integration. 

In contrast, fossil fuels and nuclear seem not to be experiencing learning curves anymore 

(Kåberger, 2018) which explains why non-renewable energy technologies have shown 

cost trajectories that increasingly disadvantage them in the evolving energy market, e.g. 

coal, historically one of the cheapest sources of electricity, is becoming less competitive 

due to stricter environmental regulations, carbon pricing mechanisms and higher 

maintenance costs for aging infrastructure (IEA, 2019).  
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McNerney et al (2011) argues that, unlike renewable energy technologies, there is little 

room for improving the efficiency of coal power plants, mainly because the price of 

electricity from fossil fuels is not only determined by the technology itself, it relies 

significantly on fuel costs, which make up about 40% of total expenses i.e. even if the 

price for constructing the power plant would decline, the price of the fuel means that there 

is a floor below which the price of electricity cannot pass. 

Over the past decade, electricity generated from natural gas has become cheaper, which 

may initially seem paradoxical. However, this decline is not part of a consistent long-term 

trend, as current gas prices remain higher than they were two or three decades ago (Rubin 

et al, 2015). Like coal, gas power generation is heavily influenced by market conditions 

and fuel costs, and its potential for technological efficiency gains is limited. 

Nuclear energy represents a complex case in the context of the transition to low-carbon 

energy sources (Adler et al, 2020). While it provides a stable, low-carbon electricity 

supply, its adoption is significantly hindered by several factors, including high upfront 

capital costs, long construction timelines and rigorous safety standards. The legacy of 

high-profile incidents such as Fukushima has also led to increased regulatory costs, 

further diminishing the economic competitiveness of nuclear energy. 

Despite these challenges, nuclear energy could still play a critical role in a future low-

carbon energy mix (Berthélemy and Rangel, 2015), particularly by addressing the 

intermittency of renewable sources and offering significant land-use advantages. Nuclear 

power requires substantially less land compared to large-scale solar and wind 

installations, making it a potentially more efficient option in terms of spatial requirements 

(Ritchie, 2022). 

2.3.2. Energy-GDP elasticity 

In recent decades, global Gross Domestic Product (GDP) has grown at a faster rate than 

energy consumption, primarily due to advancements in energy efficiency, driven by the 

expansion of renewable energy and electrification; and, structural shifts toward less 

energy-intensive activities, such as the transition from manufacturing to service-based 

industries (Ritchie, 2021c). This trend reflects the phenomenon of decoupling, wherein 

many countries are reducing their dependence on energy consumption to sustain 

economic growth. Consequently, the elasticity of energy consumption with respect to 

GDP has been declining. 
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Energy-GDP elasticity is defined as the percentage change in energy consumption 

associated with a one-percent change in national GDP, i.e. 𝐸𝑙𝑎𝑠𝑡𝑖𝑐𝑖𝑡𝑦 =

 %∆𝐸𝑛𝑒𝑟𝑔𝑦 𝐶𝑜𝑛𝑠𝑢𝑚𝑝𝑡𝑖𝑜𝑛/%∆𝐺𝐷𝑃. This measure serves as an indicator of the energy 

intensity of economic activity, reflecting how changes in GDP influence energy demand. 

Economic development generally follows a structural transformation process, whereby 

economies transition from an agriculture-based system to industrialization and, 

ultimately, to a service-oriented structure. This transition is reflected in energy 

consumption patterns, as changes in the energy mix accompany economic growth. 

Empirical studies indicate that energy-GDP elasticity tends to be higher in high-income 

countries, largely due to their greater reliance on commercial energy sources rather than 

traditional biofuels (Burke and Csereklyei, 2016). However, in the long run, energy-GDP 

elasticity remains below unity, suggesting that economic growth is generally 

accompanied by reductions in energy intensity and improvements in the overall economic 

productivity of energy use. 

Beyond aggregate energy-GDP elasticities, electricity-GDP elasticities provide 

additional insights into the relationship between economic activity and energy demand 

(Liddle et al, 2023). If economic growth drives a shift toward increased electrification, 

electricity-GDP elasticities should exceed overall energy-GDP elasticities, reflecting the 

growing role of electricity in economic expansion. 

3. Methodology 

This chapter outlines the methodology used to analyse the historical evolution of 

renewable and non-renewable energy technologies and, in a subsequent moment, to 

forecast their deployment. It details the selection and compilation of cost and diffusion 

indicators (Section 3.1) and the adopted analytical strategy (Section 3.2), highlighting 

data sources and limitations. 

3.1. Data Collection  

This research primarily examines historical cost data for renewable energy technologies 

(e.g., solar and wind) and non-renewable energy technologies (e.g., coal, oil, natural gas, 

and nuclear). The cost analysis focuses on the Levelized Cost of Electricity (LCOE) data 

sourced from the annual IRENA Report on Renewable Power Generation Costs for the 

period 2010–2023. It is important to note that, due to some data constraints the LCOE 
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values for combined cycle gas turbine (CCGT), open cycle gas turbine (OCGT) and coal 

were obtained from the arithmetic mean of 20 countries, with standard deviations of 

0.035656511, 0.06448061 and 0.037372974, respectively. 

To complement the assessment of cost influence on the adoption of renewable energy, 

data on the evolution of relevant diffusion indicators – cumulative installed capacity, 

energy consumption and electricity generation - have been compiled from the following 

sources: the annual IRENA (2024c), Our World in Data (2023) and IEA (2024c) for the 

period 2000–2023. As noted, the diffusion indicators selected in this study are supported 

by a more extensive dataset, spanning a longer period.  

This study examines global trends while providing a regional analysis based on income 

classifications, including high-income, upper-middle-income, lower-middle-income and 

low-income countries. This analysis includes energy-GDP and electricity-GDP elasticity, 

utilizing GDP data at constant 2015 prices, sourced from the World Bank. 

The second part of this study consists of forecasting the deployment of renewable and 

non-renewable energy technologies, which requires defining an upper limit and specific 

year that represents market saturation. For that purpose, data were collected from sources 

such as BP (2024), Statista (n.d) and IEA (2024c). 

The year 2050 was selected as it represents the longest available projection horizon and 

the same forecasting exercise was applied for total electricity generation by source. 

However, data constrains for both solar and wind did not allow the prediction of energy 

consumption by source. Solely total global energy consumption could be analysed, which 

was particularly useful to assess the expected contribution of the electricity sector. In an 

effort to standardize reporting, the diffusion caps for 2050 were derived from the “current 

policy scenario”. Though, alternative caps, such as those under the net zero scenario, 

could have been adopted, potentially leading to significantly different projections. 

3.2. Data Analysis  

Taking into consideration the research questions, this study employs a descriptive model 

that facilitates the evaluation of both historical and projected trends and ensures that the 

findings contribute to nuanced understanding of long-term energy trends. 
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3.2.1. Logistic Regression 

Building upon Griliches (1957), this study employs a logistic growth curve to model the 

evolution of cumulative installed capacity in energy technologies. The logistic function 

provides an effective approximation of cumulative adoptions (𝑁𝑡) within a population of 

potential adopters (𝑁∗), capturing the dynamics of technological diffusion: 

𝑁𝑡  =  𝑁∗/1 + 𝑒𝑥𝑝(−𝑎 − 𝑏𝑡)                                                                                                                                   (1) 

where a and b are parameters governing the adoption process over time. By applying a 

linear transformation to the logistic equation, we obtain: 

𝑙𝑛(𝑁𝑡/𝑁∗ −  𝑁𝑡)  =  𝑎 +  𝑏𝑡                                                                                                                                     (2) 

This transformation facilitates estimation of the parameters a and b using time-series data 

on cumulative installed capacity, given an assumed upper limit 𝑁∗representing the market 

saturation level. 

To better capture the adoption dynamics, Mansfield (1961) expressed the proportion of 

non-adopters who transition to adopters between periods t and t+1 as: 

𝑤𝑡 = (𝑁𝑡+1 − 𝑁𝑡)/(𝑁∗ − 𝑁𝑡)                                                                                                                                    (3)  

Which can be rewritten as a differential equation: 

𝑑𝑁𝑡/𝑑𝑡 =  𝑏(𝑁𝑡/𝑁∗)(𝑁∗ −  𝑁𝑡)                                                                                                                             (4) 

This standard logistic function describes a diffusion process where the adoption rate 

(𝑑𝑁𝑡/𝑑𝑡) depends on the interaction between adopters (𝑁𝑡) and non-adopters (𝑁∗ −  𝑁𝑡), 

with b representing the "infectiousness" of adoption, akin to epidemiological models. The 

initial stage (t = 0) assumes limited awareness of the technology, but as leading firms 

adopt, positive externalities reduce uncertainty, accelerating diffusion. 

When this framework is applied to energy technologies, the sigmoid diffusion pattern 

emerges due to asymmetric information distribution across market participants. The 

estimated parameter b is called “diffusion coefficient” and will provide insights into the 

speed of technology adoption. 
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3.2.2. Learning Curves 

The study of historical cost trends in wind and solar energy and the forecasting of future 

developments has employed various analytical approaches (Bolinger et al, 2020). Among 

these, learning (or experience) curves remain the most widely adopted framework. 

Although some studies (e.g., IRENA, 2024b) have explored LCOE-based learning rates 

for wind and solar energy, the existing literature predominantly relies on one-factor 

learning curve models that correlate cumulative installed capacity with capital costs.  

This study will employ the levelized cost of electricity as the cost metric. LCOE accounts 

for capital costs, operational expenses, plant performance, financing costs and taxes (as 

shown in Equation 5) thus offering a more comprehensive and accurate measure of the 

cost per unit of energy produced.  

LCOE =  
(CapEx ∗  Capital Recovery Factor ∗  Tax Factor)  +  OpEx

Annual Energy Production (AEP)
                                                      (5) 

However, this metric does not come without its limitations, namely its restriction to the 

2010 – 2023 period and the omission of exogenous factors influencing LCOE, as pointed 

out in the IRENA reports.  

Several studies argue that one-factor models often demonstrate superior descriptive 

analysis compared to two-factor models (Dai et al, 2024). Consequently, this study adopts 

a one-factor learning curve model based on LCOE (2023 USD/kWh) and cumulative 

installed capacity (MW). 

The basic formulation of the learning curve, referred to as the one-factor learning curve 

(FLC), models unit costs (𝐶) as a function of cumulative installed capacity (𝑄). 𝐶0 and 

𝑄0 represent unit cost and cumulative installed capacity at the initial time and 𝑏 the 

learning coefficient. 

𝐶𝑡 =  𝐶0 (
𝑄𝑡

𝑄0

)
−𝑏

                                                                                                                                                           (6) 

For analysis convenience, this relationship will be plotted as an exponential function on 

a log-log scale (Upstill and Hall, 2018). 

The associated learning rate (LR), i.e., 1 − 2−𝑏 indicates the percentage of cost decrease 

for each doubling of cumulative installed capacity. 
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4. Analysis 

4.1. Energy- GDP and Electricity-GDP Elasticities 

The global energy-GDP elasticity is 0.674, as observed in Table 1, which is in accordance 

with previous studies that have estimated the long-run elasticity to be approximately 0.7. 

This consistency suggests that, on average, energy consumption is increasing at a slower 

rate than GDP, corroborating the notion of decoupling. The electricity-GDP elasticity, 

however, is notably higher at 1.002, indicating that electricity consumption is growing at 

least proportionally with GDP. 

 

 

 

 

 

 

 

Table 1: Mean Long-Run Energy-GDP and Electricity-GDP Elasticities 

Source: Own elaboration. 

 A distinctive observation is the negative energy-GDP elasticity (-0.050) in high-income 

countries, indicating a slight decline in total energy consumption for every unit of 

economic growth.  

In contrast, upper-middle and lower-middle-income countries exhibit positive and higher 

energy-GDP elasticities (0.727 and 0.669, respectively), indicating a stronger correlation 

between energy consumption and economic growth. Nonetheless, both values remain 

below unity, suggesting that these economies are beginning to experience efficiency gains 

and structural transformations toward less energy-intensive industries.  

Low-income countries display a positive but lower energy-GDP elasticity (0.142), 

suggesting a weak correlation between economic growth and energy consumption. This 

could be attributed to a continued reliance on traditional biofuels and non-commercial 

energy sources, which are less directly linked to formal economic output. 

Income Group Energy-GDP Elasticity (%) Electricity-GDP Elasticity (%) 

World 0.674 1.002 

High Income -0.050 0.398 

Upper Middle 0.727 1.016 

Lower Middle 0.669 0.915 

Low Income 0.142 0.680 
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Another significant observation is the fact that, for all income groups, the electricity-GDP 

elasticities exceed their respective energy-GDP elasticities. The electricity-GDP elasticity 

in high-income countries is the lowest but it remains positive (0.398), suggesting that 

while total energy demand is decreasing, electricity consumption continues to rise, albeit 

at a slower pace relative to GDP. 

4.2. LCOE learning curves and learning rates  

As seen in the methods’ section, the learning curve approach demonstrates the 

relationship between cost reductions and technological performance improvements, 

emphasizing how advancements in technology and accumulated experience contribute to 

decreasing costs. The learning coefficient (b) quantifies the rate at which costs decline 

with cumulative installed capacity, while the learning rate (1 − 2−𝑏) represents the 

percentage decrease in costs each time capacity doubles. These values indicate the 

scalability and economic viability of each technology in the transition to sustainable 

energy systems. 

Figure 1 illustrates the learning curves for different renewable energy technologies, 

among them, onshore wind exhibits the highest learning rate at 43.7%, indicating that its 

costs decline most rapidly as deployment increases. Solar PV and concentrated solar 

power (CSP) follow closely, with learning rates of respectively 38.5% and 37.2%, 

demonstrating strong learning effects. In contrast, offshore wind has the lowest learning 

rate at 21.6%, suggesting that cost reductions occur at a slower pace despite increasing 

installed capacity.  
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Figure 1: Levelized cost of electricity learning curves, 2000-2023 

Source: Own elaboration 

Solar PV has the highest R² value (0.9933), signifying an outstandingly strong correlation 

between installed capacity expansion and cost reduction. This suggests that solar PV 

follows a well-defined and predictable learning curve, making it one of the most reliable 

technologies in terms of cost declines. Onshore wind (R² = 0.9252) and offshore wind (R² 

= 0.9383) also exhibit strong correlations, indicating that cost reductions for these 

technologies are highly dependent on cumulative deployment, though with slightly more 

variability than solar PV. Conversely, CSP has the lowest R² value (0.6623), suggesting 

a relatively lower predictability of CSP’s learning curve and, consequently a high level 

of uncertainty in achieving cost reductions through scaling alone.  

Nonetheless, the high R² values for most technologies suggest that cumulative 

deployment is a reliable predictor of cost declines, reinforcing the importance of scaling 

up renewable energy investments.  

Unlike renewables, non-renewables do not register learning curves, which can be easily 

visualized (see Table IV, in Appendix). Fossil fuels exhibit more stable costs. From 2000 

to 2023, coal and combined cycle gas turbine (CCGT) have even exhibited an upward 

trend in costs, showcasing an estimated Compound Annual Growth Rate (CAGR), of 

1.86% and 0.85% respectively. Oil and open cycle gas turbine (OCGT) have remained 

nearly constant, with marginal reductions of 0.07% and 0.01%, which contrasts sharply 

with the cost reductions of solar and wind technologies. 

Unsurprisingly, as of 2023, renewable energy sources such as solar and wind are widely 

recognized as more cost-effective than fossil fuels (see Table IV, in Appendix). The 

estimated Levelized Cost of Electricity (LCOE) per kilowatt-hour (kWh) for CSP, solar 

PV, onshore wind and offshore wind is approximately 0.117, 0.044, 0.033 and 0.075, 

respectively. In contrast, the LCOE for fossil fuel-based energy sources, including oil, 

CCGT, coal and OCGT is estimated at 0.357, 0.121, 0.134 and 0.121, respectively. 

 4.3. Diffusion Indicators 

4.3.1. Energy Consumption and Electricity Generation 

Total energy consumption has increased steadily, with a CAGR of 1.87% (see Table V, 

in Appendix). However, growth rates vary significantly across energy sources. Fossil 
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fuels still dominate global energy consumption, but their growth is relatively slow 

compared to renewable sources.  

Coal, gas and oil registered a CAGR, from 2000 to 2023, of 2.14%, 2.16% and 1.00% 

respectively, making gas the fastest-growing fossil fuel. Whereas solar has an exponential 

growth, with a CAGR of 35.08%, far outpacing the other sources. Wind power has also 

expanded rapidly, with a CAGR of 19.00%. Conversely, nuclear energy supply has 

declined slightly, with a CAGR of -0.29%, suggesting policy and economic challenges in 

expanding nuclear capacity.  

Total electricity generation has also increased steadily, with a CAGR 2.78% (see Table 

VI, in Appendix), higher that total energy consumption, further corroborating the 

increased electrification of the energy sector – in 2023, electricity generation represented 

19.25% of total primary energy consumption. 

A noteworthy observation is the significant structural changes in electricity generation, 

particularly the rapid expansion of renewable energy sources. Solar and wind power 

exhibited the highest growth rates, with CAGRs of 35.93% and 19.64%, respectively, 

with their combined market share (of total electricity generation) increasing substantially 

from 0.211% in 2000 to 13.346% in 2023, underscoring the accelerating transition toward 

low-carbon energy sources. In contrast, nuclear power has seen limited growth, with a 

CAGR of 0.23%.  

Over the past two decades, nuclear’s share of total electricity generation has declined 

approximately 2.48%, as shown in Table 2, a decrease only surpassed by the oil sector, 

which experienced a significant market share decline of 4.78%. Both energy sources lost 

market share in total energy consumption as well.  

 
Share of total 

energy 

consumption in 

2023 (%) 

Energy Market 

share growth 

between 2000-

2023 

Share of total 

electricity generation 

in 2023 (%) 

Electricity market 

share growth 

between 2000-2023 

Coal 26.47 0.26 35.51 -0.28 

Gas 23.30 0.29 22.47 0.94 

Oil 31.70 -0.85 2.67 -4.78 

Nuclear 3.96 -2.12 9.11 -2.48 

Solar 2.48 32.61 5.53 32.25 

Wind 3.51 16.82 7.82 16.41 
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Table 2: Share of total energy consumption and total electricity generation in 2023 and respective 

Compound Annual Growth Rates from 2000 to 2023 

Source: Own elaboration 

Coal, still the dominant source of electricity, accounted for 35.51% of global electricity 

generation in 2023. However, its market share has slightly decreased, approximately 

0.82% and despite its continued prominence, coal’s CAGR of 2.48% (see Table VI, in 

Appendix) suggests a slowing growth rate. Natural gas, by contrast, has outpaced coal 

with a CAGR of 3.74%. 

Predictably, both solar and wind have seen a steep increase in their share of total energy 

consumption and total energy generation, which aligns with their estimated CAGRs.  

4.3.2. Cumulative Installed Capacity 

The installed capacity of solar and wind power has experienced the most significant 

expansion, with a CAGR, from 2000 to 2023, of 34.21% and 18.59% respectively. In 

contrast, nuclear energy has exhibited relatively slow growth, with a CAGR of 0.49%, 

indicating stagnation in new capacity additions. Fossil fuel-based electricity generation, 

while still dominant within the global energy mix, has grown at a comparatively modest 

CAGR of 2.88%. 

While the growth rates of nuclear and fossil fuel-based energy remain relatively stagnant, 

solar and wind power installations have demonstrated significant volatility, particularly 

in the early years of adoption. However, since 2015, these fluctuations have given way to 

more stable and sustained expansion, suggesting that the renewable energy sector has 

reached a phase of maturity and predictability in deployment. 

Furthermore, the high correlation coefficient (0.979) between installed capacity and 

energy consumption suggests that as new energy capacity is added, electricity demand is 

being met more efficiently. Similarly, the correlation between installed capacity and 

electricity generation (0.985) indicates that investments, particularly in renewable energy 

technologies, are directly translating into increased electricity output.  

4.4. Logistic regression 

The regression analysis of solar, wind, nuclear and fossil fuel installed capacity over time 

provides critical insights into the intrinsic growth rate of each energy source. The 

application of a logistic regression model (as shown in Figure 2) suggests that renewable 
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energy sources, particularly solar and wind, exhibit rapid growth, while nuclear and fossil 

fuels follow more moderate trends.  

Solar energy demonstrates the most significant expansion, as indicated by the equation y 

= 0.3432x - 694.76. The relatively high coefficient of 0.3432 reflects the accelerated 

deployment of solar capacity. Similarly, wind energy follows a logistic trajectory with y 

= 0.1964x - 397.47, indicating steady but slightly slower adoption speed compared to 

solar.  

Conversely, nuclear energy exhibits a much flatter trend, as reflected in the equation y = 

0.0488x - 96.014y, suggesting limited expansion in installed capacity. Fossil fuels, 

despite experiencing faster growth than nuclear, still show a modest increase with y = 

0.1314x - 263.04. The estimated diffusion coefficient of 0.1314 indicates that while fossil 

fuel infrastructure is still expanding, its relative increase is significantly lower than that 

of renewables. 

 

Figure 2: Logistic regression of the installed capacity (MW) of solar, wind, nuclear and fossil fuels from 

2000 to 2023 

Source: Own elaboration 

The high R² values across all energy sources indicate strong model fits, confirming the 

validity of the logistic growth assumption for installed capacity projections. 

Projections based on the logistic regression trends indicate that solar and wind energy 

follow distinct S-curve trajectories (see Figure 3), with solar reaching its saturation point 
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around 2035 and wind experiencing a more gradual ascent, stabilizing closer to mid-

century. The steep initial growth of these technologies reflects the exponential phase of 

their respective S-curves, driven by cost reductions, policy incentives and technological 

advancements. However, as they approach market saturation, growth slows due to 

infrastructure limitations, grid constraints, and diminishing marginal efficiency gains.  

Fossil fuels, in contrast, appear to have already entered the plateau phase of their S-curve, 

signalling stagnation or potential decline as renewable adoption accelerates. Meanwhile, 

nuclear energy remains relatively stable with minimal deviation from a linear trend, 

suggesting that it does not follow the same logistic growth dynamics as renewables. 

 

Figure 3: Projections for installed capacity (MW) of solar, wind, nuclear and fossil fuels from 2000 to 2050 

Source: Own elaboration 

As explained in the methods section, the insufficient data hindered the projection of 

energy consumption by source. However, projections of total energy consumption, in 

2050, point to 176388.89 TWh, which implies that the share of electricity generation 

within total energy consumption is anticipated to be 33.08% by 2050. This further 

confirms the ongoing electrification of the energy sector, crucial to achieving net zero 

emissions. A preposition that holds when the same model is applied to forecast electricity 

generation by source (see Figure 4), the logistic regression model projects that by 2050, 

solar energy will constitute the largest share of electricity generation (37.4%), followed 

by wind (21.2%), fossil fuels (18.5%) and nuclear (7.6%). 
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Figure 4: Projections for electricity generation (MW) per energy source from 2000 to 2050 

Source: Own elaboration 

However, one should point out that the accuracy of these predictions is very much 

contingent on external variables such as technological advancements, policy incentives 

and environmental concerns which may influence the rate of transition. 

5. Discussion 

The logistic diffusion model employed in this study explains the cumulative adoption of 

technologies over time by using time itself as a key variable, which, while useful for 

descriptive and predictive purposes, does not delve into the underlying mechanisms 

driving diffusion, such as policy and market dynamics, structural shifts and cost 

reductions.  

To address this gap, it is essential to contextualize the diffusion process within the 

economic factors identified earlier in this study, namely the levelized cost of electricity 

(LCOE), learning curves, energy-GDP and electricity-GDP elasticities and the diffusion 

indicators. Through these, we can move beyond the descriptive nature of the logistic 

model and provide a more nuanced explanation of the diffusion process. 

Policy and market dynamics 

The analysis of historical trends (Section 2.2.1 and 2.2.2) highlights the importance of 

policy incentives, such as feed-in tariffs and subsidies, in driving the adoption of 

renewable energy technologies. For example, the rapid growth of solar PV in Germany 
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following the introduction of the Renewable Energy Law (EEG) in 2000 demonstrates 

how policy interventions can accelerate the diffusion of new technologies.  

Similarly, market dynamics, such as the availability of financing, play a critical role in 

determining the rate of technology adoption. For instance, the high correlation between 

installed capacity and electricity generation (0.985) suggests that investments in 

renewable energy infrastructure are directly translating into increased electricity output. 

Still, this correlation assumes continuous investment, which may not hold in contexts 

where political shifts lead to subsidy cuts or fossil fuel lobbying undermines renewable 

energy policies. 

Structural shifts 

Renewable energy adoption is not solely a function of technological feasibility but also 

of economic development stages and industrial composition. As economies transition 

from energy-intensive industries to service-oriented sectors, electricity consumption 

becomes increasingly central to economic activity. This shift creates a favourable 

environment for the diffusion of renewable energy technologies, particularly solar and 

wind, which are well-suited to meet the rising demand for electricity. 

Therefore, by incorporating the energy-GDP and electricity-GDP elasticities into the 

analysis, we can better understand how macroeconomic trends influence the adoption of 

renewables. Overall, the results (see section 4.1) confirm that economic growth is 

becoming increasingly decoupled from total energy consumption, particularly in high-

income countries, suggesting improvements in energy efficiency. Moreover, the higher 

electricity-GDP elasticities relative to overall energy-GDP elasticities support the 

hypothesis that economic development is increasingly tied to electricity consumption, 

corroborating evidence of a global shift toward electrification. 

Cost reductions 

The analysis also revealed that renewable energy technologies, particularly solar 

photovoltaics (PV) and onshore wind, exhibit strong learning effects, with cost reductions 

closely tied to cumulative installed capacity (see section 4.2). This cost reduction is a 

critical factor in accelerating the adoption of renewables, as it enhances their economic 

competitiveness relative to fossil fuels. 



35 

 

Learning curves, which quantify cost reductions per doubling of cumulative capacity, 

reveal a self-reinforcing cycle: early adoption driven by policy incentives (e.g. Germany’s 

EEG) triggers economies of scale and technological refinement, further lowering costs 

and expanding the pool of potential adopters.  

This dynamic aligns with the logistic model’s rapid growth phase but adds explanatory 

depth: the inflection point of the S-curve corresponds to the threshold where renewables 

achieve grid parity with fossil fuels. In upper-middle-income nations, where energy 

demand grows in tandem with GDP (energy-GDP elasticity = 0.727), cost-competitive 

renewables displace marginal fossil fuel projects, accelerating adoption. Conversely, in 

low-income countries (energy-GDP elasticity = 0.142), weak institutional frameworks 

and reliance on non-commercial energy sources decouple cost reductions from adoption 

rates, underscoring that learning curves alone cannot drive diffusion without 

complementary infrastructure and financing.   

6. Conclusion 

This dissertation examines the historical decline in renewable energy costs relative to 

non-renewables, the evolution of their diffusion rates and the projected timeframe for 

renewables to surpass fossil fuels.  

The analysis reveals that both solar and wind experience robust learning effects, 

particularly solar PV and onshore wind which exhibit the highest learning rates: 38.5% 

and 43.7%, respectively, between 2000 and 2023. In contrast, fossil fuels and nuclear 

power face cost stagnation due to regulatory burdens, fuel price volatility and diminishing 

efficiency gains.   

Logistic regression models reveal that solar and wind adoption exhibit distinct S-curve 

patterns. Based on current trends and scenario assumptions, solar adoption is projected to 

approach saturation around 2035, while wind is expected to continue growing more 

gradually, stabilizing closer to 2050.  

By mid-century, renewables are expected to account for 58.6% of global electricity 

generation, displacing fossil fuels (18.5%) as the primary energy source. Nuclear energy, 

while stable, shows limited growth potential due to high capital costs and public 

scepticism.   
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The findings also align with the broader trend of electrification, as evidenced by the 

higher electricity-GDP elasticity (1.002) relative to total energy-GDP elasticity (0.674) 

and the projected share of electricity generation within total energy consumption from 

17.13% in 2023 to 33.08 in 2050.  

While this study provides valuable insights into renewable energy diffusion, several 

limitations must be acknowledged. First, the reliance on historical data and static 

assumptions restricts the model’s ability to account for political and regulatory variability. 

For instance, it does not fully capture the potential slowdown in renewable adoption due 

to policy reversals, such as the U.S. withdrawal from the Paris Agreement, or the 

accelerated deployment driven by crisis-responsive measures, exemplified by the EU’s 

REPowerEU plan following the 2022 energy crisis.  

A further limitation lies in the model’s inability to adequately address regional disparities 

in renewable energy adoption. Low-income nations, characterized by an energy-GDP 

elasticity of 0.142, encounter distinct barriers, including underdeveloped grid 

infrastructure and persistent reliance on traditional biofuels, that are not explicitly 

incorporated into the logistic regression framework. Moreover, the study’s focus on 

established technologies, such as solar and wind, leaves room for future research to 

explore emerging alternatives like green hydrogen and small modular reactors (SMRs), 

which could significantly alter diffusion trajectories if technological or policy 

breakthroughs occur. 

To address these limitations, future research should incorporate dynamic modelling 

techniques, such as policy-sensitive scenario analysis, to better account for external 

shocks and regional differentiation, as it could enhance the predictive robustness and 

provide more nuanced insights into the heterogeneous adoption pathways.  
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Appendix 

 

Annex I – Evolution of global GDP and GDP by income group from 2000 to 2023, at 2015 constant prices 

GDP (constant 2015 

US$) 

World High income Upper middle 

income 

Lower middle 

income 

Low income 

2000 48437263200388.00 37837833221211.70 8023928182257.55 2175258755731.17 232384864913.51 

2001 49422295421127.10 38440956467142.00 8298389313935.03 2269776849002.72 242294958385.81 

2002 50567138353080.40 39070505434255.10 8695783409550.23 2372218522706.63 254230951863.89 

2003 52131518187621.40 39965854193436.40 9206218057715.95 2513317985219.06 266652967070.58 

2004 54463866515800.90 41373496628592.40 9928782901497.89 2691342310908.53 283018908311.18 

2005 56653579443885.40 42612340617051.00 10673460291074.30 2871957743475.89 301600732185.80 

2006 59180664984371.90 43995708323418.20 11590864671935.00 3071996520794.39 319425410003.36 

2007 61768752251196.40 45252860738753.20 12681834072559.20 3283873630647.52 338990131399.52 

2008 63038812186080.80 45555784266220.70 13476120643095.90 3434574180396.17 357761842735.53 

2009 62192598074458.60 44026249709201.90 13943259670108.70 3639196057719.62 372577449527.85 

2010 65002105448721.20 45362091739586.70 15131983239721.80 3888776335478.37 398590989534.17 

2011 67170761718394.30 46285169329733.40 16181405842624.50 4073797174037.51 401750791323.72 

2012 68978972328520.30 46956278753190.40 17113469632028.40 4284201082472.95 389086119099.63 

2013 70960627147647.50 47710588295439.20 18076729826774.40 4527485766916.12 403083436691.90 

2014 73182741848317.40 48735210498279.80 18971909576956.90 4804501648342.21 420838437954.12 

2015 75472473882835.10 49875503824325.00 19830615812257.50 5089665684079.03 417756953873.85 

2016 77596070030857.20 50785141188183.50 20738282956924.50 5379808124885.27 426318507337.12 

2017 80274256581671.90 52036148520657.30 21848798125044.00 5673767311022.84 439594337732.54 

2018 82909015820695.80 53266571470321.40 22920245490506.70 5982516241313.00 454537993853.64 

2019 85127633137500.80 54281884301810.90 23852451210920.70 6226615757545.93 474081737618.70 

2020 82677384726296.40 52182339286318.70 23733210553042.70 6002516344310.31 475602794987.66 

2021 87927472715845.20 55197692751535.10 25538815903716.60 6402342783987.56 485946125646.54 

2022 90774582977538.80 56797832930107.10 26384548095052.60 6775936832420.70 503780277751.38 

2023 93346688686736.90 57808823390117.10 27548975484262.30 7151756621411.38 515060189857.05 
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Compound annual 

growth rate (%) 

2.77 1.78 5.27 5.08 3.37 

Source: WORLD BANK 

 

Annex II – Evolution of global energy consumption and by income group from 2000 to 2023 

Energy 

consumption (TWh) 

World High income Upper middle 

income 

Lower middle 

income 

Low income 

2000 110368.06 66301.102 31123.891 9483.466 770.864 

2001 111445.56 66167.211 32031.521 9668.767 778.333 

2002 113809.49 66807.82 33323.055 10014.536 797.918 

2003 117810.22 67543.156 36182.387 10300.468 811.401 

2004 123728.97 69031.711 39725.801 11025.695 867.02 

2005 127874.88 69606.219 42661.27 11530.44 921.059 

2006 131488.69 69791.578 45546.965 12002.561 939.351 

2007 135522.59 70379.82 48205.031 12735.961 954.002 

2008 137130.72 69905.258 49710.469 13220.371 996.973 

2009 134952.47 66725.516 50367.715 13558.873 975.779 

2010 141457.53 69548.258 53312.188 14106.84 1010.112 

2011 144707.94 68926 56549.184 14787.825 944.45 

2012 146744.78 68449.938 58551.512 15226.531 885.968 

2013 149299.22 69288.477 59745.57 15650.51 854.95 

2014 150891.02 68968.297 60937.973 16286.321 856.591 

2015 152035.48 69428.344 61171.875 16584.59 796.135 

2016 153607.73 69772.227 61821.645 17025.846 830.969 

2017 157252.06 70310.633 63656.918 17980.84 828.593 

2018 161518.44 71208.969 65905.977 18865.455 861.4 

2019 163346.59 70417.383 67898.992 19437.158 872.842 

2020 157667.72 65687.578 67782.734 18813.914 837.249 

2021 165729.03 68638.273 71423.508 19882.926 856.518 

2022 168708.2 65800.93 73540.633 20341.938 n.d 
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2023 172119.06 64908.398 76803.555 21152.625 n.d 

CAGR (%) 1.87 -0.09 3.84 3.93 0.48 

Source: OUR WORLD IN DATA 

 

Table III – Evolution of global electricity generation and by income group from 2000 to 2023 

Electricity 

generation (TWh) 

World High income Upper middle 

income 

Lower middle 

income 

Low income 

2000 15276.96 9854.73 4015.83 1326.6 75.04 

2001 15499.4 9867.42 4165.55 1380.75 80.45 

2002 16049.01 10104.74 4409.11 1446.57 83.16 

2003 16626.6 10228.46 4780.25 1525.57 86.6 

2004 17412.81 10470.1 5209.07 1635.54 92.15 

2005 18132.8 10722.811 5610.57 1692.9 100.39 

2006 18838.11 10818.47 6119.89 1788.76 104.65 

2007 19712.15 11072.05 6651.24 1873.82 108.55 

2008 20099.89 11079.05 6967.22 1934.21 112.76 

2009 19941.4 10678.95 7134.4 2002.14 119.1 

2010 21263.27 11142.86 7830.93 2155.14 127.25 

2011 21957.08 11101.39 8425.42 2302.62 120.58 

2012 22515.84 11129.7 8825.43 2439.19 114.28 

2013 23155.39 11139.32 9353.819 2542.76 112.22 

2014 23749.42 11144.08 9769.931 2716.18 111.93 

2015 24005.79 11214.76 9851.9 2821.81 109.92 

2016 24662.78 11298.64 10250.681 2986.11 119.9 

2017 25403.15 11374.271 10771.45 3129.53 120.44 

2018 26399.83 11525.91 11436.75 3305.71 124.09 

2019 26771.23 11421.41 11811.49 3405.77 125.06 

2020 26654.82 11152.55 11970.141 3397.65 126.28 

2021 28169.88 11476.71 12931.12 3625.91 128.65 
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2022 28843.5 11594.29 13341.23 3774.11 126.35 

2023 29479.05 
    

CAGR (%) 2.78 0.71 5.36 4.65 2.29 

Source: OUR WORLD IN DATA 

 

Annex IV – Levelized cost of electricity by energy source from 2010-2023 

Levelised 

cost of 

electricity 

(2023 

USD/kWh) 

Concentrated 

Solar Power 

(CSP) 

Solar PV Onshore 

Wind 

Offshore 

Wind 

Oil Combined 

Cycle Gas 

Turbine 

(CCGT) 

Coal Open Cycle 

GasTurbine 

(OCGT)  

2010 0.393 0.460 0.111 0.203 0.360 0.107 0.104 0.269 

2011 0.381 0.343 0.106 0.212 0.389 0.130 0.111 0.297 

2012 0.358 0.256 0.096 0.179 0.388 0.137 0.105 0.324 

2013 0.292 0.197 0.097 0.153 0.395 0.143 0.098 0.327 

2014 0.256 0.177 0.086 0.186 0.386 0.135 0.093 0.300 

2015 0.246 0.132 0.074 0.152 0.302 0.104 0.091 0.256 

2016 0.291 0.116 0.069 0.124 0.292 0.082 0.092 0.225 

2017 0.278 0.091 0.065 0.115 0.306 0.090 0.099 0.238 

2018 0.164 0.077 0.055 0.108 0.334 0.100 0.108 0.252 

2019 0.242 0.067 0.048 0.093 0.318 0.091 0.104 0.235 

2020 0.122 0.060 0.040 0.088 0.284 0.077 0.101 0.218 

2021 0.124 0.052 0.036 0.080 0.339 0.115 0.121 0.273 

2022 0.122 0.050 0.034 0.080 0.389 0.187 0.160 0.371 

2023 0.117 0.044 0.033 0.075 0.357 0.121 0.134 0.269 

CAGR (%) -8.28 -15.40 -8.36 -6.89 -0.07 0.85 1.86 -0.01 

Source: Renewable Power Generation Costs in 2023, IRENA 

 

Annex V – Evolution of energy consumption by energy source from 2000-2023 

Energy 

comsumption 

(TWh) 

Total Coal Gas Oil Nuclear Solar Wind 

2000 110368.1 27441.49 23994.26 42983.430 7322.683 3.129 92.878 

2001 111445.6 27864.72 24316.83 43366.160 7480.557 4.178 112.752 

2002 113809.5 28967.59 25028.29 43650.73 7551.077 5.246 152.894 

2003 117810.2 31511.33 25727.73 44580.05 7350.656 6.534 183.533 

2004 123729 33689.84 26734.27 46367.14 7635.77 8.555 246.722 

2005 127874.9 36190.77 27438.98 46965.55 7607.354 11.978 299.591 

2006 131488.7 38073.16 28161.39 47468.77 7653.722 16.379 379.87 

2007 135522.6 40233.9 29315.7 48022.76 7450.836 22.077 484.949 

2008 137130.7 40786.05 30026.69 47628.99 7381.602 35.639 622.182 
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2009 134952.5 40189.99 29405.7 46566.07 7232.23 58.819 773.015 

2010 141457.5 41988.31 31593.82 48058.23 7373.091 94.092 961.486 

2011 144707.9 43940.8 32349.12 48400.32 7021.486 181.254 1215.681 

2012 146744.8 44061 33203.14 49164.34 6500.369 278.349 1454.615 

2013 149299.2 44709.24 33720.78 49654.36 6512.807 377.791 1732.055 

2014 150891 44893.17 33961.7 50011.83 6606.008 534.491 1912.332 

2015 152035.5 43680.5 34752.11 50977.21 6655.106 689.423 2238.73 

2016 153607.7 42736.86 35229.35 52060.85 6714.155 879.125 2575.674 

2017 157252.1 43193.28 36517.57 52978.8 6734.279 1185.098 3038.975 

2018 161518.4 43852.79 38321.44 53521.39 6855.408 1520.514 3361.329 

2019 163346.6 43597.16 39084.45 53618.93 7071.782 1859.597 3746.709 

2020 157667.7 42296.68 38714.09 48745.68 6776.866 2245.268 4188.111 

2021 165729 44600.08 40239.02 51530.49 7037.07 2751.753 4865.935 

2022 168708.2 44869.12 40086.88 53226.84 6703.874 3446.407 5495.744 

2023 172119.1 45564.93 40101.74 54564 6824.177 4264.261 6040.359 

CAGR (%) 1.87 2.14 2.16 0.99 -0.29 35.08 19.00 

Source: OUR WORLD IN DATA 

 

Annex VI – Evolution of electricity generation by energy source from 2000-2023 

Electricity 

generation 

(TWh) 

Total Coal Gas Oil Nuclear Solar Wind 

2000 15276.96 5809.34 2745.09 1323.67 2540.46 1.03 31.14 

2001 15499.4 5891.62 2914.23 1284.41 2613.17 1.37 38.17 

2002 16049.01 6145.74 3104.36 1270.87 2654.78 1.71 52.21 

2003 16626.6 6576.3 3255.04 1294.96 2601.05 2.1 63.18 

2004 17412.81 6798.53 3503.85 1261.86 2719.41 2.78 85.45 

2005 18132.8 7168.54 3679.83 1277.95 2726.97 3.95 104.37 

2006 18838.11 7568.05 3901.44 1174.57 2761.59 5.42 133.16 

2007 19712.15 8052.88 4220.48 1194.83 2703.49 7.29 171.11 

2008 20099.89 8075.56 4361.83 1169.65 2694.72 11.85 220.8 

2009 19941.4 7952.25 4383.28 1069.87 2656.76 19.82 276.21 

2010 21263.27 8459.82 4816.71 1069.2 2725.91 32.2 345.92 

2011 21957.08 8913.04 4864.28 1175.29 2610.34 63.58 439.88 

2012 22515.84 8962.88 5172.06 1227.52 2432.22 96.99 529.18 

2013 23155.39 9426.88 5073.84 1180.35 2448.52 131.96 634.05 

2014 23749.42 9607.3 5237 1120.83 2498.73 197.74 706.01 

2015 24005.79 9281.27 5553.96 1118.41 2532.93 256 829.57 

2016 24662.78 9332.96 5839.46 1060.76 2571.05 328.11 960 

2017 25403.15 9628.8 5958.21 987.45 2594.23 445.37 1138.96 

2018 26399.83 10008.43 6197 888.57 2658.7 575.12 1267.89 

2019 26771.23 9802.03 6369.66 834.83 2754.08 705.52 1419.8 

2020 26654.82 9417.44 6332.21 773 2648.37 853.37 1590.68 

2021 28169.88 10156.81 6492.94 830.76 2762.24 1055.68 1849.47 
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2022 28843.5 10288.29 6581.64 849.26 2639.68 1323.32 2098.52 

2023 29479.05 10467.93 6622.93 788.55 2685.74 1629.9 2304.44 

CAGR (%) 2.78 2.48 3.74 -2.14 0.23 35.93 19.64 

Source: OUR WORLD IN DATA 

 

Annex VII – Evolution of cumulative installed capacity per energy source from 2000 to 2023 

Installed capacity (MW) Solar Wind Nuclear Fossil Fuels 

2000 1215.680 16963.68 358461.5 2289991 

2001 1465.532 23958.91 360322.4 2313301 

2002 1810.799 30724.98 366680.5 2434129 

2003 2334.37 38664.06 366526.4 2554781 

2004 3418.521 47659.21 373804.6 2634710 

2005 4925.005 58467.66 377973.5 2732706 

2006 6475.283 73147.61 378598.3 2869234 

2007 8947.762 91520.79 379782.2 2991439 

2008 15215.49 115535.2 378601.6 3093843 

2009 23536.86 150103 379947.4 3207016 

2010 41530.93 181060.7 381693.9 3351854 

2011 72820 220199.2 386417.3 3475527 

2012 103027.9 267310 378876.7 3584325 

2013 140208.5 299928.6 376876.8 3692805 

2014 179631.5 349458.1 383714.8 3818631 

2015 228073.8 416435.1 383390.5 3909853 

2016 300137.7 467240.8 398320.3 4004451 

2017 395846.2 514930.3 398748.9 4094480 

2018 491980.2 563680.1 405197.7 4217789 

2019 595019.6 622730.3 403681.8 4271415 

2020 726221.4 733472.5 398902.4 4337977 

2021 870635 824320.9 401077.9 4397545 
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2022 1070843 902883.4 399757.4 4452038 

2023 1418008 1017390 397807.1 4528065 

CAGR (%) 34.21 18.59 0.43 2.88 

Source: Renewable Energy Statistics in 2023, IRENA 


