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Resumo

Este trabalho € o relatério de um estagio de seis meses levado a cabo na consultora KPMG
Advisory, no Department of Risk Consulting.

Historicamente, as institui¢des financeiras tém reconhecido a importancia que a quantificagéo
dos chamados requisitos minimos de capital tem para a gestdo de risco. Com efeito, estes
requisitos estabelecem limites exigidos por reguladores corporativos, corretores ou agéncias, na
realizacdo de operacOes financeiras, com a finalidade de proteger tais instituicdes da faléncia,
insolvéncia ou outras situacdes de crise. A Unido Europeia langou varios documentos onde da
orientacdes para a minimizagédo do risco de perda de capital, destacando-se o Regulamento de
Requisitos de Capital (CRR), cujo objetivo € guiar os bancos na implementacao de um conjunto
de acBGes normalizadas, para gerir riqueza e simultaneamente evitar a ocorréncia de crises
agravadas.

Durante 0 meu estagio participei num projeto de Modelo de Risco Operacional destinado a
apoiar as decisdes do Processo de Autoavaliacdo da Adequacao do Capital Interno (ICAAP) de
um banco portugués. No seu decurso fui chamado a programar um algoritmo para efetuar uma
simulacdo de Monte-Carlo para as perdas esperadas no ambito daquele risco, que seriam
posteriormente traduzidas em termos de requisitos minimos de capital. O modelo baseia-se
essencialmente no CRR, mas incorpora também algumas indicacGes da Abordagem de Medidas
Avancadas (AMA).

Para obter os resultados, foi necessario efetuar dois tipos de agregacdes das unidades de medida
de risco (ou células de risco), sob indicacdo do banco. As agregacdes escolhidas
corresponderam a resultados diferentes, sendo as causas das diferencas analisadas e discutidas

em funcdo da frequéncia e gravidade dos eventos.

Palavras-Chave: Monte Carlo, Risco Operacional, Requisitos Minimos de Capital,

Distribui¢des Corpo-Cauda



Abstract

This work is the report of a six-month internship carried out at KPMG Advisory, in the
Department of Risk Consulting.

Historically, financial institutions have recognized the importance that calculating the so-called
minimum capital requirements has for risk management. Indeed, these requirements establish
limits required by regulators, brokers or agencies, in carrying out financial operations, in order
to protect such institutions from bankruptcy, insolvency or other crisis situations. The European
Union has released several documents which provide guidelines for minimizing the risk of
capital loss, in particular the Capital Requirements Regulation (CRR), whose objective is to
guide banks in the implementation of a set of standardized actions to manage wealth and
simultaneously to prevent the occurrence of aggravated crises.

During my internship | participated in an Operational Risk Model project, aimed at supporting
the decisions of the Internal Capital Adequacy Assessment Process (ICAAP) of a Portuguese
bank. I was asked to program an algorithm to perform a Monte Carlo simulation for the expected
losses associated to the Operational Risk, which would later be translated into terms of
minimum capital requirements. The model is essentially based on the CRR, but also
incorporates some indications of the Advanced Measures Approach (AMA).

To obtain the results, it was necessary to carry out two types of aggregation of the risk
measurement units (or Risk Cells), as indicated by the bank. The aggregations chosen would
correspond to different results, and the causes of the differences were analyzed and discussed
based on the frequency and severity of the events.

Key Words: Monte Carlo, Operational Risk, Minimum Capital Requirements, Body-Tail
distributions
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1. Introduction

Within the scope of the curricular program of the Master’s in Mathematical Finance, at Lisbon
School of Economics and Management, Universidade de Lisboa, this is the report of a 6-month
internship at KPMG Advisory, in the Department of Risk Consulting.

Despite of being one of the Big Four consulting firms, with a huge spread over the world and a
vast range of opportunities for recent graduates, KPMG is aware of the main barriers that they
face when entering the job market. To better integrate them, the more experienced staff is
prepared to help newcomers with any type of problems, inserting them into projects that are
suitable to their profiles, as well as being available to clarify any doubts along the internship.
During this work experience, | was involved in a project and helped some colleagues of my
department team in Financial Service — Risk Consulting, in tasks where | could be useful.

The main project of my internship was the development of an Operational Risk (OR) model
(Johnemark, 2012), created with the purpose of quantifying the expected losses of a bank
associated to OR, through Monte-Carlo simulation, and distributing them by tail or body. The
model uses statistical distributions, like Poisson, Negative Binomial, Binomial and Lognormal,
to obtain a more suitable capital requirement considering the bank’s portfolio. The ultimate
objective of this model is to measure the Minimum Capital Requirements (MCRs) (Anghelache,
Olteanu, & Radu, 2010) that may influence the ICAAP decisions about operations made by the
bank (De Jonghe, Dewachter, & Ongena, 2020). It is an important framework because financial
institutions are not totally certain about how much capital is necessary to perform all their
financial operations, whether loaning money for an entity, issuing derivatives, investing in
companies, paying salaries, or improving the building facilities. Therefore, through Operational
Risk management, banks have information about their limits of wealth capacity to manage more
efficiently the costs of financial operations, without putting the other counterparts in risky
situations.

During the first three semesters of my master’s program, I studied a variety of subjects that
prepared me to work in this project, like Programming Techniques (that helped me to develop
the algorithm codes for Monte Carlo simulation) and Financial Econometrics (which gave me
the tools to interpret the parameters of the fitted distributions and to test their adequacy). Other
subjects from my master’s curricular plan, such as Interest Rate and Credit Risk Models, for

example, will be quite useful for Risk Consulting, due to their content related with probability



of default, Value-At-Risk models, or the Merton model, which are concept and tools that the

Department of Risk Consulting uses very often.

1.1. Description of the Organization

KPMG is one of the worldwide Big Four multinational consulting firms, offering several
professional services in three areas: Audit and Assurance, Tax and Advisory.

The Audit and Assurance services guarantee the reliability of the information obtained in capital
markets and provided by investors; the Tax services provide legal and regulatory assistance,
which deals with the policies, laws and bureaucracy related with the company; the Advisory
services provide new solutions, tools and take the initiative of several projects in cooperation
with other firms.

There are KPMG headquarters spread over 147 countries and currently there are around 227
000 working professionals of all the three areas. My working office is in Lisbon, building FPM
41, Avenida Fontes Pereira de Melo, number 41, and |1 am working in the Risk Consulting -
Financial Services team department, which belongs to the Advisory services, and it is on the
same floor as the Management Consulting and Deal Advisory teams, both from the same area.
The department of Risk Consulting is responsible to deal with large quantities of information,
to manage several types of risk and solidify confidence in future decisions of various business
executives, when these are upon the moment at performing an action. This sector deals with
risk management of several types, like tax fraud, cyberattacks, regulatory compliance, data
violation, structure and credit risk models, capital efficiency and corporate governance.

Also, this department has a very high demand for applied mathematicians, due to their
knowledge of statistics and probability as well as a basic understanding of programming and
working with databases, which are not yet very usual to find in consultancy members with other
academic backgrounds. Another positive factor is their methodological thinking, which helps
to reach stronger and well-based solutions and manage different variables with time, based on
statistical tools adapted to time variation. Therefore, they are recognized as very well-prepared
employees, who not only have different skills that contribute to the project, but are also prepared
to learn more and constantly develop their performance with an abstract and refined logical
reasoning, to absorb new information, and independence, to offer new solutions by themselves.
My KPMG’s supervisor is named José Cruz, a Manager in the Risk Consulting department. He
was responsible to introduce me to a project he was inserted at the beginning of the internship
along with other employees of the same team department, and so he helped me to adapt to the



fasten rhythm of KPMG workers. He was available to clarify all my doubts related to the project
and supervised me, to make sure | was doing well the activities he requested.

After the pandemic, the company started to be more flexible, by establishing a hybrid schedule,
meaning that workers had specific days of the week to work at home, while the rest of the week

was to work at the office.

1.2. Internship Plan

Before initiating the internship, KPMG organized an activity timeline, covering the six months
of the internship. It was designed to be a guideline, planning the future tasks to accomplish.
According to the internship plan in Appendix 1, my main activities were:

- Identification of the main applicable regulatory requirements for the project;

- Analysis of the key points that were addressed into risk quantification;

- Analysis of the main difficulties about measuring risk;

- Development of metrics to measure the detected risks.

The cells in grey highlight the activities made in each month. Since the project of the
Operational Risk Model lasted around two months, to fulfill the remaining time I had to perform
accessory tasks of other projects, demanded by other superiors from the same department team.
So, the internship plan activities did not follow the same order as it is presented in Appendix 1,
even though they were already included in the projects | have participated. | have also helped
other colleagues of the department while preparing the internship report. In fact, in addition to
the OR project, | supported and helped temporarily in three other projects.

The first one was from KPMG in Germany, and it was about Physical and Transition Climate
Risks Prototypes, to assess the Expected Credit Loss (ECL) until the year 2100, related with
possible flood disasters and their damage impact, as well as the climate scenarios from the
Network for Greening the Financial System! - for further details, see (Luo, et al., 2021) and
KPMG'’s paper?.

In that project, my tasks were to interpret two Python program outputs associated to the Physical
and Transition Risks, explaining the equations behind the calculations performed by the
programming code, and analyzing the plots, how and where the data was coming from, and
finally relating all the results to reach the required ECL.

The second one was a study about retention of term deposits, for liquidity risk management

purposes. The client is a financial institution in Mozambique, and I helped a colleague to create

1 https://www.ngfs.net/en
2 What's the impact on expected credit losses? - KPMG Global (home.kpmg)
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an optimal segmentation analysis on term deposits. In order to achieve that, | had to perform a
historical analysis, to see which products have a heavier representation on the term deposits,
also had to do a parametrization of the renovations and early withdrawals and a correlation
analysis, and finally had to calculate the limits of a 95% confidence interval to some groups of
products that have similar names, to check the possibility of merging them.

The third one was a project in the scope of Internal Audit under the IFRS 9 norm for financial
instruments, cf. PWC’s document (Audit Services | IFRS 9, 2017). | joined a department team
of Internal Audit and my tasks were programming in SAS language with one member of the
team for a database from the customer. | mapped stages 1, 2 and 3 to the various customers’
contracts that had notifications related with credit risk events, finding triggers that warn the
bank about possible default cases, then validating them to make sure the database had the right
trigger values, and finally investigating how the SAS database was calculating the ECL for
stage 3, according to the Bank for International Settlements’ guidelines (FSI | IFRS 9 and
expected loss provisioning - Executive Summary).®

Therefore, it is reasonable to say my internship was both academic and professional and allowed
me to be familiar with a number of different tools and ways of proceeding and reasoning the
tasks. Additionally, it presented various opportunities to participate in projects of the company,
which clarified me the issues and applications of Risk Analysis.

As it was stated at the beginning of this chapter, the internship timetable worked as a guideline
for the topics | would have to surpass for the various projects, but that did not necessarily mean
the obligation to follow each activity in a certain month.

The progression of the paper is as follows. In Chapter 2, the concepts of Operational Risk and
ICAAP will be presented, Chapter 3 covers the model and the methodology, in Chapter 4 the
methodology is applied to two Risk Cell aggregation types, Chapter 5 presents Results and
Discussion about the outcomes obtained in Chapter 4, and Chapter 6 contains the main

conclusions and some suggestions to improve this framework.

3 https://www.bis.org/fsi/fsisummaries/ifrs9.pdf
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2. Theory
2.1. Operational Risk

The definition of Operational Risk is «a risk of loss born from failures and misalignment of
internal processes, people, or systems, as well as exposition to external events that include legal
risks that cause or might have caused material losses or decrease for the shareholders (The
European Parliament, 2013, p. L 176/22).»
Any loss resulted from an OR event related with market risk, like trade losses or gains amplified
or reduced by adverse fluctuations, or through market value with origin in operational errors, is
recognized as an OR event and therefore must be included into the OR model, as well as any
loss resulting from legal action, whose genesis has also origin in OR.
According to a KPMG internal document®, the Operational Risk management framework is
divided into three main parts:

I.  Strategy and Risk Appetite;

Il.  Organization and Governance;

I11.  Management Instruments.

I. Strategy and Risk Appetite

Unlike financial risks, such as credit, legal or market types, the OR has a different nature, with
some particularities regarding the traditional view of the risk appetite.

While in the financial risks there is a balance between profitability and risk (the risk/reward
ratios)®, in the operational type risk no expected reward is assumed, because it depends on the
firm’s activity. This contradicts the purpose of the financial risk appetite, which is the risk of
loss that the bank assumes in exchange for an expected reward. Instead, the purpose of the
Operational Risk appetite is to find the optimal point where the marginal expense equals the
marginal reduction of expected losses.

I1. Organization and Governance
In risk management, there are three lines of defense that characterize its process:
— Management control;

— Supervision functions established by management on compliance and risk control;

4 Internal document from KPMG (2021) | Pilar I: Solvéncia, TRIM e Risco Operacional
° Risk/Reward Ratio: What It Is, How Stock Investors Use It (investopedia.com)

5
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— Independent assurance provided by internal audit.

Risk managers usually belong to the first line of defense, and they are responsible for managing
the tasks of OR, like identification, mitigation, or evaluation of loss events. Also, there are risk
coordinators that support risk managers on their daily duties and help them to make the
interlocution with the second line of defense.

For several types of ORs, there are the Specialized Control Functions that are responsible to
provide a global vision of the exposition to the most relevant typologies of OR and mitigate it
through the application of controls. These functions are easy to find in support areas like
compliance, IT or risk analysis, where all of them belong to the second line of defense.

The third line of defense basically verifies the effectiveness of the previous two lines to achieve
the objectives set by the risk managers, since it corresponds to an independent process from the
Operational Risk management and warrants the efficiency of the framework by mitigating all
the risks.

I11. Management Instruments

To perform an efficient management of the OR, it is necessary to have specific instruments and
transversal elements, like culture and communications, norms and policies, internal control or
backtesting, for a clean execution of the model and to ease risk control and management.
They are used in three different phases of the structure for OR management:

- First, the Identification and Evaluation that deals with Risk Control Self-Assessment?®,
the internal database of events, scenario analysis and makes the evaluation of new
products along with transition management;

- Second, the Monitorization through Operational Risk Indicators, see (Davis &
Haubenstock, 2002), to check and validate occurrences like loss events;

- Third, the Mitigation of OR, which improves the business continuity plan and the risk

transfer.

According to the guidelines of line b) number 3, article 322 from the CRR, hedging the OR
losses, although always registered in the internal database, must not be subject to own fund

requirements, since it is supposed to avoid duplications of capital requirements.

& The Methodology Behind Risk and Control Self-Assessment (theglobaltreasurer.com)
6
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2.2. ICAAP

According to Basel I, the second pillar relies on supervisory action (Rochet, 2004), which is
responsible for the regulatory response for the capital requirements and the development of the
ICAAP report.
ICAAP is the set of internal procedures and systems that guarantee the optimal allocation of
capital resources for the bank in a long-term horizon to cover all its material risk impacts. It
aims determining the economic capital, which is the capital required to cover all risks that are
estimated, using the bank’s internal risk models. Its main purpose is to ensure a suitable relation
between the bank’s overall capital and its level of risk exposition (Farid, 2010).
The documentation of an ICAAP report should:
¢ Inform the bank’s board of directors about the continuous evaluation of all the firm’s risks;
e Inform the board of directors and the senior management about the main results of the risk
assessments, how the firm wants to mitigate those risks and how much future capital is
needed, as well as explaining its consequences;
o Explain the Internal Capital Adequacy Assessment Process made to the supervisor of the
bank.



3. Methodology
3.1. Operational Risk Model

The OR model developed in the context of the project is based on articles 312-324 of the
European Capital Requirements Regulation 575/2013, considering some requirements of the
Process and Internal Data components from the Quantitative Standards (article 322 (2-3)), see
Appendix 2.
The institutions can use some or all the parts of the Advanced Measure Approach (articles 321
and 322), if they “notify the competent authorities of all changes to their Advanced
Measurement Approaches models” (article 312, paragraph 3). It includes an internal database
with historical information of operational loss events, structured in a way that enables to select
the events according to the risk category. The whole framework is based on a solid data
collection procedure, which aims to ensure the quality and completeness of the internal
database, since it is used to estimate components for the expected losses of the distribution.
The risk categories used in the model are:

1. Internal Fraud (EL1);

2. External Fraud (EL2);
Employment Practices and Workplace Safety (EL3);
Clients, Products & Business Practices (EL4);
Damage to Physical Assets (EL5);
Business Disruption and System Failures (EL6);

N o g B~ W

Execution, Delivery & Process Management (EL7).

Despite the existence of loss events from all these risk categories, due to lack of data in some
of them, an aggregation was performed to strengthen the results. For this model, only events
occurred in Portugal were considered, according to the bank’s structure and their contribution
to the Relevant Indicator of the Standardized Approach, following the Basel Committee
document on (OPE Calculation of RWA for Operational Risk, 1999, pp. 11-19) and (The
European Parliament, 2013, pp. 196-197).

To obtain the components of the model we retained all the events related to Operational Risk

with loss amounts after direct recovers of at least 250 euros, such that:

Liquid Loss Amount = Gross Loss Amount — Direct Recovers Amount > 250 (1)



Regarding recoveries, only direct recoveries were considered in the calculation of the Liquid
Loss Amount, because they result from natural causes that consequentially reflect in the
amount, which enabled the bank to recover partially or totally the Gross Loss Amount.

The indirect recoveries are related with the time deferral, which sometimes extends from the
payment of the compensation by the insurer, the lack of evidence from general conditions into
current policies and, at this stage, the preference for a more conservative approach to the model’.
According to the European Bank Authority document EBA/RTS/2015/02, the construction of
the frequency and severity distribution datasets must be based on the accounting date or the

detection date of the event, to stabilize the historical database for past periods.

3.2. Risk Cells

The Risk Cells described in Section 3.1 (EL1-EL7) were defined in the model at the level of
the risk categories specified in article 324 of the CCR (see Appendix 3). Due to the lack of
frequency and severity of collected events in some of these risk categories, it was decided to
merge them. There are categories that have enough events and so can be considered as a unique
Risk Cell, while others with few events must be aggregated.

This does not mean the categories with sufficient events must be automatically considered as
individual Risk Cells, since the aggregation attends to the preservation of homogeneity of the
data in each resulting Risk Cell.

The scheme of aggregation choices follows the algorithm below:

Enough events to )
allow the individual ‘ Can be included as
modelling of the individual Risk Cell

category

Insufficient events to

~ be considered ‘ Must be aggregated
individually for the into other risk category
model definition

Risk Category

Figure 3.1. Aggregation of Event Types

" What is indirect and consequential loss? - Harper James
9
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3.3. Probabilistic Models for Frequency and Severity of Losses

In this section, we present a description of the procedures to approach the two main components
of the OR model: the frequency and the severity of the losses.

The frequency is the number of occurrences in a specific time period, which can be at least five
years®, and the severity represents the material financial impact (in this case the total monetary

amount of losses), as the following graphs illustrate.

Frequency

Number of Events

Date Amount Value
Figure 3.2. Frequency and Severity Distributions
For the frequency variable (left graph), two discrete probability distributions, the Poisson and
the Negative Binomial, were selected (Johnemark, 2012). For the severity variable (right graph),
we used one continuous probability distribution, the Lognormal (Bermldez, 2015).
These distributions will enable to determine the input parameters for Monte Carlo simulation

and therefore to reach the results for the Minimum Capital Requirements.

3.3.1. Frequency Model
Based on a dataset with internal losses, the parameters of the distributions have to be estimated,
since these estimates are required to set the model.
First, for each Risk Cell, the number of loss events in each quarter of the year is counted, and
then the Mean and the Variance are calculated.
Second, the Critical Ratio (Variance/Mean) ‘rule’ is applied. This indicator is quite important
to decide which is the ‘right’ distribution® to be used later for the Monte Carlo simulation of the
respective risk measure. According to the ‘rule’:

» If Critical Ratio > 2 — Negative Binomial Distribution;

* |f Critical Ratio <2 — Poisson Distribution.

8 Article 322 paragraph 3a) from Regulation 575/2013 (CRR)
% The choice of the distribution to model the frequencies loses relevance when considering the percentile to be
used for the loss distribution.

10



This ratio is used since Poisson distribution has the mean equal to the variance, therefore for its
usage, the observed values also must be similar, and the ratio should return a value around 1.
So, to model the frequency for each Risk Cell, three parameters are potentially relevant:
- ‘Lambda’ (1), the Poisson parameter which is, in this case, equal to the mean;
- ‘Size’ (r), the first Negative Binomial input estimated through maximum likelihood and
Brent’s algorithm (Brent, 1971);
- ‘Mu’ (p), the second Negative Binomial input estimated through maximum likelihood

and Brent’s algorithm.

3.3.2. Severity Model

Severity is composed of two parts: Body and Tail, separated by an amount, the Threshold. The
Body is defined as the major part of the severity distribution, where all the losses have an
amount less than or equal to the Threshold; the Tail corresponds to the upper part of the
distribution, representing all the loss amounts higher than the Threshold, as represented in
Figure 3.3.

Again, based on a dataset with internal losses, the parameters of the severity distribution have
to be estimated, since these estimates are required to set the model.

Number of Events

Threshold
Body

§ Tail

Loss Amount

Figure 3.3. Scheme of the Body-Tail Distribution

According to Basel I1, “a bank must be able to demonstrate that its approach captures potentially
severe ’tail’ loss events” (see Appendix 4). So, it is possible to simulate the tail loss values
through the Lognormal distribution as an approach to catch the events with the highest severity.
Therefore, for each Risk Cell, four quantities are relevant:

- The Threshold;

- The Mu, the first parameter of the Lognormal distribution;

- The Sigma, the second parameter estimated for the Lognormal distribution;

- The Bodyweight, the probability of the loss being assigned to the Body.

11



It is crucial to know the Threshold value, to calculate the remaining quantities, but that depends
on the bank’s inside information, resulting in a known or unknown number. If the bank does
not request to model the severity with a specific threshold, it must be determined by some type
of inspection. To do this, a table is constructed with fits and statistical experimental tests, for
the available loss data. This table gathers all the information about the different experiments,
which includes not only the Threshold value but also the Bodyweight, the Mu and the Sigma,
sorted by Risk Cell, percentile of the losses and fitted distribution. So, from the practical
perspective, the choice of the Threshold is based on selecting one line from that table for each
Risk Cell, which relates:
-The number of events considered for the Tail, which should be the minimum possible
according to the bank’s criteria.
-The Mu and Sigma parameters are the highest possible, which sometimes don’t increase
proportionally with the percentile.
The lognormal distribution parameters are determined through maximum likelihood estimation

for the events in the Tail, as follows:

N n(x:

. h= W — Mu (parameter 1) (2)
~ Nan(x)-m)2 .

.« 6= W ) | Sigma (parameter 2) (3)

X; = Value of the i*" loss event

N = Number of events in the Tail

Finally, the Bodyweight is defined as the weight distribution before reaching the Threshold’s
quantile. It is obtained through the Empirical Cumulative Probability Function (ECPF) to find
the weight of the loss distribution until the threshold value, see Figure 3.4
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Figure 3.4. Empirical Distribution of Losses

To achieve the Bodyweights for all Risk Cells, outliers of the distribution are disregarded, that
is, the loss values lower than the 1% percentile (P1) or higher than the 99" percentile (Psg). This
prevents unstable results or shocks in the calculations, and they will not be accounted for in the
bodyweight estimation.

As it is a cumulative distribution, the loss values are sorted and summed until the closest value
lower or equal to the correspondent Risk Cell’s Threshold. Finally, that sum is divided by the
total sum of event losses, and so it is obtained the bodyweight.

For each Risk Cell the bodyweight is given by:

Bodyweight = gj\,:l i‘

i=1ti

, P; < l; < min{ Threshold, Py}, (4)

e n = Number of Events between P, and the Threshold
o N = Number of Events between P; and Pyq

o [, <[, <. <ly—Event Loss Amounts

The bodyweight value increases when the Threshold gets higher, thus allowing more events to
be considered from the Body in detriment of the Tail, as shown in Figure 3.4.

When the bank supplies the value of the Threshold, the procedure is the same as described
above.
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3.4. Monte Carlo Simulation
As it is usual with problems with this level of complexity and amount of data, the decision was
to use the Monte-Carlo simulation technique to estimate the loss distribution for one year (see
for instance Korn, Korn and Kroisandt (2010) for more details). The technique is expected to
output a well-defined loss distribution with fairly accurate results. On the other hand, one well-
known limiting aspect of this type of approach is that it is based on past information, and one
must be careful when relying on previous results to forecast future losses.
In the following lines we show how the Monte Carlo method was adjusted to our OR model,
including schemes, figures, and algorithms, to clarify its interpretation.
So, for each Risk Cell:
Step 1: Insert the input data:
- Parameters of the discrete distributions (Poisson and Negative Binomial) to simulate
frequency, previously estimated as explained above;
- Critical Ratio, to choose the right distribution;
- Parameters of the Lognormal distribution to simulate severity (excess of losses beyond
the Body-Tail threshold), previously estimated as explained above;
- Loss records;

- Required number of simulations.

Step 2: Generate a vector with dimension equal to the number of iterations (usually is 2000000
entries), where each entry corresponds to a random variable of the uniform distribution between

0 and 1, (y,~U(0,1)), where k is the number of the iteration.
Step 3: Use the vector in Step 2 and the Generalized Inverse Transform Method (Korn, Korn,

& Kroisandt, 2010) to simulate observations either from the Poisson distribution or the Negative

Binomial Distribution, as appropriate (See Figure 3.5), where each observation is denoted X,:

14



Y = (¥1,¥2) > ¥Y1000000) |__» Probabilities Vector

X +1r—1
[ )a-w

x,=0,1,2,... = x,~Poisson(1) x,=r,r+1,r+2,. < x~NB(r,p)

PX =xy) = x—k!e‘)‘, P(X =x,) = (

X, =P 1Y =)
ke{1,2, ...,1000000}

Ly Vector of occurrences (simulated)

X = (X1, X2, . ,X1000000)

Figure 3.5. Simulation of the Risk Cell’s Frequencies

Step 4: Decompose x = (xq, X3, ... , X1000000), the vector with the number of occurrences, as
(X1, X2, -+ » X1000000) = (b1, by, -, b1oooooo) + (1, t2, -+, tr000000),  (5)
where:
e B = (by,b,,...,b1000000) IS the vector with the number of events that have loss
amounts below the threshold (in the body of the distribution of losses);
o T = (ty,ty, ..., t1000000) IS the vector with the number of events that have loss

amounts at least equal the threshold (in the tail of the distribution of losses).

(vb; € B, b ~ B(x,p)), meaning that B is obtained multiplying x by the estimated percentage
of claims in the body of the distribution (rounding to the nearest integer), and T = x — B.
Knowing that each event is associated with a loss, new vectors must be defined:
*  Lg = (lik Lok, -r Lg i) 18 the vector with the amounts of the x; occurrences simulated in
iteration k, k = 1,2,...,1000000.
* V = Value of the threshold.

15



Because of the decomposition operated to x it is necessary to split L, in two vectors, the Body

Losses vector (LECB ) with b, entries) and the Tail Losses vector (LECT) with t; entries).

Step 5: Body loss distribution.

For each iteration k = 1,2, ...,1000000, the algorithm randomly selects b, losses from the
Body data (whose elements are the m observed losses with amounts below the threshold V) and
adds them up, simulating this way the sum of the claims below the threshold (Body) for each

iteration, see Figure 3.6 for an illustration.

For iteration k select b, random
numbers from the BodyData and
Loss values <V sum them up. Repeat that 2000000
times (1000000 iterations), to _ T
I, obtain a resample of the BodyData 01=2 = lp o = Lb%
b2=1 — |5 = Lb’z
lz 0376 — Iz + loa + lyy + I3+ Is + lyg =
Lb’s
BodyData bed — Iy + 1+ lo+ oy = Lb’s
b5:0 d 0 = Lb’s

Gather all the values
and form BodyData

Resample of the
BodyData is ready!

B' = (Lby, ..., Lb1900000)

Figure 3.6. Algorithm to Simulate Body Loss Distribution

Step 6: Tail loss distribution

For each iteration k = 1,2, ...,1000000, the algorithm simulates ¢, losses from the estimated
Lognormal distribution and adds the Body-Tail threshold V, to each one of them. Next, it adds
the t; results up, simulating this way the sum of the claims over the threshold (Tail) for iteration

k, see Figures 3.6 and 3.7 for an illustration. In other terms:

k=1,2,..,1000000. |—> Parameter 2
i=1,..,t Lt'y; =V + wy;, where wy, ;~LogN (u,0) (6)
|—> Parameter 1
16



Recall that the Lognormal distribution is defined by the following density function:

)

Figure 3.7. Lognormal Distribution Density Function

(7)

— 2
f(w,p,0) = exp <—M

202

1
wovV 21

where p and o represent parameters 1 (Mu) and 2 (Sigma) of the distribution, respectively.
The results for the Tail data are performed as shown in the scheme below.

tl — 2 generate 2 numbers Wl,l + W1,2
do not generate any number
tz = 0 0
generate 3 numbers
t; =3 W31+ Ws; +Wwss

+ Threshold Value

generate 5 numbers fOI’ evel’y |Ogn0rma|
| Waq T Wap HWaz +Was Wy outcome

generate 1 number

e

t1000000 = 1 W1000000,1

— Wig +wy, +2+%V =Lty

— 0=t;

Tail Data — Wyq + Wi, +Wss+3%V =Lty
resample — Wyq +Wyp +Wyz + Wy +Wys+5%xV =Lty

g
— Wi1000000,1 TV = 1000000

T' = (Lty, ..., Lt1000000)

Figure 3.8. Algorithm to Simulate Tail Loss Distribution

Step 7: Sum all the values of the resample vectors and then obtain another array with the total
data losses of each simulation made:

L = (L, Ly, ..., L1gooooo) = (Lb1,Lby, ..., Lbigogp00) + (Lt1, Lty, ..., Ltigo0000) (8)
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Step 8: Repeat all previous steps until all Risk Cells are addressed.
Finally, it follows a calibration of the Risk Cell losses to check the consistency of results,
considering two types of estimation lines of the Minimum Capital Requirements (MCR)
(Reynecke, 2018):
e Undiversified: The Risk Cell loss percentiles are summed as independent parcels, like
the formula below:
MCR =L, + Ly + -+ Ly =YL, L, 9

L, — p™ quantile of the i*"Simulated Risk Cell loss (SRCL)
n — number of risk cells

e Fully Diversified: The Risk Cells losses are summed, and then the percentile of that

sum is estimated, as it follows:

MCR = p*" quantile of (SLy,SLs, ..., SL1000000) (10)

SL = SRCL, + SRCL, + -+ SRCL,,
SRCL; — i*" Simulated Risk Cell Loss
n — number of risk cells

Typically, banks adopt a more conservative position when estimating the capital losses, due to
the uncertainty about its provisions, so the banks prefer a version that estimates higher amounts
of capital (Anghelache & Olteanu, 2009). Since the Undiversified scenario previews a higher
supplement than the other one, then the Undiversified is considered as the preferred approach
to be used in OR management (Cooper, Piwcewicz, & Warren, 2014) and (Reynecke, 2018).
According to the CCR, “The operational risk measure shall capture potentially severe tail
events, achieving a soundness standard comparable to a 99,9 % confidence interval over a
one-year period”.

This means that the Minimum Capital Requirements for one year, according to this model, are
the sum of the 99,9% quantiles of the Risk Cell losses simulated through Monte Carlo, as shown

in equation (11):
n
MCR = z LY, (11)

i=1

ngg — 99,9 quantile of the simulated losses for risk cell i
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4. Application

As seen in the previous chapter, the results obtained with the model depend directly on the way
the Risk Cells are built, since frequency and severity are simulated per Risk Cell. Basel 1l
defines 56 Risk Cells in the quantification of the Operational Risk (seven types of risk affecting
eight lines of business), but banks can use a different structure (Lambrigger, Shevchenko, &
Wathrich, 2007). So, as explained in Chapter 3, it was possible to use only the risk categories.
In our particular case study, it was necessary to aggregate the cells due to scarce data in most
of them. Therefore, we performed two types of aggregation of the risk categories from the
Capital Requirements Regulation, applying the Monte Carlo simulation to calculate the

minimum capital requirements the bank must hedge against capital losses.

4.1. Database and Software
To develop the model, the algorithm was constructed in R language code. With the help of
Excel, the database was imported from the bank and displayed in tables for the frequency,
severity, and Monte Carlo results.
The data is available from 2008, but only years 2011-2021 (11 complete years) have been used,
with the purpose of certifying that the losses belong to a period where the system of collection
was sturdy, either in the method or the source, avoiding in this way anomalies in collected loss
values.
Originally, the database contained 66 419 contracts that caused several incidents (with or
without financial impact) and some of them were identified as risk sources. Since the OR model
has influence in ICAAP conclusions, a decision was made to include only internal losses with
financial impact, remaining 54 430 records of incidents. Also, the database consists of 65 fields,
but only seven were used to build the model, namely:
» Registration Date, the date when the event was detected by the bank;
* Closing Date, the date of registration after the risk department verifies the loss
occurrence and its regulatory classification;
» Loss Amount, corresponding to the Gross Loss Amount from equation (1) for both
aggregation types;
» Recovered Amount, the capital directly recovered from the loss originated by the
event (used for aggregation 1);
« Open Amount, the amount of loss potentially at risk (used for aggregation 2);

» Event Type, the risk category of the event (see Appendix 3)
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* Group, to check if the institution to which the model is applied corresponds or not
to the group of branches and subsidiaries.

The next two sections describe in detail the two aggregation procedures that have been
followed, making clear the differences and similarities between them. One important aspect is
that, after filtering all the information, only the Liquid Loss Amount, the date field, and the
event type are required to construct the two variants of the model.

4.2. Aggregation 1
As already mentioned, only internal data with financial impact is considered. The date field is
going to be the registration date and the Liquid Loss Amount is

Liquid Loss Amount = max(Loss Amount — Recovered Amount, 0) > 250 (12)

This resulted in 7549 cases, distributed among the seven categories described in article 324 of
the CRR as shown in Figure 4.1.

MEL]l WEL2 WEL3 WEL4 WELS mEL6 mEL7

Figure 4.1. Distribution of Events Among the Seven Categories — Aggregation 1

In this variant, according to the bank’s decision and the rules of aggregation described in section
3.2, it was decided to aggregate the categories into the following Risk Cells:
- EL7 - includes loss events classified as Execution, Delivery and Process Management;
- ELgr - includes events related with Internal Fraud (EL1); External Fraud (EL2);
Employment Practices and Workplace Safety (EL3); Clients, Products and Business
Practices (EL4); Damage to Physical Assets (EL5); Business Disruption and System
Failures (ELS).
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After mapping the event types for each contract according to Aggregation 1, the data is prepared
for the frequency modelling. As explained in the methodology, for each Risk Cell their events
were counted per Quarter, resulting in 44 Quarters (11 years x 4 quarters) that were labeled as

in Figure 4.2.

Number of Events per Quarter
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Figure 4.2. Frequency of Events per Quarter for Aggregation 1

From the data shown in Figure 4.2 (see Appendix 5), it was possible to estimate the frequency

parameters:

Table 4.1. Frequency Parameters for Aggregation 1

Risk Cell Name Mean | Variance Critical Ratio Lambda Size‘ Mu ‘

ELgr 137.77 | 14114.32 102.45 137.77 | 1.59 | 137.74

EL7 33.80 189.75 5.61 33.80 8.22 | 33.80

Observing the values in both Risk Cells, the Critical Ratio is much higher than 2, which means
the Negative Binomial distribution will be selected to simulate the number of events. Looking
into the Risk Cell ELgr, the huge mean and variance values are two remarkable aspects to
notice, due to its massive representation in the dataset, more than 80% (80,30%) of total loss
events and to the significant variability of the number of events from quarter to quarter ( Figure
4.2).

Although the variance for the Risk Cell EL7 (20% of the losses) is lower, meaning the count of
events does not fluctuate at so extraordinary levels, it has a Critical Ratio of 5,61, which is still

high enough for the Negative Binomial to be chosen.

21



The next step was to decide which threshold value would be more suitable to define the Body

and the Tail of the loss distribution, using the methodology explained in Chapter 3.

According to the bank, there is no external information about the Thresholds to be used. So,

following the methodology from the severity model in 3.3.2, a percentile line must be chosen

for each Risk Cell with sufficiently smooth parameters to guarantee an acceptable number of

events in the Tail. Tables 4.2 and 4.3 provide an overview of the results for the two Risk Cells

under analysis.

Table 4.2. Finding the Body-Tail threshold for Risk Cell EL7, Aggregation 1

RiskCell

BodyW eig Numberin Numberin Threshold Threshold Min_Tail Q80_Tail Q90_Tail Max_Tail FittedDistribution

Method ParametelParamete

Table 4.3. Finding the Body-Tail threshold for Risk Cell ELgr, Aggregation 1

BodyWeig Numberin Numberin Threshold Threshold Min_Tail Q80_Tail

Q90_Tail Max_Tail FittedDistribution

7 0.000157 743 744 1268.9 0.5 1270.4 12556.4 31370.14 4782460 lognormal maximum 8.520771 1.25577
7 0.000157 743 744 1268.9 0.5 12704 12556.4 31370.14 4782460 gpd maximum 0.714546 4929.6
7 0.047141 595 892 1706.22 0.6 1706.7 18539.94 37318.44 4782460 lognormal maximum 8.825567 1.22507
7 0.047141 595 892 1706.22 0.6 1706.7 18539.94 37318.44 4782460 gpd maximum 0.672351 6859.845
7 0.099819 446 1041 2627.12 0.7 2636.4 26348.7 49227.1 4782460 lognormal maximum 9.218298 1.175113
7 0.099819 446 1041 2627.12 0.7 26364 26348.7 49227.1 4782460 gpd maximum 0.605081 10550.28
7 0.173681 298 1189 4856.28 0.8 4859.1 37318.44 87225.65 4782460 lognormal maximum 9.749277 1.097371
7 0.173681 298 1189 4856.28 0.8 4859.1 37318.44 87225.65 4782460 gpd maximum 0.503198 18870.66
7 0.3224 149 1338 12547.6 0.9 12574 87507.7 180112.7 4782460 lognormal maximum 10.59632 0.944433
7 0.3224 149 1338 12547.6 0.9 12574 87507.7 180112.7 4782460 gpd maximum 0.352846 46136.69
7 0.350121 133 1354 15000 0.91 15057.6 98595.3 2.00E+05 4782460 lognormal maximum 10.72579 0.918023
7 0.350121 133 1354 15000 0.91 15057.6 98595.3 2.00E+05 4782460 gpd maximum 0.335433 52504.45
7 0.379525 119 1368 18512.68 0.92 18812.5 100459 201210.9 4782460 lognormal maximum 10.84437 0.898861
7 0.379525 119 1368 18512.68 0.92 18812.5 100459 201210.9 4782460 gpd maximum 0.322546 59157.78
7 0.415724 105 1382 22792.94 0.93 22799 118819 208421.8 4782460 lognormal maximum 10.96756 0.886712
7 0.415724 105 1382 22792.94 0.93 22799 118819 208421.8 4782460 gpd maximum 0.312803 66966.46
7 0.461288 Q0 1397 26318.92 0.94 26348.7 142334 215464.5 4782460 lognormal maximum 11.11186 0.87822
7 0.461288 20 1397 26318.92 0.94 263487 142334 215464.5 4782460 gpd maximum 0.305056 77322.99
7 0.514685 75 1412 31340.51 0.95 31429.4 180112.7 231416.5 4782460 lognormal maximum 11.28369 0.864718
7 0.514685 75 1412 31340.51 0.95 31429.4 180112.7 231416.5 4782460 gpd maximum 0.296912 91582.29
7 0.57827 60 1427 37300.28 0.96 37500 201210.9 250235.5 4782460 lognormal maximum 11.49659 0.841037
7 0.57827 60 1427 37300.28 0.96 37500 201210.9 250235.5 4782460 gpd maximum 0.290457 112136.9
7 0.656363 45 1442 48904.59 0.97 51242.8 215494.5 270347.2 4782460 lognormal maximum 11.78335 0.782314
7 0.656363 45 1442 48904.59 0.97 51242.8 215494.5 270347.2 4782460 gpd maximum 0.285537 145481
7 0.779121 30 1457 87169.24 0.98 89200 252326.3 290686.1 4782460 lognormal maximum 12.13402 0.732507
7 0.779121 30 1457 87169.24 0.98 89200 252326.3 290686.1 4782460 gpd maximum 0.299524 199663.9
7 1 15 1472 178621.2 0.99 2.00E+05 295765.3 374559.5 4782460 lognormal maximum 12.6047 0.768066
7 1 15 1472 178621.2 0.99 2.00E+05 295765.3 374559.5 4782460 gpd maximum 0.373289 308217.2

Method Paramete Paramete

1 0.000201 3031 3031 823.8 0.5 823.9 2877.7 4786.6 51992640 lognormal maximum 7.542498 0.906481
1 0.000201 3031 3031 823.8 0.5 823.9 2877.7 4786.6 51992640 gpd maximum 0.41271 1975.885
1 0.12241 2425 3637  985.42 0.6 985.5 3393.14 5605.58 51992640 lognormal maximum 7.724834 0.927393
1 0.12241 2425 3637 985.42 0.6 985.5 3393.14 5605.58 51992640 gpd maximum 0.43657 2341.483
1 0.247109 1819 4243 1275.85 0.7 1276 4142.088 7014.84 51992640 lognormal maximum 7.964779 0.956037
1 0.247109 1819 4243 1275.85 0.7 1276 4142.088 7014.84 51992640 gpd maximum 0.472106 2916.693
1 0.393518 1213 4849 1796.56 0.8 1797.1 5605.58 10001.99 51992640 lognormal maximum 8.28462 1.028974
1 0.393518 1213 4849 1796.56 0.8 1797.1 5605.58 10001.99 51992640 gpd maximum 0.542147 3900.958
1 0.588088 607 5455 2877.52 0.9 2877.7 10001.99 26236.65 51992640 lognormal maximum 8.86935 1.189543
1 0.585088 607 5455 2877.52 0.9 2877.7 10001.99 26236.65 51992640 gpd maximum 0.691783 6595.824
1 0.610689 546 5516 3095.226 091  3096.5 11434 35678.2 51992640 lognormal maximum 8.966782 1.215973
1 0.610689 546 5516 3095.226 091  3096.5 11434 35678.2 51992640 gpd maximum 0.716745 7195.382
1 06373 485 5577 3392.684 0.92  3397.7 12507.56 44249.4 51992640 lognormal maximum 9.07769 1.246746
1 0.8373 485 5577 3392.684 0.92  3397.7 12507.56 44249.4 51992640 gpd maximum 0.746972 7939.412
1 0.665774 425 5637 3709.084 0.93 3712 16068.9 53210 51992640 lognormal maximum 9.204148 1.282369
1 0.665774 425 5637 3709.084 0.83 3712 16068.9 53210 51992640 gpd maximum 0.781118 8886.09
1 0.697199 364 5698 4140.56 0.94 4157.37 19241.18 69780.26 51992640 lognormal maximum 9.360472 1.322743
1 0.697199 364 5698 4140.56 0.94 4157.37 19241.18 69780.26 51992640 gpd maximum 0.820977 10235.94
1 0.732274 304 5758 4785.39 0.95 4786.6 26236.65 102317.8 51992640 lognormal maximum 9.548478 1.371224
1 0.732274 304 5758 4785.39 0.95 4786.6 26236.65 102317.8 51992640 gpd maximum 0.86758 12112.24
1 0.772642 243 5819 5605.428 0.96 5607.1 44249.4 135959.5 51992640 lognormal maximum 9.801493 1.425724
1 0.772642 243 5819 5605.428 0.96 5607.1 44249.4 135959.5 51992640 gpd maximum 0.921282 15301.96
1 0.820952 182 5880 7012.614 0.97 7074.2 70177.44 208590.3 519925640 lognormal maximum 10.16052 1.482997
1 0.820952 182 5880 7012.614 0.97 7074.2 70177.44 208590.3 51992640 gpd maximum 0.974515 21558.06
1 0.883947 122 5940 10001.94 0.98 10002.49 135959.5 271808.8 51992640 lognormal maximum 10.72076 1.524393
1 0.883947 122 5940 10001.94 0.98 10002.49 135959.5 271808.8 51992640 gpd maximum 0.994764 38064.36
1 1 61 6001 26236.13 0.99 26267.9 273686.4 783257.9 51992640 lognormal maximum 11.84404 1.431529
1 1 61 6001 26236.13 0.99 26267.9 273686.4 783257.9 51992640 gpd maximum 0.884181 123986.7
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The percentile 98% was chosen for ELgr and percentile 93% was chosen for EL7, returning a
threshold of 10001,94€ and 22792,94€ respectively for the two Risk Cells. As so, it was possible
to proceed with the estimation of the parameters for Lognormal distribution, required to
simulate the loss amounts exceeding the thresholds for the two Risk Cells. Results are in Table
4.4,

Table 4.4. Severity parameters for Aggregation 1

Risk Cell | Threshold Threshold Fitted Parameter 1 Parameter2 Bodyweight
Quantile Distribution
ELgr 0.98 10001.94 Lognormal 10.7208 1.5244 0.8839
EL7 0.93 22792.94 Lognormal 10.9676 0.8867 0.4157

In other words, this means that 88,39% of the outcomes for ELgr must be simulated from the
body part (41,57% for EL7), and the remaining 11,61% (58.43%) must be simulated from the
tail part, applying the algorithms described in Chapter 3.

Tables 4.5-4.8 show the results of Monte Carlo method (in Euros). A sequence of 16 tests have
been performed (4 tests for each of k = 1000,k = 10000,k = 100000 and k = 1000000
iterations) to assess the model’s efficiency and to verify if there is a relation between the number

of simulations and the accuracy in the returned outputs.

Table 4.5. Monte Carlo Results After 1000 Iterations, Aggregation 1

Names RiskCell ExpectedLoss 90% 99% 99.90% 99.99% Names RiskCell Expectedloss 90% 99% 99.90% 99.99%
EL7 7 10878602.20 | 23785442.41 | 39692465.82 | 56120480.15 | 65381413.92 EL7 7 10338890.85 | 21717481.35| 43606030.11 | 54612361.26 | 68584013.49
Elgr 1 8814593.06 | 13307675.79 | 19087886.30 | 23639751.15 | 23722389.29 Elgr 1 9019106.033 | 13610620.79 | 17875148.48 | 21210574.35 | 24465101.65
(VLA Undiv. |19693195.26 | 37093118.20 | 58780352.12 79760231.30§ 89103803.20 (GG Undiv. |19357996.89 | 35328102.15| 61481178.59 75822935.61§ 93049115.14

11101 Fully. Div.| 19693195.26 | 33453931.45 | 49482904.87 | 69338211.84 | 78708676.43 7 A0IA Fully. Div. | 19357996.89 | 31270615.49 | 54044453.55 | 66365083.82 | 74323043.95

Names  RiskCell ExpectedLoss 90% 99.90% 99.99% Names RiskCell ExpectedLoss 90% 99% 99.90% 99.99%
EL7 7 10130652.24 |1 22274600.03|38873285.81|56526154.50|63496670.15 EL7 7 10409356.49 |22291213.18|40835558.06|62930945.39|71050875.08
ELgr 1 8730797.05 |13038976.88|18004884.73]19528709.28(19797520.92 Elgr 1 8619068.46 |13052482.13|18357142.53|20668694.75]22936650.76

(G Undiv. | 18861449.29 |35313576.90|56878170.54]76054863.79§83294191.07 (VIGIA  Undiv. | 19028424.94 |35343695.30{59192700.59§83599640.1493987525.84

1] [VR [T Fully. Div. | 18861449.29 (31370240.41|50041987.29|65019651.38|71544742.00 Z71\ADIVA Fully. Div.| 19028424.94 |31376924.61|49850562.88|76180515.99|76637465.34

Names RiskCell ExpectedLoss 90% 99% 99.90% 99.99% Names RiskCell Expectedloss 90% 99% 99.90% 99.99%
EL7 7 10546515.74 | 22543601.53 | 42762106.59 | 61882855.54 | 76079352.84 EL7 7 10563147.83 | 22612463.73 | 42134878.12 | 63480711.23 | 79989486.58
Elgr 1 8708105.31 | 13115476.85 | 18028973.42 | 22205621.45 | 25519438.13 ELgr 1 8742962.13 | 13184170.72 | 18009417.04 | 22702121.30 | 24823809.47
(VIR Undiv. | 19254621.05 | 35659078.38 | 60791080.02 | 84088476.99§101598790.97 (VLI Undiv. | 19306109.96 | 35796634.45 | 60144295.16 | 86182832.53104813296.05

({111 Fully. Div. | 19254621.05 | 32156950.10 | 52198347.76 | 70045738.01 | 85498610.62 {111 Fully. Div.| 19306109.96 | 31936338.53 | 51842123.28 | 69373378.76 | 89558209.98

Names RiskCell ExpectedLoss 99.90% 99.99% Names RiskCell ExpectedLoss 99.90% 99.99%

EL7 7 10571566.90 | 22563064.32 | 42753531.52 | 58527947.33 | 81542970.41 EL7 7 10564070.68 | 22431488.14 | 42276212.7 | 57609269.37 | 67669528.55
Elgr 1 8687460.23 | 13068039.05 | 17795020.52 | 21845163.20 | 25437591.45 Elgr 1 8698051.54 | 13047666.05| 17901891.7 |22471452.09 | 26314299.01
(VICIAN  Undiv. | 19259027.14 | 35631103.36 | 60548552.05§ 80373110.54 | 106980561.85 (VLI Undiv. | 19262122.22 | 35479154.19 | 60178104.4 | 80080721.45 | 93983827.56

{1V Fully. Div. | 19259027.14 | 31870598.69 | 51358332.71 | 71334009.92 | 90458680.20 LA Fully. Div. | 19262122.22 | 32095011.01 | 51343019.82 | 65223716.91 | 74422458.98
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Table 4.7. Monte Carlo Results After 100000 Iterations, Aggregation 1

Names RiskCell Expectedloss 99% 99.90% 99.99% Names RiskCell ExpectedLoss 90% 99% 99.90% 99.99%

EL7 7 10537034.48 | 22563143.05 | 42233561.77 | 61908927.35 | 87261569.14 EL7 7 10474634.49 | 22461606.16 | 41680030.29 | 61171228.65 | 83621560.06
Elgr 1 8715609.48 | 13083588.77 | 18035955.90 | 22603776.92 | 26148064.73 Elgr 1 8718161.14 | 13117688.82 | 17994451.23 | 22111189.25 | 26292473.74
(ViGN Undiv. | 19252643.96 | 35646731.83 | 60269517.67 | 84512704.27 | 113409633.87 (ViGN Undiv. | 19192795.62 | 35579294.98 | 59674481.52) 83282417.90§109914033.80

({11 Fully. Div. | 19252643.96 | 31996530.25 | 51662648.14 | 71711232.05 | 93949929.94 {1 Fully. Div. | 19192795.62 | 31942563.17 | 50934611.52 | 71131406.11 | 92277548.32

Names RiskCell ExpectedLoss Names  RiskCell ExpectedLoss 99.90% 99.99%
EL7 7 10537487.94 | 22559977.49 | 42056938.64 | 63284651.00 | 81707646.15 EL7 10480998.64 | 22349131.84 | 41864038.65 | 62288344.39 | 96532925.81
Elgr 1 8708964.19 | 13075498.92 | 18005038.45 | 22253052.50 | 25317281.95 Elgr 8730944.52 | 13103742.24 | 17976366.85 | 22312555.79 | 27150516.64

(UGN Undiv. | 19246452.13 | 35635476.41 | 60061977.09 | 85537703.50§107024928.11 Undiv. 19211943.16 | 35452874.08 | 59840405.50 | 84600900.19 | 123683442.44
{11 Fully. Div.| 19246452.13 | 31925092.15 | 51371609.97 | 72897120.24 | 94234143.80 19211943.16 | 31643761.62 | 51292793.84 | 70943918.52 |104958375.71

Names RiskCell ExpectedLoss 90% 99% 99.90% 99.99% Names RiskCell ExpectedLoss 90% 99% 99.90% 99.99%

EL7 7 10481912.20 | 22402431.38 | 41794723.52 | 61498409.96 | 86545229.22 EL7 7 10488180.78 | 22434878.35 | 41868449.06 | 61919029.45 | 84383921.67
Elgr 1 8717433.83 | 13110877.26 | 18047572.23 | 22337891.10 | 26292251.41 Elgr 1 8725024.84 | 13127118.19 | 18024949.62 | 22277754.43 | 26209923.40
(VGRS Undiv. | 19199346.03 | 35513308.63 | 59842295.75| 83836301.06 |112837480.62 (LG  Undiv. | 19213205.62 | 35561996.55 | 59893398.68|| 84196783.88 | 110593845.06

{1111 Fully. Div. | 19199346.03 | 31801779.41 | 51250772.68 | 71038304.13 | 96212569.99 1A Fully. Div. | 19213205.62 | 31844077.78 51400898.97|71500264‘80 92911413.66

Names  RiskCell ExpectedLoss 99.90% 99.99% Names  RiskCell ExpectedLoss 90% 99% 99.90%
EL7 7 10482448.78 | 22409003.95 | 41696209.83 | 61689034.76 | 86777648.86 EL7 7 10483646.02 | 22506551.49|42784574.92|60902312.28| 94000633.95
Elgr 1 8722805.59 |13115872.36 | 18053682.89 | 22277945.49 | 25934338.41 Elgr 1 8734803.33 |13137383.19|17475780.44|21969306.37| 24883444.35
(G Undiv. | 19205254.37 | 35524876.32 | 59749892.72f 83966980.25 |112711987.27 (AL  Undiv. | 19218449.35 |35643934.67|60260355.35{82871618.65] 118884078.30
{11 Fully. Div. | 19205254.37 | 31805922.38 | 51165017.97 | 71100047.40 | 96069587.11 010\ Fully. Div. | 19218449.35 |32018869.64|51387043.97 | 71041444.39|101873002.77

To analyze further the results, the whole procedure was repeated assuming a different
aggregation, Aggregation 2. The purpose is to seek confirmation of the results and make

conclusions more reliable.

4.3. Aggregation 2
Likewise the first aggregation, only internal information with financial impact was used, but
with three relevant differences:

- The date field is the closing date (accounting date);

- The Liquid Loss Amount formula is:

Liquid Loss Amount = max(Loss Amount + Open Amount, 0) > 250  (13)

- Only losses occurred in Portuguese entities were included.

After applying these rules 8313 cases remained, representing the new variant of the Operational
Risk model, which includes more events. This is due to the Liquid Loss Amount formula, which
adds a strictly positive variable (the Open Amount) to the Loss amount, surpassing easier the
250€ amount. This allows more events to be included, and the number of events that belong to
non-Portuguese institutions is not enough to maintain the same number of events as in
Aggregation 1.

Figure 4.3 displays how these events are distributed among the seven categories described in
article 324 of the CRR.
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Figure 4.3. Distribution of Events Among the Seven Categories — Aggregation 2

This time, the bank decided to perform a new aggregation, considering again two Risk Cells,
but as two groups of categories instead of isolating one category as an individual Risk Cell
from the remaining ones. Like in the first aggregation, the EL2 and EL7 categories present the
major parts of the dataset (see Figures 4.2-4.3), being EL2 76% of the total losses registered
and EL7 18%. So, the bank decided to join the less representative categories into these two:
EL5 is aggregated into EL2 for being the smallest one, constituting 46 events of the dataset
(ELgrl), while EL1, EL3, EL4 and ELS6 are joint to EL7, forming the ELgr2.

From now on, all the steps will replicate what has been done for Aggregation 1. Figure 4.4

shows the number of occurrences per Risk Cell and per quarter.
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Figure 4.4. Frequency of Events per Quarter for Aggregation 2
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From this data (see Appendix 5), it was possible to calculate the frequency parameters (time

measured in quarters):
Table 4.9. Frequency Parameters for Aggregation 2

Risk CellName Mean Variance ‘ Critical Ratio Lambda Size Mu
ELgrl 145.25 | 16116.42 110.96 145.25 1.56 | 145.28
ELgr2 43.68 324.22 7.42 43.68 7.66 | 43.68

Looking at these results, it is possible to see similarities with what was observed in Aggregation
1, in the sense of having again an extremely high ratio for ELgrl (76,88% of the full dataset)
and both Critical Ratios being greater than 2. The Negative Binomial distribution is the model
chosen for the frequency variable of the two Risk Cells.

For this simulation, it was not necessary to perform a fitting table to define the Body-Tail
threshold for the loss distributions, because the bank required the thresholds to be 10000€ for
ELgrl and 100000€ for ELgr2. We used then these amounts to estimate the parameters of the
Lognormal distribution and to calculate the corresponding bodyweights, in order to proceed

with the Monte Carlo simulation.

Table 4.10. Severity Parameters for Aggregation 2

Risk Cell Threshold Fitted Distribution | Parameter1 Parameter2 Bodyweight

Elgrl 10000 Lognormal 10.0472 1.1525 0.9835

ElLgr2 100000 Lognormal 12.5862 1.1163 0.6543

Now 98,34% of the outcomes for ELgrl must be simulated from the body part (65,43% for
ELgr2), and the remaining 1,66% (34.57%) from the tail part.

Tables 4.11-4.14 below show the results of Monte Carlo method in Euros. Again, a sequence
of 16 tests was performed (four tests for each of each k, k = 1000,k = 10000,k =
100000 and k = 1000000 simulations for the same reasons given in Section 4.2, before

presenting the results for Aggregation 1.

Table 4.11. Monte Carlo Results After 1000 Iterations for Aggregation 2

Names RiskCell ExpectedLoss 90% 99% 99.90% 99.99% Names RiskCell ExpectedLoss 90% 99% 99.90% 99.99%

Elgrl 1 1256925.38 | 2616882.24 | 4819388.06 | 6165430.50 | 6480800.59 Elgrl 1 1230536.17 | 2604955.71 | 5022522.61 | 6069437.90 | 7160521.40
Elgr2 2 38219177.87 | 60827320.50 | 85209444.04 | 97690324.63 |101816397.49 Elgr2 2 39242071.32 |60123722.48|84096182.74/111190608.29|120402706.56
(VLI Undiv. | 39476103.25 | 63444202.74 | 90028832.09) 103855755.124 108297198.08 (ViGN Undiv. | 40472607.49 |62728678.19|89118705.35|117260046.19§ 127563227.97

(3011 Fully. Div. | 39476103.25 | 62070142.82 | 86556636.32 | 98635736.68 |102160235.50 11\ Fully. Div. | 40472607.49 |61561601.56 |86160639.93|111638184.77|121359497.74

Names RiskCell ExpectedLoss 90% 99% 99.90% 99.99% ExpectedLoss 90% 99% 99.90% 99.99%
Elgrl 1 1223003.05 | 2664706.01 | 4987879.68 | 6582082.42 | 6890553.99 Elgrl 1 1233697.97 | 2671536.44 | 4631802.11 | 6139870.42 | 6359232.81
Elgr2 2 39760531.25 | 62107801.16 | 86007528.04 |116693559.60|118774597.12 Elgr2 2 40318614.71 |61305192.74(89279136.90/107398339.39)140264938.33

(UGN Undiv. | 40983534.31 | 64772507.17 | 90995407.72§ 123275642.024125665151.11 (iGN Undiv. | 41552312.69 |63976729.18|93910939.01§113538209.81|146624171.14
1A Fully. Div. | 40983534.31 | 63593039.05 | 86349599.59 |119134969.86|119802682.25 27818 Fully. Div.| 41552312.69 |62429348.26|90251602.29|112215405.46|141712676.47
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Names

Elgrl

Elgr2

Undiv.
Fully. Div.

Names
Elgrl
Elgr2

Undiv.

Fully. Div.

Elgrl
Elgr2
Undiv.

Fully. Div.

Names
Elgrl
Elgr2
Undiv.

Fully. Div.

Names
Elgrl
Elgr2
Undiv.

Fully. Div.

Names
Elgrl
Elgr2
Undiv.

Fully. Div.

RiskCell
1

Table 4.12. Monte Carlo Results After 10000 Iterations for Aggregation 2

ExpectedLoss
1218024.65

90%
2578140.32

99%
4697676.59

99.90%
6734575.29

99.99%
8192448.35

2

39676209.94

62055661.65

87252123.54

109654444.73

121071295.26

Undiv.

40894234.59

64633801.96

91949800.14

116389020.01

129263743.61

Fully. Div.

40894234.59

63202122.13

89061592.62

110135291.28

122565780.79

RiskCell
1

ExpectedLoss
1187383.507

90%
2488879.126

99%
4499485.639

99.90%
6286158.215

99.99%
7435982.487

2

39884735.27

62125821.73

86744620.1

106340341.1

124573113.2

Undiv.

41072118.78

64614700.85

91244105.74

112626499.3

132009095.7

Fully. Div.

41072118.78

63425484.97

88138016.02

108011198.5

125039816.3

RiskCell
1

ExpectedLoss
1215214.167

90%
2563377.331

99%
4629100.657

99.90%
6782397.155

99.99%
8792220.849

2

39643546.36

61926990.89

87774826.64

112078722.5

134995346

Undiv.

40858760.53

64490368.23

92403927.29

118861119.7,

143787566.9

Fully. Div.

40858760.53

63134561.94

89077742.55

112907313.4

135512678.5

RiskCell
1

ExpectedLoss
1212832.14

90%
2569655.31

99%
4659355.32

99.90%
6758767.64

99.99%
8421236.41

2

39611185.67

61650483.76

87444962.52

112258184.30

132634053.83

Undiv.

40824017.81

64220139.07

92104317.84

119016951.9:

141055290.24

Fully. Div.

40824017.81

62915971.03

88855655.86

113191699.40

134179722.25

RiskCell
1

ExpectedLoss
1213985.10

90%
2562608.24

99%
4676505.25

99.90%
6734852.62

99.99%
8992202.89

2

39597625.30

61678786.59

87244804.13

109787319.43

131601662.33

Undiv.

40811610.40

64241394.83

91921309.3

116522172.05

140593865.22

Fully. Div.

40811610.40

62939143.28

88537433.42

111192848.99

133041710.19

RiskCell
1

ExpectedLoss
1212386.88

90%
2558998.81

99%
4653638.88

99.90%
6717485.01

99.99%
8765168.26

2

39562203.32

61632822.40

87230314.64

109521774.05

129660939.42

Undiv.

40774590.20

64191821.21

91883953.53

116239259.06)

138426107.68

Fully. Div.

40774590.20

62875467.90

88523048.48

110587490.00|131227305.70

4.4. Results and Discussion

Names RiskCell
Elgrl 1

ExpectedLoss
1213517.356

90%
2570986.894

99%
4655280.976

99.90%
6413494.165

99.99%
7349261.909

Elgr2 2

39649455.09

61636399.95

87204213.3

111179928.5

129474889.7

Undiv.

40862972.44

64207386.84

91859494.28] 117593422.6

136824151.6

[ZV1\ADIA Fully. Div.

40862972.44

62810414.5

88281768.57

[ 111905839.6

130335635.9

Names  RiskCell
Elgrl 1

ExpectedLoss
1206858.369

90%

2526679.789

99%
4658788.412

99.90%
6552875.25

99.99%
7931285.963

Elgr2 2

39873403.57

62031327.16

87950768.77

107910896.9

125102783.7

Undiv.

41080261.94

64558006.95

92609557.18)

114463772.2

133034069.7

41080261.94

63378404.2

89197990.63

109065608.6

126583199.7

Names  RiskCell
Elgrl 1

ExpectedLoss
1216460.11

90%
2552116.33

99%
4695213.76

99.90%
6708049.65

9006941.19

Elgr2 2

39612523.29

61822057.06

87635993.88

110265382.59

130054109.75

Undiv.

40828983.39

64374173.39

92331207.63

116973432.2

139061050.93

T\ Fully. Div.

40828983.39

63121644.46

88966070.22

111481380.27

131818300.29

Names  RiskCell

Elgrl

ExpectedLoss
1211912.21

90%
2557628.60

4687841.10

99.90%
6635200.38

8956879.69

Elgr2

39517367.86

61583715.92

86987751.38

111428762.54

128813128.81

Undiv.

40729280.08

64141344.52

91675592.48

118063962.92

137770008.50

40729280.08

62822164.30

88286956.71

112516751.12

130549139.51

Names  RiskCell
Elgrl 1

ExpectedLoss
1212091.13

90%
2559894.36

99%
4673140.00

6703391.19

99.99%
8664566.56

Elgr2 2

39577469.05

61600141.79

87204742.01

110031663.19

133119792.78

Undiv.

40789560.19

64160036.15

91877882.01

116735054.37

141784359.35

TAIA Fully. Div.

40789560.19

62840802.66

88437502.10

111223843.63

134454699.15

Names  RiskCell
Elgrl 1

ExpectedLoss
1213428.80

90%
2554723.80

4675956.41

6704225.49

99.99%
8696909.29

ELgr2 2

39609700.68

61689043.22

87477045.63

110294528.10

131369636.98

Undiv.

40823129.48

64243767.02

92153002.04

116998753.5.

140066546.27

ZTADIA Fully. Div.

40823129.48

62941290.97

88721887.62

111527945.11

132819033.63

Since this model is stochastic, the results vary whenever it is made a simulation, which justifies

the need to perform four tests for each input number. This allows to study the sensibility of

oscillation on the results every time a simulation is running.

Analyzing the given outputs carefully, for both models it is visible that the expected loss and

the losses associated to each quantile generated by Monte Carlo tend to fluctuate less with the

increase of the number of simulations.

Looking into Aggregation 1, the expected losses oscillate between 18,8 and 19,7 million Euros

(M€), which results a difference of around 831000€ each time the Monte Carlo replicates k =
1000 simulations, but if it is set k = 1000000 iterations, the results lean towards 19,2 M€,



with a maximum difference around 19000€. Although in the case of k = 10000 and k =
100000 simulations differ similarly in the expected loss, it is evident that the quantiles are more
unstable for the first input number than the second. For example, the 99,9% percentile goes
from 80,1 to 86,2 M€ for k = 10000 simulations, whereas for k = 100000 it waves between
83,3 and 85,5 ME.

Moving to Aggregation 2, the expected loss varies between 40,77 and 40,83 M€, returning then
a difference of almost 50000€ when k = 1000000 , while in the case of kK = 1000 simulations
the expected loss differs between 39,4 and 41,6 M€, which corresponds to an imprecision of
around 2,1 M€.

Focusing only on the results for k = 1000000 and assuming the capital regulatory is the mean
of the results displayed in the four tables (column of quantile 99,9% and row the Undiversified,
see end of Section 3.4), from the first model it is estimated a capital regulatory of 83,7 M€ to
the bank with all the restrictions, aggregations and orders demanded to ensure they have enough
capital to perform all the operations and protect against market randomness. The second model
predicts 116,6 M€ of event losses to the 99,9% quantile according to the bank’s requests
accomplished.

Furthermore, it is evident that the expected losses are closer between the two groups in the first
model than between those in the second model. Also, in both models, the Risk Cells that
contained less categories (less diverse) generated more capital losses than the more diverse Risk
Cells.

In this case, the first model EL7 generated around 10,48M of loss capital and ELgr 8,72M,
being this last Risk Cell a more diversified group that covers six event types, while in the second
model ELgrl generates losses of amount 1,21M and ELgr2 of amount 39,6M. ELgr1, which
has a major slice of the data by event type, is little diversified, containing only events related
with Damage to Physical Assets and External Fraud.

This analysis may raise many questions about the outcomes, but throughout the report some
variables that could modify the values of frequency and severity parameters were identified,
and therefore the results through Monte Carlo model.

There is a ‘suspicion’ about the Liquid Loss Amount formula, because in the first model the
recovered amount is deducted while in the second the open amount is added, and since both
formulas present only non-negative values, the Liquid Loss Amount values in general will be
higher in Aggregation 2 - which may explain why the total expected loss and the quantiles for
Undiversified and Fully Diversified Scenarios present higher values than the ones in

Aggregation 1.
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Another aspect to point out is in the severity table, specifically in the selected Threshold value
for each Risk Cell, because it determines how many events are considered in the Tail a key
aspect to quantify the simulated loss amounts. Those allow to estimate the bodyweights, the Mu
(the mean), and the Sigma (standard deviation) parameters through maximum likelihood
estimation. In Aggregation 1, the highest threshold corresponds to EL7, and it was 22792,94€
while in Aggregation 2 was 100000€ for ELgr2, which is 4,39 times larger. This means that in
Aggregation 2, the tails for the loss distribution are thicker than in Aggregation 1, because the
Threshold is multiplied by the number of events generated for the Tail distribution'?, and it is
enough that one of these variables increases for a higher loss value to appear.

Although the controlling variables can modify the results, the initial dataset is not mutable,
which implies that if the OR model is applied to other datasets with the same structure and
column names, it is impossible to change the original column values including the event types
of each occurrence. For this study approach, 94,4% of the occurrences in the filtered dataset
belong either to the ‘External Fraud’ or ‘Execution, Delivery & Process Management’ loss
event types, for both models, remaining then the other 5,6% to the other five categories, which
means there are not many choices of aggregations to study the frequency and severity besides

the ones made.

10 6™ step of the Monte Carlo simulation in chapter 3.4
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5. Conclusion

This framework demonstrates an empirical approach to measure the capital risk through
advanced methods, with the purpose of obtaining Minimum Capital Requirements for effects
of ICAAP decision making.

It is a model that can be explored and manually adjusted, for example in the Liquid Loss
Amount formula, in the Risk Cells and in the Thresholds, creating opportunities to analyze some
of them.

Since this model does not follow all the quantitative standards from the CRR (article 322), it
may be seen as incomplete.

Nevertheless, I think it is an interesting model that can be computed in programming languages.
Additionally, it is not very common to find a project that directly applies mathematical
knowledge and programming skills to test and experiment in the financial sector. The essay
explores a hypothesis possibly helpful to the world of financial mathematics, thus presenting an
opportunity to exhibit the academic knowledge for a real-life project.

Finally, this academic internship in KPMG gave me tools and knowledge useful to my future

career, it was an excellent experience to progress in the professional world.
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Appendix

Appendix 1 — Internship Plan Chronogram

March | April May June July August

Training

Key point analysis

Metrics development

Results analysis

Report preparation

Source: Author’s elaboration

Appendix 2 — Process and Internal Data Quantitative Standards

2. The standards relating to Process are the following:

a) an institution shall calculate its own funds requirement as comprising both expected loss and
unexpected loss, unless expected loss is adequately captured in its internal business practices.
The operational risk measure shall capture potentially severe tail events, achieving a soundness
standard comparable to a 99,9 % confidence interval over a one year period,;

b) an institution's operational risk measurement system shall include the use of internal data,
external data, scenario analysis and factors reflecting the business environment and internal
control systems as set out in paragraphs 3 to 6. An institution shall have in place a well
documented approach for weighting the use of these four elements in its overall operational risk
measurement system;

c) an institution's risk measurement system shall capture the major drivers of risk affecting the
shape of the tail of the estimated distribution of losses;

d) an institution may recognise correlations in operational risk losses across individual
operational risk estimates only where its systems for measuring correlations are sound,
implemented with integrity, and take into account the uncertainty surrounding any such
correlation estimates, particularly in periods of stress. An institution shall validate its correlation
assumptions using appropriate quantitative and qualitative techniques;

e) an institution's risk measurement system shall be internally consistent and shall avoid the
multiple counting of qualitative assessments or risk mitigation techniques recognised in other

areas of this Regulation.
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3. The standards relating to Internal Data are the following:

a) an institution shall base its internally generated operational risk measures on a minimum
historical observation period of five years. When an institution first moves to an Advanced
Measurement Approach, it may use a three-year historical observation period,;

b) an institution shall be able to map their historical internal loss data into the business lines
defined in Article 317 and into the event types defined in Article 324, and to provide these data
to competent authorities upon request. In exceptional circumstances, an institution may allocate
loss events which affect the entire institution to an additional business line "corporate items".
An institution shall have in place documented, objective criteria for allocating losses to the
specified business lines and event types. An institution shall record the operational risk losses
that are related to credit risk and that the institution has historically included in the internal
credit risk databases in the operational risk databases and shall identify them separately. Such
losses shall not be subject to the operational risk charge, provided that the institution is required
to continue to treat them as credit risk for the purposes of calculating own funds requirements.
An institution shall include operational risk losses that are related to market risks in the scope
of the own funds requirement for operational risk;

c) an institution's internal loss data shall be comprehensive in that it captures all material
activities and exposures from all appropriate sub-systems and geographic locations. An
institution shall be able to justify that any excluded activities or exposures, both individually
and in combination, would not have a material impact on the overall risk estimates. An
institution shall define appropriate minimum loss thresholds for internal loss data collection;
d) aside from information on gross loss amounts, an institution shall collect information about
the date of the loss event, any recoveries of gross loss amounts, as well as descriptive
information about the drivers or causes of the loss event;

e) an institution shall have in place specific criteria for assigning loss data arising from a loss
event in a centralised function or an activity that spans more than one business line, as well as
from related loss events over time;

f) an institution shall have in place documented procedures for assessing the on-going relevance
of historical loss data, including those situations in which judgement overrides, scaling, or other
adjustments may be used, to what extent they may be used and who is authorised to make such
decisions

Source: EU Regulation 575/2013, article 322(2-3)
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Appendix 3 — Risk Categories and their respective Labels

Event type Risk Cell Label

Internal Fraud EL1

External Fraud EL2

Employment Practices and Workplace Safety EL3
Clients, Products and Business Practices EL4
Damage to Physical Assets EL5

Business Disruption and System Failures EL6
Execution, Delivery & Process Management EL7

Source: Article 324 of the European Regulation 575/2013

Appendix 4 — Paragraph 667 from the Basel Il

“Given the continuing evolution of analytical approaches for operational risk, the Committee is
not specifying the approach or distributional assumptions used to generate the operational risk
measure for regulatory capital purposes. However, a bank must be able to demonstrate that its
approach captures potentially severe ’tail” loss events. Whatever approach is used, a bank must
demonstrate that its operational risk measure meets a soundness standard comparable to that of
the internal ratings-based approach for credit risk (i.e. comparable to a one year holding period

and a 99.9th percentile confidence interval).”

Source: Basel Committee on Banking Supervision
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Appendix 5 — Tables with the Number of Events per Quarter for Aggregations 1 and 2

Elgr ez | _____ T
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80 61 56 88
182 38 185 55
107 37 104 53
82 51 73 68
83 28 78 46
74 74 69 68
100 52 99 65
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69 26 84 32
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78 38 7 42
339 45 331 51
91 42 60 88
135 35 122 54
270 38 305 39
176 33 181 46
156 43 163 58
289 32 332 36
283 39 323 39
101 23 119 28
265 29 321 35
346 25 389 28
86 28 105 33
77 18 81 20
% 34 100 40
108 37 106 32
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51 2 50 23
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114 20 119 2
101 24 111 27
95 25 99 38
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