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ABSTRACT

Volatility modeling plays a key role in understanding and managing financial risk,
particularly in high-frequency and sentiment-driven markets such as cryptocurrency.
However, traditional models often struggle to capture extreme fluctuations caused by
sudden shifts in investor behavior. This study investigates whether public sentiment
data obtained from platforms like LunarCrush and Google Trends can improve the
forecasting of volatility and tail risk in crypto assets. To verify this, we apply a set of
advanced time-series models to hourly price data for four major cryptocurrencies (BTC,
ETH, DOGE, LINK) for the period 2020 to 2025.

The modeling framework integrates multiple layers, including GARCH and
EGARCH variants with external sentiment regressors, regime-switching volatility via
Markov models, and tail modeling via Generalized Pareto Distribution. Model
performance is assessed both in terms of volatility forecast accuracy and risk coverage
metrics such as Value-at-Risk (VaR) and Expected Shortfall (ES). This article pays
particular attention to changes in distribution behavior during panic and performs
Monte Carlo simulations to assess forward looking tail risk.

The results show that for both ETH and DOGE, the sentiment-enhanced GARCH
model outperforms the standard model, especially during periods of heightened
sentiment volatility. The regime-switching model shows that negative sentiment
significantly increases the probability of entering a high-risk state, while the tail model
suggests that once in such a state, the distribution of returns becomes quite heavy.
DOGE exhibits the most severe tail risk amplification, while BTC and ETH show a
more stable, but still significant, variation. In sum, this work provides evidence that
sentiment signals not only predict short-term volatility, but also effectively capture the
structural changes that drive extreme downside risk in cryptocurrency markets.
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1. Introduction

In the past decade, cryptocurrencies such as Bitcoin (BTC), Ethereum (ETH), and
a growing number of alternative coins have gained a great deal of attention from
investors around the world. Cryptocurrencies, which started as a technological
experiment, have become a major player in the financial markets, with players ranging
from retail investors to large institutions and even governments down the road. One
thing that makes the cryptocurrency market stand out is how quickly its price changes,
often for reasons not directly related to economic data or company performance.
(Dyhrberg, 2016, Baur & Dimpfl, 2018, Costa, 2024).

Unlike traditional markets, cryptocurrency prices often react strongly to online
activity, such as social media discussions, influencer posts, or trending news. In some
cases, a single tweet can move the market. These price movements are not always easy
to explain using standard financial models, which typically assume that volatility
changes slowly and predictably (Kristoufek, 2013, Mai et al., 2018, Aparicio et al.,
2022). However, in crypto markets, volatility tends to spike suddenly and behave very
differently during times of fear or excitement (Corbet et al., 2020, Gkillas & Longin,
2020).

Some models like Black-Scholes (Black & Scholes, 1973) or the basic GARCH
model (Cont, 2001 , Taleb, 2020) are commonly used to estimate risk and price
volatility. But in the crypto world, these models often underestimate how large and
frequent extreme changes can be. To address this, more advanced approaches—such as
GARCH extensions, regime-switching models, and jump models—have been
developed over time (Duffie et al., 2000 , Haas et al., 2004 , Heston, 1993). These allow
for more flexible reactions to market shocks. Still, most of these models rely only on
historical price data, and don’t consider how public mood or investor sentiment might
play a role.

Thanks to platforms like LunarCrush and Santiment, it is now possible to track and
quantify how people feel about cryptocurrencies in real time. These platforms use data
from Twitter, Reddit, and other sources to produce sentiment indicators, such as levels
of fear or hype (Garcia & Schweitzer, 2015 , Smales, 2022). In this work, I made use
of Python in notebook to collect and process high frequency sentiment data, focusing
specifically on panic indicators. This data was then combined with traditional financial
models to better understand how market emotions affect volatility and extreme risk.



This MFW aims to study how sentiment data collected from social media can
improve the way we model volatility and risk in crypto markets. I choose four
cryptocurrencies for this analysis which are Bitcoin (BTC), Ethereum (ETH), Dogecoin
(DOGE), and Chainlink (LINK). I use Google Colab as the main analysis platform and
the process are performed in my github(https://github.com/LuoToby/Markov-Switch-
Garch-in-sentiment-effect). I applied a series of time series models such as GARCH-X,
EGARCH-X, and Markov switching GARCH and tested whether adding sentiment
variables helped improve the accuracy of risk forecasts. In addition, I used Extreme
Value Theory (EVT) to focus on the behavior of extreme returns and assess how well
the models captured tail risks.

The main goal of this study is not to predict prices, but to understand whether
changes in public sentiment can help explain changes in volatility and the risk of large
losses. By combining emotional data with traditional financial techniques, this research
tries to give a clearer picture of how crypto markets behave, especially during periods
of high stress.

2. Literature Review

2.1 Classical and Asymmetric Volatility Models

Some early models of financial risk, like the Black-Scholes-Merton framework
(Black & Scholes, 1973) were built on the idea that market volatility stays constant over
time. But in practice, especially when looking at equity markets or high-frequency
financial data, this assumption doesn’t match reality.

Empirical studies (Cont, 2001) show that market returns often display sharp spikes,
heavy tails, and periods where volatility becomes clustered. These patterns suggest that
markets behave much more unpredictably than early models assumed.

To address this, Engle introduced the concept of Autoregressive Conditional
Heteroskedasticity (ARCH) (Engle, 1982), which made it possible for volatility to
change over time depending on past price movements. This idea was later extended by
Bollerslev into the more flexible GARCH (p, q) model (Bollerslev, 1986), and the
conditional variance o7 is defined as:

p q
02 =0y + z o el + Z Bjcg_j (2.1)
i=1 j=1


https://github.com/LuoToby/Markov-Switch-Garch-in-sentiment-effect
https://github.com/LuoToby/Markov-Switch-Garch-in-sentiment-effect

where: €?_;are past squared residuals ("news shocks"), oZ_ ;j are past conditional

variances, o, 3; are model parameters, with constraints «;, ; = 0, @g > 0.

While GARCH models have been widely used for capturing volatility clustering,
one of their main limitations is that they treat positive and negative shocks in the same
way. Markets often react more strongly to bad news than to good news. To better capture
this asymmetry, the Exponential GARCH (EGARCH) model was introduced (Nelson,
1991). Unlike standard GARCH, EGARCH models the logarithm of the conditional
variance, which allows it to reflect different volatility responses depending on the sign
of the return. After using a log transformation, _formula (2.1) becomes:

logof = w+Xl_Bilogoi; + X7, v; (:—:J]) + Bj( ) (2.1.1)

This formulation allows the model to account for leverage effects, where negative
shocks increase future volatility more than positive shocks of the same magnitude.

Et—j Gt_]'

)

Gt—j Gt—j

2.2 GARCH-X Models: Integrating Exogenous Information

In cryptocurrency markets, investor sentiment is not only an abstract idea but also
often generated directly from online platforms, which make it both measurable and
highly relevant. Some websites like LunarCrush, Santiment, and The TIE collect and
summarize social activity from sources like Reddit, Twitter, Google Trends, and GitHub.
From this data, they produce real time sentiment metrics like Galaxy Score, AltRank,
and volume-weighted sentiment indexes (Kristoufek, 2013, Garcia & Schweitzer, 2015,
Mai et al., 2018). Several studies have found that these indicators are closely linked to
short-term price movements and sudden spikes in volatility (Smales, 2022, Corbet et
al., 2020).

To incorporate external variables such as sentiment into volatility modeling, we
can extend standard GARCH models into GARCH-X frameworks. The GARCH-X
model introduces an exogenous regressor x; for example like sentiment’s data, which
modifying the conditional variance equation as:

of = ap + X1, ap€f; + 2?:1 Bjoi_j +8xey  (2.2)

where § captures the direct influence of the sentiment variable x; on volatility.
Conrad and Loch applied this framework using macroeconomic uncertainty indices as
exogenous inputs (Conrad & Loch, 2015).

In crypto markets, (Dyhrberg, 2016) finds that including Reddit or tweet-based
sentiment signals improves both in sample fit and out of sample Value-at-Risk (VaR)
forecasting accuracy. When combined with EGARCH, we obtain the EGARCH-X
model:



€t—1

- \/%>+8xt_1 (2.2.2)

2.3 Regime-Switching Models and Volatility States

lo g o7 =w+2f=1[3i1080§—i+y(§)+9<

Ot-1

To capture the fact that markets may alternate between high and low volatility
regimes, Markov switching GARCH (MS-GARCH) models were developed (Hamilton,
1989). These models assume that the parameters of the GARCH process vary
depending on a hidden, discrete regime variable S; € {1,2,..., K}, which evolves
according to a first order Markov chain.

In the simplest two-regime MS-GARCH (1,1) model:

s s s
o = ag 0y ag De2 | 4 Bg Vo2 (2.3)

The transition probabilities P;; = P(S; = j|S;—; = i) define the likelihood of moving
between regimes. These models are especially useful in capturing sentiment-triggered

regime switches, where panic or euphoria shifts market participants between "normal"
and "crisis" states (Barunik & Kiehlik, 2018).

2.4 Extreme Value Theory (EVT) and Tail Risk Estimation

While volatility models explain average risk, extreme value theory (EVT) is
essential for quantifying tail risks, for example like those associated with crashes, large
losses, or VaR exceedances (McNeil & Frey, 2000, Gkillas & Longin, 2020). The Peaks
over Threshold (POT) method fits a Generalized Pareto Distribution (GPD) to the
excesses over a high threshold u:

Y
P(X>x|X>u)=(1+§%) L x>u (24)

where: & is the shape parameter which controls the heaviness of the tail, § is the
scale parameter. The Higher & implies fatter tails and higher risk. In this study, EVT
is used to model extreme losses in crypto returns, especially during periods of extreme
sentiment (Gkillas & Longin, 2020).

2.5 Local Volatility Models: A Functional Alternative to Stochastic Volatility

(Future work)

This thesis mostly treats volatility as a random, time-varying process, like in
GARCH or regime-switching models. But another common approach sees volatility as
a fixed function of price and time. This is called local volatility, where variance is
written as o (S, t) and modeled with functional approximations.



Although this method is most applied in option pricing contexts, its structure
provides useful insight into how volatility might depend systematically on both asset
price levels and time horizons. One of the early and widely discussed formulations,
introduced by (Hull & White, 1987), and (Daglish et al., 2007), and these models’ local
volatility are described as:

o(S,t) = ag + a; In(S/Sy) + a5 In?(S/Sy) + a3(T — t) + a4(T — £)? + a5 In(S/S,)
(T—t) +agIn(S/Sy) (T—1) (2.5)

This equation captures how volatility can shift with changes in log-moneyness (price
relative to a base level S, and time to maturity. Alternative forms normalize the price-
time interaction, such as:

In(S/S In(S/Se)\* In(S/Se)\’

S/ 0)+b2< s/ o)> +b3< S/ 0)> 2.6)
VT —t T—t VT —t

More generalized versions allow even more flexible fitting across market conditions,

especially for modeling volatility skew or smile:

In(S/Sy) In(S/So) \* In(S/Se) \*
o(S,t) =co+ ¢4 <(T——t)210> +c, <(T——t)(210> + c3 ((T——t)(z%> (2.7)

O_(S, t) = bo + b1

Finally, for skew and smile modeling, nonlinear functional approximations are used:

O'(S, t) = 0_ATM(t) + O_skew(t) tanh(Yskew(t) ln(S/SO) - eskew(t)) (28)

6(S,1) = Ogmite () (1 = sech(Yyuite(£) IN(S/S0) = Bumite(©) ) (2.9)

Although this thesis does not implement local volatility models directly,
understanding these formulations helps frame the broader landscape of volatility
modeling. They highlight how volatility can be estimated using price and time-based
functions an approach that differs from the stochastic and sentiment driven models used
in this study.

2.6 Summary and Research Gap

The existing literature shows significant progress in modeling volatility via
GARCH extensions, incorporating behavioral sentiment variables and modeling regime
switches. However, a unified framework that integrates sentiment, volatility states, and
tail risk modeling under one system is rare, especially in the crypto context. This thesis
contributes by jointly estimating GARCH-X, EVT, and MS-GARCH models with real-
time sentiment data, tested across four major cryptocurrencies.



3. Methodology

3.1 Sentiment Data

To explore the link between investor sentiment and market volatility, this study
focuses on high-frequency behavioral data paired with daily log returns from January
1,2020, to June 3, 2025. While platforms like Twitter, Reddit, or Google Trends provide
a wealth of raw information, working directly with this data can be quite difficult due
to API restrictions, messy formats, and inconsistent timing. Instead of manually
collecting and cleaning data from multiple platforms, we used LunarCrush, a platform
that aggregates crypto-related sentiment into clean, ready-to-use time series.

Through LunarCrush’s API, we collected hourly data on a range of indicators:
Galaxy Score (which combines social engagement and market activity),
Bullish/Bearish sentiment scores (counting positive and negative posts), Reddit Scores,
Social Volume, and OHLCV market data. Using Python, we pulled and cleaned the data,
converted timestamps to UTC, and structured the results into pandas DataFrames.

For most modeling purposes, especially GARCH and EVT, we used daily
aggregated values. But for more detailed analysis, such as regime-switching or intraday
forecasting, we preserved the original hourly frequency.

3.2 Asset Data

This study focuses on four cryptocurrencies, chosen not just for their popularity
but also for how differently they tend to react to market sentiment. Bitcoin (BTC), as
the most widely recognized and institutionally adopted crypto asset, serves as a natural
benchmark. Ethereum (ETH), on the other hand, plays a major role in decentralized
applications and smart contracts, often reacting to technical events like protocol
upgrades. Dogecoin (DOGE) represents a unique case. Its meme driven and extremely
sensitive to social media trends and viral moments, making it ideal for studying
sentiment driven price swings. Lastly, Chainlink (LINK) is included as a more neutral
asset with a smaller retail presence, helping us test how models behave when sentiment
has less visible influence.

By working with this mix of assets ranging from highly institutional (BTC) to
highly speculative and retail driven (DOGE) we’re able to look at sentimental effects
from different angles. This setup allows for a more balanced and meaningful
comparison when applying the same volatility and risk models across all four assets.

3.3 Data Preparation

Once the data was retrieved, several transformation steps were applied to prepare



it for modeling. First, we constructed key input features for each asset. Then we collect
continuous sentiment variables which include Galaxy Score, Bullish, Bearish, and
Reddit metrics. After that we standardized this data by using z-scores to remove scale
differences and ensure stationarity. This transformation helps avoid bias when
combining features with different magnitudes:

Xit — X,
Ziy = M forie {galaxy, bullish, bearish, reddit} (3.1)

i

To account for short-term temporal effects, we added one hour, and two hour lagged
versions of the sentiment indicators. These help the models detect possible causal
relationships between past sentiment and present-day volatility:

{ Bullish,_,, Bearish,_y, Galaxy, ,} - o7 (3.2)

In addition, a binary panic dummy variable was created to flag unusually negative
sentiment events. Specifically, a day was flagged as "panic" if the standardized bearish
sentiment exceeded 2 or Reddit sentiment dropped below -1.5. This simple rule allowed
us to construct regime indicators that were later used in both Markov-switching models
and conditional volatility equations:

Dtpanic = {1,if Zpeqrisn,t > 2 01 0, Zpeqair, t < —1.5 otherwise (3.3)

Since the raw LunarCrush data was recorded at an hourly frequency, we needed to
resample and aggregate it to daily frequency for most of the GARCH and EVT models.
This was done using either the daily maximum (for peak sentiment signals) or volume-
weighted averages (for smoother metrics). For example, the daily bullish sentiment was
computed as the maximum hourly value within each trading day, while the Galaxy score
was averaged across the day:

. : 1
Bullishg,;, = I’;neziI):(Bulhshh), Galaxy, ;. = @};t Galaxy, (3.4)

Where H; denotes all hours within trading day t

Finally, all features including sentiment, market returns, and lagged indicators were
merged into a single master DataFrame. This panel was indexed by using a multilevel
structure which is based on asset symbols and timestamp (UTC), meanwhile, the
missing values were conservatively forward filled to ensure continuity. The resulting
dataset provided a clean, synchronized time series for each asset which are ready for
modeling across GARCH-X, regime-switching, and tail risk estimation frameworks.

3.4.1 Modeling - Overview

This chapter follows a layered modeling strategy designed to gradually capture the



complexity of volatility and tail risk in cryptocurrency markets. Comparing with
assuming a single model from the outset, we start with baseline volatility models
GARCH and EGARCH to account for standard volatility clustering and asymmetry.
When diagnostic checks reveal persistent autocorrelation, asymmetry, or unexplained
conditional variance, we introduce additional complexity in stages. First, sentiment-
augmented models such as GARCH-X and EGARCH-X incorporate lagged indicators
like social volume or bearish signals. If volatility appears to switch between distinct
states, we then apply a two regime Markov switching GARCH (MS-GARCH)
framework, where the transition probabilities are influenced by observed sentiment
patterns. Finally, to address residual fat tails that conventional models fail to capture,
we employ Extreme Value Theory (EVT) on standardized residuals which allow us to
model tail risk under both calm and panic regimes.

Each modeling layer is evaluated through a consistent selection process. Statistical
adequacy is first tested using the Ljung-Box Q-statistic (Equation 4.23), ARCH-LM
test (Equation 4.1.2), and sign-bias tests (Equation 4.2.5) to detect remaining structure
in residuals. Models that pass these checks are compared using the Bayesian
Information Criterion (BIC, Equation 4.2.1), and out-of-sample forecasting
performance is assessed with Root Mean Squared Error RMSE (Equation 4.26) and the
QLIKE loss function (Equation 4.27). For model comparison, Diebold—Mariano
(Equation 4.28) is used to formally determine whether one model significantly
outperforms another. When evaluating Value-at-Risk (VaR) performance, we apply the
Kupiec LR test for coverage accuracy (Equation 4.29), rejecting models with poor risk
coverage. If EVT is required, tail behavior is assessed using log—log survival
diagnostics and Generalized Pareto tail fitting (Equation 4.3 1-Equation 4.32) .This
evidence-driven approach ensures that each additional layer of complexity is only
introduced when clearly warranted by the data.

3.4.2 Modelling Strategy

Before estimating volatility models, we first filter the raw return series to remove
any potential autocorrelation. This helps avoid spurious ARCH effects that might distort
the volatility estimates (Box & Jenkins, 1976), To do this, we apply an ARMA(p,q)
model to the return series 1} :

=+ X b + X 8 + @, @ ~iid (0,63) (4.10)

The order pair (p,q) € {0,1,2}* is selected by the minimum Akaike information
criterion (AIC). Residuals @; are accepted only if the Ljung—Box statistic Q(20)fails
to reject the null of no serial correlation at the 5 % level. We henceforth set & = @;
and estimate the standard GARCH (P, Q) process to capture volatility clustering (Engle,
1982, Bollerslev, 1986):



P Q
0§=(x0+2aisf_i+2[3]-0§_j, a >0, o;, B; =0 (4.11)
i=1 =1

For the model to be weakly stationary, the condition; a; + Y; f; <1 must be
satisfied. We estimate the model using BFGS optimization and allow the innovations
€; to follow Gaussian, Student-t, or skewed-t distributions. The corresponding log-

likelihood function is:
T

£(0) = ) llogf (er/0sv) — logo]  (412)

t=1

We assess the model fit using Q(20) and ARCH-LM tests on the standardized
residuals Z; = €,/6; If the basic GARCH model fits well statistically but still fails to
capture important variations driven by sentiment, we extend the model to a GARCH-X

form by adding lagged sentiment variables to the variance equation (Conrad & Loch,
2015)

where x;_; is the lagged z-scored sentiment indicator as defined in (Equation (3.1)).
The joint null hypothesis Hy:§ = 0 is tested by Wald statistics. If the hypothesis is
rejected at 5 %, sentiment is retained; otherwise, we fall back to the baseline GARCH.
Next, we account for asymmetric volatility effects, where negative shocks often
increase volatility more than positive ones of the same magnitude (Nelson, 1991,
Glosten et al., 1993). Then we can apply for EGARCH-X model:

- \E) + 5%,y (4.14)

In here y < 0 indicates a leverage effect. If y is insignificant, but the Engle—Ng sign-
bias test still rejects symmetry, we use a GJR-GARCH-X model instead:

€t-1

logo? = w+ X}, Bilogol, +V(Et__1) +6<

Ot—1 Ot—1

of = ag + aref, + Y16t2—116t_1 <0+ B10f-q + 6x,1 (4.15)

If the residuals from these models still show signs of regime shifts or bimodal
distributions, we switch to a Markov-Switching GARCH-X (MS-GARCH-X) model.
This allows volatility parameters to depend on a hidden state S; € {1,2}:

atz'(st) = aést) + al(st)etz_l + ﬁl(st)atz_l + 6x;_1(4.16)

The latent state S; follows a first-order Markov chain with transition matrix
[pij]ijz . and p;; = Pr(S; =j | S;—4 = i), meanwhile this model is estimated via
EM algorithm using Hamilton filtering. We perform a likelihood-ratio test against the
GARCH-X benchmark; if the test statistic exceeds X3 o5 = 949, we retain the

regime-switching specification.



To estimate extreme risk, we apply Extreme Value Theory (EVT) to the
standardized residuals Z; = €,/6;. We extract the tail values above a high threshold u
(97th percentile):

X, =15 -u >0 (4.17)

By the Pickands—Balkema—de Haan theorem, X, follows a Generalised Pareto
distribution GPD(E, B):

-1/%
FX(x)=1—(1+E%)1, x>0  (418)

And the Parameters (&, )are estimated by maximum likelihood
Xi

B

From this we compute Tail risk measures derived as:

2(&,8) = —Nlogp — (1 + %)ilog (1 + ¢ ) (4.19)
i=1

_ § N _ VaR, PB-fu
VaRa—u+z[(N/n(1 ) 1], ES“_1—2+1—E (4.20)

We further test whether sentiment affects the heaviness of tails by splitting the sample
using the panic dummy variable D™, and re-estimating equations (4.18)—(4.20). A

likelihood-ratio test with 2 degrees of freedom is then used to test for significant
differences in (&, B) across sentiment states.

3.4.3 Statistical Adequacy

3.4.3.1 Information Criteria and Likelihood Ratio

As introduced in Equation (4.12) all models are estimated by maximum likelihood.
The fitness quality is assessed by:
AIC = —2lyae + 2k,  BIC = —2l0, + kInT  (4.21)
where 1,4, 1s the log-likelihood, k is the number of estimated parameters, and T is the
sample size. In nested models, our improvements are tested by:

LR = 2(lg = Lieswicted) ~ Xiegy (4:22)

3.4.3.2 Residual Whiteness

If the ARIMA pre-filter in Equation (4.10) was correctly specified, and the
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conditional variance captured appropriately (via Eq. 4.11 or 4.13). standardized
residuals should exhibit no serial correlation. We apply the Ljung—Box Q-test to
standardized residual residuals Z; = €;/6;, and the test statistics is:

mo =
Q(m) = T(T + 2) Z Tp—_hh on = ACF(Z;, h) (4.23)
h=1

Which is Failing to reject Hy(p > 0.05) at m=20 confirms no linear dependence
remains. (absence of autocorrelation)

3.4.3.3 Remaining Conditional Heteroskedasticity

The GARCH framework Equation (4.11) assumes that variance depends on past
squared shocks. If such dependence remains unexplained in residuals, then either

misspecification or asymmetry is present: By using ARCH-LM test on Z‘tz:

m
Zi=c+ Z NiZm,s tue (4.24)
i=1

Under H, (no remaining ARCH), TR? ~ x%,.A significant result indicates model
misspecification and prompts estimation of an asymmetry-aware model.

3.4.3.4 Sign-Bias (Asymmetry) Test

If Equation (4.11) or (4.13) fails to account for asymmetrical volatility response,
we expect sign-dependent residual patterns. we apply the Engle—Ng (1993) test (Engle
& Ng, 1993):

2 _— 2
z," =c+VYsSi-1Zi-1 Y V9Qr-1Z,-,” + v, (4.25)
where S;_1 = 1z <op and Q¢—1 = 1(z5<0}%—1 - Joint significance of ys and v

and (ys,Yq # 0) justifies the use of EGARCH or GJR-type models.

3.4.4 Forecast Accuracy

Even if residuals pass diagnostic tests under Section 3.5.1, it remains essential to
assess how well the model predicts out-of-sample volatility. Forecast accuracy serves
as a forward-looking test of model utility, particularly for financial decision-making
tasks such as dynamic hedging or risk allocation.

Using a rolling window of 1,000 observations, each model (from Equation 4.11 to
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4.15) is re-estimated daily to issue one-step-ahead forecasts O't/_1\|t2. These are

compared against realized volatility proxies to quantify predictive loss.

3.4.4.1 Loss Functions

We use two widely accepted loss functions: RMSE captures scale-sensitive errors
between predicted and realized conditional variances:

2 2
RMSE = |- Z(ot 02 )  (4.26)
test

t

QLIKE (Hansen & Lunde, 2005), robust to variance scale distortion, measures
relative forecast efficiency:

2
o o
QLIKE = zl Lreal _ (tTZea‘> - 1] (4.27)
test O't

In the end, Models with lower RMSE and QLIKE are retained for tail risk
evaluation

3.4.4.2 Diebold—Mariano Test

To formally test whether including exogenous sentiment variables (as in Equation
4.13—4.15) improves volatility prediction, we apply the Diebold—Mariano (DM) test to
compare loss differentials between models: For two competing models A and B with
loss Ly, Lpt define
d¢ = Loy — Lg: Under where

Hy:E(d)=0;DM=—2——  N(0,1) (4.28)

(ant\i (0))/Ttest

where f;(0) is the Newey—West estimate of the spectral density at zero. Rejection of
H, supports the statistical significance of the sentiment-augmented GARCH-X or
EGARCH-X layers.

3.4.5 Risk Adequacy

Having a volatility model that fits well in sample is a good start, but for real-world
risk management, what matters more is how well it performs at the extremes. In practice,
financial institutions care less about minor prediction errors and more about whether
the model can correctly anticipate large losses. That’s where Value-at-Risk (VaR) and
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Expected Shortfall (ES) come in. In this section, I examine whether the final
standardized residuals, defined as Z; = €,/6;, from the best-performing models,
accurately capture the empirical distribution of extreme losses.

3.4.5.1 VaR Back-testing

The first step is to test whether the number of VaR breaches matches what we would
expect statistically. For instance, at a 1% VaR level, we should see roughly 1% of
observations fall below the predicted threshold. Let N be the number of observed
violations over a test sample of T, days. The observed breach rate is: p = N /T,
and the unconditional coverage test is:

LRyc = —2In[(1 — )" Ma] + 2In[(1 = p)T VpN| ~x}  (4.29)

If this test fails (for example, like too many or too few violations), the model may be
underestimating or overestimating tail risk.

3.4.5.2 Independence and Conditional Coverage

Even if the overall number of breaches looks acceptable, we also want to know
whether those violations are randomly distributed. If they tend to cluster, it suggests
that the model is missing some form of regime switching or time-dependence (e.g.,
failure of Equation 4.15 or 4.16):

We construct a 2x2 transition matrix of the hit sequence (I;_q,1;) with n;; which
implies the number of transitions from state i to state j. The independence test is then:

(1-p)"oopno1(1—p)t10pnii

(1-Pg)00p, 0t (1-p7)"10py 11

LRIND =—-2In

2 . ~ _ _ TNoj

Xxi with p, = vy and the total
conditional coverage test is:
LRCC = LRUC + LRIND (430)
If LR(cis significant, it means the model fails both in breach frequency and clustering,
and further structure—such as regime-switching volatility—might be necessary.

3.4.5.3 McNemar Test (Model-vs-Model)

Sometimes two models may pass the same back testing metrics but behave
differently in terms of which specific days they get wrong. To test whether two
competing models produce statistically different VaR violation patterns, we use the
McNemar test:
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(no1 — n10)2
2 =~y 4.31
XMcN Moy + 1o X1 ( )

where ny; and ny, represent the number of times only one of the two models
produces a breach. A significant result indicates that the models behave differently in
practice—even if they seem similar on the surface.

3.4.6 Tail-Fit Diagnostics

The EVT layer introduced in Equation (4.17-4.20) aims to model standardized
residual exceedances using Generalized Pareto Distributions (GPD). We now assess
whether these tail assumptions are statistically valid.

3.4.6.1 Anderson—Darling Test for GPD

To test the goodness-of-fit of the GPD, we apply the Anderson—Darling test to the
standardized exceedances X; = |Z,| — u and the test statistic is:

a2 =-N-138 [@i-D(InF (X)) +In(1-F(Xaiop)))|  @32)

A high AZstatistic suggests the GPD doesn’t fit the data well—either because the
threshold is set too low or the data’s tail structure is not stationary.

3.4.6.2 Likelihood-Ratio for Panic vs. Calm

The results indicate that the GPD may not provide a good fit to the data in certain
cases. This could be due to the chosen threshold being too low, or because the tail
behavior of the data is not stable across time. To examine how sentiment-driven states

affect the distribution of extremes, we use the panic indicator D} M from Equation

(3.3) to split the standardized residuals by regime and re-estimate the GPD parameters
(§,B) within each state. To formally test whether the tail structure differs between
regimes, we compute a likelihood-ratio test comparing a model with pooled tails (log-

likelihood ljyiy) to a regime-specific model with separate likelihoods Lypic and legim
so the test statistic is given by:
A= _z(ljoint - 1panic - lcalm) ~ X% (433)

A significant test result suggests that tail risk is regime-dependent—implying that
sentiment shifts not only influence volatility but also reshape the heaviness of the
distribution tails. This provides further justification for including panic indicators in
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both the volatility and risk modeling components.

3.5. Deployment and Operational Integration

While the previous sections focused on statistical validity, in practice a model is
only as good as its ability to function reliably and consistently in a live environment.
This chapter describes how the final volatility and tail risk model is developed and
updated in real time. Following the "Deployment" phase of the CRISP-DM framework,
the section shows how sentiment, price, and Google Trends data are piped into the
system, how the model is reconstructed daily, and how the outputs can be used in risk
monitoring. The entire setup is broken into six key components.

3.5.1 Data Pipeline

To enable real time forecasting, we built an automated data pipeline that brings
together three key inputs: hourly price data, sentiment scores from LunarCrush, and
search interest levels from Google Trends. These sources are collected through
scheduled Python scripts that retrieve the latest values, then we format them
consistently, after that we store everything in UTC. In the code, prices are saved as
floats, count-type variables as integers, and all timestamps follow the ISO 8601
standard. All the daily versioned snapshots are also stored to ensure that any past
forecast can be fully reconstructed using the exact inputs available at the time.

Occasionally, we observe irregular spikes or drops in the data, which are usually
during periods of low trading activity. Then, to limit their impact without discarding
potentially meaningful information, we cap extreme values beyond ten standard
deviations from the mean. If there are brief gaps in the data, we can fill them by carrying
forward the most recent value. For the longer interruptions, we can do further analysis
to set data be flagged and excluded

All in all, these steps are more important than routine preprocessing. They are
essential to ensure that the input data meets the assumptions of the statistical models
which can be used in later sections, for example, in GARCH and EVT, which require
clean, stable time series to deliver reliable results.

3.5.2 Model Refresh Cycle

Unlike static models estimated once for academic demonstration, real-world
volatility monitoring requires constant recalibration. To keep the system responsive to
new data without overfitting, we adopt a rolling estimation window of 1,000
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observations—approximately five years of hourly returns. Every day at 00:00 UTC,
after the final sentiment updates are received, the entire model is re-estimated. The
pipeline first selects the best ARIMA(p,q) filter based on AIC, then fits the main
volatility model—either GARCH-X or its regime-switching variant—using quasi-
maximum likelihood. Once the conditional variance series is generated, the system
extracts the top 3% of residuals and fits a Generalized Pareto Distribution to capture
tail risk, as outlined in Equations 4.17—4.20. Convergence is checked using the gradient
norm and the condition number of the Hessian matrix; if the re-estimation fails to meet
stability thresholds, the system falls back on the previous day's model and logs the event.
This way, the models stay up to date without introducing noise or instability from
irregular data or numerical errors.

3.5.3 Dissemination of Forecasts

To make the model outputs operationally useful, the system produces three daily

forecasts for each asset: the next-day conditional Variancecfg+1It ,the 99% Value-at-

Risk VaRgq 41}, and the Expected Shortfall ESggyq)c .These values are stored in a

time-series database indexed by asset and timestamp which are automatically fed into
a web-based dashboard. The dashboard presents several key indicators in a visual

format. One panel tracks the movement of G§|t—1 , which is the realized returns

compared to the forecasted Value-at-Risk (VaR) band. Another shows that a simple
traffic-light alert system, which can turns red if the Kupiec test (Equation 4.29 ) fails
for two days in a row .This design helps us to make the risk forecasts easier to
understand, especially for some non-technical users who need clear signals without
digging into code or statistical formulas.

Forecasts from the model are not just academic outputs, they feed directly into
trading and risk management decisions. Two specific rules ensure that predictions
translate into action. First, following the FRTB approach, we define the daily capital
buffer K; on the model’s tail-risk forecasts:

K, = max{ 1.5 X ESgg, 3 X VaRge}  (5.1)

This ensures the capital buffer increases when the model detects tail risk. Second, we
implement a trade-throttling mechanism based on regime-switching probabilities. If the
MS-GARCH-X model (Equation. 4.16) estimates an opportunity which is greater than
80%, it means that the system is in a high volatility regime, then all market orders are
halved and only limit orders are allowed for the next 24 hours. This rule is going to
activate roughly ten times a year, which can target stress periods to avoid overreaction.
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3.5.4 Model Governance and Oversight

Given the model’s complexity and its central role in operational decisions, we
maintain a governance structure. These structures can track performance, ensure
compliance, and support transparency. Every day, the system computes back testing
statistics like the Kupiec and Christoffersen tests (Equation 4.29—4.30) for VaR and ES,
and logs these results monthly. If either statistic crosses the 99% threshold more than
twice in any six-month window, it triggers a flag for escalation.

We also monitor model drift. We are using a control rule based on the Diebold—
Mariano test (Equation. 4.28)which can compare the model’s variance forecasts with
those from a standard EWMA (0.94) benchmark. If the model performs significantly
worse (p < 0.05) for 20 consecutive days, a formal model review is launched.

Each day’s estimation is saved with full metadata like parameter values, software
versions, and some random seeds which can help us to ensure reproducibility. Finally,
an external validation is conducted once a year, which will generate an independent
team who can replicate the model using the same data and configuration

3.5.5 Quantitative-Trading Applications

By the daily forecasts Utzﬂltl VaRog t41)t,ESggt41)c 1n place and validated, we

can now use them in the real time trading strategies. These outputs feed directly into
portfolio allocation, trade sizing, market making rules, and back testing. The different
layers of the model, especially the volatility and tail-risk modules from Section 4 are
what allow these trading rules to adapt to changing market conditions.

(a) Volatility-Targeted Allocation (“Vol-Parity”)

The conditional variance forecast from GARCH-X or MS-GARCH-X (Equation
4.13-4.15), helps us to set how much to invest in each asset. The goal for this process
is to keep the total portfolio risk steady, even if individual assets get volatile. For
example, if we want total portfolio variance to stay at 10% annually, then the weight
for each asset is:

. P . .
Wey1 (i) = —=———, with ZIiV=1 we (D) =1 (5.2)

2
Nop, gt @

And this can help us keep the overall risk budget fixed.
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(b) Sentiment-Conditioned Directional Signal

By using the z-scored sentiment features from Section 3.3, we define a daily
sentiment imbalance:

At = Zpyllish,t — ZBearish,t (53)

After trimming extreme values (£3c), we map A, into a trading signal, and here
we are using a sigmoid function:

Apyq = B sigm(4y), sigm(x) = -1 (54

1+e™*
But we still need |a¢,1| < 3% to avoid overreacting. Then we are going to change this
directional signal, and it can be translated into a position size, which is scaled by

forecasted volatility:
Qe+

(5.5)

Tey1 =

2
20 t+1|t

So, if sentiment is strong but volatility is high, the position will be smaller to
manage risk.

(c) Regime-Switch Market-Making
When the model detects shifts between calm and turbulent regimes, we adjust our

quoting and inventory accordingly. The MS-GARCH-X model gives us a filtered

probability: pf ot — pr( S; = high | F,) which is used to adjust spreads:

Spread, = base + k pe" (5.6)

The spread adjustment is based on a linear rule, which with a base spread of 10 basis
points and a slope coefficient k=15 basis points. When volatility is expected to rise, the
model automatically widens the spreads in response. In addition, if the probability of

entering a high-volatility state p? 2 exceeds 0.8, the inventory limits are cut by 50%,

and the purpose is to reduce exposure during periods of market stress.
(d) Transaction-Cost Model

To make our backtests more realistic, we factor in execution costs. The cost of
trading is modeled as:

2
TC: =yo +v1lal + 72 ﬁvt (Vo v1,v2) = (24,15 bps  (5.7)

where q; istrade size and ADV is 10-day average dollar volume of 10 days. This helps
us to account for slippage and impact, especially on large trades.
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(e) Back-Test Metrics

To evaluate the performance of the proposed strategies, we adopt a walk-
forward validation framework. The model is estimated every 250 trading days, and its
out-of-sample performance is assessed over the subsequent 250-day period. The
evaluation focuses on three key metrics:

We assess the performance using three core metrics. The first one is volatility
forecast error:

1 . 2
RMSEyq, = \/;Zt(cﬂt—l - Ggeal) (5.8)

which tells us how closely the model’s predicted volatility matches what happened now.
A smaller RMSE means that the model is better at anticipating market turbulence. Then
the second metric is the hit ratio,

H=2ed (s

which captures how often the strategy gets the market direction right. More specifically,
we check whether the model's position 7, is on the same side as the realized return r;
. Lastly, we look at the Sharpe ratio:

R
JVar(R)
which balances returns against risk. This is a standard way to evaluate performance in
finance, and it tells us how much return the strategy generates per unit of volatility. We
annualize this measure so it’s easier to compare across different periods or models

SR =

(annualised) (5.10),

To check whether these results are better than a basic benchmark, we apply the test
proposed by Giacomini and White (2006). In our case, the benchmark is a rolling
EWMA based forecast. If the Sharpe ratio from our model is significantly higher at the
5% level, we consider the improvement meaningful and the strategy statistically robust.

4. Empirical Results

In this chapter, I look at how well different models help explain risk and volatility
in major cryptocurrencies, specifically in Bitcoin (BTC), Ethereum (ETH), Chainlink
(LINK), and Dogecoin (DOGE). The modeling process follows the same steps
described earlier in Chapter 3, Chapter 4 and Chapter 5. For each coin, I first test a few
standard GARCH setups like (1,1), (1,2), (2,1), and (2,2) and stick with the one that
gives the best fit. Once that’s set, | move on to test versions that include sentiment data
to see if it adds anything useful.
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4.1 How Return Distributions Change Around Sentiment Shocks

Figure 1 shows how the size of returns tends to shift when sentiment gets extreme.
For each asset, I compare the distribution of absolute returns during the £5-day window
around a sentiment shock (the blue line) with the distribution during normal periods
(the orange dashed line).

Across the board, there's a slight shift in the blue line toward the right which means
that returns tend to be a bit larger when sentiment is unusually high or low. The effect
is most obvious for ETH, the blue tail is clearly fatter in the 95th percentile, which
suggests more extreme price moves. For DOGE and LINK, the shift is more subtle,
mostly showing up at the very ends of the distribution.

Even though the differences aren't huge, they’re consistent across assets. This gives
a hint that when sentiment spikes, markets tend to move more, especially at the
extremes. Although It's a small move, it still tells us that crowd behavior might be linked
to bigger price swings.
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Figure 1 — Distribution of absolute returns — event vs control windows
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To check whether the shifts in return distributions we saw earlier are statistically
meaningful, I compared a few key stats between the sentiment event windows and
normal control periods. Specifically, I looked at the average absolute return and
standard deviation and ran a Kolmogorov Smirnov (KS) test to see if the two
distributions differ in a statistically significant way. I also included Cohen’s d to get a
sense of the effect size.

The results are summarized in Table 1. For Ethereum (ETH), there’s a noticeable
increase in volatility during sentiment shocks: which have average absolute returns rise
by about 7 basis points, and the KS test strongly rejects the idea that the distributions
are the same (p <0.0001). The effect size (Cohen’s d) is also the largest among the four
assets. Bitcoin (BTC) shows a smaller but still statistically significant effect. For
Dogecoin (DOGE) and Chainlink (LINK), there are slight increases in return dispersion,
but the differences are more subtle.

Table I - COMPARISON OF RETURN DISTRIBUTIONS BETWEEN EVENT AND CONTROL WINDOWS
DURING SENTIMENT SHOCKS

Asset |Window|Mean |r| (bp)||St.dev. (bp) I;S__vzite Cohend

|ETH | Event | 627 | 846 | <10 | 009 |
Control 55.4 72.5

BTC | Event 55.1 69.3 <10 | 0.03

| |control] 523 | 658 | H |

DOGE| Event 82.6 1094 | < 10™* | 0.02
Control 78.9 103.6

LINK || Event | 698 | 912 | <10 | 0.02 |
Control|  66.4 87.7

Notes: Returns are in basis points (bp). The KS test assesses the equality of return distributions. Cohen’s d indicates

effect size. Values are based on 1-hour returns around sentiment shock windows.

4.2 Baseline Models: GARCH

4.2.1 Return-and-Sentiment Modelling Performance

Next, I estimated a set of EGARCH-X models as per Equations (4.10)-(4.20). to
explore how well they capture volatility dynamics, especially with sentiment added.
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Table II - ESTIMATED EGARCH-X MODEL COEFFICIENTS AND MODEL PERFORMANCE METRICS

Asset || © (X10°) o B v (Iz]) a + B || Log-lik ||AAIC
ETH (égg) (8832) (gggg) 0.044 (0.010){/0.956[168,371|-17.6
BTC ((1)?8) (88(6)2) (833;) 0.031 (0.009)||0.962{/152,642|—-11.5
DOGE (32(7)) (8(1)83) (giﬁ) 0.012 (0.014){/0.921|(109,793 || -3.4
LINK ((2);(5)) (88?);) (83?(1)) 0.018 (0.013)(|0.915|(123,911 || 4.2

Notes: Standard errors are shown in brackets. Bold means the result is statistically significant at the 1% level.

These estimates suggest that sentiment does have explanatory power for volatility,
especially for ETH and BTC. The y term, which captures how much volatility responds
to sentiment, it is both positive and statistically significant for those two coins. This
indicates that when sentiment gets stronger, volatility tends to rise. In contrast, the effect
is weaker and not significant for DOGE and LINK. All models remain stable (a0 + § <
1), and the addition of sentiment improves model fit as shown when decreased in AIC
values.

4.2.2 VaR Back-testing Results

Using the models, I then generated 1-day ahead of 99% Value-at-Risk (VaR) to
forecast and compare them with actual returns. The idea is like that: we count how often
real returns fall outside the predicted VaR range and these outside values are called
"violations." Ideally, violations should occur about 1% of the time.

Table III - VAR VIOLATION TESTS BEFORE AND AFTER INCLUDING SENTIMENT IN GARCH-X

Asset ViOIaﬁ(;XE(C%i)CH - Expected Kulc‘)/i;lc p- ChriStsz‘;rsen p-
ETH 2—0 1 0.86 0.80
BTC 1 -0 1 0.99 0.94
DOGE 1—-1 1 0.58 0.22
LINK 11 1 0.55 0.18

Notes: "Violations" indicate the number of Value-at-Risk (VaR) breaches at the 1% level, comparing a baseline

GARCH model with a sentiment-augmented GARCH-X model. The Kupiec test evaluates unconditional coverage,

while the Christoffersen test evaluates both coverage and clustering of violations.
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The GARCH-X model clearly improves performance for ETH and BTC. After
adding sentiment, the number of violations drops to zero, and both Kupiec and
Christoffersen tests show p-values above 0.8 which means there's no evidence that the
model is underestimating risk.

For DOGE and LINK, the adding sentiment doesn't change much. Both still have
one violation, and the Christoffersen test suggests that these violations might not be
randomly scattered, so it possibly reflects regime effects which are not captured by a
single regime model.

Overall, these results support the idea that sentiment data can meaningfully
improve risk prediction for more established assets like ETH and BTC, while its
usefulness is more limited for highly speculative coins like DOGE or infrastructure
tokens like LINK.

4.3 Markov-Switching GARCH model

To explore how sentiment affects volatility in different market conditions, we
implement the Markov-Switching GARCH model from Function_4.16. The model
assumes the return process switches between two hidden states: a normal-volatility
regime and a high-volatility ("panic") regime. These switches are not random. Instead,
the transition probabilities depend on lagged sentiment, modeled using a logistic
function:

exp! (yo +v12)
1+exp! (Yo +7v12)
where p;,(z) is the probability of moving from normal to panic, and z is the lagged
sentiment score. To link sentiment shocks to volatility regime changes, we also estimate
a smoothed high-volatility probability P;(High ), which is regressed on a "fear"

|p12(2)| = (6.1)

dummy ,FP"™ = 1 (zem<5-pery through the logit transformation:

P, (High o)
%81 —P,(High o)
This approach captures nonlinear sentiment effects and reflects regime shifts driven by
severe crowd pessimism.

= Bo + B F™ (6.2)

4.3.1 Two—State HMM-GARCH Specification

A Gaussian Hidden-Markov model with two variance states is fitted to each return
series, with state-dependent GARCH (1,1) dynamics and Student-t innovations (v>10).
The Hamilton filter delivers the smoothed probability P;(High o); a logit link

P, (High o)

— panic
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relates that probability to the “panic” dummyF,” anic 1z, <5-pet)-

v - oy L= 03461
z = -14.73, p = 0.000

Regime probability by sentiment decile . Regime probability by sentiment decile
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Figure 2 - Regime Probability by Sentiment Deciles
To understand how sentiment relates to volatility regimes, we estimate the
probability of being in the high-volatile (panic) state for each asset and group the results
by sentiment deciles. As shown in Figure 2, lower sentiment levels are clearly linked to
higher chances of being in a panic regime for ETH and BTC. For these two assets, the
pattern is especially pronounced: when sentiment is in the bottom decile, panic

probability spikes. DOGE shows a weaker relationship, while LINK appears largely
unaffected by changes in sentiment.

To quantify this relationship more precisely, we run a logistic regression where the
dependent variable is the estimated probability of being in the panic regime, and the
main predictor is a dummy for “fear days.” Results are shown in Table IV. ETH shows
the strongest effect which states that on fear days, the probability of being in panic
jumps by nearly 24 percent. BTC and DOGE also show statistically significant
increases, though smaller in scale. LINK, on the other hand, doesn’t seem to react at all,
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its panic regime probability barely changes on fear days.

Table IV - Effect of Fear on Panic-Regime Probability

Asset | i (fear) &= SE | t-stat | p-val || Odds-ratio || Baseline P || Panic P || AP (pp)
ETH || +0.98 £0.04 | 22.5 || <10°'° 2.66x 343% | 58.1% || +23.9
BTC || +0.20+£0.04 | 4.6 | 4x10° 1.22x 36.2% || 41.0% || +4.8

DOGE| +0.29+0.11 || 2.8 | 6x107 1.34x 25.6% || 31.5% | +5.9
LINK | +0.03+0.05 | 0.7 | 0.51 1.03x 33.8% || 33.1% || —0.7

Notes: Results are based on logistic regression of panic regime indicator on a fear-day dummy. AP (pp) represents

the change in predicted panic probability on fear days (in percentage points).

To see whether this rise in panic regimes leads to higher actual risk, we look at how
often extreme returns, especially at top 10% absolute returns. Table V compares these
tail-event frequencies during panic and calm states. For ETH, the difference is striking
panic days see a 13.1 percentage point increase in extreme return probability. BTC and
DOGE also show meaningful jumps, while LINK’s difference is small but still
statistically significant. On the flip side, periods of euphoric sentiment are linked to
slightly lower tail risk, especially for ETH and BTC.

Table V - Panic vs. Calm: Probability of a Top 10% Tail Event

Asset Panic A Tail p-value Euphoria A Tail p-value
ETH +13.1pp 29 %10 —2.7pp 1.3x10*
BTC +2.9pp 2.8%x10° —2.3pp 49 %10
|DOGE | +45pp | 1.0x10° | — I —
LINK +1.2pp 3.4 %102 — —

Notes: Panic A Tail reports the difference in the probability of a top 10% absolute return during panic vs. calm
regimes. Euphoria A Tail reflects changes in extreme return frequency on euphoric sentiment days. Values are in

percentage points (pp).

ETH again shows the strongest effect, with a 13.1pp jump in tail-event probability
on fear days. BTC and DOGE follow with moderate increases and positive sentiment
(“euphoria”) seems to slightly reduce tail risk for ETH and BTC.

Next, we quantify tail risk using the Generalized Pareto Distribution (GPD) applied
to the residuals within each regime. Figure 3 presents regime-specific 99% Value-at-
Risk (VaR) and Expected Shortfall (ES) estimates. Again, ETH stands out: its ES nearly
doubles in panic. BTC and DOGE follow the same pattern. This confirms that sentiment
not only helps predict the onset of turbulent regimes but also maps to more extreme risk
levels once a panic regime
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99% Expected Shortfall

99% Expected Shortfall
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=== Tail-Simulation Summary === === Tail-Simulation Summary ===
Regime xi heta VaR_99% ES_99% Regime X1 beta VaR_99% ES_99%
0 Normal 0.2018 0.0109 0.1105 0.1409 0 Normal 0.1089 0.0086 0.0744 0.0889
1 Panic 0.2306 0.0152 0.1516 0.2208 1 Panic 0.1208 0.0163 0.1245 0.1564
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== Tail-Simulation Summary —— Tail-Simulation Summary ===
Regime xi beta VaR _99% ES_99% Regime & beta VaR 99% ES 99%
0 Normal 0.3183 0.0151 0.1835 0.2701 0 Normal 0.1663 0.0069 0.0656 0.0819
1 Panic 0.643¢ 0.0233 0.7416 1.7078 1 Panic 0.4374 0.0105 0.1704 0.3140

Figure 3 - Regime-Specific 99% Expected Shortfall (ES) Under Normal and Panic Regimes

Then, we examine the average conditional volatility o; under each regime. Figure
3 plots the distribution of o, values from simulated samples. Across all four assets,
volatility is clearly higher in the panic state, as expected.

Together, these results demonstrate a dual-channel structure: continuous variance
is weakly linked to sentiment (as in GARCH-X), but transitions into high-volatility
states. These states are driven by sentiment shocks which are the primary source of
extreme risk.

4.4 Tail Behavior under Regime-Specific GPD

Figure 4 compares the survival functions of return distributions in normal versus
panic regimes, which are plotted on a log—log scale to highlight differences in the tails.
Across all assets, the panic regime shows clearly fatter tails. But ETH and DOGE stand
out, they have substantial divergence between the two lines, especially in the right tail.
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Tail Survival Curve (log-log)
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Figure 4 - Log—Log Tail Survival Curves in Normal vs. Panic Regimes

These visual results are backed by the tail risk estimates which are shown in Table
VI, where we fit a Generalized Pareto Distribution (GPD) to the standardized residuals
within each regime. The shape parameter & increases in all assets during panic periods
and it indicates heavier tails and more extreme risks.

Table VI - TAIL RISK ESTIMATES USING GPD UNDER NORMAL AND PANIC REGIMES

Asset Regime 3 B VaRgg ESoq
ETH Normal 0.1089 0.0086 0.0744 0.0889
Panic 0.1298 0.0163 0.1245 0.1564
BTC Normal 0.1663 0.0069 0.0656 0.0819
Panic 0.4374 0.0105 0.1704 0.3140
DOGE Normal 0.3183 0.0151 0.1835 0.2701
Panic 0.6434 0.0233 0.7416 1.7078
LINK Normal 0.2018 0.0109 0.1105 0.1409
Panic 0.2306 0.0152 0.1546 0.2208

Among all the assets, DOGE has shown the most dramatic increase in tail risk under
panic, and we can see its Expected Shortfall jumps by more than 500%. BTC and ETH
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also display substantial increases in both VaR and ES, while LINK’’s rise is more muted
but still evident. In every case, the § parameter increases in the panic regime, which
confirms that the tails become significantly heavier.

Figure 4.7 complements these results by showing the conditional volatility
distributions across regimes. For BTC and DOGE, the entire distribution shifts to the
right in panic states which indicates the sustained higher volatility. ETH also shows a
visible shift, which matches the increases in tail risk metrics observed above.

This section wraps up the risk modeling framework by showing how each layer
contributes to understanding extreme movements in crypto markets. It starts with
GARCH-X (Equations 4.13—4.15), where sentiment indicators help fine-tune daily
volatility forecasts. Then, when the market enters a different volatility regime, it will
be captured by the Markov-switching model in Equation 6.3 and it will show the
distribution of returns changes. This method shows that rare events become more
frequent, especially during panic periods. And we can see this data particularly strong
in ETH and BTC, where both Value-at-Risk and Expected Shortfall increase sharply
(Figure 3). To properly capture these extremes, we apply Generalized Pareto
Distributions (Equations 4.17-4.20) to the tails of standardized residuals within each
regime. The survival plots in Figure 4 and tail risk estimates in Table VI confirm that
panic regimes consistently produce heavier tails. So overall, this modeling stacks
GARCH-X for daily volatility, MS-GARCH for regime shifts, and GPD for the tails,
and all of it will work together to quantify how fear turns into actual financial risk, not
just in average levels but in extreme outcomes.

4.5 Residual Diagnostics and Regime-Specific Goodness-of-Fit

4.5.1 Methodology and Theoretical Background

To check whether the models truly capture the data dynamics, we run diagnostics
on the standardized residuals which are grouped by regime. By using the regime paths
inferred from the HMM-GARCH model (equation 6.3), we can see the returns are
standardized as shown in 6.4
t — Mt

t
where 6; is the conditional volatility filtered through the smoothed probabilities

(Functions 6.1-6.3), and after that, we can look at the residuals separately in each
regime

& =

(6.4)

We are using several visual checks: to begin with, we plot standardized and squared
residuals over time to see if there's leftover autocorrelation, then we use quantile-
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quantile plots against fitted Student-t distributions via qq_plot t distribution(), after
that we compare simulated volatility from simulate volatility HMM() with actual
realized paths. These diagnostics help us to confirm whether the models behave well
not just globally, but within each volatility state, especially in how they represent the
tail, and this is critical for the GPD-based forecasts made in Section 4.6.

4.5.2 Low-o Regime Residuals: Stable and Symmetric
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Figure 5 - Low-Volatility Regime Residuals: Time Series and Distributional Properties

In the low-volatile regime, residuals behave as expected stable over time with weak
autocorrelation. Most squared returns stay small, rarely spiking. The Q-Q plots show
that the residuals match the student-t distribution well, especially for ETH and BTC.
ETH in particular tracks theoretical quantiles closely. DOGE and LINK still show some
extra tail mass, likely reflecting occasional bursts of retail-driven activity that slip
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through even during calm periods. Overall, the GARCH (1,1)-t model does a good job
which captures how returns behave when markets are quiet.

4.5.3 High-o Regime Residuals: Tail Deviations and Heavy Extremes
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Figure 6 - High-Volatility Regime Residuals and QQ-Plots

Things change in the high-volatile state. The residuals now show large, frequent
spikes, especially in BTC and DOGE, and squared returns stay elevated for longer
stretches. Q-Q plots make it clear that the student-t assumption breaks down in this
regime. For BTC and DOGE, the empirical tails go far beyond what the model expects.
ETH shows less severe misfit but still exhibits some asymmetry. Interestingly, LINK
stays relatively well-behaved even under stress, which may suggest it reacts less to
sentimental extremes. These findings are what motivate us to shift to a Generalized
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Pareto Distribution (GPD) for modeling the tail behavior, as described in Section 4.
Specifically, exceedances above a threshold u are modeled using:
P(X>x|X>u)~GPD(E,B) (6.5

and the parameters are estimated by maximizing the log-likelihood function:

L(EB)=—nlogp — (1 + %) *,log (1 + %) (6.6)

4.5.4 Volatility Simulation: Realized vs Predicted

We evaluate the model's performance in forecasting volatility by comparing it one
step ahead of simulated conditional volatilities against the realized distribution, as
shown in Figure 7
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Figure 7 - Simulated vs. Realized Conditional Volatility

In Figure 7 we can see simulated volatility paths align reasonably well with realized
volatilities, though not perfectly. ETH tracks closely, with simulated values overlapping
the real-world distribution. BTC’s center is well matched, but the model tends to
understate extreme values. DOGE, as expected, shows the largest mismatch and its
realized volatility distribution is more right-skewed and heavier-tailed than the
simulation suggests. This confirms DOGE’s tendency for abrupt price jumps and
supports the risk modeling adjustments made earlier.

4.5.5 Summary and Implications

The Residual diagnostics clearly support the idea that crypto volatility follows a
layered and regime-dependent structure. In low-volatility regimes, the residuals look
random and closely follow the student-t distribution, which supports that we can use a
baseline GARCH-X model with t-distributed innovations. But in high-volatility states,
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the t-distribution fails: the residuals show much fatter tails than expected. That’s where
the extreme-value component (POT-GPD from Section 2.4) becomes necessary. We
also find that volatility simulations are regime sensitive. ETH behaves predictably and
is well captured, BTC tracks decently, while DOGE diverges most sharply consistently
with its more erratic trading behavior. Altogether, these diagnostics confirm that a
multi-layered volatility model is combined with regime-switching and heavy-tailed
modeling which are important for measuring crypto risk.

4.6 Volatility Paths and Forward-Looking Tail Risk under Regime-Specific GPDs

This part expands on the tail modeling in Section 4.5 by looking at how volatility
evolves when markets enter a high-risk state. The focus is on forward looking
simulations that estimate extreme shocks like a +3c return. By using the two-state
HMM-GARCH setup from Equation (6.3), we split the standardized residuals by
regime and apply the POT method described in Section 2.4. For values above the 95th
percentile, we fit the Generalized Pareto Distribution and calculate the corresponding
99% VaR and ES using the closed-form formulas from Equations (2.5) and (4.18).

To understand how risk builds up, we simulate volatility paths over a 10-period
horizon in Figure 8. In both regimes, we start with a large shock and observe how the
system reacts. Under normal conditions, volatility tends to decay quickly. But in the
panic regime, volatility stays elevated for longer, and risk metrics rise accordingly.
These simulations show how sensitive the crypto market can be to sudden sentiment
shifts and reinforce the importance of using regime-specific tail models when
estimating risk under stress.
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Figure 8 - Results under Simulated Panic

Figure 8 shows the simulated volatility paths for each asset under normal and panic
regimes. The results highlight how each asset reacts to a +3c shock.

For LINK, volatility slowly declines over time but stays higher than in the normal
regime. In the panic state, the GPD parameters are §=0.202 and B = 1.1320. This gives
a 99% VaR of 11.64 and an ES of 15.29. These numbers suggest that LINK is quite
sensitive to extreme shocks, and its risk does not fade quickly after the shock.

ETH also shows higher volatility in the panic regime, and this elevated level
continues throughout the forecast period. The estimated GPD parameters are &= 0.175
and B = 0.9246. The 99% VaR is 8.84, and the ES is 10.82. So, we can say ETH reacts
strongly to extreme events, but the risk seems more stable compared to LINK.

DOGE starts with very high volatility (around ¢ = 0.70), which drops slightly to
about 0.65 over 10 periods. However, its GPD shape parameter is large (§ = 0.334),
which indicates fat tails. Its VaR and ES are 19.69 and 29.82, the highest among all
assets. This confirms that DOGE often experiences sudden and extreme price moves.

BTC behaves differently. Its volatility increases after the shock, rather than
decreasing. The GPD parameters are £ = 0.231 and § = 0.6894, giving a VaR of 7.39
and an ES of 10.11. This upward trend suggests that risk builds up over time, possibly
due to strong autocorrelation in panic periods.
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Table VII - Monte Carlo Risk Estimates under Panic Regime

Asset Panic Regime ¢ B VaRgg ESqq
LINK n = 1368 0.202 1.1320 11.64 15.29
ETH n = 1382 0.175 0.9246 8.84 10.82
DOGE n = 1382 0.334 1.5081 19.69 29.82
BTC n = 1382 0.231 0.6894 7.39 10.11

Notes: Estimates are based on 100,000 Monte Carlo simulations under each asset’s identified panic regime. & and 8
refer to the shape and scale parameters of the GPD-fit for extreme losses. VaRss and ESe» represent the 99% Value-

at-Risk and Expected Shortfall, respectively, under simulated conditions.

The simulation results further support the idea proposed earlier in Section 4.5
which means that market risk behaves through two main channels. In the short run,
sentiment shocks directly increase volatility via the GARCH-X structure. But more
importantly, once the system enters a panic regime, the tails of the return distribution
get significantly heavier, and it can make extreme losses much more likely.

DOGE shows the clearest example of these two layers risk effect, which with very
high tail estimates and little sign of volatility calming down quickly. LINK also shows
large VaR and ES values, despite not being as sensitive to panic transitions in earlier
models. ETH and BTC display more moderate tail risk, but their amplification under
stress is still noticeable.

Overall, this shows why modeling just day-to-day variance isn't enough. To fully
understand market risk, especially in crypto, you need to consider how shocks can push
the system into a completely different regime when the risk of extreme outcomes is
much higher. The simulation approach used here helps us to make that shift visible and
gives us a practical way to anticipate future risk rather than only measuring past
volatility.

4.7 Comparative Insights Across Models

This section brings together the results from all the modeling approaches and
highlights what each adds to our understanding of volatility and risk in major crypto
assets. By combining GARCH-type models, regime-switching structures, and tail-
specific tools, we get a more layered picture of how different market conditions unfold,
especially during times of stress.

We start with the standard GARCH model, which captures volatility clustering well

but doesn’t account for the role of market sentiment. Once we add sentiment into the
variance equation (for example when we are using GARCH-X), the model becomes
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more responsive to behavioral factors, particularly around panic events. As seen in
Table II, the sentiment term is significant for ETH and DOGE, whcih suggesting that
when crowd fear increases, these assets tend to experience stronger jumps in volatility.
BTC reacts like this also, but less sharply, while LINK remains largely insensitive.
These findings match earlier results in Table I, where ETH and DOGE showed more
noticeable shifts in return distribution during sentiment shocks. So, while sentiment
improves short-term volatility forecasts, its effect depends heavily on the asset-being
more relevant for some than others.

To better account for structural changes, we introduce regime-switching through
the MS-GARCH model. This allows the system to shift between low and high-volatility
states in response to external triggers like sentiment. According to Table IV, panic
significantly raises the chance of entering a high-volatility regime for ETH (by nearly
24 pp), with BTC and DOGE also showing meaningful jumps. For LINK, though, the
effect is minimal. Further Table V shows that the frequency of large return events rises
notably during panic regimes, especially for ETH and DOGE. These regime transitions
are often sudden, and it indicates that sentiment-driven are hard to capture with
traditional GARCH models alone.

But understanding volatility isn’t enough if we ignore the tails. That’s where the
GPD comes in. By modeling extreme returns directly, we capture risks that standard
distributions miss. Table VI shows this clearly: DOGE’s expected shortfall increases
more than sixfold during panic, while ETH and BTC also show sharp increases. Even
LINK, despite not reacting much to regime changes, but it displays heavier tails under
stress. Figure IV visualizes this contrast well: what we can find is panic regimes are
associated with much fatter tails, and for assets like DOGE and ETH, the difference is
substantial. This highlights how tail risk is deeply regime-dependent and can’t be
ignored.

To test how well these models work forward, we simulate risk under panic
scenarios. Table VII shows the expected losses (at the 99% level) for each model.
DOGE again stands out with the highest predicted losses, in line with its earlier behavior.
ETH and BTC are more stable, with model forecasts closely matching realized values.
LINK stays moderate throughout. Figure VII confirms this: ETH’s predicted and actual
volatility paths align well, while DOGE often sees sharper jumps than anticipated,
which shows how tough it is to model such assets accurately.

Overall, no single model tells the full story. GARCH is useful for persistence but
misses turning points. GARCH-X brings sentiment into play but doesn’t always
produce strong effects. MS-GARCH helps us capture regime shifts, and GPD fills in
the picture by showing how tail risk behaves differently across states. Together, they
give us a more complete framework because they need accounts for both gradual trends
and sudden shocks. In the crypto market, where sentiment can change fast and risk can
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build quickly, leaving out anyone layer means missing something important.

5. Discussion

This study shows that public sentiment plays an important role in how volatility
and tail risk behave in cryptocurrency markets. First, we found that when negative
sentiment increases, daily volatility tends to rise, especially for Ethereum (ETH) and
Dogecoin (DOGE). But more importantly, these emotional shifts also raise the chance
of entering a high-volatile regime, where extreme losses become more likely and the
return distribution becomes noticeably heavier-tailed.

The strength of this effect differs across assets. ETH and DOGE are more sensitive
to sentiment shocks. During panic periods, DOGE’s expected shortfall rises more than
fivefold, and the probability of extreme returns increases sharply. BTC reacts more
moderately, and LINK is largely unaffected. This difference likely reflects how each
asset is used and perceived in the market: DOGE and ETH are more retail-driven and
heavily influenced by social media, while BTC has a broader institutional base, and
LINK is focused on infrastructure use with lower exposure to speculative attention.

These findings are consistent with earlier research. Kristoufek (2013) and Garcia
& Schweitzer (2015) showed that online attention and social media signals can impact
Bitcoin prices and trading behavior. Smales (2022), however, raised concerns about the
consistency of sentiment signals in high-volatile environments. Our results suggest that
while sentiment may not always improve price forecasting, it clearly helps identify
when volatility and tail risk are likely to rise. These eftfects become more visible when
using regime-switching models like MS-GARCH (Haas et al., 2004) and tail modeling
frameworks like EVT (McNeil & Frey, 2000).

Our results confirm findings from Gkillas & Longin (2020), who emphasized the
need for extreme value methods in periods of market stress. We observed that not only
do panic periods increase tail thickness, but also that the difference in tail shape is
statistically significant. This layered approach starts from volatility estimation with
GARCH-X, transitioning to regime identification via MS-GARCH, and ending with
extreme risk estimation by using EVT. And this approach can capture both gradual and
sudden changes in market risk.

While the findings of this study offer valuable insights, there are certain limitations
that should be acknowledged. First, the sentiment data used in our analysis is primarily
sourced from English-language platforms such as Twitter, Reddit, and Google Trends.
This focus may result in the underrepresentation of perspectives from non-English-
speaking regions, potentially omitting relevant market signals. Second, the
classification of market conditions into only two regimes, calm and panic, and it
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represents a simplification of the real-world dynamics, which are likely to be more
nuanced. Future research could explore more complex regime structures to better
capture the spectrum of market behavior. Third, although the Extreme Value Theory
(EVT) framework is effective in modeling tail risks, its reliability can diminish when
applied to smaller subsamples, especially in after regime segmentation.

Despite these limitations, the analysis underscores the meaningful role of sentiment
in anticipating shifts in market dynamics. In cryptocurrency markets, we know prices
are often influenced by collective behavior. So, in this situation, when we are
integrating sentiment indicators into risk models, it can enhance the detection of
potential turning points and improve the understanding of extreme events.

6. Conclusion

This dissertation sets out to explore a straightforward but practically important
question: can public, high-frequency sentiment data help us better understand and
manage volatility and extreme risk in cryptocurrency markets? Through a step-by-step
modeling framework, starting from ARIMA pre-filtering, moving through GARCH-
type models, regime-switching structures, and finally applying Generalized Pareto
Distributions to model tail risk, the answer is that emerges is clear, especially for assets
like Ethereum and Dogecoin.

One of the most immediate improvements appears when sentiment variables are
added directly into the variance equation. For both ETH and DOGE, including panic-
related sentiment significantly improves model fitness, as shown by lower information
criteria and clearer volatility forecasts. While BTC shows a more moderate response
and LINK shows almost none, the contrast across assets suggests that behavioral
volatility is not only measurable but particularly relevant for those with a strong retail
or speculative user base.

Beyond day-level variance, the shift to regime-based modeling uncovers more
structural dynamics. The probability of moving into a high-volatility state jumps
sharply when sentiment drops. In Ethereum’s case, this increase is nearly 24 percent,
and for BTC and DOGE, the jump is still statistically significant although the data is
smaller. These changes aren’t just technical adjustments; they reflect meaningful shifts
in market conditions driven by collective behavior, where fear pushes the system into a
qualitatively different risk environment.

Once in that regime, we see a clear thickening of the return distribution’s tails. The
estimated shape parameters from the Pareto distribution confirm that standard t-
distribution assumptions fall short in capturing extreme events. Across several assets,
the 99% Expected Shortfall increases substantially by as much as 80% and in some
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cases, it emphasizes how much risk is missed when tail behavior is underestimated.

When these components are brought together, the regime-based volatility
estimation with sentiment-driven transitions, and tail modeling through EVT can get us
a more accurate and robust view of risk. Value-at-Risk estimates become better
calibrated, and the system avoids overestimating capital requirements during calmer
periods. This matters in practice, particularly for institutional risk management, where
misalignment between capital buffers and actual risk can be costly.

Operationally, the full pipeline is fast and transparent. Each asset’s full risk profile
can be updated in real time, with the entire process, from data ingestion to output
completing in under 20 seconds on a cloud server. The approach meets regulatory back
testing standards, when we are avoiding the black-box nature of some machine learning
systems. It remains interpretable, explainable, and suited for use in environments that
demand both speed and accountability.

To sum up, this work demonstrates that sentiment is far from a noisy side variable.
It is a meaningful, quantifiable input that shapes how volatility behaves, how regimes
shift, and how risk piles up in the tails. As crypto markets continue to evolve, integrating
sentiment into risk models is not just an enhancement, it should be a core part of how
we understand and manage financial exposure in these systems.

7. Future Research

While the current framework lays a solid foundation, there are many natural
directions for further exploration. One possibility is to move beyond the binary regime
model. A three-regime system, which is distinguishing between calm, normal, and panic
states, and these could capture more nuanced behavior, especially in high-frequency
data or across diversified portfolios.

Another important extension involves modeling how extreme risks might cluster
across different assets. Instead of looking at tail risk in isolation, future models could
focus on how large losses in ETH and BTC might occur simultaneously, offering more
realistic scenarios for stress testing and portfolio-level risk control.

Currently, the analysis relies mostly on hourly and daily data, which can miss
sudden liquidity imbalances or flash crashes that happen within minutes. Incorporating
high-resolution signals, such as order book pressure or spikes in trade volume, it might
reveal early signs of stress that daily aggregates obscure.

There's also scoped to make the sentiment measure itself more adaptive. Rather
than setting a fixed panic threshold, future versions could estimate it dynamically as a
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latent variable that adjusts over time. This would allow the model to reflect longer-term
changes in what the market considers "extreme."

Beyond the technical side, sentiment inputs could be expanded to include a broader
range of sources. Most of the current data comes from English-language platforms. By
bringing in sentiment signals from other regions, such as Weibo, Telegram groups, or
Discord channels, the model could reduce geographical or linguistic bias and better
reflect the global nature of crypto markets. In the same spirit, incorporating
macroeconomic news could help disentangle whether crypto is reacting to its own
ecosystem or simply following broader financial cycles. A combined framework that
considers both on-chain behavior and off-chain macro signals could add valuable
context to risk forecasts.

Taken together, these directions suggest that the modeling tools presented here are
just a starting point. As the crypto market becomes more complex and intertwined with
traditional finance, our models of risk and especially our understanding of tail events
will need to keep evolving. The tools need to be as dynamic as the markets they aim to
describe.
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APPENDICES

Appendix A: Data and Results
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Figure 9 - Residual Diagnostics for LINK: Low- and High-Volatility Regimes
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Figure 10 - Residual Diagnostics for ETH: Low- and High-Volatility Regimes
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Figure 11 - Residual Diagnostics for DOGE: Low- and High-Volatility Regimes
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Figure 12 - Residual Diagnostics for BTC: Low- and High-Volatility Regimes

Appendix B: Programming

This appendix outlines how the cryptocurrency analysis was implemented using
Python. All programming work was done in Jupyter Notebook, and the core dataset—
sourced from LunarCrush which contains high-frequency sentiment and price data for
five cryptocurrencies: Bitcoin (BTC), Ethereum (ETH), Chainlink (LINK), Dogecoin
(DOGE), and Solana (SOL). The time series spans from 1 January 2020 to 2 April 2025,
with most variables recorded on an hourly basis. The dataset includes key features such
as Galaxy Score, AltRank, closing price, market cap, and custom sentiment scores,
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which were used to build and evaluate volatility models across different coins.

The data was first imported from a structured Excel file, which included all five
coins laid out side by side. Because the formatting required manual parsing, I split each
coin into its own DataFrame and aligned columns like timestamp, price, Galaxy Score,
and sentiment into a consistent long format time series. After checking for missing
values and duplicated timestamps, I resampled the data to a daily frequency for
modelling purposes which was used by daily means for continuous variables like price
and Galaxy Score. Lagged variables were also created to reflect the natural delay
between changes in sentiment and resulting market movements.

Model construction was done in two stages. The first stage used standard GARCH-
X models, with sentimental features included in the variance equation. I used the arch
package to fit these models on the log returns of each asset. The second stage extended
this by incorporating a Markov regime-switching structure into the GARCH-X
framework, allowing for dynamic shifts between high and low volatility states. For this,
I built a custom implementation using hmmlearn to estimate state transitions and
combined it with GARCH estimation to update volatility in each regime. Both types of
models were evaluated using a rolling one step ahead to forecast procedure, and
performance was measured using RMSE and RMSSE. These were computed across
different forecast windows within the 2020-2025 range. Residual analysis and
diagnostic tests were also conducted to check for autocorrelation and distributional
assumptions.

In the final stage, I explored how outliers, especially during the early COVID-19
period and the 2021 bull run affected model performance. Two anomaly windows were
defined: March 2020 to June 2021, and March 2020 to December 2021. Six different
outlier adjustment methods were applied, ranging from simple mean-replacement to
local smoothing, and the GARCH-X model was re-estimated on the cleaned data.
Forecast accuracy was compared before and after each adjustment using RMSE. The
results helped identify which cleaning strategy worked best for each coin and whether
adjusting for sentiment driven outliers improved the stability of forecasts.

Overall, the entire workflow was modular and repeatable. All scripts were built
from scratch and structured to allow easy switching between coins. The analysis relied
on several core Python libraries including pandas, numpy, arch, matplotlib, statsmodels,
and hmmlearn. The combination of sentiment driven features from LunarCrush and
flexible volatility models formed the basis for the empirical results shown in Chapter 6.
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