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Abstract

In this thesis, will be explored how emission allowance prices evolve in carbon markets, using
mathematical models that account for both gradual changes and sudden shocks. Inspired by the
work of [5], the study replicates the results based on a jump-diffusion model with standard normally
distributed jumps. Then it goes further by testing two alternative models, the Double Exponential and
CGMY distributions, that aim to better reflect the real behavior of the market, particularly in situations
of extreme volatility. The model is solved numerically using the finite difference method, with all
simulations implemented in Python. By comparing the effects of different jump distributions, the
thesis provides insights into how these models can help price emission-related financial derivatives
more accurately and support better decision-making in systems like the EU Emissions Trading
Scheme (EU ETS).



1 Introduction

1.1 Context and Relevance

The growing concern about the increase in global warming has intensified in recent years, which
led to the urgency for the development and creation of new economic mechanisms for the reduction
of greenhouse gas emissions, such as C'O,. One of the main mechanisms developed was the Emissions
Trading Scheme (ETS), considered as one of the most effective tools for the mitigation of carbon
dioxide. In this context, one of the most important and the largest carbon market in the world is the
European Union Emissions Trading Scheme (EU ETS), which is based on the cap-and-trade principle,
that ensures the reduction of emissions by companies. The main objective of this type of market is to
comply with environmental proposals, such as, for example, the Kyoto Protocol. For this purpose,
the EU ETS establishes a price for carbon emissions, which encourages their reduction by market
participants.

The fundamental principle behind this type of market is simple: a regulatory authority establishes
a maximum limit (cap) for the total that can be emitted during a compliance period. For this, it
distributes or auctions emission certificates, each one allowing its holder to emit one ton of C'Os.
Thus, at the end of the compliance period, if companies do not have enough certificates to cover
the total emitted, they will be subject to a penalty. For that, companies can trade certificates among
themselves, adopting the best strategy that optimizes their portfolios. To know more about these
markets, see [1], [2], [3] and [4].

Therefore, it becomes essential to determine the evolution of the prices of emission certificates,
as these are quite volatile, influenced by several factors, such as changes in the allocation of these
certificates, political changes, creation of new more sustainable technologies, changes in the energy
market, etc.

In this way, the use of complex mathematical models becomes essential, as they can reflect the
uncertainty associated with these markets. Thus, in this thesis, the mathematical model proposed in
the article “Jump-Diffusion Modeling in Emission Markets” by Borovkov, Decrouez and Hinz [5] will
be adopted, where a mathematical model based on jump-diffusion processes is presented to represent
the evolution of these prices. Furthermore, by considering abrupt movements in the market, the
article will implement jumps in the model, which will result in integro-differential equations. This
methodology offers a useful tool to analyze the volatility associated with this type of market, which
will reflect in a more realistic and more accurate price for these emission certificates.



1.2 Main goal of the Thesis

The main goal of this thesis is to develop a mathematical model to simulate the price of emission
allowances, based on the foundational work of Borovkov et al. [5]. Initially, the discrete-time
framework will be presented, as a foundational step for the continuous and jump-diffusion models
developed in this thesis. Thus, this study aims to reproduce the evolution of certificate prices for
different times to maturity and under different parameters, using a standard normal distribution
for the jumps, and later extending the original work by integrating other distributions such as
the Double Exponential and a CGMY Model in the modeling of jumps, which will allow drawing
conclusions suitable to different market conditions. After the discretization of the partial integro-
differential equation (PIDE) associated to the pricing problem, it will be possible to analyze the impact
of the different distributions used on emission allowance prices and their implications for derivative
valuation.

1.3 Structure of the Thesis
This thesis has six main chapters, followed by references and appendices:

« Chapter 1 - Introduction.

+ Chapter 2 — Theoretical Background: The second chapter examines the fundamental principles
of emission markets, with particular emphasis on the structure and functioning of the Euro-
pean Union Emissions Trading System (EU ETS). It introduces the concept of jump-diffusion
processes and discusses the properties of the jump distributions considered: the Standard
Normal, Double Exponential, and CGMY Model.

+ Chapter 3 - Methodology: In this chapter, the mathematical model proposed by Borovkov et al.
[5] is outlined, along with a detailed explanation of the numerical discretization of the partial
integro-differential equation (PIDE) using the finite difference method.

« Chapter 4 — Results and Discussion: In this Section, the results are presented for each jump
distribution. A comparison with the findings of the original article is provided, as well as
an analysis of numerical and theoretical differences. The implications of the different jump
distributions are interpreted, model limitations are discussed, and practical applications within
emission markets are explored.

« Chapter 5 — Conclusions: The main contributions of the thesis are summarized, advances in
emission allowance price modeling are highlighted, and possible directions for future research
are proposed.

+ References and Appendices: A complete bibliography is provided, along with detailed simula-
tion parameters, and additional figures that support the analysis.



2 Theoretical Background

Carbon emission markets have emerged as a response to growing environmental concerns,
particularly regarding global warming driven by greenhouse gas emissions such as carbon dioxide
(COs). However, these markets are characterized by highly volatile prices, necessitating the use of
advanced mathematical models to accurately capture their dynamics.

In this chapter, the theoretical foundation for modeling emission allowance price dynamics using
jump-diffusion processes will be established. This section will first provide an overview of how
emission markets operate, followed by a discussion of the core principles underlying jump-diffusion
processes. Finally, the distinctive features of various jump distributions: the Standard Normal, Double
Exponential, and CGMY model will be examined in detail and some definitions will be presented.

2.1 Carbon Emission Markets

Created in 2005, the European Union Emissions Trading System (EU ETS) is the first carbon
market in the world, being one of the largest at a global level. As mentioned earlier in this thesis, the
EU ETS is based on the cap and trade principle. The cap refers to the maximum limit allowed to be
emitted by the market participants during the compliance period, where this limit is reduced every
year in order to reach the proposed environmental goals. Additionally, this total emission limit is
expressed in emission allowances, as each one gives the company that owns it the right to emit one
tonne of C'O,. These allowances are either distributed for free or auctioned at the beginning of the
compliance period and they can be traded between companies. Since the cap decreases, the supply of
allowances to the EU carbon market also decreases.

All market agents are required to monitor and report their annual emissions, and they must hold
enough certificates to cover all of their emissions. If they do not hold enough certificates, they will
be subject to a heavy penalty. On the other hand, if they manage to reduce their emissions, firms can
sell the remaining allowances or keep them for the future.

So, it’s expected that the price of these certificates is quite volatile, being influenced by both
external market factors, like geopolitical events, and internal events, such as changes in the allocation
of these certificates.

This level of unpredictability highlights the importance of using complex and sophisticated
models to accurately price emission allowances and related financial instruments, such as European
options. These tools are essential for effective risk management and play a key role in the strategies
of market participants and policymakers within the carbon trading space.

2.2 Jump Diffusion Processes

Jump-diffusion processes are advanced stochastic models designed to capture the complex behav-
ior of price evolution in financial markets. This processes integrates a diffusion component, modeled
by Brownian motion, with discrete jumps governed by a Poisson process. The Brownian motion
captures gradual price fluctuations, while the Poisson process introduces sporadic jumps, reflecting
sudden shocks caused by external events. By integrating both smooth and abrupt movements, jump-
diffusion frameworks provide a more comprehensive and realistic description of assets that are prone
to volatility. This dual approach is particularly effective for modeling markets where unexpected



shocks can cause significant and immediate impacts, offering valuable insights for risk assessment
and strategic decision making.

2.2.1 Apllication in Emission Markets

As previously noted, carbon markets are highly susceptible to unpredictable events, leading
to sudden price shifts in emission allowances that traditional continuous diffusion models fail to
adequately capture. Jump diffusion models effectively integrate both the market’s inherent volatility
and discrete, abrupt price movements, providing a more accurate representation of price dynamics.
This is critical for the fair pricing of financial derivatives, such as options and futures, and for gaining
deeper insights into market behavior under risk scenarios. In addition, these models enable the
development of more effective risk and hedging strategies. By employing jump-diffusion processes,
stakeholders can better navigate the uncertainty and complexity of emission markets, fostering more
efficient and sustainable management of both financial and environmental risks.

2.3 Definitions

In this section will be introduced some key definitions, presented in [6] and [7], essential for
understanding the concepts discussed in this thesis and some of them will also be applied throughout
the analysis.

We will consider a filtered probability space (2, F, P, {F; }+>0)-

2.3.1 Lévy Process and Lévy Measure
An adapted stochastic process L = {L;,t € [0, T} is a Lévy process if:
o Ly=0as.
« L has independent increments
« L has stationary increments

« L is stochastically continuous, i.e., for every ¢ € [0,7] and ¢ > 0, we have

limP(|L, — L,| > ) = 0.
s—t
Let v be a Borel measure defined on R \ {0}. We say that v is a Lévy measure if

/ (|z|* A1) v(dx) < oo (1)
R\{0}

2.3.2 Infinite divisible distributions

A probability distribution ;2 on R is said to be infinitely divisible if for any n € N, there exist n
independent and identically distributed (i.i.d.) random variables Yl(n) YQ(n) ., Y™ such that:

Y Y
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The following formula, called the Lévy-Khintchine formula, provides a fundamental characteriza-
tion of infinitely divisible distributions.

Py is infinitely divisible if and only if there exists a triplet (b, c,v), b € R,¢ > 0, where v is a
Lévy measure, v({0}) = 0 and

2

E [¢"X] = exp {ibu — % + /R (€™ — 1 — iurlyy<y) v(dz)| . 3)

2.3.3 1to Process

An It6 process is a stochastic process of the form X; = X, + fs f(s)dB(s) + fj g(s)ds, where B is
a Standard Brownian Motion, a < t < b, X, is F,-measurable, f € H2, {[a,b] x Q} and
g € H!,{[a,b] x Q} are adapted and measurable processes. These spaces of processes are defined as:

b
H2 {[a,b] x Q} = {f : [a, b] x Q@ — R measurable and adapted: P [/ |f(s)]2ds < oo} = 1} :

b
H} {la,b] x Q} = {g . [a, b] x Q@ — R measurable and adapted: P [/ lg(s)|ds < oo} = 1} .

2.4 Distributions

2.4.1 Normal Distribution

The Normal distribution is widely employed in financial modeling due to its simplicity and
analytical properties. It is defined by the following probability density function:

fa) = = e (—%) | (@

Key Statistical Properties (X ~ N (u,0?)):

« Expected Value: E[X| = p - Represents the average shift of jumps.

« Variance: Var[X| = o - Measures the dispersion of jump sizes around the mean.

The Normal distribution is symmetric around its mean, with tails that decay exponentially,
implying that extreme jumps, whether positive or negative, are less likely. Consequently, this
distribution is suitable for modeling moderate shocks, as its light tails fail to adequately capture the
probability of extreme jumps, which are common in volatile markets.

2.4.2 Double Exponential Distribution

The Double Exponential Distribution is defined by the following probability density function, as
presented by [8]:
f(y) = pme ™ y>0y + qnae™ 1,0y, (5)

11



where p,q > 0, p + ¢ = 1, represent the probabilities of upward and downward jumps, and 7, > 1,
12 > 0 control the exponential decay rates for positive and negative jumps, respectively. In other
words,

log(V)=Y =

4 | €T,  with probability p
—&~,  with probability ¢

where £1 and £~ are exponential random variables with means 1/7; and 1/15, respectively.

Key Statistical Properties (Y ~ Double Exponential):

« E(Y)= % - n% - Reflects the asymmetry between positive and negative jumps.

2
« Variance: Var[Y] = pgq (77% + %) + :42 + 7;% - Depends on the decay rates and the
1 2

probabilities p e q.

This distribution effectively captures asymmetries, such as pronounced upward jumps driven
by stricter regulations in the EU Emissions Trading System (EU ETS) or energy crises, for instance.
Since the double exponential distribution features heavier tails compared to the Normal distribution,
it provides a more realistic modeling framework by assigning higher probabilities to extreme events,
such as revisions in allowance allocations.

2.4.3 CGMY Distribution

The CGMY(C, G, M,Y’) distribution, as presented in [9] and discussed in [7], is a four-parameter
distribution where the Lévy measure is given by:

Cexp(Gr)(—z) 7Y dx, x <0,

6
Cexp(—Mz)z™ 7Y dz, x> 0. ©

VCGMY(d$> = {

The CGMY distribution is infinitely divisible and we can define the CGMY Lévy process X (CSMY) —
{Xt(CGMY), t > 0} as the process that starts at zero, has independent and stationary increments,
and is characterized by the property that the increment over a time interval of length s follows a
CGMY(sC, G, M,Y) distribution. In other words, the characteristic function of Xt(CGMY) is given by:

E [ ] = goour(uitC, G, M, Y) = (deanr(u C. G, M.Y))'
where
deomy(u; C, G, M,Y) = exp (CT(=Y) (M — )" — MY + (G +iu)" —GY)),
which can be expressed as:
(€O

E [e } = exp (CHD(=Y) (M — iw)” — MY + (G +iw)Y — GY)). (7)

Each parameter in the CGMY process has a specific role.

12



The parameter C controls the overall activity level of the process. It can be calibrated to adjust
the aggregate activity and influences the kurtosis of the distribution.

The parameters G and M control the exponential decay rates in the Lévy density, with G affecting
the right tail and M controlling the left. The difference between G and M introduces skewness in the
distribution, with G > M resulting in a heavier left tail. In the special case when G = M , the Lévy
measure is symmetric. Their sum measures the magnitude of large versus small moves, while their
difference affects the relative frequency of upward versus downward movements.

The parameter Y is crucial to determine the fine structure of the process. It influences the
monotonicity of the jumps and the overall level of activity, which may be finite or infinite. Y is
the key to understanding the behavior of both jumps up and down and the overall variation of the
process.

Following, we have some interesting properties of the CGMY process:

1. The CGMY Process is a pure jump process, that is, it contains no Brownian part (¢ = 0).
2. Mean: C(MY 1 —GY"HI'(1 -Y)
3. Variance: C(MY 2+ GY )12 -Y)

The CGMY model excels in capturing both high-frequency small jumps (infinite activity) and
heavy-tailed distributions, making it ideal for modeling extreme events like regulatory shocks or
energy crises that trigger significant price swings in the EU Emission Trading System (EU ETS).
Its robust ability to represent tail risks is especially relevant for emission markets, where sudden
policy shifts or market disruptions can lead to pronounced volatility, enhancing the accuracy of risk
assessment and pricing of emission-related derivatives.

3 Methodology

3.1 Modeling Emission Markets in Discrete Time

This section presents the discrete-time framework for modeling emission markets, based on
Borovkov et al [5], as a foundational step for the continuous and jump-diffusion models developed in
this thesis.

During the compliance period, each participant in the Emission Trading Scheme (ETS) dynamically
adjusts their production processes (and, consequently, their emissions) to maximize their revenue,
and, since we assume that we are at a discrete time, the trades of emission certificates occur at discrete
pointsintimest = 0,1,2,...,7 < oo. In this context, the price of allowances reaches an equilibrium
determined by the supply and demand of emission allowances. The following analysis is based on
the model from [5], which characterizes equilibrium allowance prices in terms of non-compliance
uncertainty and emission reduction costs, serving as the starting point for this investigation.

Consider a filtered probability space (2, F,P, {F;}L ), in which all analyzed processes are
adapted to the filtration {F;}’_,. This probabilistic framework serves as the foundation for modeling
the dynamics of a market composed of a finite set I of agents subject to the rules of the Emission
Trading Scheme (ETS), whose interactions determine the equilibrium prices of emission allowances.

From now on, several definitions that will be useful for modeling the price of emission allowances
will be presented.

13



Emissions

Each agent i € I is characterized by a stochastic process { £ }/_', where each {Ei} = {E!}(w)
represents the total emissions of agent ¢ during the time interval (¢, ¢ + 1] if the agent does not apply
abatement measures.

Reduction

The process &! represents the total units that the agent ¢ will reduce during (¢, ¢ + 1], strategically
adjusting to comply with regulatory requirements.

Cost of Reduction

Each unit of emission reduction is associated with a cost, modeled by a function C}(x), which is
strictly convex and continuous with C?(0) = 0. Thus, for a reduction of x units of pollutant during
the interval (¢, ¢ + 1], the associated cost is C}/(z). This function reflects uncertainties in factors such
as fuel prices, resulting in a total abatement cost up to the compliance deadline 7', given by:

> CiE. (8)

Reduction Volume

For each agent ¢, the following function is defined:
ri(a) = argmax{ar — Ci(z) : x € [0, E!]}. 9)

This function identifies the "locally optimal" reduction volume for agent ¢ during the interval

(t,t + 1], based on the price of one allowance unit set at a > 0 for that period, which is equivalent to
say that if we assume that all the agents are rational, then we have that this value will be the level of
emission reduction that they will adopt.

Transaction Costs

Considering the process 6} as the change in the number of licenses held by the agent i at time ¢ and
supposing that emission licenses are traded at the spot price A;, for each time t, we have that the
total trading cost for agent 7 is given by:

T
> 0,A;. (10)
t=0

From now on, for simplicity, it is assumed that the interest rate is zero, which is equivalent to
considering already discounted prices.

Total Pollution

With the information we have above, the total pollution of the agent ¢ will be given by the difference
between the total emitted and the total that the agent reduced in the compliance period:

T—-1 - T—1 ‘
Y E-> & (11)
t=0 t=0



Total Loss

Let 7, be the initial allowance allocation for agent i. Then the loss incurred by agent ¢ due to a
potential penalty payment (7 - the penalty for emissions equivalent to one allowance), is given by:

T—1 +

T > (Bl —&—0)—+ -6 (12)

t=0

Feasible Strategy Space

Finally, we define the space of feasible trading strategies and abatement strategies.

Definition of Strategies:

« Trading Strategy (9" = {0} ): Each agent i € I can dynamically adjust the number of
emission certificates they hold throughout the compliance period.

« Emission Reduction Strategy (¢* = {¢/}7°;'): Each agent i € I can decide to reduce their
emissions during the compliance perlod.

Thus, the feasible strategy space for agent ¢ can be defined as:
U ={(0,6):0< & <ELt=0,...,T —1}.

These restrictions ensure that the strategies are realistic and viable, as the volume of reduced
emissions cannot exceed the initial emissions of the agent.

To specify risk preferences, we will describe the investor’s attitude toward risk through individual
utility functions U, where i € I. Thus, the expected utility of the agent i is given by:

u'(X) = E[U"(X)],

where U*(X) is continuous, strictly increasing and concave. Thus, agent 7 acts rationally by
choosing the strategy (67, £') that maximizes their expected utility:

u (L0, €7)),

where
T-1 T-1 +
LAY, E) == (0jA + C'(&)) — 05 Ar — — -6 (13)
t=0 t:O

denotes the total revenue of agent 1.

To continue this theoretical framework is essential to present the concept of market equilibrium.

Definition 1: Market Equilibrium
A market is described by the so-called equilibrium if:

« The price of certificates is determined by the strategic interaction of all agents.

« Each agent is satisfied with their strategy.

15



« Each agent optimize their own utility function under the prevailing market conditions

This equilibrium concept is essential to ensure that the model reflects real market conditions, where
prices appropriately reflect supply and demand, and no agent has an incentive to change their strategy
given the decisions of the other agents.

Now we are ready to define what an equilibrium certificate price process is (A* = {A}L ),
which is crucial to understanding how the model captures the equilibrium condition.

Definition 2:

An adapted process (A* = { A7} ) is called an equilibrium certificate price process if, for each
agent i € I, there exists a strategy (6*/, £*) € U’ such that u?(LA"(0*, £*)) < oo and:

+ The cumulative changes in positions are in zero net supply:

> 6y =0forallt=0,...,T. (14)

el

This condition ensures that the market is balanced, meaning there is neither an excess nor a
shortage of certificates. This reflects the fact that, in an efficient market, the total quantity of
certificates bought must equal to the total quantity sold.

« Satisfaction with Own Strategy: Each agent ¢ € [ is satisfied with their own strategy in the
sense that, for any other strategy (6%, £%) € U’, the following holds:

ui(LA*’i(Q*i, 5*1)) > ui(LA*,i(9i7 fl)) (15)

This second condition ensures that each agent maximizes their expected utility by choosing
the optimal combination of certificate trading and emission reduction.

In [10], this equilibrium concept was applied to simplify and construct a reduced-form model that
outlines the development of allowance prices from a risk-neutral (() ~ P) perspective. This method
relies on the following three properties of the equilibrium described above:

« Property (a): Absence of Arbitrage: There are no arbitrage opportunities in the market, as
any profitable strategy would be immediately adopted by all agents. This ensures that prices
accurately reflect supply and demand conditions, with no gaps or inconsistencies that would
allow unlimited risk-free gains.

+ Property (b): Optimality of Emission Reduction: If a technology exists with emission
reduction costs lower than the current certificate price, it becomes optimal to reduce emissions
and sell certificates for profit. This reinforces the notion that agents act rationally, maximizing
their financial benefits in response to market conditions.

« Property (c): At the end of the compliance period (7'), only two final outcomes are possible
for the certificate price: it drops to zero if there is an excess of certificates, or it rises to the
penalty level if there is a shortage of certificates.

With some reasonable supplementary assumptions, [10] suggests that the conclusions above can be
inferred from the equilibrium in the following way. This proposition is proved in [10].

16



Proposition 1:

Suppose that { A*}” is an equilibrium allowance price process and {£;}_', for i € I, are the
corresponding equilibrium abatement strategies. Then:

« a) There exists a measure Q equivalent to the original measure P such that {A7}7_ is a
martingale under Q.

 b) For each i € I, the following holds:
M=rl(AY), t=0,...,T—1. (16)

+ ¢) The terminal value of the allowance price is given by:

Ap=ml <Z (Z(EZ &)~ v") > 0) . (17)

el t=0

The equality (17) ensures that, at the end of the compliance period, the certificate price
depends on the difference between the total emissions Z;tol E} and the total reductions
tT:_Ol *, in addition to the initial allocations . Consequently, if there is a shortage of

certificates, the price rises to the penalty level 7; otherwise, it falls to zero.

To simplify, let us introduce the overall "business-as-usual" allowance shortage by:

T-1
er=y (Z E; — 7’) . (18)

el t=0

Since the terminal value A’ depends directly on the random variable 7, this variable also relies on
the intermediate values { A7 }7_' of the certificate prices, as outlined in item b) of Proposition 1.
Thus, by the martingale property of {A;}7_, we have:

T-1
1<5T—Zrt(A§‘)20)|]—“t], t=0,...,7—1. (19)

t=0

Al = 7EQ

where
r(A7) =) ri(a)
iel
denotes the cumulative reduction function and a is the price of one allowance unit.

With this, the problem simplifies in specifying a random variable €7 representing the cumulative
allowance shortage and determining a Q-martingale { A¥}7_! such that the terminal price satisfies:

T-1
AL =71 <5T =) (4 = 0) : (20)

t=0

where 1(-) is the indicator function. This formulation ensures that the price reflects the balance
between allowance supply and demand at the compliance horizon.

This discrete-time framework provides a foundation for understanding emission allowance price
dynamics. Extending this approach to a continuous-time setting is a natural progression, as outlined
in the following formulation. This transition simplifies the modeling process and sets the stage for
incorporating jump-diffusion processes, which are essential for capturing market shocks.

17



That transition is straightforward and leads to a refined problem statement.

Given a probability measure Q ~ [P and a family of reduction functions {r; };c[o 77, the objective is to:

« Specify a random variable e, that quantifies the total "business-as-usual" allowance shortage
over the interval [0, 7.

+ Determine a Q-martingale { A} },c[07) such that the terminal condition holds:
T
AL =1 (ET — / rs(Ar)ds > O) : (21)
0

This continuous-time approach enables the integration of stochastic processes, such as
jump-diffusion, to model abrupt market changes. The problem simplifies to defining €, and
{rt}tepo,1), which can be calibrated using market data, thereby connecting the discrete and
continuous frameworks examined in this thesis.

3.2 Modeling Emission Markets in Continuous Time

In this section, the continuous diffusion model is introduced to capture the evolution of emission
allowance prices within a carbon market. The goal is to model these prices realistically, incorporating
both continuous movements (diffusion) and discrete jumps (jump-diffusion), following the modelling
approach in [5].

Consequently, this framework describes a scenario where the market may experience sudden
changes due to the presence of jumps. A practical example is the EU ETS, where revised decisions on
certificate allocations can lead to abrupt price jumps. Additionally, sudden shifts in demand or fuel
prices can significantly affect pollution levels, directly impacting certificate prices.

The model assumes the following:

« The compliance period is a continuous interval [0, 7.

« All relevant stochastic processes are adapted to a filtered probability space
(Q, F,Q, {F:}tepo,m) equipped with a risk-neutral probability measure Q ~ P.

This measure ensures that emission certificate prices are martingales under Q, accurately reflecting
market uncertainty without systematic expectations of gain or loss.

As previously discussed, the objective is to find a solution {A;}/c[o,7) such that:
t
A, = 7E© {]l (eT —/ rs(Ag)ds > O) | ]-"t] , tel0,T]. (22)
0

From the discrete time framework provided by [10], and assuming certain conditions:

» Independence of Martingale Increments: The increments of the martingale
{e: := E%(er | ;) }rejo7) are independent;
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+ Determinism and Time Independence of Reduction Functions: The reduction functions
re : Ry x ©Q — R, are deterministic and independent of time.

it is reasonable to assume that the solution can be expressed in the functional form:
A =oft, Xy), tel0,T], (23)

where « : [0,7] x R — R is a suitable deterministic function. This simplification allows the
certificate price to be described as a deterministic function of time and state, facilitating the analysis.

Subsequently, the state process { X }.c[o,r) is defined as:
t
X =g —/ rs(As)ds, te[0,T]. (24)
0

Assuming that the martingale ¢, = E%(er | F;), for t € [0, T}, is modeled using a general jump-
diffusion process adapted to the filtration, the state process {Xt}te[o,T} is the solution of the stochastic
differential equation:

dXy = —r(a(t, X)) dt + o(t, X;) dW; + / a(t—, Xe—y) (o — q0)(dy x dt),  (25)
R\{0}

where {W,};cpo,r) is a Brownian motion adapted to the filtration {;};c,7, and p, is a random
Poisson measure independent of {W; };cp0.1) and {F; }icpo,r, with intensity ¢, (dy x dt) = Av(dy) dt.
Here, v is a probability distribution on R, A > 0 is a positive constant, and the impact of jumps is
incorporated through the function a, which describes the average jump size. Note that v(dy) :=
Av(dy) is the Lévy measure of the jump-diffusion model.

To ensure the martingale property of the allowance price process, we will apply the 1t6’s formula to
derive the stochastic differential of the process and then we are going to wipe out the drift term. But,
first, let us introduce the Itd’s formula and the It6 table, presented in [11]:

1t6 Table

X dw (t) | dt
AW | dt | o
dt 0 0

Theorem 1: Ité’s Formula

Let X, be an Itd process defined by X, = X, + f(: f(s)dW (s) + f(: g(s)ds, and let h(t,x) be a
continuous function with continuous partial derivatives 91 o)k, d0,1)h, and 9(g 2)h, where J; ;)
denotes the partial derivative of order ¢ with respect to the time variable and of order j with respect
to the space variable.

Then h(t, X}) is an Itd process, and:

h(t, X;) = h(a, X,) + /t oy h(s, Xs) f(s) dW (s)+

t
1
+/ |:(9(170)h(8, XS) + 8(0,1)h(8, Xs)g(S) + 58(072)h<87 Xs)f<8)2 ds.
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The proof of this result is omitted, as it lies beyond the scope of this project. There exists a formal
analogy between Itd’s formula and the second-order Taylor formula. More precisely, considering the
It6 table, It6’s formula can be expressed as:

1
dh(t, X;) = 0a0)h(t, X¢) dt + Oy h(t, Xi) dX; + 58(270)h(t, X,)(dt)*+

1
+§8(072)h(t, X)(dX,)? + Oayh(t, Xi)(dt)(dXy).

Applying the Ito table, this simplifies to:

1
dh(t, Xt) - 8(170)h(t, Xt) dt + 8(071)h(t, Xt) dXt + 58(02)]1(2&, Xt)<dXt)2 (26)

To have a better understanding of how to use the It6 table and the It6 formula, the formula will be
applied, in the Appendix A, to the process A; = «a(t, X;), where X is a particular Itd Process and
we will see that if we require A; to be a martingale then we can derive a partial differential equation
for a.

Let us now introduce a general jump-diffusion process as the process

X, = Xo + / £(5)dW's + / o(s)ds + / / e —a)drxds) @)

where f and g satisfy the same assumptions as in an Ité Process and [ is a process such that the
stochastic integral f(f fR\ ) [(s,9)(py — qv)(dy x ds) is well defined (see the detailed conditions in
section 4.2 of [13]).

Let us also denote the continuous part of X; by
t t
Xy =Xo+ / f(s)dWs + / g(s)ds (28)
0 0

Then we can write the It6 Formula for the general jump-diffusion process when h(t, z) is a C1?
function by:

1
dh(t, Xt) - 8(170)]1(757 Xt_) dt + 8(071)h(t, Xt_) dXtC + 58(072)h(t, Xt_)<dXtc)2

+/O /R\{o} [h(t Xt l(t7 y)) o h(t’ Xt—)] (pv - Qu)(dy X dt)

+ /R\{O} [h(ZZXt— +1(t,y)) — h(t, Xo—) — U2, y)8(071)h(t; Xt—)} @o(dy x dt).

Note that the It6 Formula in Theorem 1 is a particular case of this more general It6 Formula.

For a proof of the It6 Formula for general jump-diffusion process and Lévy Processes see section 4.4
of [13] or section 8.3 of [6].

Applying this It6 Formula to A; = «(t, X;), for t € [0, T, and considering that X} is the solution of
the stochastic differential equation (SDE)

dX; = —r(at, X, ))dt + o(t, Xy )dW, + / a(t—, Xi—,y)(py — q)(dy x dt), (29)
R\{0}
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we obtain

dOé(t, Xt) = 3(1’0)06(75, Xt,)dt + 6(071)05(75, Xt,) [—T(Oé(t, Xt,>>dt -+ U(t, Xt,)th)}

1
+§a2(t, Xi-)00,2)0(t, Xt_)dt—l—/ [a(t, X, +a(t—, X, y)) — alt, X;2)] (po — qu) (dy x dt)+
R\{0}

+/ [t Xom + alt—, Xi—,y)) — alt, X)) — a(t—, Xo—,y)Opnalt, Xi)] qu(dy x dt)
R\{0}

If we require that A; = «(t, X;) is a martingale, then the drift component of da(¢, X;) must be zero.
Therefore,

1
8(170)06@7 Xt,> — T(()é(t, Xt,))a(o’l)()é(t, th) —+ 50'2 (t’ Xt,>a(072)a(t, Xt,)—f—

/ falt, Xoe +alt— Xo_y)) — alt, Xe ) — alt— Xo_,)donalt, Xo)] Ao(dy)dt = 0.
R\{0}

Introducing the function 3(7, x) := a(T — t, z), replacing X; by x and considering that the
function a(t, z,y) is continuous, the previous equation transforms into the nonlinear partial
integro-differential equation for f3:

On,08(7, x) = —r(B(7, %)) 00,1 (7, z) + %02(77 )00, 8(7, x)
+ A / [/B(Ta T+ CZ(T, xZ, y)) - B(T7 [L’) - CL(T, xZ, y)a(o,l)/B(Ta x)}v(dy) = 07 (30)
where (7,2) € [0, 7] x R, subject to the boundary condition:
B(0,z) =7l(x >0), x€R.

Consult [12] to see the conditions that ensure that the stochastic differential equation possesses a
unique strong solution.

Assuming there exists a classical solution 5 € C'?([0, T| x R) for the problem defined by the
previous equations, if this solution satisfies the maximum principle, then:

0<B(r,x)<m, (r,2)€[0,T] xR.

This implies that the certificate price remains within realistic physical bounds:

« The lowest possible value is zero (in the case of an excess of certificates).

« The highest possible value is 7 (the maximum penalty in the case of a shortage).

If § is a classical solution of (30), then A; will be a local martingale. Thus, if the solution 5(7, x)
satisfies the maximum principle, the local martingale A, = «(¢, X;) is bounded, Therefore is a
martingale under the risk-neutral measure Q.

Let us prove that the solution (7, ) indeed satisfies the maximum principle.
Proposition 2:

Assuming that 3(7, x) is a classical solution to equation (30) with the initial boundary condition
B(0,x) = h(z), then B(T, z) satisfies the maximum principle:

inf h(z) < B(7,z) <suph(z), (r,z)€l0,T]xR. (31)
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Proof. To prove that (7, x) satisfies the maximum principle, we utilize the relationship between
a(t,z) and B(7, z):
a(t,z) = (T —t, ).

Since (7, z) satisfies the equation (30), the certificate price A; = «(t, X;) is a martingale under Q.
Additionally, the process {X;} is Markovian, which implies:

a(t, Xy) =E(Ar | Fr) = E(a(T, X7) | Xy).
Due to the regularity of a(t, z), for 7 = T — t, we have:
B(r,z) = at,z) = E(a(T, Xr) | Xy = 2) = E(5(0, Xr) | Xy = 2) = E(h(X7) | Xy = 2).

Therefore, the expected value of 4(Xr) is bounded by the minimum and maximum values of h(z),
which directly implies the maximum principle:

ilzlf h(z) < B(r,x) < sup h(z).

Finally, we are ready to proceed with the discretization.

3.3 Numerical Discretization

In the mathematical modeling of emission markets, the nonlinear partial integro-differential
equation (PIDE) described in Equation (30) is fundamental for capturing the evolution of emission
certificate prices. However, as noted in the article [5], analytical solutions for partial integro-
differential equations are rare and limited to special cases. In most practical scenarios, it becomes
necessary to employ numerical methods to solve these equations.

Discretizing the PIDE is a critical step in transforming the continuous problem into a system
of finite difference equations that can be solved numerically. In this section, we will discuss how
to discretize Equation (30) using the finite difference method and demonstrate that the discretized
problem admits a unique solution, following the procedures described in [5], [14] and [15]

First, we will present some definitions and the discretization grid.

1. Spatial Domain Truncation:

To simplify the problem, we truncate the spatial domain of . We define:
Dy:={zeR:|z| <}, (32)

where [ > 0 is chosen such that the probability of the process { X;} exiting the domain D,
during the time interval [0, 7', given it starts at X, does not exceed a small value €. See [5] to
have a method for choosing the domain boundary 1.

2. Integration Domain Restriction:

The integral on the right-hand side of Equation (30) is restricted to an interval K7, K5),
selected to ensure that the error introduced by this truncation remains minimal. For an
optimal choice of the endpoints K;, refer to the study presented in [14].
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3. Discrete Grid:

The numerical solution will be computed on a discrete grid. Let N be the total number of
discrete z-values and M the total number of 7-values to be used in the grid for the numerical
solution. The step sizes in x and 7 are respectively A, = 2I/N and A, = T'/M. Then the grid
will be defined as:

v, =—-l+iA,, 1T,=n-A,, for i€Z and n=0,...,M.

Discretization

Let B = (7, z;) denote the values of § on the grid. Due to the nonlocal term on the right-hand
side of Equation (30), we need to define (3 outside the domain [0, 7] x D,;. We adopt the simplest and
most intuitive approach by setting:

B = g(x;) for i¢{0,...,N—1},

m ifx>1,
g9(z) :—{ P

where
0 ifx <-—l.

To approximate the partial derivatives, it will be used the first order finite differences, which are
used to approximate the first order derivative of a function f.

Forward Difference

The forward difference of f is defined as

fl(a) = &2 (33)

Central Difference

The central difference of f is defined as

/
= . 4
e i (59
Backward Difference
The backward difference of f is defined as
x)— f(x—nh

Thus, the partial derivatives are approximated using the following finite difference formulas:

« Temporal Derivative

The partial temporal derivative is approximated by the forward finite difference:

B(Tot1, i) — B(Tn, ;) _ @?H -5
A, B A,

001,0)B(Tn, T3) = (36)
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 Spatial Derivative

The partial spatial derivative is approximated by the backward finite difference:

BT, xi) — Blm, zic1) _ B = Bita

00,1 3(Tn, ;) = A, A, (37)
« Second Spatial Derivative
The second partial spatial derivative is approximated by the second order central finite
difference:
B(TMxi—&-l) — 25(Tn>$i) ‘1‘5(7}“371’—1) ‘Tzrl B 2B‘n +5'n71
0 ) A = i 38
(072)6(7- T ) (Am)g (Aw)2 ( )
To discretize the integral term
)\ B(TTM‘/E?: + CL(Tnaxin)) U(dy)7 (39)

R\{0}

we adopt a strategy similar to that in [15]. To this end, we use the same step size A, to approximate
the integral term and select J; and J; such that

K] € [ = ) (e A ()

and define, for each subinterval [(j — 1)A,, (j + 1)A,], where j = Ji, ..., /s,

J+(1/2) Ay
v = / v(dy). (41)
J=(1/2)As
Then, by choosing the index
j (i,5,n) = arg mkin |z + a(7n, i, x5) — (KA, — 1) (42)

to minimize the distance between the point z; + a(7,, x;, ¥;) and the center of the corresponding
subinterval, the integral term can be approximated by

Jo
A / oy Bl ) o) %A (43)
R\{0O

J=A
The same approach can be applied to the integral term

N
o) 3(rs) [l pholdy) = Y ao, (49
=0

Ko Bn n
K3

where a}'; == a(7,, 4, 7;).

For simplification, let us define



Substituting all the terms into Equation (30), the objective becomes to find a solution 3! on the grid
such that:

gr-g 1, Ry
A — 57 (1, 25) (A,)? r(5; )T

+1 +1
=B

Jr
AN 0B iy — MBI — X

Jj=Jd

(45)

with the initial and boundary conditions:

B =rl(x; >0) for i€Z, pB'=g(r;) for i<0 and i> N.

To complete the theoretical framework, it is necessary to finally ensure that the discretized solution
exists, is unique, and satisfies the maximum principle. If these conditions are met, the process
A; = a(t, X;) will be a martingale under the risk-neutral measure Q. Consequently, the task of
determining the Q-martingale { A*}7 " such that the terminal price satisfies:

T—1
=l <5T =) (4 > 0) ,
t=0

will be successfully accomplished.

To address this, we present the following proposition.

Proposition 3:
The discretized problem (45) admits a unique solution {3 }. Furthermore, defining:

*2

Y :=minX! and o := mino*(r,,x;),

where the minima are taken over alli € {0,..., N — 1} andn € {0, ..., M}, if % is bounded away
from zero and the discrete grid satisfies the condition

0,*2

—T'A, < o (46)

then the solution adheres to the maximum principle
0<p'<m forall i€Z and ne{0,...,M —1},
where 7 represents the penalty per unit of pollutant not covered by the initial allocation.
This proposition ensures that the discretized problem is well-posed. This implies that:
+ The solution exists and is unique.
+ Allowance price Process is always non-negative (3" > 0).

« Allowance price Process never exceed the penalty level set by the regulator (3" < ).
This is crucial as it reflects the realistic physical conditions of the emission certificate market. The
proposition was proved in [5]. We present a more detailed version of the proof in order to clarify the

original proof.
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Proof. We begin by showing that the discretized equation can be rewritten, for i € {0, ...,
andn € {0,...,M — 1}, as

J’r
—EMBAB + (L4 GHBNANB = HEABE = B+ AA: Y 055,

J=J
where
0% (Ts1, @) | T(BF) AN
Fr(B") = . i) A%
K3 (/82 ) 2<Ax)2 _'_ Am Am ’
n(an o’ (Tn+17 xl) T(ﬁzn) )\E?Jrl
pn = Tt )
2(Ag)?
Rearranging the terms involving 3/, 8, and 3]"**, we have:
ﬁn+1 Bn 1 ) Z1’L_|_+11 _ 2ﬁ;1+1 +ﬁzn_+1 . ﬁnJrl n+1
AT — 57 (Tnt1, i) (A,)2 r(B7) A,
Jr n+1 - n—i—l
+)\Z Ujﬁjn (i,5,m) BnJrl B A Blil Yol —
Jj=J v
/6@4’1 _ AN 1 5 1
i (R B ) n ZnJrl n+1
N 20 (TnJrlaxl) (Ax) (ﬁ ) A, ﬁ

1 —2 1 1
R T e A) g

J,
1 1 " ~

J=Ji

N -1}

(47)

Multiplying both sides of the equation by A, and adding 3", the above equation can be rewritten as:

1, 1 1
— | = ) — n EnJrl A n+1
(20' (Tn+17 SCZ) (Ax) (ﬁ ) Am> T/Bz_l
+(1+ 102(7' :13-)—2 +T(5”)—1 + AT ! +A) A, ) gt
2 TL+17 1 (Ax)2 '3 Am A T 1

1 1 n n n
_(502<Tn+1:$i)w>A Z++11 AA; Zvjﬂ ”n)—i-ﬁ

J=J

Thus, if we define F*(8"), G} (B"), and H]* as described above, we arrive at Equation (47),
intended to demonstrate.

This equation represents a linear system that can be expressed in matrix form:

M(n)B" =~, forall n=0,...,M—1,
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where "t = (Bpt, . BT € RN, v, = (8, ..., 7% ;) € RY with components

Jr
W= B MDY 0B, 1=0,.. N =2,

Jj=J
and

T
Yno1 = B+ AA, Z 0B (N-14m) T HN 1 AT
J=Jd

This matrix M (n) € RV*Y is tridiagonal, with the following structure:

« Elements above the main diagonal: —H*Ar,
« Elements on the main diagonal: 1 + GI'(8")Ar,

« Elements below the main diagonal: —F"(5") At

Furthermore, it is worth noting the following relationship:
Gi(B) = B (B + H + A = [L+G/(B)A] > | = F'(5)A ] + | = Hi' A

for ¢=0,....N—1 and n=0,..., M.

This relationship ensures that M (n) € R¥*¥ is diagonally dominant with non-negative coefficients.
Since it is strictly diagonally dominant, the matrix is invertible, which in turn implies that the
solution 37"t is unique (see [16]). Consequently, the existence and uniqueness of the solution to the
discretized equation follow by induction.

To complete the proof of Proposition 3, it remains to demonstrate that the maximum principle holds.
To this end, it will be prove that 3" are non-negative, as the argument can be readily adapted to
show that the values (3" remain bounded by 7.

We will use mathematical induction to prove this:

« Base Case (n = 0): The boundary condition 3(0, ) = m1(,>¢) and the definition of g(x)
ensure that Y > 0 for all i € Z.

+ Inductive Hypothesis: Assume that 5" > 0 for all i € Z.

Inductive Step: Suppose, for the sake of contradiction, that there exists some 7 G Z such that
"+1 < 0. Given that the function g > 0 by definition, it follows that i, € {0, .. — 1}. Choose
zo such that:
@Trl — min 6n+1 < 0.

Since the functions F}*, G}, and H" are all non-negative, and given the relationship
Gy (B) = F'(B7) + H]' + A,
we have
CHE) — FNBL) ~ HY =X =0 = GIE)A, — FE(FA, — HIA, ~A=0 =
Z)H — (1+GP(B)A)BE n+l _ mA, n+1 —H'A, n+1 A, n+1_
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Since the term —AA, 3" > 0 (because 3" < 0and A\, A, > 0), it follows that:

+1 +1 +1 +1
z’r(L) Z (1 + G?( Z)AT) Z] - an( ZJ)AT 1‘72) - HZnAT Z) .
Given that

n+1 : n+1

R min <0

‘o i€{0,...,.N—1} bi ’

we can deduce:

- —FM(BE)A > Y T)A "+l hecause 6;“ < gntt

7 TMio 7 THi9—1 — Mig—1>

n n+1 n n+1 n+1 n+1
° _HZ A‘I'/Bio 2 _Hl AT i0+1 because /BiO S i0+1'

Thus, we can conclude that

n+1 2 (1+G?( Z))AT> n+1 Fn( Z))AT n+1 HinAT n+1

i0 io i 0 io

Jr
> (1+ GP(BR)A) BTy — EMBIABIEY — HIA B = B2+ AA D 0,80 ),
Jj=Ji

where the last step follows directly from Equation (47). By the inductive hypothesis, we have

Jr
n n n+1
i T AAL Z VB 20 = B 20,
J=Ji

which contradicts our initial assumption. Therefore, the proposition is proved. [

In this section, we have developed a theoretical model to describe the dynamics of emission
certificate prices within the context of jumps and diffusion, accounting for information shocks that
abruptly influence market agents expectations. The proposed model is based on a nonlinear partial
integro-differential equation (PIDE), which integrates both continuous components (diffusion) and
discontinuities (jumps). We have demonstrated that this equation can be solved numerically and,
furthermore, established the existence and uniqueness of the discretized solution, while also
validating the maximum principle. This ensures that the simulated prices remain within realistic
bounds (between zero and the penalty value).

With this foundation, we are now prepared to proceed with the numerical results.
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4 Results

In this section, we present the numerical results obtained from the implementation of the
jump-diffusion model for emission certificate prices. The objective is to empirically validate the
theoretical properties developed earlier and to demonstrate the practical applicability of the model in
pricing derivatives related to the emissions market. A stable and efficient finite difference scheme
was employed to numerically solve the nonlinear partial integro-differential equation governing the
certificate price process, incorporating both continuous components (diffusion) and discontinuities
(jumps). The results, will be given to different distributions for the jumps and will include an
analysis of the temporal evolution of certificate prices across various parametric scenarios, as well as
an assessment of the error arising from spatial truncation. Parameters Utilized:

First, we will present the parameters that were adopted:

1. Time Unit: We consider a time unit equivalent to 1 year, setting the compliance horizon as
T=1.

2. Diffusion Function: For simplicity, we assume a constant diffusion function o(t,z) = o,
where o = 1.

3. Compound Poisson Process: In the beginning, the jump process will be modeled using a
standard normal distribution v = A/(0, 1), with an intensity rate A = 1.

4. Cumulative Reduction Function: We adopt a linear cumulative reduction function
r(a) = aforall a € [0, 7].

5. Penalty Level: The penalty level is fixed at 7 = 1.

6. Spatial Domain Truncation: To manage errors from spatial truncation, we selected a
maximum tolerable error €; = €5 = 0.05, resulting in a boundary limit [ ~ 11 (see [5], [17],
[18] for more information on how this was done).

7. Function a : We focus on a special case where a(7, z,y) = y holds for all y € R.

8. Time Step: A; = 0.02, which implies the following number of temporal points
= 50. (49)

9. Space Step: A, = 0.02, which implies the following number of spacial points

21 2l
A, 0.02 00 (50)
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4.1 Truncation Error

The control of truncation error is crucial to guarantee the reliability of numerical results. To this

end, we consider the L; norm of the difference between two solutions 3"() and 3" (1), corresponding
to the truncation limits £/ and £/, respectively:

CHOEN AU R (51)

2.

M
i n=0

where the sum is performed over all points in the fixed sub-region [0, 7] x [~d,d] withd < [ < l.
Numerical experiments demonstrate that, for d = 11, [ = 20, [ = 30, the error is of the order 1078,
This allows us to conclude that the solution { 3"} calculated over the spatial region [—30, 30] is highly
accurate.

4.2 Normal Distribution

The selection of a standard normal distribution to model jumps in the context of emission
certificate prices is a natural and well-justified choice, rooted in both financial and environmental
perspectives. This approach offers several advantages that support its use in stochastic jump-diffusion
models, particularly in environments characterized by incomplete information or sudden shocks.

This distribution is symmetric around a mean of zero, enabling a balanced representation of
both positive and negative events. In the context of emissions markets, this allows the model to
capture unforeseen shocks that may drive certificate prices upward (e.g., a sudden surge in demand
for credits) or downward (e.g., the unexpected emergence of new emission reduction technologies).
Although the tails of a normal distribution are not as heavy as those of some alternative distributions,
they still provide a reasonable approximation for moderate extreme events, which are commonly
observed in market settings. Moreover, the standard normal distribution offers a clear interpretation
of its parameters: a mean of zero reflects the absence of a systematic trend in jumps, while the unit
variance (or an adjusted variance) governs the magnitude of volatility induced by these shocks.

Function B(T, x)

BlT, x)

T
—4 -2 o 2 4 [ 8

Figure 1: Plot of the function a(t,.) for t = 0,0.2,0.4,0.6, 0.8 calculated by discretization (45) with
parameters given in the text.
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Figure 1 illustrates the function a(t, -), which represents the emission certificate price (allowance
price) as a function of the state x for various times ¢t = 0,0.2,0.4, 0.6, 0.8. Since o(t, x) = B(T —t, x),
where 7 = 1" — ¢ denotes the time to maturity, the graph reflects the evolution of the certificate
price as it approaches the maturity date (¢ = 7'). Additionally, it indicates that a(t, z) is a smooth,
monotonically increasing function of x, varying between 0 and 7 (the penalty level, set to 7 = 1 in
the numerical example). This aligns with the maximum principle (Proposition 3), which ensures that
0 <a(t,z) <m.

Key observations include:

+ The curve for 7 = 1 ({ = 0), representing the start of the compliance period, is the smoothest,
reflecting greater uncertainty regarding the future market state (whether there will be a
shortage or surplus of certificates).

« The curve for "0.2 to maturity" (7 = 0.2, or ¢ = 0.8) is the steepest and closest to the behavior
at maturity, where the function o would resemble a step function. So it converges faster than
the others toward the boundary condition «(1,z) = 71(x > 0) =1-1(z > 0).

 As 7 decreases (or t increases), the curves for 7 = 0.8, 0.6, 0.4, 0.2 (corresponding to
t =0.2,0.4,0.6,0.8) become progressively steeper. This indicates that, as maturity
approaches, the certificate price converges to the boundary condition
a(l,z) =71(x > 0) =1-1(x > 0), a step function that is 0 for x < 0 (indicating a surplus
of certificates) and 1 for x > 0 (indicating a shortage of certificates).

Figure 2 - B{T, x) at 1=0.2

BiT. x)

Figure 2: Plot of the function (0.8, .) for different values of o and \.

Figure 2 displays the function (0.8, x) for varying levels of volatility (¢) and jump intensities
(M), with the aim of illustrating how these parameters influence the emission certificate price at a
specific time (t = 0.8, or7 =7 —-t=1- 0.8 =0.2, given 7" = 1).

Dependence on Volatility (0):

« Figure 2 reveals that, for different values of o (the volatility of the diffusion component), the
function (0.8, x) exhibits variations in smoothness and slope. When volatility o is low, the
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curve becomes steeper, converging more rapidly toward the boundary condition

a(l,z) = m1(x > 0) =1-1(x > 0). This suggests that, with low volatility, market agents
anticipate fewer fluctuations, leading to a quicker convergence of the price to 0 (surplus) or
m = 1 (shortage).

« With high o, the curve is smoother, indicating greater uncertainty due to continuous
fluctuations, which delays convergence to the extreme values (0 or 7). This reflects the
expectation of significant changes in emissions or certificate supply over time.

Impact of Jump Rate (\):

« The jump rate A (the intensity of the Poisson process governing jumps) also affects the curve’s
shape. For higher values of )\, the curve tends to be smoother, as the increased frequency of
jumps (discontinuous events, such as regulatory changes or market shocks) heightens
uncertainty. This causes the certificate price to take longer to stabilize at 0 or 7.

« For low ), the curve is steeper, suggesting that fewer jump events allow for a more accurate
prediction of the market’s final state, accelerating convergence toward the boundary condition.

Thus, it can be concluded that for low o and ), the curve more closely resembles the step-like shape
at maturity, indicating that agents rely on a more predictable price evolution. Conversely, a

combination of high volatility (o large) and high jump rate (\ large) results in smoother curves and
slower convergence to extreme values, reflecting greater overall uncertainty in the emissions market.

4.3 Double Exponential Distribution

When analyzing the price behavior of emission certificates using jump-diffusion models, it’s
important to carefully choose the jump distribution in order to properly reflect the dynamics of
the market. To ensure that we have a fair and meaningful comparison across different types of
distributions, we need to standardize the expected value (E[Y] = 0) and the variance (Var(Y') = 1)
of the jumps. This standardization isolates the effects of the distribution’s shape, ensuring that
differences in variability scale do not confound the analysis. Consequently, by comparing the Standard
Normal distribution, characterized by its symmetry and light tails, with the Double Exponential
distribution, which incorporates asymmetry and heavy tails, we can directly assess how these
properties influence the function 3(7, x) or «(¢, x). In this context, adopting the Double Exponential
distribution as an alternative for modeling jumps presents a promising approach. Unlike the Standard
Normal distribution, the Double Exponential distribution allows for asymmetry in jumps, reflecting
market scenarios where events increasing certificate scarcity (upward jumps) or surplus (downward
jumps) occur with distinct probabilities and intensities. This feature, combined with its heavy tails,
enables the model to better capture rare and impactful events, such as drastic regulatory changes or
shocks in fuel demand. To achieve the standardization, the next equalities must hold:

Ey)=2 - Ly,
mo 72
1 1)\’
Var(Y):pq(E%—%) —l—%%—%:l,
1 2

forn; > 1landn, > 0.
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Consider p = 0.9 and ¢ = 1 — 0.9 = 0.1. Solving these two equations, we obtain:

m ~ 1.34161 and 7, ~ 0.14907.

With this parameters, we have the following graphs:

Function B(T, x) with Asymmetric Double Exponential Jumps

1.04 — 1=0.2

B(t. x)

Figure 3: Plot of the function «(t,.) for t = 0,0.2,0.4, 0.6, 0.8 calculated by discretization (45) with
parameters given in the text, but considering a Double Exponential Distribution.

The analysis of the generated graphs, pertaining to the two jump distributions, reveals distinct
differences in price dynamics. The symmetric normal distribution produces smooth and balanced
a(t, x) curves, reflecting a symmetric dispersion of jumps around zero. In contrast, the asymmetric
double exponential distribution results in curves that exhibit a steeper inclination toward higher
values as maturity approaches. This trend can be attributed to the higher probability of upward
jumps, which increases the frequency of positive shifts in the process X}, causing the prices A; to
converge more rapidly toward the upper bound 7. This reflects a market expectation where events
that drive allowance prices, such as stricter regulations or credit shortages, are more probable than
events that reduce them. In the reproduced graph, this manifests as curves that rise more quickly
or reach higher values near maturity, in comparison to Figure 1, where jumps follow a symmetric
normal distribution. Consequently, the choice of an asymmetric distribution may prove more realistic
for emissions markets, where events such as new climate policies or energy demand shocks (which
tend to elevate prices) occur more frequently than sudden reductions.

To have a more notable difference between the graphs of the function (0.8, .) for varying values
of o and ), using a Standard Normal Distribution and a Double Exponential, we will assume that

A € {0,3}.
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Figure - B(T, x) at T=0.2

BT, %)

Figure 4: Plot of the function (0.8, .) for varying values of o and \.

Function B(T, x) at 7=0.2 with Asymmetric Double Exponential jJumps

1.0 4 — o=0.5 A=0.0

o=1.0, A=0.0
— o=L0, A=3.0
— g=2.0, A=0.0
— 0=2.0, A=3.0

08
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Bit. x)
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Figure 5: Plot of the function (0.8, .) for varying values of o and A, considering a Double Exponential
Distribution.

The notable differences are observed in the green and purple lines. The explanation for this
phenomenon is straightforward. When the jump intensity () is zero, the process exhibits no jumps,
meaning that the prices of emission allowances (A; = a(t, X;)) evolve continuously without abrupt
discontinuities caused by information shocks or sudden events, such as revisions in allocations or
shifts in demand. So, it does not matter if we are using a Normal distribution or a Double Exponential,
since we do not have the part of the jumps. This scenario may be realistic in highly stable emission
markets. However, it may underestimate the dynamics of markets like the EU ETS, where jumps are
common.

The visual differences are particularly evident in the green and purple lines. Again, the symmetric
normal distribution produces smooth and balanced a(t, z) curves, reflecting an even dispersion of
jumps around zero. In contrast, the asymmetric double exponential distribution generates curves
with a steeper upward inclination as maturity approaches, driven by a significantly higher probability
of upward jumps compared to downward ones.
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4.4 CGMY Model

In this section, we present the result obtained by adopting the CGMY (Carr-Geman-Madan-
Yor) distribution as the model for the jumps in the pricing dynamics of emission allowances. This
distribution stands out for its ability to capture the small, constant changes typical of these markets,
providing a significant advantage over the double exponential distribution, which tends to emphasize
more pronounced asymmetric jumps. With four parameters (C, G, M, and Y'), the CGMY model
offers considerable flexibility, allowing each parameter to influence the evolution of allowance prices
in distinct ways, adapting to various market scenarios. To ensure model consistency, we determined
the parameters to satisfy the following conditions:

EY)=CM" ' -G¥ ™ HIr(1-Y) =0,

VIY)=CM" 2 +G")r2-Y) =1,

assuming 0 < Y = 0.5 < 1. Based on the properties of the Lévy process, we verified that, for this
value of Y, the model exhibits complete monotonicity, infinite activity, and finite variation. To meet
the first condition of zero expected value, we set G = M = 5, resulting in a symmetric distribution.
Under these conditions, the parameter C' was adjusted to 1.5958. The CGMY distribution is associated
to the CGMY Lévy Process, and so the jump intensity () is not fixed as in the previous jump-diffusion
processes, being estimated differently as:

A= Z vy, (52)

where v; it will be calculated, using the formula (41), admitting only jumps above a certain value
€ that defines the threshold for considering only jumps of greater magnitude. Recall that the Lévy
measure in this case is v(dy) = \v(dy). This approach allows a focus on extreme events, aligning the
model with the dynamics observed in emission markets. To have a more precise graph we assume
e = 0.00000001. Based on these parameters, we generated the following graph:

Function B(T, x) with CGMY Jump Distribution (|y| > €}

.04 — =02

Blt. x)

T
—4 -2 0 2 4 [ 8

Figure 6: Plot of the function «(t, -) for t = 0,0.2,0.4, 0.6, 0.8, calculated by discretization, with the
parameters indicated, using the CGMY model.

The main differences compared to the graphs produced by the Standard Normal Distribution
and the Double Exponential Distribution lie in the fact that the convergence to the extreme value 7
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was faster. This characteristic can be attributed to the heavy-tailed nature of the CGMY distribution,
which incorporates a higher probability of significant jumps, affecting the price adjustment dynamics
over time. This higher convergence reflects a greater resilience of the model to extreme shocks,
providing a more nuanced representation of fluctuations in emission markets subject to regulatory
uncertainties, and so, the uncertainty associated is much more higher then in the other two cases.
Additionally, since the CGMY model has four parameters, it offers greater flexibility, allowing for
more realistic pricing in line with prevailing market conditions.
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5 Conclusion

The primary goal of this thesis was to develop a pricing model for carbon emission markets using a
proposed jump-diffusion framework. This model aims to capture the evolution of emission allowance
prices. To achieve this, we first introduce a discrete-time framework, outlining the essential processes
associated with these markets. Subsequently, we transitioned to a continuous-time framework, which
required defining an equilibrium market to describe price behavior as a function of the given processes
and abatement strategies. This approach enabled the incorporation of jumps in a risk-neutral world,
better capturing the abrupt shocks typical of these markets. To obtain the results, the associated
partial integro-differential equation (PIDE) was discretized and implemented in Python. This work
makes a significant contribution by offering an advanced tool for modeling emission allowance
prices.

The results presented in this thesis, showed that when using a CGMY distribution to model
the jumps, where the likelihood of major events causing sharp increases or decreases in allowance
prices is higher, the convergence to the extreme values of 7 (the penalty level) and 0 was faster.
This highlights the uncertainty tied to the heavy tails of this distribution. In contrast, the Double
Exponential model showed a bit less stronger convergence toward the extreme value 7, reflecting
markets where the probability of events that lead to a shortage of allowances is much higher than
the opposite. Meanwhile, despite its simplicity, the standard normal distribution struggled to capture
extreme market conditions, making it more suitable for scenarios where we have moderate shocks.
Thus, the comparative analysis reveals that the choice of jump distribution plays a critical role
in shaping price dynamics, directly impacting the pricing of emission-related derivatives and risk
management strategies.

Additionally, the study explored the influence, of varying diffusion terms (¢) and jump intensities
(M), in allowance prices across the Normal Distribution and the Double Exponential Distribution.
It was found that higher values of these parameters accelerated convergence to extreme values,
with the Double Exponential distribution showing the fastest convergence and the Standard Normal
Distribution the slowest. This behavior highlights the increased uncertainty introduced by higher
volatility and jump frequency.

Despite the advances presented, this thesis opens avenues for further research. Calibrating the
CGMY model parameters to real-world EU ETS data could enhance the accuracy and realism of the
price simulations. Additionally, exploring alternative abatement functions beyond the linear one
adopted here could improve the representation of agents strategic behaviors in response to market
conditions. For future research, investigating other Lévy processes, such as the Normal Inverse
Gaussian or Variance Gamma (noting that the latter is a special case of the CGMY model), could
provide further insights into price dynamics. Moreover, developing hedging strategies based on the
derivative pricing insights derived from this model represents a promising direction for practical
applications. By addressing these opportunities, future studies can build upon this work to enhance
the robustness and applicability of emission allowance pricing models in volatile and evolving carbon
markets.
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Appendix A

To have a better understanding of how to use the It6 table and the It6 formula, it will be applied to
the case where we do not have jumps.

From the discrete time framework provided by [10] it is reasonable to assume that the allowance
price can be expressed in the functional form:

At = O{(t,Xt), t I~ [O,T],

where o : [0, 7] x R — R is a suitable deterministic function. This allows the certificate price to be
described as a deterministic function of time and state, facilitating the analysis. Now assuming that
we are working in the case where we do not have jumps, we will have that, the state process

{Xi}eepo,m is given by
¢
Xt =& — / TS(AS) ds, te [O,T], (53)
0

where ¢, is a martingale. In this case, by the martingale representation theorem, one must have
d&; = oy dWh, (54)

for some admissible adapted process {0y }sc[0,77, Where{W, };c[o,1) is a standard Brownian motion
process (under Q ~ P) and {E}te[a,T] is the natural filtration of the process. To make sure that
{et}te(0,7] has independent increments, we assume that {0y = ¢(t) }+c[o,7] is deterministic and the
abatement functions r; = 7, },c[o,7] are continuous nondecreasing time-independent. Now, to
guarantee that A; a martingale, we will apply the It6’s formula (Theorem 1) to achieve the
conditions that the function « should satisty. So,

1
dAt = dOZ(t, Xt) = 0(1,0)oz(t, Xt) dt —|- 6(0,1)Ck(t, Xt) dXt —|— 58(072)05@7 Xt) (dXt)z

By the It6 Table, since
dgt = O'tth,

dXt = Utth — T(O{(t, Xt))dt — (dXt)Q = O'?dt

and so,

1
dAt = 8(170)04@, Xt> dt-&(oﬁl)a(t, Xt)T(Oé(t, Xt)) dt—|—§8(072)0z(t, Xt)0'2 (t) dt+8(0,1)a(t, Xt>0'(t) th =

1
(8(170)oz(t, Xt) — 6(071)06@7 Xt)'r’(oz(t, Xt)) + 58(02)0[(@ Xt)0'2<t>) dt -+ 8(0’1)06(15, Xt)O'(t> th

To satisfy the martingale condition is essential to wipe out the drift term, which give us the
following partial differential equation to a(t, z):

1
Onma(t,z) — Opyalt, z)r(alt,z)) + 58(072)Oé(t, r)o?(t) = 0. (55)
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