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ABSTRACT 

Achieving Sustainable Development Goal 2.4: Sustainable Food Production and Resilient 

Agricultural Practices by 2030, involves the trade-off between increasing food production while 

protecting the environment. This project explores how agricultural practices impact the balance 

between crop production and CO2e cropland emissions across 174 countries from 1990-2022. It 

has three main goals: first, to cluster countries based on their production levels and CO2e emissions 

per hectare to identify diverse sustainability profiles; second, to analyze key factors, such as 

farming practices, environmental conditions, and governance, that explain why countries fall into 

different groups; third, to examine how these groups have evolved over time by selecting the top 

country in each cluster and continent, and to determine whether countries are progressing toward 

or diverging from sustainable farming. A rule-based clustering method revealed four groups: (A) 

Low Production–Low Emissions, (B) Low Production–High Emissions, (C) High Production–

High Emissions, and (D) High Production–Low Emissions. A classification model XGBoost 

identified synthetic nitrogen fertilizers as the primary factor influencing production and emissions, 

followed by precipitation, temperature, electricity use, and pesticides. Countries in clusters B and 

C require urgent attention as they are the furthest from achieving SDG 2.4. Field research should 

be initiated by the local farmers of these countries, who should be supported by agribusinesses and 

policymakers with the necessary resources to make their agricultural practices both productive and 

sustainable by 2030. 

 

KEYWORDS: Sustainable Agriculture; SDG 2.4; CO2e Cropland Emissions; Cropland 

Production. 

JEL CODES: Q15; Q24; Q54; O13; C52 
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1. INTRODUCTION 

Agriculture has long been fundamental to human civilization. From basic farming to 

today’s highly developed global food networks, its development has been key to supporting 

populations. Innovations such as mechanization, irrigation, and fertilization have significantly 

contributed to food production. Fertilizers, both organic and synthetic, are essential for meeting 

global food demand. However, the excessive use of synthetic fertilizers has also led to 

environmental issues such as greenhouse gases, water contamination, and soil degradation. 

Today’s agricultural systems face a difficult trade-off: to ensure the projected nine billion-

plus people by 2050 have access to a nutritious diet, while also minimizing the environmental 

impacts of food production. After a sharp increase from 2019 to 2021, global hunger, measured by 

undernourishment, remained almost unchanged for three years, impacting 9.1 percent of the 

population in 2023, up from 7.5 percent in 2019 (United Nations, 2024). In 2023, between 713 

million and 757 million people experienced hunger worldwide, amounting to one in eleven people 

globally, and one in five in Africa (United Nations, 2024). Malnutrition in children under the age 

of five continues to be a severe concern, increasing risks to their growth and overall health 

development (United Nations, 2024). Globally, in 2022, an estimated 22.3 percent of children 

under the age of five, amounting to 148 million individuals, were affected by stunting, 

characterized by insufficient height for their age, representing a decrease from 24.6 percent in 2015. 

According to current trends, it is projected that by the year 2030, approximately 19.5 percent of 

children under the age of five will be affected by stunting (United Nations, 2024).  

Meanwhile, in 2022, global agrifood systems emitted 16.2 billion tons of carbon dioxide 

equivalent (CO2e), marking a 10 percent increase since 2000 (FAO, 2024). Cropland is a 

significant source of such emissions, as nitrogen-based synthetic fertilizers release potent 

greenhouse gases, including nitrous oxide (N₂O). This gas has a global warming potential nearly 

300 times that of carbon dioxide (CO2) (IPCC, 2021). 

The urgency for implementing sustainable agricultural methods has increased significantly. 

Organic fertilizers, primarily composed of manure and compost, are often regarded as more 

environmentally friendly options. They can enhance soil health, biodiversity, and aid in carbon 

capture. However, there is ongoing debate about their ability to meet the high yield demands of 

food production, especially when compared to synthetic fertilizers. Despite strong policy 
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initiatives promoting sustainability, such as the European Green Deal and the United Nations 

Sustainable Development Goals, there is still a lack of comprehensive understanding of how 

various fertilizer strategies influence emissions and productivity over time and across different 

nations.  

The main focus of this project is Sustainable Development Goal 2: Zero Hunger, and 

specifically Target 2.4 (Figure 1): “By 2030, ensure sustainable food production systems and 

implement resilient agricultural practices that increase productivity and production, that help 

maintain ecosystems, that strengthen capacity for adaptation to climate change, extreme weather, 

drought, flooding and other disasters and that progressively improve land and soil 

quality.”(United Nations, n.d.-a)  

 

FIGURE 1 - Sustainable Development Goal 2.4. 

This project examines how synthetic and organic fertilization, along with additional factors 

such as precipitation, temperature, pesticides, electricity use, value added per worker, and local 

governance, affect the balance between CO2e emissions per hectare and crop production per 

hectare. Data was sourced from FAOSTAT, the World Bank, and the Climate Change Knowledge 

Portal across 174 countries from 1990 to 2022. The main research question is: How do agricultural 

practices influence the balance between crop production and environmental sustainability across 

countries over time? This study has three main objectives. First, it clusters countries according to 

their production levels and CO2e emissions per hectare to reveal diverse agricultural profiles. 

Second, it analyzes key farming, environmental, and governance indicators to identify the most 

influential factors that are responsible for separating the countries into different profiles. Third, it 

selects the leading country per cluster and per continent for the past five years and tracks the cluster 

evolution of these selected countries to determine whether they are progressing towards or 

diverging from sustainable farming practices. 
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To address these objectives, the study employs a structured, data-driven approach based on 

the CRISP-DM framework. After data preparation, such as cleaning and normalization, three 

clustering techniques were tested to categorize country-year observations by their emissions and 

production levels: K-means Clustering, Hierarchical Clustering, and Rule-Based Clustering, from 

which the latter was selected. The following four clusters were created: “High Production-Low 

Emissions”, “Low Production–High Emissions”, “Low Production-Low Emissions”, and “High 

Production-High Emissions.” These categories served as the target variable in the following 

supervised machine learning models: Random Forest, AdaBoost, XGBoost, KNN, and SVM. By 

analyzing the effects of agricultural practices across numerous countries, this project aims to guide 

farmers, agribusinesses, and policymakers on which countries need to be prioritized in meeting 

SDG 2.4 by 2030. 

Furthermore, the integration of machine learning in this study highlights a wider trend in 

agricultural data analysis. While traditional econometric models are often unable to capture 

nonlinear relationships, machine learning models, on the contrary, are suitable for identifying 

hidden patterns and improving prediction accuracy. This provides a more detailed understanding 

of the trade-offs in agricultural decisions.  

The subsequent chapters encompass a literature review on agricultural sustainability, a 

thorough explanation of the data and modeling techniques used, an analysis of the clustering and 

classification outcomes, a discussion on local field and policy implications, and conclusions that 

highlight the research’s contributions and limitations. 
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2. LITERATURE REVIEW 

2.1 Why is sustainable agriculture important? 

Soil is a non-renewable resource essential for producing food, feed, clothing, shelter, and 

energy - for instance, elephant grass is burned at a power station to generate electricity (FAO and 

Global Soil Partnership, 2015; Kopittke et al., 2019). Additionally, healthy soils store and filter 

water, recycle nutrients, act as a buffer against floods, and support a quarter of our planet’s 

biodiversity (FAO and Global Soil Partnership, 2015; Kopittke et al., 2019).  

According to FAO (2022), the worldwide production of primary crop commodities reached 

9.5 billion tons in 2021, a 54% increase since 2000. Meanwhile, the population growth between 

2000 and 2021 was 29%, indicating that agricultural production was growing at a faster rate than 

the population (FAO, 2022). This was achieved through intensified farming activities, including 

the increased use of irrigation, pesticides, fertilizers, and advanced production machinery (FAO, 

2022). Throughout the years, international trade has also played a significant role in meeting food 

demand. According to the agricultural forecast created by OECD and FAO for the period of 2024-

2033, global agricultural trade will keep growing due to higher consumption and production. 

Nonetheless, despite these facts, there are still populations that do not have access to 

sufficient and nutritious food as discussed earlier (United Nations, 2024). Latin America, North 

America, and Europe will increase their export roles, while Asia and Africa will rely more on 

imports (OECD/FAO, 2024). It is also crucial to raise the concern revealed from a field study 

conducted by Haque and Biswas (2020) for over twenty years in Bangladesh. One of the findings 

showed that to achieve similar rice yields today as in 1980, we must add 75% more nitrogen 

fertilizer. In 1980, approximately 80 kg N per hectare was required to achieve a yield of 

approximately 6.5 tons per hectare of Boro rice. Currently, this amount has increased to about 140 

kg N per hectare for the exact yield (Haque & Biswas, 2020). Moreover, the authors reference six 

different papers, all of which support the view that the decrease in grain yields was primarily due 

to the gradual depletion of soil nutrients, reduction in soil organic carbon (SOC) content, and 

inadequate agricultural practices. Haque and Biswas (2020) also support the view that increased 

air temperatures lead to higher soil temperatures, which in turn cause the release of carbon. Since 

soil temperature can be 1–8°C higher than air temperature, depending on soil depth and time of 

day, heat will be a crucial factor for soil productivity in the future (Haque & Biswas, 2020).  
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It is vital to understand that sustainability and sufficient agricultural production are two 

interconnected issues, and that the pressure for sustainable practices is not merely an additional 

expense for farmers and consumers who buy organic food. Failing to keep our soils fertile will 

undoubtedly have tremendous negative effects on humanity and future generations (Kopittke et al., 

2019). It is important to develop stable markets and resilient trade systems that can withstand local 

disruptions and ensure access to nutritious food and fair incomes for farmers (OECD/FAO, 2024). 

Numerous complex measurements have been developed to track the level of sustainability 

in agriculture. Considering the scope of this project, the two main ones found in the existing 

literature will be discussed: Soil Organic Carbon (SOC) Sequestration and Greenhouse Gas (GHG) 

Emissions. 

2.2 Indicators of Sustainable Agriculture 

2.2.1 Soil Organic Carbon (SOC) Sequestration 

Land functions as both a carbon sink, absorbing CO2 from the atmosphere, and a carbon 

source, releasing CO2 through activities such as deforestation (European Commission, n.d.-a). The 

term SOC sequestration refers to the process where carbon is stored in the soil. Depending on the 

level of sustainability of agricultural practices, land can either help reduce CO2 emissions by 

absorbing them or worsen global warming by releasing excess CO2. An optimal level of SOC stock 

is essential for retaining water and nutrients, reducing erosion and degradation risks, enhancing 

soil structure and fertility, and supplying energy to soil microorganisms (Lal, 2004). The author 

elaborates that observed SOC sequestration rates vary based on soil texture and climate, ranging 

from 0 to 150 kg C/ha annually in dry, warm regions, and from 100 to 1000 kg C/ha annually in 

humid, cool climates. A key factor determining whether CO2 will be emitted or absorbed is the 

amount of soil organic matter (SOM). The term SOM refers to the organic materials in soil at 

different stages of decay, including tissues from dead plants and animals, as well as soil organisms. 

SOM is vital for the functioning of soil ecosystems and influences global warming (FAO, 2017). 

Lal (2004) supports the view that SOC sequestration serves as a bridge across three global issues: 

climate change, desertification, and biodiversity. 

2.2.2 Greenhouse Gas (GHG) Emissions 

According to the Intergovernmental Panel on Climate Change (IPCC), emissions are 

defined as “The release of greenhouse gases and/or their precursors into the atmosphere over a 
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specified area and period of time” (IPCC, 2006). The characteristic of greenhouse gases is that 

they absorb infrared radiation in the atmosphere, which traps heat and warms the surface of the 

Earth (Snyder et al., 2009). The primary agricultural GHG emissions include gases such as 

methane (CH4), nitrous oxide (N2O), and carbon dioxide (CO2), which are generated through crop 

and livestock production, as well as agricultural practices (FAO, 2017).  

In a 2014 report on soil organic carbon, FAO cites the IPCC, stating that atmospheric CO₂ 

levels surpassed 397 ppm (parts of carbon dioxide for every one million parts of air), marking a 

40 percent increase since pre-industrial times. They further elaborate that this rise in atmospheric 

CO₂ is primarily due to fossil fuel emissions and land use changes, particularly deforestation. 

Snyder et al. (2009) argue that although CO2 is the most concerning GHG overall, when it comes 

to the agricultural sector, N2O is the most emitted gas, followed by CH4. Methane is emitted from 

soils via methanogenesis, a process that happens during the breakdown of organic material in 

environments lacking oxygen (FAO, 2017). Nitrous oxide is primarily released from soils and the 

use of nitrogen fertilizers (Snyder et al., 2009). Considering all three gases for soil emissions is 

essential because their processes are interconnected (FAO, 2017).  

A key metric used for comparing greenhouse gas emissions is the Carbon Dioxide 

Equivalent (CO2e) (IPCC, 2006). The United Nations Framework Convention on Climate Change 

(UNFCCC) uses global warming potentials (GWPs) as factors to calculate CO2e (IPCC, 2006). 

Global Warming Potential (GWP) measures the heat retention of greenhouse gases in the 

atmosphere over a set timeframe, compared to carbon dioxide (CO₂) (IPCC, 2021). Additionally, 

FAO (2017) further elaborates that methane (CH4) emissions from livestock play a significant role 

in global warming potential (GWP). FAO references IPCC and elaborates that based on its GWP, 

methane is 28 times more potent as a GHG than CO₂ (FAO, 2017).  

2.3 Strategies for Sustainable Agriculture 

With rising global food demand, sustainable agriculture is crucial for finding a balance that 

eliminates world hunger while remaining environmentally responsible. When sustainable practices 

are used continuously, carbon sequestration rates can be maintained for 20 to 50 years or until the 

soil’s capacity to store carbon is reached (Lal, 2004). This strategy can provide additional time 

until renewable energy sources fully replace fossil fuels (Lal, 2004).  
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2.3.1 Global-Scale Initiatives 

The focus of this project, SDG 2.4 Zero Hunger, is part of a larger initiative. In total, there 

are 17 SDGs with an agenda for sustainable development by 2030, adopted by all UN Member 

States in 2015. Various global issues are addressed, including poverty, inequality, environmental 

damage, and climate change (United Nations, n.d.-b). SDG 2 Zero Hunger is particularly 

significant for agriculture, with target 2.4 emphasizing sustainable farming practices (United 

Nations, n.d.-a). These goals serve as a broad framework to coordinate global and national 

initiatives aimed at creating a world that will support the planet’s ecosystem and its biodiversity. 

Another global movement is the 2015 Paris Agreement under the UNFCCC, which aims 

to keep global temperature increases below 2°C, ideally limiting it to 1.5°C compared to pre-

industrial levels (UNFCCC, 2015). It is a legally binding treaty adopted by 195 countries. Since 

2020, nations have been submitting their respective national climate action plans, referred to as 

nationally determined contributions (UNFCCC, 2015). According to the literature review by 

Haque and Biswas (2020), increased air temperatures lead to higher soil temperatures, which in 

turn cause the release of carbon. Since soil temperature can be 1–8°C higher than air temperature, 

depending on soil depth and time of day, heat will be a crucial factor for soil productivity in the 

future (Haque & Biswas, 2020). 

To fulfill these global commitments, some regional actions have been developed. In Europe 

for example, the European Commission has initiated the European Green Deal - a series of 

proposals aimed at aligning the EU’s climate, energy, transport, and taxation policies to achieve a 

reduction in net greenhouse gas emissions of at least 55% by 2030, relative to 1990 levels 

(European Commission, n.d.-b). An important pillar within the Green Deal is the Land use, Land-

use change and Forestry Regulation (LULUCF), which focuses on reducing agricultural emissions 

and achieving carbon neutrality in agriculture by 2050 (European Parliament, 2018).  

Hou et al. (2020) support the view that well-established governance is important for using 

soil in a sustainable way, especially when short-term economic goals may harm long-term soil 

health. They stress that clear policies, strong institutions, and proper laws are needed to make sure 

soil protection is included in wider environmental and farming decisions (Hou et al., 2020). 
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2.3.2 Local-Scale Initiatives 

Gan et al. (2011) discuss that nitrogen fertilizers are the primary source of GHG emissions 

in crop production, accounting for 57–65% of the carbon footprint. Both papers from Gan et al. 

(2011) and Snyder et al. (2009) highlight that effective fertilizer practices can decrease excess 

nitrogen in the soil, which in turn reduces nitrous oxide (N₂O) emissions. Efficiency can be 

improved through utilizing the appropriate combinations of source, rate, placement, and timing of 

N to enhance the probability of maximizing crop yields and farmer profits (Snyder et al., 2009).  

Additionally, Haque and Biswas (2020) support the view that combining organic and 

inorganic nutrient sources is essential for increasing crop yields, enhancing soil health, and 

balancing the net carbon budget. They further specify that organic materials help lower GHG 

emissions, boost yields, and enhance SOC, whereas exclusive dependence on chemical fertilizers 

is linked to reduced SOC and increased GWP (Haque & Biswas, 2020). The authors suggest that 

to ensure food security amid climate challenges, it is crucial to raise stakeholder awareness about 

the importance of balanced fertilizer application. Alongside balanced fertilizer use, leaving crop 

residue on the soil, tree planting and layering additional decomposable organic materials can 

increase soil organic carbon (SOC) stocks and enhance yields (Lal, 2004; Haque & Biswas, 2020). 

The European Commission (n.d.-a) is aligned on the importance of tree planting, adding that 

afforestation is an essential action for boosting carbon sequestration. 

The benefit of leaving crop residue on the soil after the harvest, as mentioned earlier, can 

be enhanced by considering the cropping patterns (Haque & Biswas, 2020). Crop pattern practices 

involve deciding the planting sequence of crops and considering the addition of a new crop whose 

residues might benefit the soil more than existing ones. Haque & Biswas (2020) have experimented 

by adding a mustard crop in between T.Aman rice and Boro rice. After the harvests, it was 

discovered that T. Aman-Mustard-Boro cropping has a positive effect on soil fertility. As a 

continuation of their experiment, the authors also planted fallow instead of mustard in between 

T.Aman rice and Boro rice planting. The T.Aman-Fallow-Boro rice cropping pattern resulted in a 

lower soil fertility, shown by a negative C balance due to more C loss that was not stored in the 

soil but was emitted into the atmosphere (Haque & Biswas, 2020). As a result, selecting 

appropriate cropping patterns can further diminish GHG emissions and their GWP (Gan et al., 

2011; Haque & Biswas, 2020).  
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Tillage practices are another key focus for local initiatives, involving traditional 

agricultural activities such as plowing or loosening soil to improve seed growth. Snyder et al. 

(2009) argue that, unlike traditional tillage methods, low-tillage practices combined with crop 

residue preservation can enhance SOC, provided they maintain high yields. Lal (2004) supports 

this view, while adding that moving from traditional to no-till farming can lower emissions by 30–

35 kg C/ha each season. Building on this, the experiment of Haque and Biswas (2020) with the 

rice cropping patterns also focused on testing different tillage methods. Their results indicated that 

strip-tillage (only till a narrow layer of soil where seeds will be placed) decreased GWP by 33% 

and carbon loss by 37% relative to conventional tillage in rice–mustard–boro crops. This finding 

closely aligns with Lal (2004) mentioned earlier, highlighting the effectiveness of no-till farming. 

2.4 Machine Learning in Agricultural Data Analysis 

The agricultural sector has been adapting its research to newer and more complex analytical 

methods. A study based on data from India aimed to classify key parameters related to soil fertility, 

such as organic carbon, nitrous oxide, and other soil indicators, with the goal of finding the most 

suitable amounts of fertilizers and preferable crop type (Sirsat et al., 2017). The models used for 

the analysis included boosting, decision trees, nearest neighbors, neural networks, random forests, 

rule based and support vector machines (SVM). The results show that the random forest model has 

offered the best performance for six of ten problems, overcoming 90% of the maximum 

performance in all the cases, followed by Adaboost and SVM (Sirsat et al., 2017). These models 

worked well not only in one area but also performed reliably in different regions, showing their 

potential for wide use in data-based fertilizer and crop planning (Sirsat et al., 2017). 

Another recent study also shows that advanced machine learning models are highly effective 

for agricultural analysis, especially in predicting soil organic carbon (SOC) (Nguyen et al., 2022). 

Specifically, the authors found that XGBoost model provided the most accurate results when 

compared to Random Forest (RF) and Support Vector Machine (SVM) when predicting SOC. 

Even with a small number of ground samples, XGBoost still performed well, showing its reliability 

even when data is limited.  

Machine learning has also been used to identify different crop types from images using 

Random Forest and Support Vector Machines (SVM) (Khan et al., 2022). These models can 
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manage large and complex datasets, they are useful tools for supporting agricultural monitoring 

and decision-making (Khan et al., 2022). 

One of the goals in agricultural research is to also guide the farmers with choosing the most 

suitable crops based on climate and soil nutrients, especially in developing countries, where 

agriculture is commonly the main source of income (Shripathi Rao et al., 2022). Their study uses 

K-Nearest Neighbor (KNN), Decision Tree, and Random Forest Classifier as machine learning 

models, where Random Forest was proven to have the highest accuracy score. 

Furthermore, the methodology section of studies has also experienced a change towards newer 

approaches. For example, the CRISP-DM framework (Chapman et al., 2000) offers a systematic 

approach to data science projects. Although CRISP-DM remains a prevalent standard, newer 

methods like the POST-DS framework introduced by Costa et al. (2020) expand on these principles 

by including elements such as process organization, scheduling, and tool selection. This wider 

view aligns with the structured approach used in this study, ensuring both methodological rigor 

and practical usefulness. 
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3. METHODOLOGY  

The research question that was addressed in this research is the following: How do 

agricultural practices influence the balance between crop production and environmental 

sustainability across countries over time? In order to answer this question, the methodology 

supported in CRISP-DM has been used (Chapman, 2000; Costa & Aparicio, 2020, Costa & 

Aparicio, 2021).  Furthermore, the following table shows detailed information about each objective. 

TABLE I 

PROJECT OBJECTIVES AND METHODOLOGY 

Element Description Methodology 

Objective 1 
Group countries based on cropland production and CO2e 

emissions per hectare to reveal different sustainability profiles. 
Rule-based clustering 

Objective 2 

Identify the main factors that explain why countries fall into 

different groups, using agricultural, environmental, and 

governance indicators. 

XGBoost classification 

and Feature Importance 

analysis 

Objective 3 

Examine how country groups have changed over time by 

selecting the top country in each group and continent to detect 

shifts toward or away from sustainability. 

Cluster evolution 

visualizations (heatmap) 

 

The CRISP-DM framework places a strong emphasis on understanding the data and its 

real-life application to build strong models. It encompasses six stages: Business Understanding, 

Data Understanding, Data Preparation, Modelling, Model Validation, and Deployment (Chapman, 

2000). The data analysis in Python has been included in Appendix B via a GitHub link. 

3.1 Business Understanding 

To create the dataset, it was essential to gain a thorough understanding of the agricultural 

business environment. This would allow me to identify the key drivers of cropland emissions and 

production. To meet the enormous food demand worldwide, farmers tend to employ various 

fertilization methods, hire workers, and utilize pesticides and electricity. Depending on the chosen 

methods, quantities, and productivity of the workers, the total cropland production and greenhouse 

gas emissions differ. There are also external factors that may affect the process, such as the local 
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climate conditions and the prevailing political situation. Meeting global food demand while 

minimizing emissions from production requires a trade-off. One of the most challenging aspects 

of such a business environment is understanding the nuances of the trade-off and being able to 

maximize production while minimizing emissions. The variables selected for this project are 

shown in Table II. Numerous combinations of variables were tried until I ensured that all variables 

were normalized to the same level, thereby avoiding assumptions. 

3.2 Data Understanding 

TABLE II 

LIST OF VARIABLES USED IN THE ANALYSIS AND THEIR DESCRIPTION 

Variables Description 

Country 174 countries across the globe 

Year 1990-2022 

CO2e Cropland kg/ha The carbon dioxide equivalent emissions from cropland 

production, measured in kilograms per hectare (FAOSTAT) 

Total Production kg/ha Total cropland production, measured in kilograms per 

hectare (FAOSTAT) 

Synthetic Fertilizers (Nitrogen) kg/ha Total amount of nitrogen nutrient added to the soil from 

synthetic fertilizers, measured in kilograms per hectare 

(FAOSTAT) 

Synthetic Fertilizers (Phosphorus) kg/ha Total amount of phosphorus nutrient added to the soil from 

synthetic fertilizers, measured in kilograms per hectare 

(FAOSTAT) 

 

Synthetic Fertilizers (Potassium) kg/ha Total amount of potassium nutrient added to the soil from 

synthetic fertilizers, measured in kilograms per hectare 

(FAOSTAT) 

Organic Fertilizers (Nitrogen) kg/ha Total amount of nitrogen nutrient added to the soil from 

organic fertilizers (manure), measured in kilograms per 

hectare (FAOSTAT) 
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Variables Description 

Organic Fertilizers (Phosphorus) kg/ha Total amount of phosphorus nutrient added to the soil from 

organic fertilizers (manure), measured in kilograms per 

hectare (FAOSTAT) 

Organic Fertilizers (Potassium) kg/ha Total amount of potassium nutrient added to the soil from 

organic fertilizers (manure), measured in kilograms per 

hectare (FAOSTAT) 

Pesticides kg/ha Total amount of pesticides used, measured in kilograms per 

hectare (FAOSTAT) 

Electricity use TJ Total annual emissions from on-farm electricity use, 

measured in Terajoules (TJ) (FAOSTAT) 

Value added per worker USD Total annual value added per worked, measured using a 

constant 2015 US$ (FAOSTAT) 

Precipitation Ml Total annual precipitation, measured in milliliters (Ml) 

(Climate Change Knowledge Portal) 

Temperature °C Average annual temperature, measured in Celsius (°C) 

(Climate Change Knowledge Portal) 

Governance Index (0-100) Index created for this project from the following six 

governance categories: Voice and Accountability, Political 

Stability and Absence of Violence/Terrorism, Government 

Effectiveness, Regulatory Quality, Rule of Law, Control of 

Corruption. Measured as an annual percentile rank terms 

from 0-100 with higher values corresponding to better 

outcomes. (World Bank Group) 

 

Earlier, two sustainability indicators were discussed regarding agricultural practices - SOC 

sequestration and GHG emissions. For SOC sequestration, FAO has created a Global Soil Organic 

Carbon Map collecting data from all current available sources: WOSIS, LUCAS, and AFSIS. The 

issue, however, is that FAO has clarified that it serves as a baseline map and does not give a 

thorough evaluation globally because more data is still being collected by each individual country. 

Since we require repetitive annual observations to make a fair comparison across countries and 

years, this paper focuses solely on GHG emissions from synthetic and organic fertilizers, excluding 

SOC sequestration. The GHG indicator used is the CO2e emissions from cropland production, 
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measured in kilograms per hectare. To account for the usage of fertilizers, the following variables 

have been added: total amount of nitrogen, phosphorus, and potassium nutrients added to the soil 

from synthetic and organic fertilizers, measured in kilograms per hectare. 

Incorporating pesticides and electricity helps identify trends in how input intensity impacts 

sustainability and production. Elevated pesticide usage might indicate conventional farming 

methods associated with increased emissions or soil degradation, whereas electricity consumption 

can reflect reliance on mechanization, irrigation, or energy sources that affect both production and 

environmental consequences. These factors offer a clearer understanding of the trade-offs between 

productivity and ecological impact. 

Another key variable used in this project is Agricultural Value Added per Worker, which 

serves as a control variable to capture differences in labor efficiency across countries, accounting 

for variations in farming practices, levels of mechanization, and productivity. This allows the 

analysis to isolate better the impact of fertilization practices on both crop yield and emissions, 

independent of how labor is organized and utilized in agricultural systems. 

Furthermore, total yearly precipitation was selected instead of average yearly precipitation 

because it more accurately represents the total water available for crops over the entire year. Unlike 

averages, which can hide significant seasonal variations or extreme weather events, total 

precipitation provides a more comprehensive view of overall water input. This makes it more 

helpful in evaluating agricultural productivity and environmental effects. Furthermore, the average 

temperature was included as a variable, as it directly affects crop growth cycles, productivity, and 

the effectiveness of fertilizer application. Additionally, it helps in evaluating how climate 

conditions may impact CO2e emissions and agricultural yields over time. 

The Governance Index was created for this project, and it offers a comprehensive 

understanding of a country’s institutional and political environment by encompassing six key 

dimensions: voice and accountability, political stability, government effectiveness, regulatory 

quality, rule of law, and control of corruption. These dimensions reflect how well governments 

perform in terms of enabling citizen participation, ensuring political and legal stability, delivering 

public services, formulating sound regulations, enforcing laws, and preventing corruption.  
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3.3 Data Preparation 

The agricultural variables were sourced from FAOSTAT, the meteorological variables 

from Climate Change Knowledge Portal, while the governance-related variables from World Bank 

Group. Merging all the variables together into one coherent data set was a long process with 

multiple steps. The data preparation stage was done in Power Query, and after merging, the dataset 

was uploaded to Python to proceed with handling missing data, outliers and conducting the data 

analysis.  

I first started by creating the variable carbon dioxide emissions equivalent, CO2e. At the time 

of creating my dataset, FAOSTAT did not have this variable available, but instead they had N2O 

Emissions Cropland in kilotons (kt) and CH4 Emissions Cropland in kilotons (kt). As per the 

definition of CO2e by IPCC in 2006, it is a measure used as a means of aggregating emissions and 

removals of different gases and placing them on a common CO2 equivalent scale. To calculate the 

CO2e, I used the IPCC global warming potentials (GWPs) and multiplied them with their 

respective greenhouse gas, as shown in Equation (1) below (UNFCCC, n.d.). The emission (Ei) of 

component i is multiplied by the adopted normalized metric (Mi): 

(1) Mi× Ei= CO2 eqi 

Table III shows the GWP values, from which I used GWP-100 years for CH4 non-fossil and 

GWP-100 for N2O. According to UNFCCC, any use of GWPs should be based on the effects of 

the greenhouse gases (GHGs) over a 100-year time horizon (UNFCCC, n.d.). The reason for 

choosing CH4 non-fossil instead of fossil is that the cropland activities are not related to fossil 

fuels (Greenhouse Gas Protocol, 2024). For simplicity, I have not used upper and lower bounds. 

Based on the above considerations, the GWP used for CH4 is 27, while for N2O it is 273. The 

obtained value was the carbon dioxide equivalent in kt, however, to have a meaningful analysis, I 

converted it to the same format as the other agricultural variables – kg/ha. I converted kt into kg 

and then used the variable Total Cropland Area, which was in 1000ha. I transformed it into hectares 

and divided the CO2e into kg by the total cropland area in hectare and obtained the final variable 

CO2e kg/ha.  

 

 



A Cross-Country Study on Co2e Emissions and Crop Production Over Three Decades 

           Margarita Panayotova                      16                    Master’s in Management (MiM) 

 

TABLE III 

GLOBAL WARMING POTENTIALS AND RELATED METRICS BY GAS TYPE 

Species Lifetime 

(Years) 

Radiative Efficiency  

(W m⁻² ppb⁻¹) 

GWP-20 GWP-100 GWP-500 

CO₂ Multiple 1.33 ± 0.16 × 10⁻⁵ 1.000 1.000 1.000 

CH₄-fossil 11.8 ± 1.8 5.7 ± 1.4 × 10⁻⁴ 82.5 ± 25.8 29.8 ± 11 10.0 ± 3.8 

CH₄-non fossil 11.8 ± 1.8 5.7 ± 1.4 × 10⁻⁴ 79.7 ± 25.8 27.0 ± 11 7.2 ± 3.8 

N₂O 109 ± 10 2.8 ± 1.1 × 10⁻³ 273 ± 118 273 ± 130 130 ± 64 

Source: AR6 IPCC Report (2021), Page 1017. 

Other necessary transformations included the variable Total Production, which was a country’s 

total value in tons. I converted the values into kg and then divided by the Total Cropland Area per 

country. The final created variable is Total Production kg/ha. Regarding the Precipitation and 

Temperature datasets, they were converted from a horizontal to a vertical layout, as this was 

necessary to merge all the individual datasets at the end. For the governance aspect, I created an 

index from six different dimensions: Voice and Accountability, Political Stability and Absence of 

Violence/Terrorism, Government Effectiveness, Regulatory Quality, Rule of Law, Control of 

Corruption. All their values were added and then divided by six, the total number of governance 

indicators. The scale remained the same from 0-100. 

The level of the data was another important aspect to consider. Some variables were at the 

agricultural level, while others were at the cropland level. Cropland is one element of agriculture 

related only to crop production, while there are also other activities, such as animal husbandry, 

farm buildings (FAO, n.d.). The variables CO2e emissions, production, synthetic and organic 

fertilizers, and pesticides were all at a cropland level. However, the electricity uses and value added 

per worker variables were at the agricultural level. Since the focus of this thesis is on the cropland 

level, I used the variable called % Cropland in Agriculture, available at FAOSTAT, and multiplied 

it by the values of the agricultural level, which are the variables electricity use, and value added 

per worker. This step ensures that all variables are normalized on the same level. 

As a last step before merging the data, it was crucial to create a Country Standardization List. 

As the datasets were downloaded from three different sources, several countries were written in 

different ways; for instance, North Korea was also found as the Democratic People’s Republic of 
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Korea. Such name differences would prevent proper merging and would consider the observations 

as being allocated to separate countries. To create the Country Standardization List, I aggregated 

all datasets in Power Query, then filtered all the unique country names and created a column in a 

separate Excel tab. Next to that column, I added the country name that I intend to keep for 

uniformity. To apply the standardized country names, I created a new column in each dataset and 

used the function VLOOKUP to add the standardized names. 

Once the above steps were finalized, I merged all individual datasets into one using Power 

Query, where the connecting variables were Country and Year. The merged dataset was then 

uploaded to GitHub, a web-based platform for version control and collaboration, primarily used 

for managing and sharing code. The link from the GitHub uploaded dataset was used to import it 

into Python to proceed with the data analysis. 

There were more than 200 countries in total, and some variables included data starting from 

the 1950s, others from the 1960s, and others from the 1990s. I used code to calculate the percentage 

of missing data by column, year, country, and for the overall dataset. Initially, the overall 

percentage of missing data was 16.96%, with the majority of missing values occurring in 

observations from before the 1990s. The years prior to the 1990s were deleted, along with a few 

countries that had missing values for more than 20% of the data, and some minor discrepancies 

were corrected. As a result, the overall percentage of missing data dropped to 1.50%. The final 

overall percentage of missing data was 1.52%. I proceeded to fill in the missing values using the 

interpolation method, which involves adding the meaning of the previous and next values. 

Afterwards, the normality of the two main variables - CO2e emissions and cropland 

production was evaluated through a histogram, Q-Q plot, and Shapiro-Wilk test. Verifying non-

normal distribution is essential since numerous statistical models operate under the assumption of 

normality. If this assumption is not met, it may lead to biased outcomes, incorrect conclusions, or 

suboptimal model performance, particularly for models that are highly sensitive to outliers or 

skewed distributions. A histogram illustrates the frequency of each value in your data, similar to a 

bar chart. This allows you to observe the overall distribution, including any skewness or peaks.  

A Q-Q plot, in contrast, evaluates whether your data aligns with a normal (bell curve) 

pattern by comparing it to the expected appearance of a normal distribution. If the data is normally 

distributed, the points in the Q-Q plot will form a straight line. The histograms of the main 
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variables illustrated right-skewed distributions, indicating non-normal distribution (Figures 2 and 

3). At the same time, the Q-Q plots displayed a definite deviation from the reference line, 

confirming non-normal distribution (Figures 4 and 5). 

The Shapiro-Wilk test checks whether the data follows a normal distribution using a 

statistical calculation, unlike a histogram or Q-Q plot, which are visual methods. If the result is 

below 0.05, it means the data is likely not normal. The Shapiro-Wilk test for Total Production 

yielded a p-value of 1.23 × 10⁻⁸⁴, and for CO2e Cropland a p-value of 4.36 × 10⁻⁷⁸, which 

statistically confirms non-normality due to the p-value being below 0.5. 

 

   

FIGURE 2 - Histogram Total Production per kg/ha.    FIGURE 3 - Histogram CO2e per kg/ha. 

 

             

FIGURE 4 - Q-Q Plot Total Production per kg/ha.        FIGURE 5 - Q-Q Plot CO2e per kg/ha. 
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Next, I identified the outliers in the entire dataset using the IQR method. The Interquartile 

Range (IQR) method is a technique for detecting outliers by assessing the spread of the middle 

50% of the data. A value is considered an outlier if it is below the lower bound (Q1 − 1.5 × IQR) 

or above the upper bound (Q3 + 1.5 × IQR), where Q1 and Q3 represent the first and third quartiles. 

A total of 2,894 outliers have been identified across the dataset, accounting for 49.27% of all 

observations. 

To address the dataset’s non-normal distribution and presence of outliers, six data preparation 

methods were employed. The first method kept the data unchanged, relying on the robustness of 

machine learning models to manage non-normal distributions. The second and third methods 

targeted outlier removal: the less aggressive option eliminated only outlier values for specific 

variables, while the more aggressive one dropped entire rows containing any outlier. The fourth 

method implemented a log transformation to decrease skewness. The fifth and sixth methods 

merged the outlier removal techniques with a log transformation. The objective of testing these six 

methods was to identify the combination that produces the best overall model performance. 

Although method one involves keeping the data as is, I noticed several distant observations 

that seemed unnatural and possibly resulted from synthetic data being used to fill in the missing 

points. I manually inspected the dataset in Excel using the filter option and found that the data was 

related to Singapore and Bahrain; therefore, these countries were removed from all datasets. In the 

process, I noticed that the country Saint Kitts and Nevis had zero production but still emitted some 

CO2e. Since it appeared to be an error in the dataset, I also deleted it. Lastly, I removed the country 

Mauritius, as it is the only country responsible for the highest observations of Total Cropland 

Production between 40,000-60,000 kg/ha. The final dataset comprises 174 countries and spans the 

period from 1990 to 2022. 

3.4 Modelling 

Due to the complexity of using large panel data, which includes 14 variables over 174 

countries for the period between 1990 and 2022, this study includes algorithmic models instead of 

traditional econometric models, such as a regression analysis. Although these methods offer 

valuable insights, with the rise of big data, machine learning approaches are evolving to capture 

more complex interactions between variables. Both supervised and unsupervised models were 

used in this study. Firstly, a cluster analysis (unsupervised model) was applied, and as a result a 
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new column was added to the dataset that identifies under which cluster each combination of 

country and year falls. This column became the Y variable of five classification models (supervised 

models). 

The unsupervised model consisted of experimenting with the following clustering 

methods: K-means, Hierarchical clustering, and Rule-based clustering. Combinations were 

generated using all six methods discussed earlier, along with the three clustering approaches, to 

identify the combination that produces the optimal results in the subsequent classification model. 

For the clustering, I chose the two main variables of this study: CO2e Emissions and Total 

Production. The goal of clustering was to split the data into a specific number of groups that would 

offer the most valuable insights, but also to ensure that the size of each cluster is similar to the 

others. There are visual and numerical methods that help to decide that. For K-means, I have used 

the elbow method to choose the number of K (Figure 6). The inertia shows a significant decrease 

up to K=3. After that, the reduction in inertia levels off, indicating diminishing returns. 

Nonetheless, it could be argued that K=4, K=5, and K=6 may still offer some insights. Therefore, 

I have chosen to visualize all options and determine the optimal number of K using the silhouette 

score test. 

  

FIGURE 6 - Elbow method in K-means 

Clustering. 

FIGURE 7 - K-Means Clustering Silhouette Plot 

for K=3. 

 

From the silhouette test, K=3 and Method 1 (leaving the data as is – not applying log 

transformation nor handling outliers) has the highest silhouette score of 0.73, meaning that 

according to the K-means cluster analysis, having three clusters is the best number of K. However, 
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the silhouette plot reveals that the cluster sizes are unbalanced (Figure 7), leading to the rejection 

of K-means Clustering for this project.  

I then proceeded with Hierarchical Clustering and generated a dendrogram, which is a tree-

like diagram that visually represents how clusters merge step by step (Figure 8). The ideal number 

of clusters can be estimated by identifying the longest vertical line that is not crossed by horizontal 

cuts, indicating the largest separation between groups. In the dendrogram based on the original 

dataset, the longest vertical distance without horizontal cuts appears to be roughly between a 

linkage distance of 70 and 95, suggesting a natural split into approximately four clusters. Therefore, 

a range of K = 3–5 clusters was retained for further evaluation using silhouette analysis across all 

six preprocessing methods. 

 

 

FIGURE 8 - Dendrogram of Hierarchical Clustering. 

 

The highest silhouette score is for the combination of K=3 and Method 1 (leaving the data 

as is – not applying log transformation nor handling outliers) and equals 0.68. Nonetheless, the 

hierarchical clustering approach has the same issue of unbalanced cluster sizes, as shown in the 

silhouette plot in Figure 9. 
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FIGURE 9 - Hierarchical Clustering Silhouette Plot for K=3. 

Due to the unsatisfactory results, I experimented with Rule-Based Clustering with the 

threshold being 50% median of CO2e Cropland and 50% median of Total Production. Silhouette 

scores are best suited for distance-based clustering methods such as K-Means and Hierarchical 

Clustering, where clusters are formed based on proximity. Rule-based clustering follows a fixed 

threshold approach, meaning that clusters are not formed based on similarity but based on 

predefined boundaries. I have chosen rule-based clustering to proceed with the classification model, 

as it offers a more balanced approach. 

 The next step was to choose the features and the target variable. The features (X) are the 

input variables used to make predictions, while the target variable (Y) is the outcome that the 

model is trying to predict. In this case study, the target variable (Y) is the cluster labels (A, B, C, 

D) created from the cluster analysis. The feature selection (X) are the remaining variables, 

excluding the CO2e Emissions and Total production since they were used to create the clusters. 

Once the X and Y variables are selected, I split the data into training and testing sets. Training and 

testing sets are subsets of data where the training data is applied to teach the model, and the testing 

data is used to evaluate its performance on new, unseen observations. The models used to train the 

model and make predictions on test data are Random Forest, AdaBoost, SVM, XGBoost and KNN. 

I have tested 30 different combinations – the 5 models together with the 6 different methods 

mentioned earlier regarding handling outliers and applying log transformation.  
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3.5 Model Validation 

The model validation stage is based on the following ideology: True Positives (TP), False 

Positives (FP), False Negatives (FN), and True Negatives (TN) (Albon Chris, 2018). TP refers to 

correctly predicting that an observation belongs to a class, FP to incorrectly predicting that an 

observation belongs to a class when it does not, FN to incorrectly predicting that an observation 

does not belong to a class, and TN to correctly predicting that an observation does not belong to a 

class. These concepts are used to build the base of the following four indicators useful for 

evaluating the performance of a model (Albon Chris, 2018). The first one is accuracy, which shows 

how many predictions were correct overall. The second one is Precision, answering how often the 

model is correct when it predicts a class. The third one is Recall, referring to how many actual 

instances of a class the model has correctly found. The fourth and last one is the F1-score, which 

represents the balance between precision and recall. 

XGBoost combined with method two, where outliers were replaced using interpolation 

method, was selected for the final classification model because it delivered high accuracy (0.9269) 

and maintained balanced cluster sizes throughout the dataset. The results are shown in Table IV. 

This balance prevents any single production–emission group from dominating the outcomes. 

Furthermore, as previously noted, Nguyen et al. (2022) demonstrated that XGBoost provided the 

most precise soil organic carbon estimates, even with limited ground samples, confirming its 

reliability for complex agricultural data. XGBoost showed very satisfactory accuracy and 

robustness, making it highly suitable for providing meaningful insights into sustainable cropland 

management based on clusters. Although XGBoost achieved a slightly higher accuracy score 

(0.9312) for method one, which kept the original data as is, it was not selected due to the risk of 

distorting the results by not handling the outliers. By replacing outliers rather than removing entire 

rows, method two keeps valuable information from each country while minimizing the impact of 

unusual spikes or errors. 

As can be seen in Table IV, the classification model achieved an overall accuracy of 92.7%, 

correctly assigning nearly 93% of the country-year observations in the test set to their respective 

clusters. Precision and recall for each cluster are all above 87%, indicating the model’s consistent 

ability to differentiate between the four production–emission groups. Both macro and weighted 
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averages reflect robust overall performance, suggesting that the model works well across clusters 

of varying sizes and does not favor larger groups. 

TABLE IV 

XGBOOST + METHOD 2: OUTLIERS REPLACED USING INTERPOLATION METHOD 

Accuracy: 0.9269      

 Cluster Precision Recall F1-Score Support 

 A 0.95   0.95 0.95 410 

B 0.90 0.87 0.89 163 

C 0.91 0.97 0.94 386 

D 0.92 0.85 0.88   190 

Macro avg  0.92 0.91 0.91 1149 

Weighted avg  0.93 0.93   0.93 1149 

 

3.6 Deployment 

The last step of the CRISP-DM process is Deployment; however, this section is not 

applicable in this paper. The focus of this paper is on understanding patterns and making 

recommendations, rather than deploying the model into a real-life agricultural system.  
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4. RESULTS 

4.1 Clusters Description 

 

FIGURE 10 - Scatterplot of the clusters from the Rule-Based Clustering Method.

The rule-based clustering method categorizes countries into four unique clusters according 

to their cropland production and CO2e emissions per hectare, as illustrated in Figure 10. Decision 

boundaries are established using the median values of the two variables, allowing for a clear visual 

segmentation of country-years into quadrants that depict various production-emission profiles. 

Each point in the scatterplot signifies an individual country-year observation, color-coded by 

cluster. 

4.1.1 Cluster A: Low Production, Low Emissions 

The blue cluster in the lower-left quadrant of the scatterplot represents countries 

characterized by low production and emissions per hectare. The high concentration of data points 

here suggests many countries function at comparatively low levels of input and output. These 

agricultural systems might represent traditional or subsistence farming practices that utilize 

minimal fertilizer, mechanization, or commercialization. The emissions and yields are both limited, 



A Cross-Country Study on Co2e Emissions and Crop Production Over Three Decades 

           Margarita Panayotova                      26                    Master’s in Management (MiM) 

 

potentially due to less industrialized agricultural systems, non-commercial farming, as well as 

climate or geopolitical restrictions. 

4.1.2 Cluster B: Low Production, High Emissions 

Located in the upper-left quadrant and represented in red, this group exhibits high 

emissions in conjunction with low productivity. This mix may indicate inefficient agricultural 

methods, such as the overuse of synthetic fertilizers or inadequately suited technologies that lead 

to environmental harm without delivering corresponding yield advantages. Although these 

systems produce less, they contribute disproportionately to emissions from cropland, highlighting 

worries about climate inefficiency and food insecurity. 

4.1.3 Cluster C: High Production, High Emissions 

Situated in the upper-right quadrant and highlighted in orange, this cluster represents 

nations with industrialized, input-heavy agriculture. The substantial yield per hectare correlates 

with increased emissions, indicating dependence on synthetic fertilizers, mechanized practices, or 

intensive monoculture approaches. The broad spread of dots in this quadrant indicates variability 

in emission levels among high producers, reflecting varying degrees of efficiency or environmental 

regulation. 

4.1.4 Cluster D: High Production, Low Emissions 

Shown in green in the lower-right quadrant, these countries exhibit high productivity along 

with comparatively low emissions, reflecting the most favorable sustainability characteristics 

among the clusters. The points in this area imply that while striking this balance is difficult, it 

remains achievable. These nations may be utilizing advanced technologies, such as precision 

agriculture, organic soil management, or climate-smart practices, to boost productivity while 

reducing their environmental impact. 

4.2 Top Factors Influencing Cluster Assignment 

The XGBoost model identified five variables as the most important for predicting cluster 

assignment after performing a Feature Importance Analysis (Figure 11). Synthetic Fertilizers (N) 

kg/ha, scoring 0.204, accounted for approximately 20% of the model’s overall decision-making 

influence, confirming it as the most significant factor in determining cluster membership. The 

other key features - Precipitation Ml, Temperature °C, Electricity use TJ, and Pesticides kg/ha each 
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had scores ranging from 0.08 to 0.10. The scores on these variables indicate that they have a 

moderate yet meaningful contribution to the cluster assignments, ranging from 8-10%. 

 

 

FIGURE 11 - Top 5 Factors Influencing Cluster Assignment (Based on XGBoost Model). 

 

After calculating the mean and standard deviation of these variables for each cluster 

(Figures 12-16), the visual analysis revealed distinct patterns. Synthetic fertilizer use was highest 

in the High Production, High Emissions group, while the Low Production, Low Emissions group 

used the least. Precipitation levels tended to be higher in clusters with greater production, 

particularly in Clusters C and D. Average temperatures were slightly lower in the High Production, 

High Emissions cluster, indicating possible regional climate links. Electricity consumption was 

highest in Cluster C, suggesting increased energy inputs for production. Additionally, pesticide 

use increased progressively from Cluster A through B, C, and D, reflecting higher input intensity 

in clusters with increased production or emissions.



A Cross-Country Study on Co2e Emissions and Crop Production Over Three Decades 

           Margarita Panayotova                      28                    Master’s in Management (MiM) 

 

 

FIGURE 12 - Mean and Standard Deviation 

Values of Synthetic Fertilizers (N) kg/ha per 

cluster. 

 

FIGURE 13 - Mean and Standard Deviation 

Values of Precipitation Ml per cluster.

 

 
FIGURE 14 - Mean and Standard Deviation 

Values of Temperature °C per cluster. 

 

 
FIGURE 15 - Mean and Standard Deviation 

Values of Electricity use Tj per cluster.

 

 
FIGURE 16 - Mean and Standard Deviation 

Values of Pesticides kg/ha per cluster. 

 

 

4.3 Cross-Country Analysis between 1990-2022 

Table V lists the top countries in each cluster per continent, based on having the highest 

number of observations over the past five years. This recent overview facilitates the recognition 
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of national agricultural profiles and informs the need for customized strategies per continent, 

aimed at enhancing sustainability and productivity in alignment with SDG Target 2.4. Table VI 

lists countries by cluster based on the last five years of crop production and CO₂e emissions per 

hectare; see Appendix A. 

TABLE V 

TOP COUNTRY PER CLUSTER AND CONTINENT (LAST 5 YEARS) 

Cluster Continent Country 

A: Low Production, Low Emissions Africa Algeria 

 Americas Antigua and Barbuda 

 Asia Afghanistan 

 Europe Russia 

 Oceania Micronesia 

B: Low Production, High Emissions Africa Gambia 

 Americas Belize 

 Asia Brunei Darussalam 

 Europe Greece 

 Oceania New Caledonia (Fr.) 

C: High Production, High Emissions Africa Djibouti 

 Americas Argentina 

 Asia Bangladesh 

 Europe Austria 

 Oceania Australia 

D: High Production, Low Emissions Africa Equatorial Guinea 

 Americas Barbados 

 Asia Cambodia 

 Europe Bosnia and Herzegovina 

 Oceania Fiji 

 



A Cross-Country Study on Co2e Emissions and Crop Production Over Three Decades 

           Margarita Panayotova                      30                    Master’s in Management (MiM) 

 

Figure 17 shows the color associated with each cluster. Figures 18-22 show a heatmap 

illustrating the evolution of the top countries mentioned earlier for each continent and cluster. Each 

row on the heatmap represents a country, while each column corresponds to a year between 1990 

and 2022. The color of each cell indicates the cluster classification for that country in a specific 

year. 

 
FIGURE 17 - Cluster colors. 

 

 
FIGURE 18 - Evolution of Top Countries per Cluster for Africa (1990-2022). 

 

 
FIGURE 19 - Evolution of Top Countries per Cluster for Americas (1990-2022). 

 

 
FIGURE 20 - Evolution of Top Countries per Cluster for Asia (1990-2022). 
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FIGURE 21 - Evolution of Top Countries per Cluster for Europe (1990-2022). 

 

 
FIGURE 22 - Evolution of Top Countries per Cluster for Oceania (1990-2022). 

 

This visual format enables the observation of changes over time, such as countries shifting 

towards more sustainable profiles (from red to green) or, conversely, moving into higher-emission 

categories (from green to red). Orange (high production-high emissions) can be perceived as an 

alerting signal; however, it could also be argued that higher emissions are associated with increased 

production levels. Blue (low production-low emissions), similarly to orange, may be viewed as 

indicative of alertness, owing to the low production levels. However, if the country is deemed 

unsuitable for production, such conditions may be regarded as usual, and no action would be 

necessary. In general, the red indicates the most concerning and inefficient cluster of low 

production-high emissions, and the involved countries must be given priority to improve. In 

contrast, countries in the green cluster serve as models for effective resource utilization, and their 

practices should be studied and adopted by other nations when possible. These trends offer crucial 

insights into the evolution of national farming systems and underscore the necessity for further 

investigation to identify the underlying causes of production inefficiency or emission intensity, 

particularly in relation to SDG 2.4. 

The leading countries for cluster A: Low Production-Low Emissions are Algeria from 

Africa, Antigua and Barbuda from the Americas, Afghanistan from Asia, Russia from Europe, and 

Micronesia from Oceania. All countries have been part of this cluster every year since 1990, 

demonstrating a consistent trend. It is important to emphasize that the countries in this cluster do 
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not necessarily have low overall production, but rather low production per hectare compared to 

other countries. This is a key measure for assessing production productivity. 

The leading countries for cluster B: Low Production-High Emissions are Gambia from 

Africa, Belize from the Americas, Brunei Darussalam from Asia, Greece from Europe, and New 

Caledonia (Fr.) from Oceania. Gambia and Brunei Darussalam appear to be in this profile for most 

of the past 30 years, while the remaining countries have joined in the past decade. The evolution 

of the country of Belize shows a concerning downgrade, mainly because, before the last decade, it 

used to belong to the opposite profile – cluster D: High Production-Low Emissions. Belize, Brunei 

Darussalam, and New Caledonia (Fr.) have all experienced times of low production and low 

emissions. Studying these periods could provide valuable insights into what factors triggered these 

changes. Cluster B is the most concerning of all, urging priority and support for the representative 

countries to reduce emissions and potentially increase production if the climate conditions permit. 

The leading countries for cluster C: High Production-High Emissions are Djibouti from 

Africa, Argentina from the Americas, Bangladesh from Asia, Austria from Europe, and Australia 

from Oceania. Djibouti was part of this cluster in 1990, then shifted drastically to a low-producing 

and low-emitting country until 2016 and afterward returned to being a high-producing and high-

emitting country. Argentina and Bangladesh have shifted from being viewed as models of 

sustainable agriculture until 2016 and 1998, respectively, to countries that are increasing their 

emissions per hectare, while maintaining high levels of production. Austria has consistently been 

part of cluster C over the past thirty years. In contrast, Australia has seen volatility, fluctuating 

between lower and higher emissions, while still maintaining high production per hectare. 

The leading countries for cluster D: High Production-Low Emissions are Equatorial Guinea 

from Africa, Barbados from the Americas, Cambodia from Asia, Bosnia and Herzegovina from 

Europe, and Fiji from Oceania. Barbados and Fiji have achieved an impressive shift from high 

emissions to low emissions, while keeping their production productivity high. Another positive 

trend is observed in Cambodia, where emissions per hectare have decreased, and production per 

hectare has increased. Cambodia stands out as the only country to have accomplished such a 

significant improvement in balancing food demand with sustainable agricultural practices. 
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5. DISCUSSION 

This study aimed to investigate the impact of various agricultural practices and external 

factors on the balance between cropland productivity and CO2e emissions per hectare, aligning 

with SDG Target 2.4. These four clusters identified earlier illustrate the differences among farming 

systems in their efficiency in food production relative to emission management. 

The findings support several points discussed in existing research. Gan et al. (2011) and 

Snyder et al. (2009) emphasize that nitrogen fertilizers are a primary source of greenhouse gas 

emissions from cropland. This study confirms that synthetic fertilizers containing nitrogen (N) are 

the strongest determinant of a country’s cluster classification, and it indicates the significant 

impact of nitrogen application on emissions when not adequately managed. The association is 

evident in Clusters B and C, where increased nitrogen use correlates with higher emissions per 

hectare. 

Overall, this project confirms the point made by Haque and Biswas (2020) that there is a 

constant challenge between increasing food production and protecting the environment, but it is 

achievable through efficient agricultural systems. It has been shown that high production does not 

always lead to high emissions. Countries in Cluster C (High Production–High Emissions) mostly 

depend on synthetic fertilizers and intensive methods, which raise production but also increase 

CO2e emissions per hectare. On the other hand, countries in Cluster D (High Production–Low 

Emissions) show that it is possible to have an efficient production while keeping emissions lower. 

This is likely due to advancements in technology, more precise fertilizer use, and sustainable 

practices that enhance efficiency. However, unlike what was discussed in the literature, this study 

did not find a clear effect of organic fertilizers on increasing production. This does not suggest that 

organic fertilizers are not important for sustainable agriculture, however their impact may not have 

appeared clearly here because Soil Organic Carbon (SOC) sequestration was not measured. 

The results also show that local climate conditions have a strong influence on production 

and emissions, which supports what Nguyen et al. (2022) and Haque and Biswas (2020) found. 

Countries in Clusters C and D, which have higher average rainfall, often achieve higher production 

per hectare. This shows how important water is for crops to grow well and for fertilizers to work 

effectively. Higher temperature on the other hand, has shown to hinder production, as also 

discussed by Haque and Biswas (2020). The study also found that electricity use is an important 
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factor, as practices like irrigation and using farm machinery can raise emissions if not used 

efficiently. Overall, these findings indicate that climate conditions and energy consumption can 

either strengthen or weaken the effects of fertilizers, highlighting the need to tailor solutions to 

local contexts. 

The shifts of individual countries between clusters provide real-world examples of how 

policy, technology, and management choices can influence sustainability trajectories. Belize’s 

movement from Cluster D (High Production–Low Emissions) to Cluster B (Low Production–High 

Emissions) suggests that inefficiencies have developed over time, possibly due to declining soil 

health from overuse of synthetic fertilizers, conventional tillage and other practices. Conversely, 

Cambodia’s progress into Cluster D indicates that while context differs, practical interventions can 

help countries transition toward sustainable, resilient production systems. 

Finally, this research supports recent calls in the literature (Nguyen et al., 2022; Sirsat et 

al., 2017) for the wider adoption of machine learning tools in agricultural sustainability monitoring. 

By using clustering and XGBoost models, this study moves beyond traditional linear analysis to 

reveal more complex, non-linear relationships among fertilizer inputs, climate conditions, energy 

use, and governance factors. This confirms that modern machine learning can complement 

traditional methods, offering new ways to track progress toward SDG 2.4 and develop more 

targeted interventions. 
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6. CONCLUSIONS 

6.1 Theoretical Implications 

This study enhances our understanding of how agricultural practices, climate variables, and 

governance indicators together affect cropland production and CO2e emissions per hectare, 

aligning with SDG Target 2.4. By employing both unsupervised and supervised machine learning 

approaches, this study demonstrates how data-driven models can explain the relationship between 

fertilizer use, weather patterns, and soil health. Findings reaffirm the significance of nitrogen 

fertilizers in agricultural production and emissions, along with precipitation, temperature, 

electricity use, and pesticides. The use of organic inputs was not a primary factor in determining 

whether a country would produce or emit more per hectare, but the advantages of organic materials 

for soil health are undoubtedly recognized. 

6.2 Practical Implications 

The insights from this research can guide policymakers, local authorities, and farmers in 

creating targeted strategies that boost productivity while reducing emissions. Countries in the Low 

Production–High Emissions group should focus on improving fertilizer efficiency, adopting 

precision farming, and enhancing governance to prevent waste. Conversely, nations with high 

production and low emissions can share best practices like optimized nutrient management, 

minimal tillage, or adding organic matter to improve soil health. International organizations and 

funding agencies can utilize these findings to direct resources and technical support to areas where 

the most significant improvements are achievable, thus advancing SDG 2.4 and building a more 

resilient global food system. 

6.3 Limitations 

This study has certain limitations to consider. Primarily, it concentrates on the effects of 

organic versus synthetic fertilizers, but actual agricultural systems often incorporate other 

approaches, such as measuring Soil Organic Carbon (SOC) sequestration, tillage, cropping 

patterns and other practices. These nuances were not entirely reflected in the data available. Second, 

climate conditions were assessed through average annual temperature, but this does not reflect 

seasonal extremes or climate shocks that could significantly impact crop production and emissions. 
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Thirdly, rule-based clustering employed a median split for simplicity. Although this provides clear 

comparisons between clusters, it might oversimplify differences among countries. 

6.4 Future Research 

Future research should focus on the representative countries from all four clusters, as they 

can all offer valuable insights on how to find a better trade-off globally between food production 

and emissions. The primary priority should be to investigate why emissions per hectare may be 

high in some countries despite low production per hectare. Additional studies could gather detailed 

field data to explore how fertilizer types, application methods, and soil management practices 

contribute to inefficiencies in crop production. Comparing these countries with others where 

production is high, but emissions are relatively low, could help identify practical strategies for 

local adaptation. Lastly, collecting more detailed data on SOC sequestration should be prioritized 

as it is a vital indicator for measuring the progress in achieving SDG 2.4 by 2030. 
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APPENDICES 

Appendix A 

Countries by Cluster (Last Five Years) 

 

TABLE VI 

ALL COUNTRIES PER CLUSTER BASED ON PERFORMANCE FROM LAST 5 YEARS 

A: Low Production,  

Low Emissions 

B: Low Production, 

High Emissions 

C: High Production, 

High Emissions 

D: High Production,  

Low Emissions 

Afghanistan Belize Argentina Azerbaijan 

Albania Bhutan Australia Bahamas 

Algeria Brazil Austria Barbados 

Angola Brunei Darussalam Bangladesh Bolivia 

Antigua and Barbuda Colombia Belarus Bosnia and Herzegovina 

Armenia Cyprus Bulgaria Cambodia 

Benin Gambia Canada Cuba 

Botswana Greece Chile Equatorial Guinea 

Burkina Faso Guatemala China Fiji 

Burundi Guinea Costa Rica Haiti 

Cameroon Guinea-Bissau Croatia Jamaica 

Cape Verde Iceland Czechia Japan 

Central African Republic Malaysia Denmark Kenya 

Chad Mali Djibouti Kyrgyzstan 

Comoros Malta Dominican Republic Malawi 

Congo, Dem. Rep. Mauritania Ecuador Moldova 

Congo, Rep. New Caledonia (Fr.) Egypt Myanmar 

Côte d'Ivoire Nigeria El Salvador Nicaragua 

Dominica Oman Estonia Panama 

Eritrea Portugal Finland Vietnam 

Eswatini Qatar France Zimbabwe 

Ethiopia Saudi Arabia Germany  
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Countries by Cluster (Last Five Years) 

 

TABLE VI 

ALL COUNTRIES PER CLUSTER BASED ON PERFORMANCE FROM LAST 5 YEARS 

A: Low Production,  

Low Emissions 

B: Low Production, 

High Emissions 

C: High Production, 

High Emissions 

D: High Production,  

Low Emissions 

French Polynesia (Fr.) Sierra Leone Guyana  

Gabon Tanzania Honduras  

Georgia Timor-Leste Hungary  

Ghana Tonga India  

Grenada Turkmenistan Indonesia  

Iraq United Arab Emirates Iran  

Jordan  Ireland  

Kazakhstan  Israel  

Lesotho  Italy  

Liberia  Kuwait  

Libya  Laos  

Micronesia  Latvia  

Mongolia  Lebanon  

Morocco  Lithuania  

Mozambique  Madagascar  

Namibia  Mexico  

Niger  Nepal  

Papua New Guinea  Netherlands  

Puerto Rico (U.S.)  New Zealand  

Russia  North Korea  

Rwanda  North Macedonia  

Saint Vincent and the 

Grenadines 

 Norway  

Samoa  Pakistan  

Senegal  Paraguay  
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Countries by Cluster (Last Five Years) 

 

TABLE VI 

ALL COUNTRIES PER CLUSTER BASED ON PERFORMANCE FROM LAST 5 YEARS 

A: Low Production,  

Low Emissions 

B: Low Production, 

High Emissions 

C: High Production, 

High Emissions 

D: High Production,  

Low Emissions 

Solomon Islands  Peru  

Somalia  Philippines  

Syria  Poland  

São Tomé and Príncipe  Romania  

Togo  Slovakia  

Trinidad and Tobago  Slovenia  

Tunisia  South Africa  

Uganda  South Korea  

Vanuatu  Spain  

Yemen  Sri Lanka  

  Suriname  

  Sweden  

  Switzerland  

  Tajikistan  

  Thailand  

  Turkey  

  Ukraine  

  United Kingdom  

  United States  

  Uruguay  

  Uzbekistan  

  Venezuela  

  Zambia  
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Appendix B 

Code & Data Analysis (GitHub) 

 

All code and generated outputs are available at: 

Panayotova, M. (2025). Thesis analysis repository (commit 9ec949c). GitHub: 

https://github.com/margaritapanayotova/MFW/blob/c06342ce2e3c76c8b8de55add224b3a94615

191c/Master's_Final_Work_Data_Analysis.ipynb  

https://github.com/margaritapanayotova/MFW/blob/c06342ce2e3c76c8b8de55add224b3a94615191c/Master's_Final_Work_Data_Analysis.ipynb
https://github.com/margaritapanayotova/MFW/blob/c06342ce2e3c76c8b8de55add224b3a94615191c/Master's_Final_Work_Data_Analysis.ipynb

