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ABSTRACT 

 

Volatility modeling plays a key role in understanding and managing financial risk, 

particularly in high-frequency and sentiment-driven markets such as cryptocurrency. 

However, traditional models often struggle to capture extreme fluctuations caused by 

sudden shifts in investor behavior. This study investigates whether public sentiment 

data obtained from platforms like LunarCrush and Google Trends can improve the 

forecasting of volatility and tail risk in crypto assets. To verify this, we apply a set of 

advanced time-series models to hourly price data for four major cryptocurrencies (BTC, 

ETH, DOGE, LINK) for the period 2020 to 2025. 

 

The modeling framework integrates multiple layers, including GARCH and 

EGARCH variants with external sentiment regressors, regime-switching volatility via 

Markov models, and tail modeling via Generalized Pareto Distribution. Model 

performance is assessed both in terms of volatility forecast accuracy and risk coverage 

metrics such as Value-at-Risk (VaR) and Expected Shortfall (ES). This article pays 

particular attention to changes in distribution behavior during panic and performs 

Monte Carlo simulations to assess forward looking tail risk. 

 

The results show that for both ETH and DOGE, the sentiment-enhanced GARCH 

model outperforms the standard model, especially during periods of heightened 

sentiment volatility. The regime-switching model shows that negative sentiment 

significantly increases the probability of entering a high-risk state, while the tail model 

suggests that once in such a state, the distribution of returns becomes quite heavy. 

DOGE exhibits the most severe tail risk amplification, while BTC and ETH show a 

more stable, but still significant, variation. In sum, this work provides evidence that 

sentiment signals not only predict short-term volatility, but also effectively capture the 

structural changes that drive extreme downside risk in cryptocurrency markets. 
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1. Introduction 

 

In the past decade, cryptocurrencies such as Bitcoin (BTC), Ethereum (ETH), and 

a growing number of alternative coins have gained a great deal of attention from 

investors around the world. Cryptocurrencies, which started as a technological 

experiment, have become a major player in the financial markets, with players ranging 

from retail investors to large institutions and even governments down the road. One 

thing that makes the cryptocurrency market stand out is how quickly its price changes, 

often for reasons not directly related to economic data or company performance. 

(Dyhrberg, 2016, Baur & Dimpfl, 2018, Costa, 2024). 

 

Unlike traditional markets, cryptocurrency prices often react strongly to online 

activity, such as social media discussions, influencer posts, or trending news. In some 

cases, a single tweet can move the market. These price movements are not always easy 

to explain using standard financial models, which typically assume that volatility 

changes slowly and predictably (Kristoufek, 2013,  Mai et al., 2018, Aparicio et al., 

2022). However, in crypto markets, volatility tends to spike suddenly and behave very 

differently during times of fear or excitement (Corbet et al., 2020, Gkillas & Longin, 

2020). 

 

Some models like Black-Scholes (Black & Scholes, 1973) or the basic GARCH 

model (Cont, 2001 ,  Taleb, 2020) are commonly used to estimate risk and price 

volatility. But in the crypto world, these models often underestimate how large and 

frequent extreme changes can be. To address this, more advanced approaches—such as 

GARCH extensions, regime-switching models, and jump models—have been 

developed over time (Duffie et al., 2000 , Haas et al., 2004 , Heston, 1993). These allow 

for more flexible reactions to market shocks. Still, most of these models rely only on 

historical price data, and don’t consider how public mood or investor sentiment might 

play a role. 

 

Thanks to platforms like LunarCrush and Santiment, it is now possible to track and 

quantify how people feel about cryptocurrencies in real time. These platforms use data 

from Twitter, Reddit, and other sources to produce sentiment indicators, such as levels 

of fear or hype (García & Schweitzer, 2015 , Smales, 2022). In this work, I made use 

of Python in notebook to collect and process high frequency sentiment data, focusing 

specifically on panic indicators. This data was then combined with traditional financial 

models to better understand how market emotions affect volatility and extreme risk. 
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This MFW aims to study how sentiment data collected from social media can 

improve the way we model volatility and risk in crypto markets. I choose four 

cryptocurrencies for this analysis which are Bitcoin (BTC), Ethereum (ETH), Dogecoin 

(DOGE), and Chainlink (LINK). I use Google Colab as the main analysis platform and 

the process are performed in my github(https://github.com/LuoToby/Markov-Switch-

Garch-in-sentiment-effect). I applied a series of time series models such as GARCH-X, 

EGARCH-X, and Markov switching GARCH and tested whether adding sentiment 

variables helped improve the accuracy of risk forecasts. In addition, I used Extreme 

Value Theory (EVT) to focus on the behavior of extreme returns and assess how well 

the models captured tail risks. 

 

The main goal of this study is not to predict prices, but to understand whether 

changes in public sentiment can help explain changes in volatility and the risk of large 

losses. By combining emotional data with traditional financial techniques, this research 

tries to give a clearer picture of how crypto markets behave, especially during periods 

of high stress. 

 

2. Literature Review 

 

2.1 Classical and Asymmetric Volatility Models 

 

Some early models of financial risk, like the Black-Scholes-Merton framework 

(Black & Scholes, 1973) were built on the idea that market volatility stays constant over 

time. But in practice, especially when looking at equity markets or high-frequency 

financial data, this assumption doesn’t match reality.  

 

Empirical studies (Cont, 2001) show that market returns often display sharp spikes, 

heavy tails, and periods where volatility becomes clustered. These patterns suggest that 

markets behave much more unpredictably than early models assumed. 

 

To address this, Engle introduced the concept of Autoregressive Conditional 

Heteroskedasticity (ARCH) (Engle, 1982), which made it possible for volatility to 

change over time depending on past price movements. This idea was later extended by 

Bollerslev into the more flexible GARCH (p, q) model (Bollerslev, 1986), and the 

conditional variance σ𝑡
2 is defined as: 

σ𝑡
2 = α0 + ∑ α𝑖ϵ𝑡−𝑖

2

𝑝

𝑖=1

+ ∑ β𝑗σ𝑡−𝑗
2

𝑞

𝑗=1

    (2.1) 

https://github.com/LuoToby/Markov-Switch-Garch-in-sentiment-effect
https://github.com/LuoToby/Markov-Switch-Garch-in-sentiment-effect
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where: ϵ𝑡−𝑖
2  are past squared residuals (nnews shocksn), σ𝑡−𝑗

2   are past conditional 

variances, α𝑖, β𝑗 are model parameters, with constraints  α𝑖, β𝑗 ≥ 0, 𝛼0 > 0. 

 

While GARCH models have been widely used for capturing volatility clustering, 

one of their main limitations is that they treat positive and negative shocks in the same 

way. Markets often react more strongly to bad news than to good news. To better capture 

this asymmetry, the Exponential GARCH (EGARCH) model was introduced (Nelson, 

1991). Unlike standard GARCH, EGARCH models the logarithm of the conditional 

variance, which allows it to reflect different volatility responses depending on the sign 

of the return. After using a log transformation,  formula (2.1)  becomes: 

lo g σ𝑡
2 = ω + ∑ β𝑖

𝑝
𝑖=1 lo g σ𝑡−𝑖

2 + ∑ γ𝑗 (
ϵ𝑡−𝑗

σ𝑡−𝑗
)𝑞

𝑗=1 + θ𝑗 (|
ϵ𝑡−𝑗

σ𝑡−𝑗
| − 𝐸 |

ϵ𝑡−𝑗

σ𝑡−𝑗
|)   (2.1.1) 

This formulation allows the model to account for leverage effects, where negative 

shocks increase future volatility more than positive shocks of the same magnitude. 

 

2.2 GARCH-X Models: Integrating Exogenous Information 

 

In cryptocurrency markets, investor sentiment is not only an abstract idea but also 

often generated directly from online platforms, which make it both measurable and 

highly relevant. Some websites like LunarCrush, Santiment, and The TIE collect and 

summarize social activity from sources like Reddit, Twitter, Google Trends, and GitHub. 

From this data, they produce real time sentiment metrics like Galaxy Score, AltRank, 

and volume-weighted sentiment indexes (Kristoufek, 2013, García & Schweitzer, 2015, 

Mai et al., 2018). Several studies have found that these indicators are closely linked to 

short-term price movements and sudden spikes in volatility (Smales, 2022, Corbet et 

al., 2020). 

To incorporate external variables such as sentiment into volatility modeling, we 

can extend standard GARCH models into GARCH-X frameworks. The GARCH-X 

model introduces an exogenous regressor 𝑥ₜ for example like sentiment’s data, which 

modifying the conditional variance equation as: 

σ𝑡
2 = α0 + ∑ α𝑖ϵ𝑡−𝑖

2𝑝
𝑖=1 + ∑ β𝑗σ𝑡−𝑗

2𝑞
𝑗=1 + δ𝑥𝑡−1   (2.2) 

where 𝛿  captures the direct influence of the sentiment variable 𝑥𝑡 on volatility. 

Conrad and Loch applied this framework using macroeconomic uncertainty indices as 

exogenous inputs (Conrad & Loch, 2015).  

In crypto markets, (Dyhrberg, 2016) finds that including Reddit or tweet-based 

sentiment signals improves both in sample fit and out of sample Value-at-Risk (VaR) 

forecasting accuracy. When combined with EGARCH, we obtain the EGARCH-X 

model: 
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lo g σ𝑡
2 = ω + ∑ β𝑖

𝑝
𝑖=1 lo g σ𝑡−𝑖

2 + γ (
ϵ𝑡−1

σ𝑡−1
) + θ (|

ϵ𝑡−1

σ𝑡−1
| − √

2

π
) + δ𝑥𝑡−1          (2.2.2) 

 

2.3 Regime-Switching Models and Volatility States 

 

To capture the fact that markets may alternate between high and low volatility 

regimes, Markov switching GARCH (MS-GARCH) models were developed (Hamilton, 

1989). These models assume that the parameters of the GARCH process vary 

depending on a hidden, discrete regime variable 𝑆𝑡 ∈ {1,2, … , 𝐾} , which evolves 

according to a first order Markov chain. 

In the simplest two-regime MS-GARCH (1,1) model: 

σ𝑡
2 = α0

(𝑆𝑡)
+ α1

(𝑆𝑡)
ϵ𝑡−1

2 + β1
(𝑆𝑡)

σ𝑡−1
2            (2.3) 

The transition probabilities 𝑃𝑖𝑗 = 𝑃(𝑆𝑡 = 𝑗|𝑆𝑡−1 = 𝑖) define the likelihood of moving 

between regimes. These models are especially useful in capturing sentiment-triggered 

regime switches, where panic or euphoria shifts market participants between nnormaln 

and ncrisisn states (Baruník & Křehlík, 2018). 

 

2.4 Extreme Value Theory (EVT) and Tail Risk Estimation 

 

While volatility models explain average risk, extreme value theory (EVT) is 

essential for quantifying tail risks, for example like those associated with crashes, large 

losses, or VaR exceedances (McNeil & Frey, 2000, Gkillas & Longin, 2020). The Peaks 

over Threshold (POT) method fits a Generalized Pareto Distribution (GPD) to the 

excesses over a high threshold u: 

𝑃(𝑋 > 𝑥|𝑋 > 𝑢) = (1 + ξ
𝑥−𝑢

β
)

−1/ξ

,  𝑥 > 𝑢    (2.4)  

where: 𝜉  is the shape parameter which controls the heaviness of the tail, 𝛽  is the 

scale parameter. The 𝐻𝑖𝑔ℎ𝑒𝑟 𝜉 implies fatter tails and higher risk. In this study, EVT 

is used to model extreme losses in crypto returns, especially during periods of extreme 

sentiment (Gkillas & Longin, 2020). 

 

2.5 Local Volatility Models: A Functional Alternative to Stochastic Volatility   

(Future work) 

 

This thesis mostly treats volatility as a random, time-varying process, like in 

GARCH or regime-switching models. But another common approach sees volatility as 

a fixed function of price and time. This is called local volatility, where variance is 

written as σ (S, t) and modeled with functional approximations. 
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Although this method is most applied in option pricing contexts, its structure 

provides useful insight into how volatility might depend systematically on both asset 

price levels and time horizons. One of the early and widely discussed formulations, 

introduced by (Hull & White, 1987), and (Daglish et al., 2007), and these models’ local 

volatility are described as: 

σ(S, t) = a0 + a1 ln(S/S0) + a2 ln2(S/S0) + a3(T − t) + a4(T − t)2 + a5 ln(S/S0)   

(T − t)    + a5 ln(S/S0) (T − t)      (2.5) 

This equation captures how volatility can shift with changes in log-moneyness (price 

relative to a base level S0 and time to maturity. Alternative forms normalize the price-

time interaction, such as: 

σ(S, t) = b0 + b1

ln(S/S0)

√T − t
+ b2 (

ln(S/S0)

√T − t
)

2

+ b3 (
ln(S/S0)

√T − t
)

3

    (2.6) 

More generalized versions allow even more flexible fitting across market conditions, 

especially for modeling volatility skew or smile: 

 σ(S, t) = c0 + c1 (
ln(S/S0)

(T − t)d0
) + c2 (

ln(S/S0)

(T − t)d0
)

2

+ c3 (
ln(S/S0)

(T − t)d0
)

3

   (2.7) 

Finally, for skew and smile modeling, nonlinear functional approximations are used: 

σ(S, t) = σATM(t) + σskew(t) tanh(γskew(t) ln(S/S0) − θskew(t))     (2.8)  

σ(S, t) = σsmile(t) (1 − sech(γsmile(t) ln(S/S0) − θsmile(t)))    (2.9)  

 

Although this thesis does not implement local volatility models directly, 

understanding these formulations helps frame the broader landscape of volatility 

modeling. They highlight how volatility can be estimated using price and time-based 

functions an approach that differs from the stochastic and sentiment driven models used 

in this study. 

 

2.6 Summary and Research Gap 

The existing literature shows significant progress in modeling volatility via 

GARCH extensions, incorporating behavioral sentiment variables and modeling regime 

switches. However, a unified framework that integrates sentiment, volatility states, and 

tail risk modeling under one system is rare, especially in the crypto context. This thesis 

contributes by jointly estimating GARCH-X, EVT, and MS-GARCH models with real-

time sentiment data, tested across four major cryptocurrencies. 
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3. Methodology  

3.1 Sentiment Data 

To explore the link between investor sentiment and market volatility, this study 

focuses on high-frequency behavioral data paired with daily log returns from January 

1, 2020, to June 3, 2025. While platforms like Twitter, Reddit, or Google Trends provide 

a wealth of raw information, working directly with this data can be quite difficult due 

to API restrictions, messy formats, and inconsistent timing. Instead of manually 

collecting and cleaning data from multiple platforms, we used LunarCrush, a platform 

that aggregates crypto-related sentiment into clean, ready-to-use time series. 

 

Through LunarCrush’s API, we collected hourly data on a range of indicators: 

Galaxy Score (which combines social engagement and market activity), 

Bullish/Bearish sentiment scores (counting positive and negative posts), Reddit Scores, 

Social Volume, and OHLCV market data. Using Python, we pulled and cleaned the data, 

converted timestamps to UTC, and structured the results into pandas DataFrames. 

 

 For most modeling purposes, especially GARCH and EVT, we used daily 

aggregated values. But for more detailed analysis, such as regime-switching or intraday 

forecasting, we preserved the original hourly frequency. 

 

3.2 Asset Data 

This study focuses on four cryptocurrencies, chosen not just for their popularity 

but also for how differently they tend to react to market sentiment. Bitcoin (BTC), as 

the most widely recognized and institutionally adopted crypto asset, serves as a natural 

benchmark. Ethereum (ETH), on the other hand, plays a major role in decentralized 

applications and smart contracts, often reacting to technical events like protocol 

upgrades. Dogecoin (DOGE) represents a unique case. Its meme driven and extremely 

sensitive to social media trends and viral moments, making it ideal for studying 

sentiment driven price swings. Lastly, Chainlink (LINK) is included as a more neutral 

asset with a smaller retail presence, helping us test how models behave when sentiment 

has less visible influence. 

 

By working with this mix of assets ranging from highly institutional (BTC) to 

highly speculative and retail driven (DOGE) we’re able to look at sentimental effects 

from different angles. This setup allows for a more balanced and meaningful 

comparison when applying the same volatility and risk models across all four assets. 

 

3.3 Data Preparation 

Once the data was retrieved, several transformation steps were applied to prepare 
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it for modeling. First, we constructed key input features for each asset. Then we collect 

continuous sentiment variables which include Galaxy Score, Bullish, Bearish, and 

Reddit metrics. After that we standardized this data by using z-scores to remove scale 

differences and ensure stationarity. This transformation helps avoid bias when 

combining features with different magnitudes: 

𝑧𝑖,𝑡 =
𝑥𝑖,𝑡 − 𝑥𝑖̅

σ𝑖
,  for 𝑖 ∈ {galaxy, bullish, bearish, reddit}     (3.1) 

 

To account for short-term temporal effects, we added one hour, and two hour lagged 

versions of the sentiment indicators. These help the models detect possible causal 

relationships between past sentiment and present-day volatility: 

{ Bullish𝑡−1, Bearish𝑡−1, Galaxy
𝑡−1

} → σ𝑡
2      (3.2) 

 

In addition, a binary panic dummy variable was created to flag unusually negative 

sentiment events. Specifically, a day was flagged as npanicn if the standardized bearish 

sentiment exceeded 2 or Reddit sentiment dropped below -1.5. This simple rule allowed 

us to construct regime indicators that were later used in both Markov-switching models 

and conditional volatility equations: 

𝐷𝑡𝑝𝑎𝑛𝑖𝑐 = {1, 𝑖𝑓 𝑧𝑏𝑒𝑎𝑟𝑖𝑠ℎ, 𝑡 > 2 𝑜𝑟 0,  𝑧𝑟𝑒𝑑𝑑𝑖𝑡 , 𝑡 < −1.5  𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒  (3.3) 

 

Since the raw LunarCrush data was recorded at an hourly frequency, we needed to 

resample and aggregate it to daily frequency for most of the GARCH and EVT models. 

This was done using either the daily maximum (for peak sentiment signals) or volume-

weighted averages (for smoother metrics). For example, the daily bullish sentiment was 

computed as the maximum hourly value within each trading day, while the Galaxy score 

was averaged across the day: 

Bullishdaily = max
ℎ∈𝐻𝑡

(Bullishℎ) ,  Galaxy
daily

=
1

|𝐻𝑡|
∑ Galaxy

ℎ

ℎ∈𝐻𝑡

      (3.4) 

Where 𝐻𝑡 denotes all hours within trading day t 

 

Finally, all features including sentiment, market returns, and lagged indicators were 

merged into a single master DataFrame. This panel was indexed by using a multilevel 

structure which is based on asset symbols and timestamp (UTC), meanwhile, the 

missing values were conservatively forward filled to ensure continuity. The resulting 

dataset provided a clean, synchronized time series for each asset which are ready for 

modeling across GARCH-X, regime-switching, and tail risk estimation frameworks. 

 

3.4.1 Modeling - Overview 

 

This chapter follows a layered modeling strategy designed to gradually capture the 
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complexity of volatility and tail risk in cryptocurrency markets. Comparing with 

assuming a single model from the outset, we start with baseline volatility models 

GARCH and EGARCH to account for standard volatility clustering and asymmetry. 

When diagnostic checks reveal persistent autocorrelation, asymmetry, or unexplained 

conditional variance, we introduce additional complexity in stages. First, sentiment-

augmented models such as GARCH-X and EGARCH-X incorporate lagged indicators 

like social volume or bearish signals. If volatility appears to switch between distinct 

states, we then apply a two regime Markov switching GARCH (MS-GARCH) 

framework, where the transition probabilities are influenced by observed sentiment 

patterns. Finally, to address residual fat tails that conventional models fail to capture, 

we employ Extreme Value Theory (EVT) on standardized residuals which allow us to 

model tail risk under both calm and panic regimes. 

 

Each modeling layer is evaluated through a consistent selection process. Statistical 

adequacy is first tested using the Ljung-Box Q-statistic (Equation 4.23), ARCH-LM 

test (Equation 4.1.2), and sign-bias tests (Equation 4.2.5) to detect remaining structure 

in residuals. Models that pass these checks are compared using the Bayesian 

Information Criterion (BIC, Equation 4.2.1), and out-of-sample forecasting 

performance is assessed with Root Mean Squared Error RMSE (Equation 4.26) and the 

QLIKE loss function (Equation 4.27). For model comparison, Diebold–Mariano 

(Equation 4.28) is used to formally determine whether one model significantly 

outperforms another. When evaluating Value-at-Risk (VaR) performance, we apply the 

Kupiec LR test for coverage accuracy (Equation 4.29), rejecting models with poor risk 

coverage. If EVT is required, tail behavior is assessed using log–log survival 

diagnostics and Generalized Pareto tail fitting (Equation 4.31–Equation 4.32) .This 

evidence-driven approach ensures that each additional layer of complexity is only 

introduced when clearly warranted by the data. 

 

3.4.2 Modelling Strategy 

 

Before estimating volatility models, we first filter the raw return series to remove 

any potential autocorrelation. This helps avoid spurious ARCH effects that might distort 

the volatility estimates (Box & Jenkins, 1976), To do this, we apply an ARMA(p,q) 

model to the return series 𝑟𝑡 :  

𝑟𝑡 = μ + ∑ ϕ𝑖𝑟𝑡−𝑖
𝑝
𝑖=1 + ∑ θ𝑗𝑎𝑡−𝑗

𝑞
𝑗=1 +  𝑎𝑡̂,   𝑎𝑡̂ ∼ i.i.d. (0, σ𝑎

2 )      (4.10) 

The order pair  (𝑝, 𝑞) ∈ {0,1,2}2  is selected by the minimum Akaike information 

criterion (AIC). Residuals 𝑎𝑡̂  are accepted only if the Ljung–Box statistic 𝑄(20)fails 

to reject the null of no serial correlation at the 5 % level. We henceforth set ε𝑡 = 𝑎𝑡̂  

and estimate the standard GARCH (P, Q) process to capture volatility clustering (Engle, 

1982, Bollerslev, 1986): 
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σ𝑡
2 = α0 + ∑ α𝑖

𝑃

𝑖=1

ε𝑡−𝑖
2 + ∑ β𝑗

𝑄

𝑗=1

σ𝑡−𝑗
2 ,   α0 > 0,  α𝑖 , β𝑗 ≥ 0   (4.11) 

For the model to be weakly stationary, the condition ∑𝑖 𝛼𝑖 + ∑𝑗 𝛽𝑗 < 1  must be 

satisfied. We estimate the model using BFGS optimization and allow the innovations 

ε𝑡   to follow Gaussian, Student-t, or skewed-t distributions. The corresponding log-

likelihood function is: 

ℓ(𝜃) = ∑[log 𝑓 (ε𝑡/σ𝑡; ν)  −  log σ𝑡]

𝑇

𝑡=1

     (4.12) 

  

 We assess the model fit using Q(20) and ARCH-LM tests on the standardized 

residuals 𝑧𝑡̂ = ε𝑡/σ𝑡̂ If the basic GARCH model fits well statistically but still fails to 

capture important variations driven by sentiment, we extend the model to a GARCH-X 

form by adding lagged sentiment variables to the variance equation (Conrad & Loch, 

2015)  

σ𝑡
2 = 𝛼0 + ∑ 𝛼𝑖𝜖𝑡−𝑖

2𝑝
𝑖=1 + ∑ 𝛽𝑗𝜎𝑡−𝑗

2𝑞
𝑗=1 + 𝛿𝑥𝑡−1  (4.13)  

where 𝑥𝑡−1 is the lagged z-scored sentiment indicator as defined in (Equation (3.1)). 

The joint null hypothesis  𝐻0: 𝛿 = 0  is tested by Wald statistics. If the hypothesis is 

rejected at 5 %, sentiment is retained; otherwise, we fall back to the baseline GARCH. 

Next, we account for asymmetric volatility effects, where negative shocks often 

increase volatility more than positive ones of the same magnitude (Nelson, 1991,  

Glosten et al., 1993). Then we can apply for EGARCH-X model: 

lo g 𝜎𝑡
2 = 𝜔 + ∑ 𝛽𝑖

𝑝
𝑖=1 lo g 𝜎𝑡−𝑖

2 + 𝛾 (
𝜖𝑡−1

𝜎𝑡−1
) + 𝜃 (|

𝜖𝑡−1

𝜎𝑡−1
| − √

2

𝜋
) + 𝛿𝑥𝑡−1  (4.14)  

In here γ < 0 indicates a leverage effect. If γ is insignificant, but the Engle–Ng sign-

bias test still rejects symmetry, we use a GJR-GARCH-X model instead: 

𝜎𝑡
2 = 𝛼0 + 𝛼1𝜖𝑡−2

2 + γ1𝜖𝑡−1
2 1𝜖𝑡−1 <0 + 𝛽1𝜎𝑡−1

2 + 𝛿𝑥𝑡−1 (4.15)     

If the residuals from these models still show signs of regime shifts or bimodal 

distributions, we switch to a Markov-Switching GARCH-X (MS-GARCH-X) model. 

This allows volatility parameters to depend on a hidden state 𝑆𝑡 ∈ {1,2}: 

𝜎𝑡
2,(𝑆𝑡)

= 𝜎0
(𝑆𝑡)

+ 𝜎1
(𝑆𝑡)

𝜖𝑡−1
2 + 𝛽1

(𝑆𝑡)
𝜎𝑡−1

2 + 𝛿𝑥𝑡−1(4.16) 

The latent state 𝑆𝑡  follows a first-order Markov chain with transition matrix 

 [𝑝𝑖𝑗]
𝑖,𝑗 = 1

2
 and 𝑝𝑖𝑗 = P r( 𝑆𝑡 = 𝑗 ∣∣ 𝑆𝑡−1 = 𝑖 ), meanwhile this model is estimated via 

EM algorithm using Hamilton filtering. We perform a likelihood-ratio test against the 

GARCH-X benchmark; if the test statistic exceeds χ4, 0.95
2 = 9.49 , we retain the 

regime-switching specification. 
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To estimate extreme risk, we apply Extreme Value Theory (EVT) to the 

standardized residuals 𝑧𝑡̂ = ε𝑡/σ𝑡̂. We extract the tail values above a high threshold u 

(97th percentile): 

 

𝑋𝑡 = |𝑧𝑡̂| − 𝑢 >  0     (4.17) 

 

By the Pickands–Balkema–de Haan theorem, 𝑋𝑡 follows a Generalised Pareto 

distribution GPD(ξ, β): 

𝐹𝑋(𝑥) = 1 − (1 + ξ
𝑥

𝛽
)

−1/ξ

,   𝑥 > 0          (4.18) 

And the Parameters (𝜉,̂ 𝛽̂)are estimated by maximum likelihood 

ℓ(𝜉, 𝛽) = −𝑁 log β − (1 +
1

𝜉
) ∑ log

𝑁

𝑖=1

(1 + ξ
𝑥𝑖

𝛽
)      (4.19) 

From this we compute Tail risk measures derived as: 

VaRα = 𝑢 +
β̂

ξ̂
[(𝑁/𝑛(1 − α))

ξ̂
− 1] ,  ESα =

VaRα

1 − ξ̂
+

β̂ − ξ̂𝑢

1 − ξ̂
      (4.20) 

We further test whether sentiment affects the heaviness of tails by splitting the sample 

using the panic dummy variable 𝐷𝑡
panic

 , and re-estimating equations (4.18)–(4.20). A 

likelihood-ratio test with 2 degrees of freedom is then used to test for significant 

differences in (ξ, β) across sentiment states. 

 

3.4.3 Statistical Adequacy 

 

3.4.3.1 Information Criteria and Likelihood Ratio 

 

As introduced in Equation (4.12) all models are estimated by maximum likelihood. 

The fitness quality is assessed by: 

AIC = −2l𝑚𝑎𝑥 + 2𝑘,   BIC = −2l𝑚𝑎𝑥 + 𝑘 ln 𝑇    (4.21) 

where l𝑚𝑎𝑥 is the log-likelihood, k is the number of estimated parameters, and T is the 

sample size. In nested models, our improvements are tested by: 

LR = 2(lfull − lrestricted)  ∼  χ𝑘diff

2      (4.22) 

 

3.4.3.2 Residual Whiteness 

 

If the ARIMA pre-filter in Equation (4.10) was correctly specified, and the 
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conditional variance captured appropriately (via Eq. 4.11 or 4.13). standardized 

residuals should exhibit no serial correlation. We apply the Ljung–Box Q-test to 

standardized residual residuals 𝑧𝑡̂ = ε𝑡/σ𝑡̂, and the test statistics is: 

𝑄(𝑚) = 𝑇(𝑇 + 2) ∑
ρℎ

 2̂

𝑇 − ℎ

𝑚

ℎ=1

,   ρℎ̂ = ACF(𝑧𝑡̂, ℎ)           (4.23) 

Which is Failing to reject 𝐻0(𝑝 > 0.05)  at m=20 confirms no linear dependence 

remains. (absence of autocorrelation) 

 

3.4.3.3 Remaining Conditional Heteroskedasticity 

 

The GARCH framework Equation (4.11) assumes that variance depends on past 

squared shocks. If such dependence remains unexplained in residuals, then either 

misspecification or asymmetry is present: By using ARCH–LM test on 𝑧𝑡
 ̂ 2: 

𝑧𝑡
 ̂ 2 = 𝑐 + ∑ η𝑖

𝑚

𝑖=1

𝑧𝑡−𝑖
 ̂ 2 + 𝑢𝑡      (4.24) 

Under 𝐻0  (no remaining ARCH), 𝑇𝑅2 ∼ χ𝑚
2 . A significant result indicates model 

misspecification and prompts estimation of an asymmetry-aware model. 

 

3.4.3.4 Sign-Bias (Asymmetry) Test 

 

If Equation (4.11) or (4.13) fails to account for asymmetrical volatility response, 

we expect sign-dependent residual patterns. we apply the Engle–Ng (1993) test (Engle 

& Ng, 1993): 

𝒛𝒕
 ̂ 𝟐 = 𝒄 + 𝛄𝑺𝑺𝒕−𝟏𝒛𝒕−𝟏̂ + 𝛄𝑸𝑸𝒕−𝟏𝒛𝒕−𝒊

 ̂ 𝟐 + 𝒗𝒕     (4.25) 

where 𝑆𝑡−1 = 1{𝑧𝑡−1̂<0}, 𝑎𝑛𝑑 𝑄𝑡−1 = 1{𝑧𝑡−1̂<0}𝑧𝑡−1̂   . Joint significance of γ𝑆  and γ𝑄 

and (γ𝑆, γ𝑄 ≠ 0) justifies the use of EGARCH or GJR-type models. 

 

3.4.4 Forecast Accuracy 

 

Even if residuals pass diagnostic tests under Section 3.5.1, it remains essential to 

assess how well the model predicts out-of-sample volatility. Forecast accuracy serves 

as a forward-looking test of model utility, particularly for financial decision-making 

tasks such as dynamic hedging or risk allocation. 

 

Using a rolling window of 1,000 observations, each model (from Equation 4.11 to 
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4.15) is re-estimated daily to issue one-step-ahead forecasts   𝜎𝑡−1 |𝑡̂ 2
 . These are 

compared against realized volatility proxies to quantify predictive loss. 

 

3.4.4.1 Loss Functions 

 

We use two widely accepted loss functions: RMSE captures scale-sensitive errors 

between predicted and realized conditional variances: 

 

RMSE = √
1

𝑇test

∑(σ𝑡
2̂ − σ𝑡,real

2 )
2

𝑡

     (4.26) 

 QLIKE (Hansen & Lunde, 2005), robust to variance scale distortion, measures 

relative forecast efficiency: 

QLIKE =
1

𝑇test

∑ [
σ𝑡,real

2

σ𝑡
2̂

− log ! (
σ𝑡,real

2

σ𝑡
2̂

) − 1]

𝑡

      (4.27) 

In the end, Models with lower RMSE and QLIKE are retained for tail risk 

evaluation 

 

3.4.4.2 Diebold–Mariano Test 

 

To formally test whether including exogenous sentiment variables (as in Equation 

4.13–4.15) improves volatility prediction, we apply the Diebold–Mariano (DM) test to 

compare loss differentials between models: For two competing models A and B with 

loss 𝐿𝐴,𝑡, 𝐿𝐵,𝑡 𝑑𝑒𝑓𝑖𝑛𝑒 

𝑑𝑡 = 𝐿𝐴,𝑡 − 𝐿𝐵,𝑡  Under where 

 𝐻0: 𝐸(𝑑𝑡) = 0 ; DM =
𝑑̅

√(2π𝑓𝑑̂(0))/𝑇test

     𝒩(0,1)  (4.28) 

where 𝑓𝑑̂(0) is the Newey–West estimate of the spectral density at zero. Rejection of 

𝐻0  supports the statistical significance of the sentiment-augmented GARCH-X or 

EGARCH-X layers. 

 

3.4.5 Risk Adequacy 

 

Having a volatility model that fits well in sample is a good start, but for real-world 

risk management, what matters more is how well it performs at the extremes. In practice, 

financial institutions care less about minor prediction errors and more about whether 

the model can correctly anticipate large losses. That’s where Value-at-Risk (VaR) and 
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Expected Shortfall (ES) come in. In this section, I examine whether the final 

standardized residuals, defined as 𝑧𝑡̂ = ε𝑡/σ𝑡̂, from the best-performing models, 

accurately capture the empirical distribution of extreme losses. 

 

3.4.5.1 VaR Back-testing 

 

The first step is to test whether the number of VaR breaches matches what we would 

expect statistically. For instance, at a 1% VaR level, we should see roughly 1% of 

observations fall below the predicted threshold. Let N be the number of observed 

violations over a test sample of 𝑇test days. The observed breach rate is: 𝑝̂ = 𝑁/𝑇test, 

and the unconditional coverage test is: 

LRUC = −2 ln[(1 − α)𝑇−𝑁α𝑁] + 2 ln[(1 − 𝑝̂)𝑇−𝑁𝑝𝑁̂] ∼ χ1
2         (4.29) 

If this test fails (for example, like too many or too few violations), the model may be 

underestimating or overestimating tail risk. 

 

3.4.5.2 Independence and Conditional Coverage 

 

Even if the overall number of breaches looks acceptable, we also want to know 

whether those violations are randomly distributed. If they tend to cluster, it suggests 

that the model is missing some form of regime switching or time-dependence (e.g., 

failure of Equation 4.15 or 4.16): 

 

We construct a 2x2 transition matrix of the hit sequence (𝐼𝑡−1, 𝐼𝑡) with 𝑛𝑖𝑗   which 

implies the number of transitions from state i to state j. The independence test is then:  

LRIND = −2 ln [
(1−𝑝)𝑛00𝑝𝑛01̂(1−𝑝̂)𝑛10𝑝𝑛11̂

(1−𝑝0̂)𝑛00𝑝0
𝑛01̂(1−𝑝1̂)𝑛10𝑝1

𝑛11̂
] ∼ χ1

2  with 𝑝𝑗̂ =
𝑛0𝑗

𝑛0𝑗+𝑛1𝑗
    and the total 

conditional coverage test is:  

LRCC = LRUC + LRIND(4.30) 

If LRCCis significant, it means the model fails both in breach frequency and clustering, 

and further structure—such as regime-switching volatility—might be necessary. 

 

3.4.5.3 McNemar Test (Model-vs-Model) 

 

Sometimes two models may pass the same back testing metrics but behave 

differently in terms of which specific days they get wrong. To test whether two 

competing models produce statistically different VaR violation patterns, we use the 

McNemar test: 
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χMcN
2 =

(𝑛01 − 𝑛10)2

𝑛01 + 𝑛10
∼ χ1

2         (4.31) 

where 𝑛01 and 𝑛10 represent the number of times only one of the two models 

produces a breach. A significant result indicates that the models behave differently in 

practice—even if they seem similar on the surface. 

 

3.4.6 Tail-Fit Diagnostics 

 

The EVT layer introduced in Equation (4.17–4.20) aims to model standardized 

residual exceedances using Generalized Pareto Distributions (GPD). We now assess 

whether these tail assumptions are statistically valid. 

 

3.4.6.1 Anderson–Darling Test for GPD 

 

To test the goodness-of-fit of the GPD, we apply the Anderson–Darling test to the 

standardized exceedances 𝑋𝑖 = |𝑧𝑖̂| − 𝑢 and the test statistic is: 

𝐴2 = −𝑁 −
1

𝑁
∑ [(2𝑖 − 1) (ln 𝐹̂ (𝑋(𝑖)) + ln (1 − 𝐹̂(𝑋(𝑁+1−𝑖))))]𝑁

𝑖=1       (4.32) 

A high 𝐴2 statistic suggests the GPD doesn’t fit the data well—either because the 

threshold is set too low or the data’s tail structure is not stationary. 

 

3.4.6.2 Likelihood-Ratio for Panic vs. Calm 

 

The results indicate that the GPD may not provide a good fit to the data in certain 

cases. This could be due to the chosen threshold being too low, or because the tail 

behavior of the data is not stable across time. To examine how sentiment-driven states 

affect the distribution of extremes, we use the panic indicator 𝐷𝑡
panic

 from Equation 

(3.3) to split the standardized residuals by regime and re-estimate the GPD parameters 

(ξ, β)  within each state. To formally test whether the tail structure differs between 

regimes, we compute a likelihood-ratio test comparing a model with pooled tails (log-

likelihood ljoint) to a regime-specific model with separate likelihoods lpanic 𝑎𝑛𝑑 lcalm , 

so the test statistic is given by: 

Λ = −2(ljoint − lpanic − lcalm) ∼ χ2
2  (4.33) 

A significant test result suggests that tail risk is regime-dependent—implying that 

sentiment shifts not only influence volatility but also reshape the heaviness of the 

distribution tails. This provides further justification for including panic indicators in 
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both the volatility and risk modeling components. 

 

3.5.  Deployment and Operational Integration 

 

While the previous sections focused on statistical validity, in practice a model is 

only as good as its ability to function reliably and consistently in a live environment. 

This chapter describes how the final volatility and tail risk model is developed and 

updated in real time. Following the nDeploymentn phase of the CRISP-DM framework, 

the section shows how sentiment, price, and Google Trends data are piped into the 

system, how the model is reconstructed daily, and how the outputs can be used in risk 

monitoring. The entire setup is broken into six key components. 

 

3.5.1 Data Pipeline 

 

To enable real time forecasting, we built an automated data pipeline that brings 

together three key inputs: hourly price data, sentiment scores from LunarCrush, and 

search interest levels from Google Trends. These sources are collected through 

scheduled Python scripts that retrieve the latest values, then we format them 

consistently, after that we store everything in UTC. In the code, prices are saved as 

floats, count-type variables as integers, and all timestamps follow the ISO 8601 

standard. All the daily versioned snapshots are also stored to ensure that any past 

forecast can be fully reconstructed using the exact inputs available at the time. 

 

Occasionally, we observe irregular spikes or drops in the data, which are usually 

during periods of low trading activity. Then, to limit their impact without discarding 

potentially meaningful information, we cap extreme values beyond ten standard 

deviations from the mean. If there are brief gaps in the data, we can fill them by carrying 

forward the most recent value. For the longer interruptions, we can do further analysis 

to set data be flagged and excluded  

 

All in all, these steps are more important than routine preprocessing. They are 

essential to ensure that the input data meets the assumptions of the statistical models 

which can be used in later sections, for example, in GARCH and EVT, which require 

clean, stable time series to deliver reliable results. 

 

3.5.2 Model Refresh Cycle 

 

 Unlike static models estimated once for academic demonstration, real-world 

volatility monitoring requires constant recalibration. To keep the system responsive to 

new data without overfitting, we adopt a rolling estimation window of 1,000 
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observations—approximately five years of hourly returns. Every day at 00:00 UTC, 

after the final sentiment updates are received, the entire model is re-estimated. The 

pipeline first selects the best ARIMA(p,q) filter based on AIC, then fits the main 

volatility model—either GARCH-X or its regime-switching variant—using quasi-

maximum likelihood. Once the conditional variance series is generated, the system 

extracts the top 3% of residuals and fits a Generalized Pareto Distribution to capture 

tail risk, as outlined in Equations 4.17–4.20. Convergence is checked using the gradient 

norm and the condition number of the Hessian matrix; if the re-estimation fails to meet 

stability thresholds, the system falls back on the previous day's model and logs the event. 

This way, the models stay up to date without introducing noise or instability from 

irregular data or numerical errors. 

 

3.5.3 Dissemination of Forecasts 

 

To make the model outputs operationally useful, the system produces three daily 

forecasts for each asset: the next-day conditional varianceσt+1|t 
2̂ ,the 99% Value-at-

Risk VaR99,t+1|t,
̂  and the Expected Shortfall ES99,t+1|t

̂  .These values are stored in a 

time-series database indexed by asset and timestamp which are automatically fed into 

a web-based dashboard. The dashboard presents several key indicators in a visual 

format. One panel tracks the movement of σt|t−1 
2  , which is the realized returns 

compared to the forecasted Value-at-Risk (VaR) band. Another shows that a simple 

traffic-light alert system, which can turns red if the Kupiec test (Equation 4.29 ) fails 

for two days in a row .This design helps us to make the risk forecasts easier to 

understand, especially for some non-technical users who need clear signals without 

digging into code or statistical formulas. 

 

 Forecasts from the model are not just academic outputs, they feed directly into 

trading and risk management decisions. Two specific rules ensure that predictions 

translate into action. First, following the FRTB approach, we define the daily capital 

buffer 𝐾𝑡 on the model’s tail-risk forecasts: 

𝐾𝑡 = max{ 1.5 × ES99̂,  3 × VaR99̂}         (5.1) 

 

This ensures the capital buffer increases when the model detects tail risk. Second, we 

implement a trade-throttling mechanism based on regime-switching probabilities. If the 

MS-GARCH-X model (Equation. 4.16) estimates an opportunity which is greater than 

80%, it means that the system is in a high volatility regime, then all market orders are 

halved and only limit orders are allowed for the next 24 hours. This rule is going to 

activate roughly ten times a year, which can target stress periods to avoid overreaction. 
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3.5.4 Model Governance and Oversight 

 

Given the model’s complexity and its central role in operational decisions, we 

maintain a governance structure. These structures can track performance, ensure 

compliance, and support transparency. Every day, the system computes back testing 

statistics like the Kupiec and Christoffersen tests (Equation 4.29–4.30) for VaR and ES, 

and logs these results monthly. If either statistic crosses the 99% threshold more than 

twice in any six-month window, it triggers a flag for escalation. 

 

We also monitor model drift. We are using a control rule based on the Diebold–

Mariano test (Equation. 4.28)which can compare the model’s variance forecasts with 

those from a standard EWMA (0.94) benchmark. If the model performs significantly 

worse (p < 0.05) for 20 consecutive days, a formal model review is launched. 

 

Each day’s estimation is saved with full metadata like parameter values, software 

versions, and some random seeds which can help us to ensure reproducibility. Finally, 

an external validation is conducted once a year, which will generate an independent 

team who can replicate the model using the same data and configuration 

 

3.5.5 Quantitative-Trading Applications 

 

By the daily forecasts 𝜎𝑡+1|𝑡, 
2̂ VaR99,𝑡+1|𝑡,

̂ ES99,𝑡+1|𝑡
̂   in place and validated, we 

can now use them in the real time trading strategies. These outputs feed directly into 

portfolio allocation, trade sizing, market making rules, and back testing. The different 

layers of the model, especially the volatility and tail-risk modules from Section 4 are 

what allow these trading rules to adapt to changing market conditions.  

 

(a) Volatility-Targeted Allocation (“Vol-Parity”) 

 

The conditional variance forecast from GARCH-X or MS-GARCH-X (Equation 

4.13–4.15), helps us to set how much to invest in each asset. The goal for this process 

is to keep the total portfolio risk steady, even if individual assets get volatile. For 

example, if we want total portfolio variance to stay at 10% annually, then the weight 

for each asset is: 

 

𝑤𝑡+1(𝑖) =
Σ∗

𝑁𝜎𝑡+1|𝑡 
2 (𝑖)̂ , with  ∑ 𝑤𝑡+1(𝑖)𝑁

𝑖=1 = 1  (5.2) 

And this can help us keep the overall risk budget fixed. 
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(b) Sentiment-Conditioned Directional Signal 

 

By using the z-scored sentiment features from Section 3.3, we define a daily 

sentiment imbalance: 

 

Δ𝑡 = 𝑧Bullish,𝑡 − 𝑧Bearish,𝑡 (5.3) 

 

After trimming extreme values (±3σ), we map Δ𝑡 into a trading signal, and here 

we are using a sigmoid function: 

α𝑡+1 = β sigm(Δ𝑡),   sigm(𝑥) =
2

1 + 𝑒−𝑥
− 1      (5.4) 

But we still need |α𝑡+1| ≤ 3% to avoid overreacting. Then we are going to change this 

directional signal, and it can be translated into a position size, which is scaled by 

forecasted volatility: 

𝜋𝑡+1 =
α𝑡+1

2σ2
𝑡+1|𝑡

̂
        (5.5) 

 

So, if sentiment is strong but volatility is high, the position will be smaller to 

manage risk. 

 

(c) Regime-Switch Market-Making 

 

When the model detects shifts between calm and turbulent regimes, we adjust our 

quoting and inventory accordingly. The MS-GARCH-X model gives us a filtered 

probability: 𝑝𝑡
ℎ𝑖𝑔ℎ

= Pr( 𝑆𝑡 = ℎ𝑖𝑔ℎ ∣∣ ℱ𝓉 ) which is used to adjust spreads: 

Spread
𝑡

= base + 𝑘 𝑝𝑡
high

  (5.6)   

The spread adjustment is based on a linear rule, which with a base spread of 10 basis 

points and a slope coefficient k=15 basis points. When volatility is expected to rise, the 

model automatically widens the spreads in response. In addition, if the probability of 

entering a high-volatility state 𝑝𝑡
high

 exceeds 0.8, the inventory limits are cut by 50%, 

and the purpose is to reduce exposure during periods of market stress.  

 

(d) Transaction-Cost Model 

 

To make our backtests more realistic, we factor in execution costs. The cost of 

trading is modeled as: 

TC𝑡 = 𝛾0 + 𝛾1|𝑞𝑡| + 𝛾2 ⋅
𝑞𝑡

2

ADV𝑡
,  (𝛾0, 𝛾1, 𝛾2) = (2,4,15) bps    (5.7) 

where 𝑞𝑡 is trade size and ADV is 10-day average dollar volume of 10 days. This helps 

us to account for slippage and impact, especially on large trades. 
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(e) Back-Test Metrics 

 

 To evaluate the performance of the proposed strategies, we adopt a walk-

forward validation framework. The model is estimated every 250 trading days, and its 

out-of-sample performance is assessed over the subsequent 250-day period. The 

evaluation focuses on three key metrics: 

 

 We assess the performance using three core metrics. The first one is volatility 

forecast error: 

RMSE𝑉𝑂𝐿 = √
1

𝑇
∑ (σ𝑡|𝑡−1̂ − σ𝑡

𝑟𝑒𝑎𝑙)
2

𝑡   (5.8) 

which tells us how closely the model’s predicted volatility matches what happened now. 

A smaller RMSE means that the model is better at anticipating market turbulence. Then 

the second metric is the hit ratio, 

𝐻 =
∑1{𝜋𝑡𝑟𝑡>0}

𝑇
   (5.9) 

which captures how often the strategy gets the market direction right. More specifically, 

we check whether the model's position 𝜋𝑡 is on the same side as the realized return 𝑟𝑡 

. Lastly, we look at the Sharpe ratio: 

SR =
𝑅

√Var(𝑅)
 (annualised)  (5.10), 

which balances returns against risk. This is a standard way to evaluate performance in 

finance, and it tells us how much return the strategy generates per unit of volatility. We 

annualize this measure so it’s easier to compare across different periods or models  

 

To check whether these results are better than a basic benchmark, we apply the test 

proposed by Giacomini and White (2006). In our case, the benchmark is a rolling 

EWMA based forecast. If the Sharpe ratio from our model is significantly higher at the 

5% level, we consider the improvement meaningful and the strategy statistically robust. 

4. Empirical Results 

 

In this chapter, I look at how well different models help explain risk and volatility 

in major cryptocurrencies, specifically in Bitcoin (BTC), Ethereum (ETH), Chainlink 

(LINK), and Dogecoin (DOGE). The modeling process follows the same steps 

described earlier in Chapter 3, Chapter 4 and Chapter 5. For each coin, I first test a few 

standard GARCH setups like (1,1), (1,2), (2,1), and (2,2) and stick with the one that 

gives the best fit. Once that’s set, I move on to test versions that include sentiment data 

to see if it adds anything useful. 
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4.1 How Return Distributions Change Around Sentiment Shocks 

 

Figure 1 shows how the size of returns tends to shift when sentiment gets extreme. 

For each asset, I compare the distribution of absolute returns during the ±5-day window 

around a sentiment shock (the blue line) with the distribution during normal periods 

(the orange dashed line). 

 

Across the board, there's a slight shift in the blue line toward the right which means 

that returns tend to be a bit larger when sentiment is unusually high or low. The effect 

is most obvious for ETH, the blue tail is clearly fatter in the 95th percentile, which 

suggests more extreme price moves. For DOGE and LINK, the shift is more subtle, 

mostly showing up at the very ends of the distribution. 

 

Even though the differences aren't huge, they’re consistent across assets. This gives 

a hint that when sentiment spikes, markets tend to move more, especially at the 

extremes. Although It's a small move, it still tells us that crowd behavior might be linked 

to bigger price swings. 

 

   

（ETH）                                （DOGE） 

  

（LINK）                                （BTC） 

Figure 1 – Distribution of absolute returns — event vs control windows 
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To check whether the shifts in return distributions we saw earlier are statistically 

meaningful, I compared a few key stats between the sentiment event windows and 

normal control periods. Specifically, I looked at the average absolute return and 

standard deviation and ran a Kolmogorov Smirnov (KS) test to see if the two 

distributions differ in a statistically significant way. I also included Cohen’s d to get a 

sense of the effect size. 

 

The results are summarized in Table I. For Ethereum (ETH), there’s a noticeable 

increase in volatility during sentiment shocks: which have average absolute returns rise 

by about 7 basis points, and the KS test strongly rejects the idea that the distributions 

are the same (p < 0.0001). The effect size (Cohen’s d) is also the largest among the four 

assets. Bitcoin (BTC) shows a smaller but still statistically significant effect. For 

Dogecoin (DOGE) and Chainlink (LINK), there are slight increases in return dispersion, 

but the differences are more subtle. 

 

Table I - COMPARISON OF RETURN DISTRIBUTIONS BETWEEN EVENT AND CONTROL WINDOWS 

DURING SENTIMENT SHOCKS 

 

Asset 𝑊𝑖𝑛𝑑𝑜𝑤 𝑀𝑒𝑎𝑛 |𝑟| (𝑏𝑝) 𝑆𝑡. 𝑑𝑒𝑣. (𝑏𝑝) 
𝐾𝑆 − 𝑡𝑒𝑠𝑡  

𝑝 − 𝑣𝑎𝑙𝑢𝑒 
𝐶𝑜ℎ𝑒𝑛 𝑑 

ETH 𝐸𝑣𝑒𝑛𝑡 62.7 84.6 <  10⁻⁴  0.09 

 𝐶𝑜𝑛𝑡𝑟𝑜𝑙 55.4 72.5   

BTC 𝐸𝑣𝑒𝑛𝑡 55.1 69.3 <  10⁻⁴ 0.03 

 𝐶𝑜𝑛𝑡𝑟𝑜𝑙 52.3 65.8   

DOGE 𝐸𝑣𝑒𝑛𝑡 82.6 109.4 <  10⁻⁴ 0.02 

 𝐶𝑜𝑛𝑡𝑟𝑜𝑙 78.9 103.6   

LINK 𝐸𝑣𝑒𝑛𝑡 69.8 91.2 <  10⁻⁴ 0.02 

 𝐶𝑜𝑛𝑡𝑟𝑜𝑙 66.4 87.7   

 

Notes: Returns are in basis points (bp). The KS test assesses the equality of return distributions. Cohen’s d indicates 

effect size. Values are based on 1-hour returns around sentiment shock windows.   

 

4.2 Baseline Models: GARCH 

 

4.2.1 Return-and-Sentiment Modelling Performance 

 

Next, I estimated a set of EGARCH-X models as per Equations (4.10)-(4.20). to 

explore how well they capture volatility dynamics, especially with sentiment added. 
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Table II - ESTIMATED EGARCH-X MODEL COEFFICIENTS AND MODEL PERFORMANCE METRICS 

Asset ω (×10⁵) α β γ (∣z∣) α + β Log-lik ΔAIC 

ETH 
1.60 

(0.20) 

0.080 

(0.006) 

0.876 

(0.008) 
0.044 (0.010) 0.956 168,371 –17.6 

BTC 
1.20 

(0.19) 

0.065 

(0.005) 

0.897 

(0.009) 
0.031 (0.009) 0.962 152,642 –11.5 

DOGE 
2.90 

(0.27) 

0.103 

(0.009) 

0.818 

(0.011) 
0.012 (0.014) 0.921 109,793 –3.4 

LINK 
2.10 

(0.25) 

0.094 

(0.008) 

0.821 

(0.010) 
0.018 (0.013) 0.915 123,911 –4.2 

Notes: Standard errors are shown in brackets. Bold means the result is statistically significant at the 1% level. 

 

These estimates suggest that sentiment does have explanatory power for volatility, 

especially for ETH and BTC. The γ term, which captures how much volatility responds 

to sentiment, it is both positive and statistically significant for those two coins. This 

indicates that when sentiment gets stronger, volatility tends to rise. In contrast, the effect 

is weaker and not significant for DOGE and LINK. All models remain stable (α + β < 

1), and the addition of sentiment improves model fit as shown when decreased in AIC 

values. 

 

4.2.2 VaR Back-testing Results 

 

Using the models, I then generated 1-day ahead of 99% Value-at-Risk (VaR) to 

forecast and compare them with actual returns. The idea is like that: we count how often 

real returns fall outside the predicted VaR range and these outside values are called 

nviolations.n Ideally, violations should occur about 1% of the time. 

 

Table III - VAR VIOLATION TESTS BEFORE AND AFTER INCLUDING SENTIMENT IN GARCH-X 

Asset 
Violations (GARCH → 

GARCH-X) 
Expected 

Kupiec p-

val 

Christoffersen p-

val 

ETH 2 → 0 1 0.86 0.80 

BTC 1 → 0 1 0.99 0.94 

DOGE 1 → 1 1 0.58 0.22 

LINK 1 → 1 1 0.55 0.18 

Notes: nViolationsn indicate the number of Value-at-Risk (VaR) breaches at the 1% level, comparing a baseline 

GARCH model with a sentiment-augmented GARCH-X model. The Kupiec test evaluates unconditional coverage, 

while the Christoffersen test evaluates both coverage and clustering of violations. 
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The GARCH-X model clearly improves performance for ETH and BTC. After 

adding sentiment, the number of violations drops to zero, and both Kupiec and 

Christoffersen tests show p-values above 0.8 which means there's no evidence that the 

model is underestimating risk. 

 

For DOGE and LINK, the adding sentiment doesn't change much. Both still have 

one violation, and the Christoffersen test suggests that these violations might not be 

randomly scattered, so it possibly reflects regime effects which are not captured by a 

single regime model. 

 

Overall, these results support the idea that sentiment data can meaningfully 

improve risk prediction for more established assets like ETH and BTC, while its 

usefulness is more limited for highly speculative coins like DOGE or infrastructure 

tokens like LINK. 

 

4.3 Markov-Switching GARCH model 

 

To explore how sentiment affects volatility in different market conditions, we 

implement the Markov-Switching GARCH model from Function 4.16. The model 

assumes the return process switches between two hidden states: a normal-volatility 

regime and a high-volatility (npanicn) regime. These switches are not random. Instead, 

the transition probabilities depend on lagged sentiment, modeled using a logistic 

function:  

|𝑝12(𝑧)| =
exp ! (𝛾0 + 𝛾1𝑧)

1 + exp ! (𝛾0 + 𝛾1𝑧)
            (6.1) 

where 𝑝12(𝑧) is the probability of moving from normal to panic, and z is the lagged 

sentiment score. To link sentiment shocks to volatility regime changes, we also estimate 

a smoothed high-volatility probability  𝑃𝑡(High σ) , which is regressed on a nfearn 

dummy ,𝐹𝑡
panic

= 1{𝑧sent<5-pct} through the logit transformation: 

log
𝑃𝑡(High σ)

1 − 𝑃𝑡(High σ)
= β0 + β1𝐹𝑡

panic
        (6.2) 

This approach captures nonlinear sentiment effects and reflects regime shifts driven by 

severe crowd pessimism. 

 

4.3.1 Two–State HMM-GARCH Specification 

 

A Gaussian Hidden-Markov model with two variance states is fitted to each return 

series, with state-dependent GARCH (1,1) dynamics and Student-t innovations (ν ≥ 10). 

The Hamilton filter delivers the smoothed probability  𝑃𝑡(High σ); a logit link 

log
𝑃𝑡(High σ)

1 − 𝑃𝑡(High σ)
= β0 + β1𝐹𝑡

panic
         (6.3) 
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relates that probability to the “panic” dummy𝐹𝑡
panic

= 1{𝑧sent<5-pct}. 

 

 
LINK                                    ETH                              

 

DOGE                                    BTC 

Figure 2 - Regime Probability by Sentiment Deciles 

To understand how sentiment relates to volatility regimes, we estimate the 

probability of being in the high-volatile (panic) state for each asset and group the results 

by sentiment deciles. As shown in Figure 2, lower sentiment levels are clearly linked to 

higher chances of being in a panic regime for ETH and BTC. For these two assets, the 

pattern is especially pronounced: when sentiment is in the bottom decile, panic 

probability spikes. DOGE shows a weaker relationship, while LINK appears largely 

unaffected by changes in sentiment. 

 

To quantify this relationship more precisely, we run a logistic regression where the 

dependent variable is the estimated probability of being in the panic regime, and the 

main predictor is a dummy for “fear days.” Results are shown in Table IV. ETH shows 

the strongest effect which states that on fear days, the probability of being in panic 

jumps by nearly 24 percent. BTC and DOGE also show statistically significant 

increases, though smaller in scale. LINK, on the other hand, doesn’t seem to react at all, 



 

 

 

25 

 

its panic regime probability barely changes on fear days. 

 

Table IV - Effect of Fear on Panic-Regime Probability 

Asset β₁ (fear) ± SE t-stat p-val Odds-ratio Baseline P Panic P ΔP (pp) 

ETH +0.98 ± 0.04 22.5 <10⁻¹¹⁰ 2.66× 34.3% 58.1% +23.9 

BTC +0.20 ± 0.04 4.6 4×10⁻⁶ 1.22× 36.2% 41.0% +4.8 

DOGE +0.29 ± 0.11 2.8 6×10⁻³ 1.34× 25.6% 31.5% +5.9 

LINK +0.03 ± 0.05 0.7 0.51 1.03× 33.8% 33.1% –0.7 

Notes: Results are based on logistic regression of panic regime indicator on a fear-day dummy. ΔP (pp) represents 

the change in predicted panic probability on fear days (in percentage points). 

 

To see whether this rise in panic regimes leads to higher actual risk, we look at how 

often extreme returns, especially at top 10% absolute returns. Table V compares these 

tail-event frequencies during panic and calm states. For ETH, the difference is striking 

panic days see a 13.1 percentage point increase in extreme return probability. BTC and 

DOGE also show meaningful jumps, while LINK’s difference is small but still 

statistically significant. On the flip side, periods of euphoric sentiment are linked to 

slightly lower tail risk, especially for ETH and BTC. 

 

Table V - Panic vs. Calm: Probability of a Top 10% Tail Event 

Asset Panic Δ Tail p-value Euphoria Δ Tail p-value 

ETH +13.1pp 2.9 × 10⁻⁹³ –2.7pp 1.3 × 10⁻⁴ 

BTC +2.9pp 2.8 × 10⁻⁶ –2.3pp 4.9 × 10⁻⁴ 

DOGE +4.5pp 1.0 × 10⁻³ — — 

LINK +1.2pp 3.4 × 10⁻² — — 

Notes: Panic Δ Tail reports the difference in the probability of a top 10% absolute return during panic vs. calm 

regimes. Euphoria Δ Tail reflects changes in extreme return frequency on euphoric sentiment days. Values are in 

percentage points (pp). 

 

ETH again shows the strongest effect, with a 13.1pp jump in tail-event probability 

on fear days. BTC and DOGE follow with moderate increases and positive sentiment 

(“euphoria”) seems to slightly reduce tail risk for ETH and BTC. 

 

Next, we quantify tail risk using the Generalized Pareto Distribution (GPD) applied 

to the residuals within each regime. Figure 3 presents regime-specific 99% Value-at-

Risk (VaR) and Expected Shortfall (ES) estimates. Again, ETH stands out: its ES nearly 

doubles in panic. BTC and DOGE follow the same pattern. This confirms that sentiment 

not only helps predict the onset of turbulent regimes but also maps to more extreme risk 

levels once a panic regime  
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.   

(LINK)                     (ETH) 

 
(DOGE)                    （BTC） 

Figure 3 - Regime-Specific 99% Expected Shortfall (ES) Under Normal and Panic Regimes 

 

Then, we examine the average conditional volatility σ𝑡 under each regime. Figure 

3 plots the distribution of σ𝑡 values from simulated samples. Across all four assets, 

volatility is clearly higher in the panic state, as expected. 

 

Together, these results demonstrate a dual-channel structure: continuous variance 

is weakly linked to sentiment (as in GARCH-X), but transitions into high-volatility 

states. These states are driven by sentiment shocks which are the primary source of 

extreme risk.  

 

4.4 Tail Behavior under Regime-Specific GPD 

 

Figure 4 compares the survival functions of return distributions in normal versus 

panic regimes, which are plotted on a log–log scale to highlight differences in the tails. 

Across all assets, the panic regime shows clearly fatter tails. But ETH and DOGE stand 

out, they have substantial divergence between the two lines, especially in the right tail. 
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LINK                                  ETH                                  

 

DOGE                                  BTC   

Figure 4 - Log–Log Tail Survival Curves in Normal vs. Panic Regimes 

 

These visual results are backed by the tail risk estimates which are shown in Table 

VI, where we fit a Generalized Pareto Distribution (GPD) to the standardized residuals 

within each regime. The shape parameter ξ increases in all assets during panic periods 

and it indicates heavier tails and more extreme risks. 

 

Table VI - TAIL RISK ESTIMATES USING GPD UNDER NORMAL AND PANIC REGIMES 

Asset Regime ξ β VaR₉₉ ES₉₉ 

ETH Normal 0.1089 0.0086 0.0744 0.0889 

 Panic 0.1298 0.0163 0.1245 0.1564 

BTC Normal 0.1663 0.0069 0.0656 0.0819 

 Panic 0.4374 0.0105 0.1704 0.3140 

DOGE Normal 0.3183 0.0151 0.1835 0.2701 

 Panic 0.6434 0.0233 0.7416 1.7078 

LINK Normal 0.2018 0.0109 0.1105 0.1409 

 Panic 0.2306 0.0152 0.1546 0.2208 

 

Among all the assets, DOGE has shown the most dramatic increase in tail risk under 

panic, and we can see its Expected Shortfall jumps by more than 500%. BTC and ETH 
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also display substantial increases in both VaR and ES, while LINK’s rise is more muted 

but still evident. In every case, the ξ parameter increases in the panic regime, which 

confirms that the tails become significantly heavier. 

 

Figure 4.7 complements these results by showing the conditional volatility 

distributions across regimes. For BTC and DOGE, the entire distribution shifts to the 

right in panic states which indicates the sustained higher volatility. ETH also shows a 

visible shift, which matches the increases in tail risk metrics observed above. 

 

This section wraps up the risk modeling framework by showing how each layer 

contributes to understanding extreme movements in crypto markets. It starts with 

GARCH-X (Equations 4.13–4.15), where sentiment indicators help fine-tune daily 

volatility forecasts. Then, when the market enters a different volatility regime, it will 

be captured by the Markov-switching model in Equation 6.3  and it will show the 

distribution of returns changes. This method shows that rare events become more 

frequent, especially during panic periods. And we can see this data particularly strong 

in ETH and BTC, where both Value-at-Risk and Expected Shortfall increase sharply 

(Figure 3). To properly capture these extremes, we apply Generalized Pareto 

Distributions (Equations 4.17–4.20) to the tails of standardized residuals within each 

regime. The survival plots in Figure 4 and tail risk estimates in Table VI confirm that 

panic regimes consistently produce heavier tails. So overall, this modeling stacks 

GARCH-X for daily volatility, MS-GARCH for regime shifts, and GPD for the tails, 

and all of it will work together to quantify how fear turns into actual financial risk, not 

just in average levels but in extreme outcomes. 

 

4.5 Residual Diagnostics and Regime-Specific Goodness-of-Fit 

 

4.5.1 Methodology and Theoretical Background 

 

To check whether the models truly capture the data dynamics, we run diagnostics 

on the standardized residuals which are grouped by regime. By using the regime paths 

inferred from the HMM-GARCH model (equation 6.3), we can see the returns are 

standardized as shown in 6.4 

ε𝑡̂ =
𝑟𝑡 − μ𝑡̂

σ𝑡̂
 (6.4) 

where σ𝑡̂  is the conditional volatility filtered through the smoothed probabilities 

(Functions 6.1–6.3), and after that, we can look at the residuals separately in each 

regime 

 

We are using several visual checks: to begin with, we plot standardized and squared 

residuals over time to see if there's leftover autocorrelation, then we use quantile-
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quantile plots against fitted Student-t distributions via qq_plot_t_distribution(), after 

that we compare simulated volatility from simulate_volatility_HMM() with actual 

realized paths. These diagnostics help us to confirm whether the models behave well 

not just globally, but within each volatility state, especially in how they represent the 

tail, and this is critical for the GPD-based forecasts made in Section 4.6. 

 

4.5.2 Low-σ Regime Residuals: Stable and Symmetric 

 

 

（LINK） 

 

(ETH) 

 

(DOGE) 

 

(BTC) 

Figure 5 - Low-Volatility Regime Residuals: Time Series and Distributional Properties 

 

In the low-volatile regime, residuals behave as expected stable over time with weak 

autocorrelation. Most squared returns stay small, rarely spiking. The Q-Q plots show 

that the residuals match the student-t distribution well, especially for ETH and BTC. 

ETH in particular tracks theoretical quantiles closely. DOGE and LINK still show some 

extra tail mass, likely reflecting occasional bursts of retail-driven activity that slip 
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through even during calm periods. Overall, the GARCH (1,1)-t model does a good job 

which captures how returns behave when markets are quiet. 

 

4.5.3 High-σ Regime Residuals: Tail Deviations and Heavy Extremes 

 

 

(LINK) 

 

(ETH) 

  

(DOGE) 

 

(BTC) 

Figure 6 - High-Volatility Regime Residuals and QQ-Plots 

 

Things change in the high-volatile state. The residuals now show large, frequent 

spikes, especially in BTC and DOGE, and squared returns stay elevated for longer 

stretches. Q-Q plots make it clear that the student-t assumption breaks down in this 

regime. For BTC and DOGE, the empirical tails go far beyond what the model expects. 

ETH shows less severe misfit but still exhibits some asymmetry. Interestingly, LINK 

stays relatively well-behaved even under stress, which may suggest it reacts less to 

sentimental extremes. These findings are what motivate us to shift to a Generalized 
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Pareto Distribution (GPD) for modeling the tail behavior, as described in Section 4. 

Specifically, exceedances above a threshold u are modeled using: 

𝑃( 𝑋 > 𝑥 ∣ 𝑋 > 𝑢 ) ∼ GPD(ξ, β)      (6.5) 

and the parameters are estimated by maximizing the log-likelihood function: 

ℒ(ξ, β) = −𝑛 log β − (1 +
1

ξ
) ∑ log (1 +

𝜉𝑥𝑖

𝛽
)    (6.6)𝑛

𝑖=1   

 

4.5.4 Volatility Simulation: Realized vs Predicted 

We evaluate the model's performance in forecasting volatility by comparing it one 

step ahead of simulated conditional volatilities against the realized distribution, as 

shown in Figure 7 

 
Link                             ETH 

 
DOGE                             BTC 

Figure 7 - Simulated vs. Realized Conditional Volatility 

 

In Figure 7 we can see simulated volatility paths align reasonably well with realized 

volatilities, though not perfectly. ETH tracks closely, with simulated values overlapping 

the real-world distribution. BTC’s center is well matched, but the model tends to 

understate extreme values. DOGE, as expected, shows the largest mismatch and its 

realized volatility distribution is more right-skewed and heavier-tailed than the 

simulation suggests. This confirms DOGE’s tendency for abrupt price jumps and 

supports the risk modeling adjustments made earlier. 

 

4.5.5 Summary and Implications 

 

The Residual diagnostics clearly support the idea that crypto volatility follows a 

layered and regime-dependent structure. In low-volatility regimes, the residuals look 

random and closely follow the student-t distribution, which supports that we can use a 

baseline GARCH-X model with t-distributed innovations. But in high-volatility states, 



 

 

 

32 

 

the t-distribution fails: the residuals show much fatter tails than expected. That’s where 

the extreme-value component (POT-GPD from Section 2.4) becomes necessary. We 

also find that volatility simulations are regime sensitive. ETH behaves predictably and 

is well captured, BTC tracks decently, while DOGE diverges most sharply consistently 

with its more erratic trading behavior. Altogether, these diagnostics confirm that a 

multi-layered volatility model is combined with regime-switching and heavy-tailed 

modeling which are important for measuring crypto risk. 

 

4.6 Volatility Paths and Forward-Looking Tail Risk under Regime-Specific GPDs 

 

This part expands on the tail modeling in Section 4.5 by looking at how volatility 

evolves when markets enter a high-risk state. The focus is on forward looking 

simulations that estimate extreme shocks like a +3σ return. By using the two-state 

HMM-GARCH setup from Equation (6.3), we split the standardized residuals by 

regime and apply the POT method described in Section 2.4. For values above the 95th 

percentile, we fit the Generalized Pareto Distribution and calculate the corresponding 

99% VaR and ES using the closed-form formulas from Equations (2.5) and (4.18). 

 

To understand how risk builds up, we simulate volatility paths over a 10-period 

horizon in Figure 8. In both regimes, we start with a large shock and observe how the 

system reacts. Under normal conditions, volatility tends to decay quickly. But in the 

panic regime, volatility stays elevated for longer, and risk metrics rise accordingly. 

These simulations show how sensitive the crypto market can be to sudden sentiment 

shifts and reinforce the importance of using regime-specific tail models when 

estimating risk under stress. 

 

 



 

 

 

33 

 

(LINK) 

 
(ETH) 

 

(DOGE) 
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(BTC) 

Figure 8 - Results under Simulated Panic 

 

Figure 8 shows the simulated volatility paths for each asset under normal and panic 

regimes. The results highlight how each asset reacts to a +3σ shock. 

 

For LINK, volatility slowly declines over time but stays higher than in the normal 

regime. In the panic state, the GPD parameters are ξ = 0.202 and β = 1.1320. This gives 

a 99% VaR of 11.64 and an ES of 15.29. These numbers suggest that LINK is quite 

sensitive to extreme shocks, and its risk does not fade quickly after the shock. 

 

ETH also shows higher volatility in the panic regime, and this elevated level 

continues throughout the forecast period. The estimated GPD parameters are ξ = 0.175 

and β = 0.9246. The 99% VaR is 8.84, and the ES is 10.82. So, we can say ETH reacts 

strongly to extreme events, but the risk seems more stable compared to LINK. 

 

DOGE starts with very high volatility (around σ = 0.70), which drops slightly to 

about 0.65 over 10 periods. However, its GPD shape parameter is large (ξ = 0.334), 

which indicates fat tails. Its VaR and ES are 19.69 and 29.82, the highest among all 

assets. This confirms that DOGE often experiences sudden and extreme price moves. 

 

BTC behaves differently. Its volatility increases after the shock, rather than 

decreasing. The GPD parameters are ξ = 0.231 and β = 0.6894, giving a VaR of 7.39 

and an ES of 10.11. This upward trend suggests that risk builds up over time, possibly 

due to strong autocorrelation in panic periods. 
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Table VII - Monte Carlo Risk Estimates under Panic Regime 

Asset Panic Regime ξ β VaR₉₉ ES₉₉ 

LINK n = 1368 0.202 1.1320 11.64 15.29 

ETH n = 1382 0.175 0.9246 8.84 10.82 

DOGE n = 1382 0.334 1.5081 19.69 29.82 

BTC n = 1382 0.231 0.6894 7.39 10.11 

Notes: Estimates are based on 100,000 Monte Carlo simulations under each asset’s identified panic regime. ξ and β 

refer to the shape and scale parameters of the GPD-fit for extreme losses. VaR₉₉ and ES₉₉ represent the 99% Value-

at-Risk and Expected Shortfall, respectively, under simulated conditions. 

 

The simulation results further support the idea proposed earlier in Section 4.5 

which means that market risk behaves through two main channels. In the short run, 

sentiment shocks directly increase volatility via the GARCH-X structure. But more 

importantly, once the system enters a panic regime, the tails of the return distribution 

get significantly heavier, and it can make extreme losses much more likely. 

 

DOGE shows the clearest example of these two layers risk effect, which with very 

high tail estimates and little sign of volatility calming down quickly. LINK also shows 

large VaR and ES values, despite not being as sensitive to panic transitions in earlier 

models. ETH and BTC display more moderate tail risk, but their amplification under 

stress is still noticeable. 

 

Overall, this shows why modeling just day-to-day variance isn't enough. To fully 

understand market risk, especially in crypto, you need to consider how shocks can push 

the system into a completely different regime when the risk of extreme outcomes is 

much higher. The simulation approach used here helps us to make that shift visible and 

gives us a practical way to anticipate future risk rather than only measuring past 

volatility. 

 

4.7 Comparative Insights Across Models 

 

This section brings together the results from all the modeling approaches and 

highlights what each adds to our understanding of volatility and risk in major crypto 

assets. By combining GARCH-type models, regime-switching structures, and tail-

specific tools, we get a more layered picture of how different market conditions unfold, 

especially during times of stress. 

 

We start with the standard GARCH model, which captures volatility clustering well 

but doesn’t account for the role of market sentiment. Once we add sentiment into the 

variance equation (for example when we are using GARCH-X), the model becomes 
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more responsive to behavioral factors, particularly around panic events. As seen in 

Table II, the sentiment term is significant for ETH and DOGE, whcih suggesting that 

when crowd fear increases, these assets tend to experience stronger jumps in volatility. 

BTC reacts like this also, but less sharply, while LINK remains largely insensitive. 

These findings match earlier results in Table I, where ETH and DOGE showed more 

noticeable shifts in return distribution during sentiment shocks. So, while sentiment 

improves short-term volatility forecasts, its effect depends heavily on the asset-being 

more relevant for some than others. 

 

To better account for structural changes, we introduce regime-switching through 

the MS-GARCH model. This allows the system to shift between low and high-volatility 

states in response to external triggers like sentiment. According to Table IV, panic 

significantly raises the chance of entering a high-volatility regime for ETH (by nearly 

24 pp), with BTC and DOGE also showing meaningful jumps. For LINK, though, the 

effect is minimal. Further Table V shows that the frequency of large return events rises 

notably during panic regimes, especially for ETH and DOGE. These regime transitions 

are often sudden, and it indicates that sentiment-driven are hard to capture with 

traditional GARCH models alone. 

 

But understanding volatility isn’t enough if we ignore the tails. That’s where the 

GPD comes in. By modeling extreme returns directly, we capture risks that standard 

distributions miss. Table VI shows this clearly: DOGE’s expected shortfall increases 

more than sixfold during panic, while ETH and BTC also show sharp increases. Even 

LINK, despite not reacting much to regime changes, but it displays heavier tails under 

stress. Figure IV visualizes this contrast well: what we can find is panic regimes are 

associated with much fatter tails, and for assets like DOGE and ETH, the difference is 

substantial. This highlights how tail risk is deeply regime-dependent and can’t be 

ignored. 

 

To test how well these models work forward, we simulate risk under panic 

scenarios. Table VII shows the expected losses (at the 99% level) for each model. 

DOGE again stands out with the highest predicted losses, in line with its earlier behavior. 

ETH and BTC are more stable, with model forecasts closely matching realized values. 

LINK stays moderate throughout. Figure VII confirms this: ETH’s predicted and actual 

volatility paths align well, while DOGE often sees sharper jumps than anticipated, 

which shows how tough it is to model such assets accurately. 

 

Overall, no single model tells the full story. GARCH is useful for persistence but 

misses turning points. GARCH-X brings sentiment into play but doesn’t always 

produce strong effects. MS-GARCH helps us capture regime shifts, and GPD fills in 

the picture by showing how tail risk behaves differently across states. Together, they 

give us a more complete framework because they need accounts for both gradual trends 

and sudden shocks. In the crypto market, where sentiment can change fast and risk can 
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build quickly, leaving out anyone layer means missing something important. 

5. Discussion 

This study shows that public sentiment plays an important role in how volatility 

and tail risk behave in cryptocurrency markets. First, we found that when negative 

sentiment increases, daily volatility tends to rise, especially for Ethereum (ETH) and 

Dogecoin (DOGE). But more importantly, these emotional shifts also raise the chance 

of entering a high-volatile regime, where extreme losses become more likely and the 

return distribution becomes noticeably heavier-tailed. 

 

The strength of this effect differs across assets. ETH and DOGE are more sensitive 

to sentiment shocks. During panic periods, DOGE’s expected shortfall rises more than 

fivefold, and the probability of extreme returns increases sharply. BTC reacts more 

moderately, and LINK is largely unaffected. This difference likely reflects how each 

asset is used and perceived in the market: DOGE and ETH are more retail-driven and 

heavily influenced by social media, while BTC has a broader institutional base, and 

LINK is focused on infrastructure use with lower exposure to speculative attention. 

 

These findings are consistent with earlier research. Kristoufek (2013) and García 

& Schweitzer (2015) showed that online attention and social media signals can impact 

Bitcoin prices and trading behavior. Smales (2022), however, raised concerns about the 

consistency of sentiment signals in high-volatile environments. Our results suggest that 

while sentiment may not always improve price forecasting, it clearly helps identify 

when volatility and tail risk are likely to rise. These effects become more visible when 

using regime-switching models like MS-GARCH (Haas et al., 2004) and tail modeling 

frameworks like EVT (McNeil & Frey, 2000).  

 

Our results confirm findings from Gkillas & Longin (2020), who emphasized the 

need for extreme value methods in periods of market stress. We observed that not only 

do panic periods increase tail thickness, but also that the difference in tail shape is 

statistically significant. This layered approach starts from volatility estimation with 

GARCH-X, transitioning to regime identification via MS-GARCH, and ending with 

extreme risk estimation by using EVT. And this approach can capture both gradual and 

sudden changes in market risk. 

 

While the findings of this study offer valuable insights, there are certain limitations 

that should be acknowledged. First, the sentiment data used in our analysis is primarily 

sourced from English-language platforms such as Twitter, Reddit, and Google Trends. 

This focus may result in the underrepresentation of perspectives from non-English-

speaking regions, potentially omitting relevant market signals. Second, the 

classification of market conditions into only two regimes, calm and panic, and it 
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represents a simplification of the real-world dynamics, which are likely to be more 

nuanced. Future research could explore more complex regime structures to better 

capture the spectrum of market behavior. Third, although the Extreme Value Theory 

(EVT) framework is effective in modeling tail risks, its reliability can diminish when 

applied to smaller subsamples, especially in after regime segmentation. 

 

Despite these limitations, the analysis underscores the meaningful role of sentiment 

in anticipating shifts in market dynamics. In cryptocurrency markets, we know prices 

are often influenced by collective behavior. So, in this situation, when we are 

integrating sentiment indicators into risk models, it can enhance the detection of 

potential turning points and improve the understanding of extreme events. 

6. Conclusion 

This dissertation sets out to explore a straightforward but practically important 

question: can public, high-frequency sentiment data help us better understand and 

manage volatility and extreme risk in cryptocurrency markets? Through a step-by-step 

modeling framework, starting from ARIMA pre-filtering, moving through GARCH-

type models, regime-switching structures, and finally applying Generalized Pareto 

Distributions to model tail risk, the answer is that emerges is clear, especially for assets 

like Ethereum and Dogecoin. 

 

One of the most immediate improvements appears when sentiment variables are 

added directly into the variance equation. For both ETH and DOGE, including panic-

related sentiment significantly improves model fitness, as shown by lower information 

criteria and clearer volatility forecasts. While BTC shows a more moderate response 

and LINK shows almost none, the contrast across assets suggests that behavioral 

volatility is not only measurable but particularly relevant for those with a strong retail 

or speculative user base. 

 

Beyond day-level variance, the shift to regime-based modeling uncovers more 

structural dynamics. The probability of moving into a high-volatility state jumps 

sharply when sentiment drops. In Ethereum’s case, this increase is nearly 24 percent, 

and for BTC and DOGE, the jump is still statistically significant although the data is 

smaller. These changes aren’t just technical adjustments; they reflect meaningful shifts 

in market conditions driven by collective behavior, where fear pushes the system into a 

qualitatively different risk environment. 

 

Once in that regime, we see a clear thickening of the return distribution’s tails. The 

estimated shape parameters from the Pareto distribution confirm that standard t-

distribution assumptions fall short in capturing extreme events. Across several assets, 

the 99% Expected Shortfall increases substantially by as much as 80% and in some 
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cases, it emphasizes how much risk is missed when tail behavior is underestimated. 

 

When these components are brought together, the regime-based volatility 

estimation with sentiment-driven transitions, and tail modeling through EVT can get us 

a more accurate and robust view of risk. Value-at-Risk estimates become better 

calibrated, and the system avoids overestimating capital requirements during calmer 

periods. This matters in practice, particularly for institutional risk management, where 

misalignment between capital buffers and actual risk can be costly. 

 

Operationally, the full pipeline is fast and transparent. Each asset’s full risk profile 

can be updated in real time, with the entire process, from data ingestion to output 

completing in under 20 seconds on a cloud server. The approach meets regulatory back 

testing standards, when we are avoiding the black-box nature of some machine learning 

systems. It remains interpretable, explainable, and suited for use in environments that 

demand both speed and accountability. 

 

To sum up, this work demonstrates that sentiment is far from a noisy side variable. 

It is a meaningful, quantifiable input that shapes how volatility behaves, how regimes 

shift, and how risk piles up in the tails. As crypto markets continue to evolve, integrating 

sentiment into risk models is not just an enhancement, it should be a core part of how 

we understand and manage financial exposure in these systems. 

7. Future Research 

While the current framework lays a solid foundation, there are many natural 

directions for further exploration. One possibility is to move beyond the binary regime 

model. A three-regime system, which is distinguishing between calm, normal, and panic 

states, and these could capture more nuanced behavior, especially in high-frequency 

data or across diversified portfolios. 

 

Another important extension involves modeling how extreme risks might cluster 

across different assets. Instead of looking at tail risk in isolation, future models could 

focus on how large losses in ETH and BTC might occur simultaneously, offering more 

realistic scenarios for stress testing and portfolio-level risk control. 

 

Currently, the analysis relies mostly on hourly and daily data, which can miss 

sudden liquidity imbalances or flash crashes that happen within minutes. Incorporating 

high-resolution signals, such as order book pressure or spikes in trade volume, it might 

reveal early signs of stress that daily aggregates obscure. 

 

There's also scoped to make the sentiment measure itself more adaptive. Rather 

than setting a fixed panic threshold, future versions could estimate it dynamically as a 
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latent variable that adjusts over time. This would allow the model to reflect longer-term 

changes in what the market considers nextreme.n 

 

Beyond the technical side, sentiment inputs could be expanded to include a broader 

range of sources. Most of the current data comes from English-language platforms. By 

bringing in sentiment signals from other regions, such as Weibo, Telegram groups, or 

Discord channels, the model could reduce geographical or linguistic bias and better 

reflect the global nature of crypto markets. In the same spirit, incorporating 

macroeconomic news could help disentangle whether crypto is reacting to its own 

ecosystem or simply following broader financial cycles. A combined framework that 

considers both on-chain behavior and off-chain macro signals could add valuable 

context to risk forecasts. 

 

Taken together, these directions suggest that the modeling tools presented here are 

just a starting point. As the crypto market becomes more complex and intertwined with 

traditional finance, our models of risk and especially our understanding of tail events 

will need to keep evolving. The tools need to be as dynamic as the markets they aim to 

describe. 
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APPENDICES 

Appendix A: Data and Results 
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Figure 9 - Residual Diagnostics for LINK: Low- and High-Volatility Regimes 
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Figure 10 - Residual Diagnostics for ETH: Low- and High-Volatility Regimes 
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Figure 11 - Residual Diagnostics for DOGE: Low- and High-Volatility Regimes 
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Figure 12 - Residual Diagnostics for BTC: Low- and High-Volatility Regimes 

Appendix B: Programming 

 

This appendix outlines how the cryptocurrency analysis was implemented using 

Python. All programming work was done in Jupyter Notebook, and the core dataset—

sourced from LunarCrush which contains high-frequency sentiment and price data for 

five cryptocurrencies: Bitcoin (BTC), Ethereum (ETH), Chainlink (LINK), Dogecoin 

(DOGE), and Solana (SOL). The time series spans from 1 January 2020 to 2 April 2025, 

with most variables recorded on an hourly basis. The dataset includes key features such 

as Galaxy Score, AltRank, closing price, market cap, and custom sentiment scores, 
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which were used to build and evaluate volatility models across different coins. 

 

The data was first imported from a structured Excel file, which included all five 

coins laid out side by side. Because the formatting required manual parsing, I split each 

coin into its own DataFrame and aligned columns like timestamp, price, Galaxy Score, 

and sentiment into a consistent long format time series. After checking for missing 

values and duplicated timestamps, I resampled the data to a daily frequency for 

modelling purposes which was used by daily means for continuous variables like price 

and Galaxy Score. Lagged variables were also created to reflect the natural delay 

between changes in sentiment and resulting market movements. 

 

Model construction was done in two stages. The first stage used standard GARCH-

X models, with sentimental features included in the variance equation. I used the arch 

package to fit these models on the log returns of each asset. The second stage extended 

this by incorporating a Markov regime-switching structure into the GARCH-X 

framework, allowing for dynamic shifts between high and low volatility states. For this, 

I built a custom implementation using hmmlearn to estimate state transitions and 

combined it with GARCH estimation to update volatility in each regime. Both types of 

models were evaluated using a rolling one step ahead to forecast procedure, and 

performance was measured using RMSE and RMSSE. These were computed across 

different forecast windows within the 2020–2025 range. Residual analysis and 

diagnostic tests were also conducted to check for autocorrelation and distributional 

assumptions. 

 

In the final stage, I explored how outliers, especially during the early COVID-19 

period and the 2021 bull run affected model performance. Two anomaly windows were 

defined: March 2020 to June 2021, and March 2020 to December 2021. Six different 

outlier adjustment methods were applied, ranging from simple mean-replacement to 

local smoothing, and the GARCH-X model was re-estimated on the cleaned data. 

Forecast accuracy was compared before and after each adjustment using RMSE. The 

results helped identify which cleaning strategy worked best for each coin and whether 

adjusting for sentiment driven outliers improved the stability of forecasts. 

 

Overall, the entire workflow was modular and repeatable. All scripts were built 

from scratch and structured to allow easy switching between coins. The analysis relied 

on several core Python libraries including pandas, numpy, arch, matplotlib, statsmodels, 

and hmmlearn. The combination of sentiment driven features from LunarCrush and 

flexible volatility models formed the basis for the empirical results shown in Chapter 6. 

 

 


