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Resumo 

 

 
Este trabalho é o relatório de um estágio de seis meses levado a cabo na consultora KPMG 

Advisory, no Department of Risk Consulting. 

Historicamente, as instituições financeiras têm reconhecido a importância que a quantificação 

dos chamados requisitos mínimos de capital tem para a gestão de risco. Com efeito, estes 

requisitos estabelecem limites exigidos por reguladores corporativos, corretores ou agências, na 

realização de operações financeiras, com a finalidade de proteger tais instituições da falência, 

insolvência ou outras situações de crise. A União Europeia lançou vários documentos onde dá 

orientações para a minimização do risco de perda de capital, destacando-se o Regulamento de 

Requisitos de Capital (CRR), cujo objetivo é guiar os bancos na implementação de um conjunto 

de ações normalizadas, para gerir riqueza e simultaneamente evitar a ocorrência de crises 

agravadas. 

Durante o meu estágio participei num projeto de Modelo de Risco Operacional destinado a 

apoiar as decisões do Processo de Autoavaliação da Adequação do Capital Interno (ICAAP) de 

um banco português. No seu decurso fui chamado a programar um algoritmo para efetuar uma 

simulação de Monte-Carlo para as perdas esperadas no âmbito daquele risco, que seriam 

posteriormente traduzidas em termos de requisitos mínimos de capital. O modelo baseia-se 

essencialmente no CRR, mas incorpora também algumas indicações da Abordagem de Medidas 

Avançadas (AMA). 

Para obter os resultados, foi necessário efetuar dois tipos de agregações das unidades de medida 

de risco (ou células de risco), sob indicação do banco. As agregações escolhidas 

corresponderam a resultados diferentes, sendo as causas das diferenças analisadas e discutidas 

em função da frequência e gravidade dos eventos. 

 

Palavras-Chave: Monte Carlo, Risco Operacional, Requisitos Mínimos de Capital, 

Distribuições Corpo-Cauda 
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Abstract 

 

 
This work is the report of a six-month internship carried out at KPMG Advisory, in the 

Department of Risk Consulting. 

Historically, financial institutions have recognized the importance that calculating the so-called 

minimum capital requirements has for risk management. Indeed, these requirements establish 

limits required by regulators, brokers or agencies, in carrying out financial operations, in order 

to protect such institutions from bankruptcy, insolvency or other crisis situations. The European 

Union has released several documents which provide guidelines for minimizing the risk of 

capital loss, in particular the Capital Requirements Regulation (CRR), whose objective is to 

guide banks in the implementation of a set of standardized actions to manage wealth and 

simultaneously to prevent the occurrence of aggravated crises. 

During my internship I participated in an Operational Risk Model project, aimed at supporting 

the decisions of the Internal Capital Adequacy Assessment Process (ICAAP) of a Portuguese 

bank. I was asked to program an algorithm to perform a Monte Carlo simulation for the expected 

losses associated to the Operational Risk, which would later be translated into terms of 

minimum capital requirements. The model is essentially based on the CRR, but also 

incorporates some indications of the Advanced Measures Approach (AMA). 

To obtain the results, it was necessary to carry out two types of aggregation of the risk 

measurement units (or Risk Cells), as indicated by the bank. The aggregations chosen would 

correspond to different results, and the causes of the differences were analyzed and discussed 

based on the frequency and severity of the events. 

 

Key Words: Monte Carlo, Operational Risk, Minimum Capital Requirements, Body-Tail 

distributions 

 

 

 

 

 

  



 

 

iv 

 

Index 

1. Introduction .......................................................................................................................... 1 

1.1. Description of the Organization ...................................................................................... 2 

1.2. Internship Plan ................................................................................................................. 3 

2. Theory……………………………………....…………………………….…...……....….…5 

2.1. Operational Risk .............................................................................................................. 5 

2.2. ICAAP ............................................................................................................................. 7 

3. Methodology .......................................................................................................................... 8 

3.1. Operational Risk Model .................................................................................................. 8 

3.2. Risk Cells ........................................................................................................................ 9 

3.3. Probabilistic Models for Frequency and Severity of Losses ......................................... 10 

3.3.1. Frequency Model ........................................................................................................ 10 

3.3.2. Severity Model ........................................................................................................... 11 

3.4. Monte Carlo Simulation ................................................................................................ 14 

4. Application .......................................................................................................................... 19 

4.1. Database and Software .................................................................................................. 19 

4.2. Aggregation 1 ................................................................................................................ 20 

4.3. Aggregation 2 ................................................................................................................ 24 

4.4.  Results and Discussion ................................................................................................. 27 

5. Conclusion ........................................................................................................................... 30 

References ............................................................................................................................... 31 

Appendix ................................................................................................................................. 34 

 

 

 

 

 

 

 

 



 

 

v 

 

List of Tables 

 

Table 4.1. Frequency Parameter for Aggregation 1…………...……..........…...………………21 

Table 4.2. Finding the Body-Tail threshold for Risk Cell ELgr, Aggregation 1.........................22 

Table 4.3. Finding the Body-Tail threshold for Risk Cell EL7, Aggregation 1..........................22 

Table 4.4. Severity Parameters for Aggregation 1…………….……..........…...…....................23 

Table 4.5. Monte Carlo Results After 1000 Iterations, Aggregation 1.......................................23 

Table 4.6. Monte Carlo Results After 10000 Iterations, Aggregation 1.....................................23 

Table 4.7. Monte Carlo Results After 100000 Iterations, Aggregation 1...................................24 

Table 4.8. Monte Carlo Results After 1000000 Iterations, Aggregation 1.................................24 

Table 4.9. Frequency Parameters for Aggregation 2………………...……...………........……26 

Table 4.10. Severity Parameters for Aggregation 2………………………….……...................26 

Table 4.11. Monte Carlo Results After 1000 Iterations for Aggregation 2.................................26 

Table 4.12. Monte Carlo Results After 10000 Iterations for Aggregation 2..............................27 

Table 4.13. Monte Carlo Results After 100000 Iterations for Aggregation 2............................27 

Table 4.14. Monte Carlo Results After 1000000 Iterations for Aggregation 2..........................27 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 

vi 

 

List of Figures 

 

Figure 3.1. Aggregation of Event Types ..................………………………………………........9 

Figure 3.2. Frequency and Severity Distributions......................................................................10 

Figure 3.3. Scheme of the Body-Tail Distribution.....................................................................11 

Figure 3.4. Empirical Distribution of Losses………………………………………......….......13 

Figure 3.5. Simulation of the Risk Cell’s Frequencies...........…………………………..……..15 

Figure 3.6. Algorithm to Simulate Body Loss Distribution........................................................16 

Figure 3.7. Lognormal Distribution Density Function...............................................................17 

Figure 3.8. Algorithm to Simulate Tail Loss Distribution..........................................................17 

Figure 4.1. Distribution of Events Among the Seven Categories – Aggregation 1.....................20 

Figure 4.2. Frequency of Events per Quarter for Aggregation 1.................................................21 

Figure 4.3. Distribution of Events Among the Seven Categories – Aggregation 2.....................25 

Figure 4.4. Frequency of Events per Quarter for Aggregation 2.................................................25



 

 

1 

 

1. Introduction 

 

Within the scope of the curricular program of the Master’s in Mathematical Finance, at Lisbon 

School of Economics and Management, Universidade de Lisboa, this is the report of a 6-month 

internship at KPMG Advisory, in the Department of Risk Consulting. 

Despite of being one of the Big Four consulting firms, with a huge spread over the world and a 

vast range of opportunities for recent graduates, KPMG is aware of the main barriers that they 

face when entering the job market. To better integrate them, the more experienced staff is 

prepared to help newcomers with any type of problems, inserting them into projects that are 

suitable to their profiles, as well as being available to clarify any doubts along the internship. 

During this work experience, I was involved in a project and helped some colleagues of my 

department team in Financial Service – Risk Consulting, in tasks where I could be useful. 

The main project of my internship was the development of an Operational Risk (OR) model 

(Jöhnemark, 2012), created with the purpose of quantifying the expected losses of a bank 

associated to OR, through Monte-Carlo simulation, and distributing them by tail or body. The 

model uses statistical distributions, like Poisson, Negative Binomial, Binomial and Lognormal, 

to obtain a more suitable capital requirement considering the bank’s portfolio. The ultimate 

objective of this model is to measure the Minimum Capital Requirements (MCRs) (Anghelache, 

Olteanu, & Radu, 2010) that may influence the ICAAP decisions about operations made by the 

bank  (De Jonghe, Dewachter, & Ongena, 2020). It is an important framework because financial 

institutions are not totally certain about how much capital is necessary to perform all their 

financial operations, whether loaning money for an entity, issuing derivatives, investing in 

companies, paying salaries, or improving the building facilities. Therefore, through Operational 

Risk management, banks have information about their limits of wealth capacity to manage more 

efficiently the costs of financial operations, without putting the other counterparts in risky 

situations.  

During the first three semesters of my master’s program, I studied a variety of subjects that 

prepared me to work in this project, like Programming Techniques (that helped me to develop 

the algorithm codes for Monte Carlo simulation) and Financial Econometrics (which gave me 

the tools to interpret the parameters of the fitted distributions and to test their adequacy). Other 

subjects from my master’s curricular plan, such as Interest Rate and Credit Risk Models, for 

example, will be quite useful for Risk Consulting, due to their content related with probability 
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of default, Value-At-Risk models, or the Merton model, which are concept and tools that the 

Department of Risk Consulting uses very often. 

 

1.1. Description of the Organization 

KPMG is one of the worldwide Big Four multinational consulting firms, offering several 

professional services in three areas: Audit and Assurance, Tax and Advisory. 

The Audit and Assurance services guarantee the reliability of the information obtained in capital 

markets and provided by investors; the Tax services provide legal and regulatory assistance, 

which deals with the policies, laws and bureaucracy related with the company; the Advisory 

services provide new solutions, tools and take the initiative of several projects in cooperation 

with other firms. 

There are KPMG headquarters spread over 147 countries and currently there are around 227 

000 working professionals of all the three areas. My working office is in Lisbon, building FPM 

41, Avenida Fontes Pereira de Melo, number 41, and I am working in the Risk Consulting - 

Financial Services team department, which belongs to the Advisory services, and it is on the 

same floor as the Management Consulting and Deal Advisory teams, both from the same area. 

The department of Risk Consulting is responsible to deal with large quantities of information, 

to manage several types of risk and solidify confidence in future decisions of various business 

executives, when these are upon the moment at performing an action. This sector deals with 

risk management of several types, like tax fraud, cyberattacks, regulatory compliance, data 

violation, structure and credit risk models, capital efficiency and corporate governance. 

Also, this department has a very high demand for applied mathematicians, due to their 

knowledge of statistics and probability as well as a basic understanding of programming and 

working with databases, which are not yet very usual to find in consultancy members with other 

academic backgrounds. Another positive factor is their methodological thinking, which helps 

to reach stronger and well-based solutions and manage different variables with time, based on 

statistical tools adapted to time variation. Therefore, they are recognized as very well-prepared 

employees, who not only have different skills that contribute to the project, but are also prepared 

to learn more and constantly develop their performance with an abstract and refined logical 

reasoning, to absorb new information, and independence, to offer new solutions by themselves. 

My KPMG’s supervisor is named José Cruz, a Manager in the Risk Consulting department. He 

was responsible to introduce me to a project he was inserted at the beginning of the internship 

along with other employees of the same team department, and so he helped me to adapt to the 
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fasten rhythm of KPMG workers. He was available to clarify all my doubts related to the project 

and supervised me, to make sure I was doing well the activities he requested. 

After the pandemic, the company started to be more flexible, by establishing a hybrid schedule, 

meaning that workers had specific days of the week to work at home, while the rest of the week 

was to work at the office. 

 

1.2. Internship Plan 

Before initiating the internship, KPMG organized an activity timeline, covering the six months 

of the internship. It was designed to be a guideline, planning the future tasks to accomplish. 

According to the internship plan in Appendix 1, my main activities were: 

- Identification of the main applicable regulatory requirements for the project; 

- Analysis of the key points that were addressed into risk quantification; 

- Analysis of the main difficulties about measuring risk; 

- Development of metrics to measure the detected risks. 

The cells in grey highlight the activities made in each month. Since the project of the 

Operational Risk Model lasted around two months, to fulfill the remaining time I had to perform 

accessory tasks of other projects, demanded by other superiors from the same department team. 

So, the internship plan activities did not follow the same order as it is presented in Appendix 1, 

even though they were already included in the projects I have participated. I have also helped 

other colleagues of the department while preparing the internship report. In fact, in addition to 

the OR project, I supported and helped temporarily in three other projects.  

The first one was from KPMG in Germany, and it was about Physical and Transition Climate 

Risks Prototypes, to assess the Expected Credit Loss (ECL) until the year 2100, related with 

possible flood disasters and their damage impact, as well as the climate scenarios from the 

Network for Greening the Financial System1 - for further details, see (Luo, et al., 2021)  and 

KPMG’s paper2. 

In that project, my tasks were to interpret two Python program outputs associated to the Physical 

and Transition Risks, explaining the equations behind the calculations performed by the 

programming code, and analyzing the plots, how and where the data was coming from, and 

finally relating all the results to reach the required ECL. 

The second one was a study about retention of term deposits, for liquidity risk management 

purposes. The client is a financial institution in Mozambique, and I helped a colleague to create 

 
1 https://www.ngfs.net/en  
2 What's the impact on expected credit losses? - KPMG Global (home.kpmg) 

https://www.ngfs.net/en
https://home.kpmg/xx/en/home/insights/2021/06/climatechange-ifrs9-ecl.html
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an optimal segmentation analysis on term deposits. In order to achieve that, I had to perform a 

historical analysis, to see which products have a heavier representation on the term deposits, 

also had to do a parametrization of the renovations and early withdrawals and a correlation 

analysis, and finally had to calculate the limits of a 95% confidence interval to some groups of 

products that have similar names, to check the possibility of merging them. 

The third one was a project in the scope of Internal Audit under the IFRS 9 norm for financial 

instruments, cf. PWC’s document (Audit Services | IFRS 9, 2017). I joined a department team 

of Internal Audit and my tasks were programming in SAS language with one member of the 

team for a database from the customer. I mapped stages 1, 2 and 3 to the various customers’ 

contracts that had notifications related with credit risk events, finding triggers that warn the 

bank about possible default cases, then validating them to make sure the database had the right 

trigger values, and finally investigating how the SAS database was calculating the ECL for 

stage 3, according to the Bank for International Settlements’ guidelines (FSI | IFRS 9 and 

expected loss provisioning - Executive Summary).3 

Therefore, it is reasonable to say my internship was both academic and professional and allowed 

me to be familiar with a number of different tools and ways of proceeding and reasoning the 

tasks. Additionally, it presented various opportunities to participate in projects of the company, 

which clarified me the issues and applications of Risk Analysis. 

As it was stated at the beginning of this chapter, the internship timetable worked as a guideline 

for the topics I would have to surpass for the various projects, but that did not necessarily mean 

the obligation to follow each activity in a certain month. 

The progression of the paper is as follows. In Chapter 2, the concepts of Operational Risk and 

ICAAP will be presented, Chapter 3 covers the model and the methodology, in Chapter 4 the 

methodology is applied to two Risk Cell aggregation types, Chapter 5 presents Results and 

Discussion about the outcomes obtained in Chapter 4, and Chapter 6 contains the main 

conclusions and some suggestions to improve this framework. 

 

  

 
3 https://www.bis.org/fsi/fsisummaries/ifrs9.pdf  

https://www.bis.org/fsi/fsisummaries/ifrs9.pdf
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2. Theory 

 
2.1. Operational Risk 

 
The definition of Operational Risk is «a risk of loss born from failures and misalignment of 

internal processes, people, or systems, as well as exposition to external events that include legal 

risks that cause or might have caused material losses or decrease for the shareholders (The 

European Parliament, 2013, p. L 176/22).» 

Any loss resulted from an OR event related with market risk, like trade losses or gains amplified 

or reduced by adverse fluctuations, or through market value with origin in operational errors, is 

recognized as an OR event and therefore must be included into the OR model, as well as any 

loss resulting from legal action, whose genesis has also origin in OR. 

According to a KPMG internal document4, the Operational Risk management framework is 

divided into three main parts: 

I. Strategy and Risk Appetite; 

II. Organization and Governance; 

III. Management Instruments. 

 

I. Strategy and Risk Appetite 

Unlike financial risks, such as credit, legal or market types, the OR has a different nature, with 

some particularities regarding the traditional view of the risk appetite. 

While in the financial risks there is a balance between profitability and risk (the risk/reward 

ratios)5, in the operational type risk no expected reward is assumed, because it depends on the 

firm’s activity. This contradicts the purpose of the financial risk appetite, which is the risk of 

loss that the bank assumes in exchange for an expected reward. Instead, the purpose of the 

Operational Risk appetite is to find the optimal point where the marginal expense equals the 

marginal reduction of expected losses. 

 

II. Organization and Governance 

In risk management, there are three lines of defense that characterize its process: 

— Management control; 

— Supervision functions established by management on compliance and risk control; 

 
4 Internal document from KPMG (2021) | Pilar I: Solvência, TRIM e Risco Operacional  
5 Risk/Reward Ratio: What It Is, How Stock Investors Use It (investopedia.com) 

https://www.investopedia.com/terms/r/riskrewardratio.asp
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— Independent assurance provided by internal audit. 

Risk managers usually belong to the first line of defense, and they are responsible for managing 

the tasks of OR, like identification, mitigation, or evaluation of loss events. Also, there are risk 

coordinators that support risk managers on their daily duties and help them to make the 

interlocution with the second line of defense. 

For several types of ORs, there are the Specialized Control Functions that are responsible to 

provide a global vision of the exposition to the most relevant typologies of OR and mitigate it 

through the application of controls. These functions are easy to find in support areas like 

compliance, IT or risk analysis, where all of them belong to the second line of defense. 

The third line of defense basically verifies the effectiveness of the previous two lines to achieve 

the objectives set by the risk managers, since it corresponds to an independent process from the 

Operational Risk management and warrants the efficiency of the framework by mitigating all 

the risks. 

III. Management Instruments 

To perform an efficient management of the OR, it is necessary to have specific instruments and 

transversal elements, like culture and communications, norms and policies, internal control or 

backtesting, for a clean execution of the model and to ease risk control and management.  

They are used in three different phases of the structure for OR management: 

- First, the Identification and Evaluation that deals with Risk Control Self-Assessment6, 

the internal database of events, scenario analysis and makes the evaluation of new 

products along with transition management; 

- Second, the Monitorization through Operational Risk Indicators, see (Davis & 

Haubenstock, 2002), to check and validate occurrences like loss events; 

- Third, the Mitigation of OR, which improves the business continuity plan and the risk 

transfer. 

According to the guidelines of line b) number 3, article 322 from the CRR, hedging the OR 

losses, although always registered in the internal database, must not be subject to own fund 

requirements, since it is supposed to avoid duplications of capital requirements. 

 

 

 

 
6 The Methodology Behind Risk and Control Self-Assessment (theglobaltreasurer.com)  

https://www.theglobaltreasurer.com/2008/01/02/the-methodology-behind-risk-and-control-self-assessment/
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2.2. ICAAP 

 

According to Basel II, the second pillar relies on supervisory action (Rochet, 2004), which is 

responsible for the regulatory response for the capital requirements and the development of the 

ICAAP report. 

ICAAP is the set of internal procedures and systems that guarantee the optimal allocation of 

capital resources for the bank in a long-term horizon to cover all its material risk impacts. It 

aims determining the economic capital, which is the capital required to cover all risks that are 

estimated, using the bank’s internal risk models. Its main purpose is to ensure a suitable relation 

between the bank’s overall capital and its level of risk exposition (Farid, 2010). 

The documentation of an ICAAP report should: 

• Inform the bank’s board of directors about the continuous evaluation of all the firm’s risks; 

• Inform the board of directors and the senior management about the main results of the risk 

assessments, how the firm wants to mitigate those risks and how much future capital is 

needed, as well as explaining its consequences; 

• Explain the Internal Capital Adequacy Assessment Process made to the supervisor of the 

bank. 
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3. Methodology 

3.1. Operational Risk Model 

 
The OR model developed in the context of the project is based on articles 312-324 of the 

European Capital Requirements Regulation 575/2013, considering some requirements of the 

Process and Internal Data components from the Quantitative Standards (article 322 (2-3)), see 

Appendix 2. 

The institutions can use some or all the parts of the Advanced Measure Approach (articles 321 

and 322), if they “notify the competent authorities of all changes to their Advanced 

Measurement Approaches models” (article 312, paragraph 3). It includes an internal database 

with historical information of operational loss events, structured in a way that enables to select 

the events according to the risk category. The whole framework is based on a solid data 

collection procedure, which aims to ensure the quality and completeness of the internal 

database, since it is used to estimate components for the expected losses of the distribution. 

The risk categories used in the model are: 

1. Internal Fraud (EL1); 

2. External Fraud (EL2); 

3. Employment Practices and Workplace Safety (EL3); 

4. Clients, Products & Business Practices (EL4); 

5. Damage to Physical Assets (EL5); 

6. Business Disruption and System Failures (EL6); 

7. Execution, Delivery & Process Management (EL7). 

Despite the existence of loss events from all these risk categories, due to lack of data in some 

of them, an aggregation was performed to strengthen the results. For this model, only events 

occurred in Portugal were considered, according to the bank’s structure and their contribution 

to the Relevant Indicator of the Standardized Approach, following the Basel Committee 

document on (OPE Calculation of RWA for Operational Risk, 1999, pp. 11-19) and (The 

European Parliament, 2013, pp. 196-197). 

To obtain the components of the model we retained all the events related to Operational Risk 

with loss amounts after direct recovers of at least 250 euros, such that: 

 

Liquid Loss Amount = Gross Loss Amount − Direct Recovers Amount ≥ 250  (1) 
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Regarding recoveries, only direct recoveries were considered in the calculation of the Liquid 

Loss Amount, because they result from natural causes that consequentially reflect in the 

amount, which enabled the bank to recover partially or totally the Gross Loss Amount.  

The indirect recoveries are related with the time deferral, which sometimes extends from the 

payment of the compensation by the insurer, the lack of evidence from general conditions into 

current policies and, at this stage, the preference for a more conservative approach to the model7. 

According to the European Bank Authority document EBA/RTS/2015/02, the construction of 

the frequency and severity distribution datasets must be based on the accounting date or the 

detection date of the event, to stabilize the historical database for past periods. 

 

3.2. Risk Cells 

The Risk Cells described in Section 3.1 (EL1-EL7) were defined in the model at the level of 

the risk categories specified in article 324 of the CCR (see Appendix 3). Due to the lack of 

frequency and severity of collected events in some of these risk categories, it was decided to 

merge them. There are categories that have enough events and so can be considered as a unique 

Risk Cell, while others with few events must be aggregated. 

This does not mean the categories with sufficient events must be automatically considered as 

individual Risk Cells, since the aggregation attends to the preservation of homogeneity of the 

data in each resulting Risk Cell. 

The scheme of aggregation choices follows the algorithm below: 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.1. Aggregation of Event Types 

 

 
7 What is indirect and consequential loss? - Harper James 

Risk Category 

Enough events to 

allow the individual 

modelling of the 

category 

Insufficient events to 

be considered 

individually for the 

model definition 

Can be included as 

individual Risk Cell 

 

 

 

 

 

 

 

 
Must be aggregated 

into other risk category 

 

 

 

 

 

 

 

 

https://harperjames.co.uk/article/indirect-and-consequential-loss/
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3.3. Probabilistic Models for Frequency and Severity of Losses  

In this section, we present a description of the procedures to approach the two main components 

of the OR model: the frequency and the severity of the losses. 

The frequency is the number of occurrences in a specific time period, which can be at least five 

years8, and the severity represents the material financial impact (in this case the total monetary 

amount of losses), as the following graphs illustrate. 

 

 

 

 

 

 

 

Figure 3.2. Frequency and Severity Distributions 

For the frequency variable (left graph), two discrete probability distributions, the Poisson and 

the Negative Binomial, were selected (Jöhnemark, 2012). For the severity variable (right graph), 

we used one continuous probability distribution, the Lognormal (Bermúdez, 2015). 

These distributions will enable to determine the input parameters for Monte Carlo simulation 

and therefore to reach the results for the Minimum Capital Requirements. 

 

3.3.1. Frequency Model 

Based on a dataset with internal losses, the parameters of the distributions have to be estimated, 

since these estimates are required to set the model.  

First, for each Risk Cell, the number of loss events in each quarter of the year is counted, and 

then the Mean and the Variance are calculated. 

Second, the Critical Ratio (Variance/Mean) ‘rule’ is applied. This indicator is quite important 

to decide which is the ‘right’ distribution9 to be used later for the Monte Carlo simulation of the 

respective risk measure. According to the ‘rule’: 

• If Critical Ratio > 2 → Negative Binomial Distribution; 

• If Critical Ratio ≤ 2 → Poisson Distribution. 

 
8 Article 322 paragraph 3a) from Regulation 575/2013 (CRR) 
9 The choice of the distribution to model the frequencies loses relevance when considering the percentile to be 

used for the loss distribution. 
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This ratio is used since Poisson distribution has the mean equal to the variance, therefore for its 

usage, the observed values also must be similar, and the ratio should return a value around 1. 

So, to model the frequency for each Risk Cell, three parameters are potentially relevant: 

- ‘Lambda’ (𝜆), the Poisson parameter which is, in this case, equal to the mean; 

- ‘Size’ (r), the first Negative Binomial input estimated through maximum likelihood and 

Brent’s algorithm (Brent, 1971); 

- ‘Mu’ (p), the second Negative Binomial input estimated through maximum likelihood 

and Brent’s algorithm. 

3.3.2. Severity Model 

Severity is composed of two parts: Body and Tail, separated by an amount, the Threshold. The 

Body is defined as the major part of the severity distribution, where all the losses have an 

amount less than or equal to the Threshold; the Tail corresponds to the upper part of the 

distribution, representing all the loss amounts higher than the Threshold, as represented in 

Figure 3.3.  

Again, based on a dataset with internal losses, the parameters of the severity distribution have 

to be estimated, since these estimates are required to set the model.  

 

 

 

 

 

 

 

Figure 3.3. Scheme of the Body-Tail Distribution 

 

According to Basel II, “a bank must be able to demonstrate that its approach captures potentially 

severe ’tail’ loss events” (see Appendix 4). So, it is possible to simulate the tail loss values 

through the Lognormal distribution as an approach to catch the events with the highest severity. 

Therefore, for each Risk Cell, four quantities are relevant: 

- The Threshold; 

- The Mu, the first parameter of the Lognormal distribution; 

- The Sigma, the second parameter estimated for the Lognormal distribution; 

- The Bodyweight, the probability of the loss being assigned to the Body. 

Body 

Tail 

Threshold 
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It is crucial to know the Threshold value, to calculate the remaining quantities, but that depends 

on the bank’s inside information, resulting in a known or unknown number. If the bank does 

not request to model the severity with a specific threshold, it must be determined by some type 

of inspection. To do this, a table is constructed with fits and statistical experimental tests, for 

the available loss data. This table gathers all the information about the different experiments, 

which includes not only the Threshold value but also the Bodyweight, the Mu and the Sigma, 

sorted by Risk Cell, percentile of the losses and fitted distribution. So, from the practical 

perspective, the choice of the Threshold is based on selecting one line from that table for each 

Risk Cell, which relates: 

-The number of events considered for the Tail, which should be the minimum possible 

according to the bank’s criteria. 

-The Mu and Sigma parameters are the highest possible, which sometimes don’t increase 

proportionally with the percentile. 

The lognormal distribution parameters are determined through maximum likelihood estimation 

for the events in the Tail, as follows: 

• �̂� =
∑ 𝑙𝑛(𝑋𝑖)𝑁

𝑖

𝑁
                                                                                                                           (2) 

 

• �̂� = √∑ (ln(𝑋𝑖)−�̂�)2𝑁
𝑖

𝑁
                                                                                                               (3) 

𝑋𝑖 = 𝑉𝑎𝑙𝑢𝑒 𝑜𝑓 𝑡ℎ𝑒 𝑖𝑡ℎ 𝑙𝑜𝑠𝑠 𝑒𝑣𝑒𝑛𝑡 

𝑁 = 𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑒𝑣𝑒𝑛𝑡𝑠 𝑖𝑛 𝑡ℎ𝑒 𝑇𝑎𝑖𝑙 

 

Finally, the Bodyweight is defined as the weight distribution before reaching the Threshold’s 

quantile. It is obtained through the Empirical Cumulative Probability Function (ECPF) to find 

the weight of the loss distribution until the threshold value, see Figure 3.4 

 

Mu (parameter 1) 

Sigma (parameter 2) 
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Figure 3.4. Empirical Distribution of Losses 

 

To achieve the Bodyweights for all Risk Cells, outliers of the distribution are disregarded, that 

is, the loss values lower than the 1st percentile (P1) or higher than the 99th percentile (P99). This 

prevents unstable results or shocks in the calculations, and they will not be accounted for in the 

bodyweight estimation. 

As it is a cumulative distribution, the loss values are sorted and summed until the closest value 

lower or equal to the correspondent Risk Cell’s Threshold. Finally, that sum is divided by the 

total sum of event losses, and so it is obtained the bodyweight. 

For each Risk Cell the bodyweight is given by: 

 

              Bodyweight =  
∑ 𝑙𝑖

𝑛
𝑖=1

∑ 𝑙𝑖
𝑁
𝑖=1

, 𝑃1 ≤ 𝑙𝑖 ≤ min{ Threshold, 𝑃99}, 

 

• 𝑛 = 𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝐸𝑣𝑒𝑛𝑡𝑠 𝑏𝑒𝑡𝑤𝑒𝑒𝑛 𝑃1 𝑎𝑛𝑑 𝑡ℎ𝑒 𝑇ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑  

• 𝑁 = 𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝐸𝑣𝑒𝑛𝑡𝑠 𝑏𝑒𝑡𝑤𝑒𝑒𝑛 𝑃1 𝑎𝑛𝑑 𝑃99 

• 𝑙1 ≤ 𝑙2 ≤ ⋯ ≤ 𝑙𝑁 − 𝐸𝑣𝑒𝑛𝑡 𝐿𝑜𝑠𝑠 𝐴𝑚𝑜𝑢𝑛𝑡𝑠 

The bodyweight value increases when the Threshold gets higher, thus allowing more events to 

be considered from the Body in detriment of the Tail, as shown in Figure 3.4. 

When the bank supplies the value of the Threshold, the procedure is the same as described 

above. 

 

 

 

 

Loss Amount 

Bodyweight 
 

Threshold 

(4) 
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3.4. Monte Carlo Simulation 

As it is usual with problems with this level of complexity and amount of data, the decision was 

to use the Monte-Carlo simulation technique to estimate the loss distribution for one year (see 

for instance Korn, Korn and Kroisandt (2010) for more details). The technique is expected to 

output a well-defined loss distribution with fairly accurate results. On the other hand, one well-

known limiting aspect of this type of approach is that it is based on past information, and one 

must be careful when relying on previous results to forecast future losses.  

In the following lines we show how the Monte Carlo method was adjusted to our OR model, 

including schemes, figures, and algorithms, to clarify its interpretation. 

So, for each Risk Cell: 

Step 1: Insert the input data: 

- Parameters of the discrete distributions (Poisson and Negative Binomial) to simulate 

frequency, previously estimated as explained above; 

- Critical Ratio, to choose the right distribution; 

- Parameters of the Lognormal distribution to simulate severity (excess of losses beyond 

the Body-Tail threshold), previously estimated as explained above; 

- Loss records; 

- Required number of simulations. 

Step 2: Generate a vector with dimension equal to the number of iterations (usually is 1000000 

entries), where each entry corresponds to a random variable of the uniform distribution between 

0 and 1, (𝑦𝑘~𝑈(0,1)), where k is the number of the iteration. 

 

Step 3: Use the vector in Step 2 and the Generalized Inverse Transform Method (Korn, Korn, 

& Kroisandt, 2010) to simulate observations either from the Poisson distribution or the Negative 

Binomial Distribution, as appropriate (See Figure 3.5), where each observation is denoted 𝑋𝑘: 

 

 

 

 

 

 

 

 



 

 

15 

 

Probabilities Vector 

Vector of occurrences (simulated) 

 

 

 

 

 

                                                                         

 
 

 

 

 

 

 

  

 

 

 

 

 

Figure 3.5. Simulation of the Risk Cell’s Frequencies  

 

Step 4: Decompose  𝑥 = (𝑥1, 𝑥2, … , 𝑥1000000), the vector with the number of occurrences, as 

(𝑥1, 𝑥2, … , 𝑥1000000) = (𝑏1, 𝑏2, … , 𝑏1000000) + (𝑡1, 𝑡2, … . , 𝑡1000000),     (5) 

where: 

• 𝐵 = (𝑏1, 𝑏2, … , 𝑏1000000) is the vector with the number of events that have loss 

amounts below the threshold (in the body of the distribution of losses); 

• 𝑇 =  (𝑡1, 𝑡2, … . , 𝑡1000000)  is the vector with the number of events that have loss 

amounts at least equal the threshold (in the tail of the distribution of losses). 

 (∀𝑏𝑖 ∈ 𝐵, 𝑏 ~ 𝐵(𝑥, 𝑝)), meaning that B is obtained multiplying x by the estimated percentage 

of claims in the body of the distribution (rounding to the nearest integer), and 𝑻 = 𝒙 − 𝑩. 

Knowing that each event is associated with a loss, new vectors must be defined: 

• 𝐿𝑘 =  (𝑙1𝑘 , 𝑙2𝑘 , … . , 𝑙𝑥𝑘𝑘) is the vector with the amounts of the 𝑥𝑘  occurrences simulated in 

iteration 𝑘, 𝑘 = 1,2, … ,1000000. 

• 𝑉 =  Value of the threshold. 

 

 

 

𝑌 = (𝑦1, 𝑦2, … , 𝑦1000000)  
 

𝑋𝑘 = 𝑃−1(𝑌 = 𝑦𝑘) 

𝑘𝜖{1,2, … ,1000000} 

 𝑃(𝑋 = 𝑥𝑘) =
𝜆𝑥𝑘

𝑥𝑘!
𝑒−𝜆, 

 𝑥𝑘 = 0, 1, 2, … ⟺ 𝑥𝑘~𝑃𝑜𝑖𝑠𝑠𝑜𝑛(𝜆)  

𝑃(𝑋 = 𝑥𝑘) = (
𝑥𝑘 + 𝑟 − 1

𝑟 − 1
) (1 − 𝑝)𝑥𝑘𝑝𝑟 ,  

𝑥𝑘 = 𝑟, 𝑟 + 1, 𝑟 + 2, … ⟺ 𝑥𝑘~𝑁𝐵(𝑟, 𝑝)  

𝑥 = (𝑥1, 𝑥2, … , 𝑥1000000) 
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Gather all the values 

and form BodyData 

Loss values < V 

𝑙1 

𝑙2 

   . 

   . 

   . 

𝑙𝑚 

Parameter 2 

Parameter 1 

For iteration k select 𝑏𝑘 random 

numbers from the BodyData and 

sum them up. Repeat that 1000000 

times (1000000 iterations), to 
obtain a resample of the BodyData 

𝐵′ = (𝐿𝑏1
′ , … , 𝐿𝑏1000000

′ ) 

Because of the decomposition operated to x it is necessary to split 𝐿𝑘 in two vectors, the Body 

Losses vector (𝐿𝑘
(𝐵)

 𝑤𝑖𝑡ℎ 𝑏𝑘 𝑒𝑛𝑡𝑟𝑖𝑒𝑠) and the Tail Losses vector (𝐿𝑘
(𝑇)

 𝑤𝑖𝑡ℎ 𝑡𝑘 𝑒𝑛𝑡𝑟𝑖𝑒𝑠). 

Step 5: Body loss distribution. 

For each iteration 𝑘 = 1,2, … ,1000000, the algorithm randomly selects 𝑏𝑘  losses from the 

Body data (whose elements are the m observed losses with amounts below the threshold 𝑉) and 

adds them up, simulating this way the sum of the claims below the threshold (Body) for each 

iteration, see Figure 3.6 for an illustration. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

 

Figure 3.6. Algorithm to Simulate Body Loss Distribution 

 

Step 6: Tail loss distribution 

For each iteration 𝑘 = 1,2, … ,1000000, the algorithm simulates 𝑡𝑘 losses from the estimated 

Lognormal distribution and adds the Body-Tail threshold 𝑉, to each one of them. Next, it adds 

the 𝑡𝑘 results up, simulating this way the sum of the claims over the threshold (Tail) for iteration 

k, see Figures 3.6 and 3.7 for an illustration. In other terms: 

 

 

                               𝐿𝑡′𝑘𝑖 = 𝑉 + 𝑤𝑘,𝑖, where 𝑤𝑘,𝑖~𝐿𝑜𝑔𝑁(𝜇, 𝜎)                            (6) 

 

BodyData 

b1=2 → l2 + l9 = Lb’1 

b2=1 → l5 = Lb’2 

b3=6 → l13 + l24 + l11 + l3 + l5 + l18 = 

Lb’3 

b4=4 → l1 + l7 + l6 + l31 = Lb’4 

b5=0 → 0 = Lb’5 

. 

. 

b1000000=2 → l3 + l12 = b’1000000 

 

Resample of the 

BodyData is ready! 

𝑘 = 1,2, … ,1000000.  

𝑖 = 1, … , 𝑡𝑘 
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do not generate any number  

generate 3 numbers 

generate 2 numbers 

+ Threshold Value 

for every lognormal 

outcome 

 

generate 5 numbers 

generate 1 number 

𝐿𝑡′
1 

𝐿𝑡′
2 

𝐿𝑡′3 

𝐿𝑡′4 

……… 

𝐿𝑡′1000000 

 

𝑇′ = (𝐿𝑡1
′ , … , 𝐿𝑡1000000

′ ) 

𝑓(𝑤, 𝜇, 𝜎) =  
1

𝑤𝜎√2𝜋
𝑒𝑥𝑝 (−

(ln(𝑤) − 𝜇)2

2𝜎2 ) 

 

 (7) 

Recall that the Lognormal distribution is defined by the following density function: 

 

 

 

 

 

Figure 3.7. Lognormal Distribution Density Function 

 

where µ and σ represent parameters 1 (Mu) and 2 (Sigma) of the distribution, respectively. 

The results for the Tail data are performed as shown in the scheme below. 

   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

   

Figure 3.8. Algorithm to Simulate Tail Loss Distribution 

 

Step 7: Sum all the values of the resample vectors and then obtain another array with the total 

data losses of each simulation made: 

 

𝐿 = (𝐿1, 𝐿2, … , 𝐿1000000)  = (𝐿𝑏1
′ , 𝐿𝑏2

′ , … , 𝐿𝑏1000000
′ ) + (𝐿𝑡1

′ , 𝐿𝑡2
′ , … , 𝐿𝑡1000000

′ )  

𝑤1,1 + 𝑤1,2 + 2 ∗ 𝑉 = 𝐿𝑡1
′   

0 = 𝑡2
′  

𝑤3,1 + 𝑤3,2 + 𝑤3,3 + 3 ∗ 𝑉 = 𝐿𝑡3
′  

𝑤4,1 + 𝑤4,2 + 𝑤4,3 + 𝑤4,4 + 𝑤4,5 + 5 ∗ 𝑉 = 𝐿𝑡4
′  

……………………………………… 

𝑤1000000,1 + 𝑉 = 𝑡1000000
′  

 

 

 

𝑤1,1 +  𝑤1,2 

0 

𝑤3,1 + 𝑤3,2 + 𝑤3,3 

𝑤4,1 + 𝑤4,2 + 𝑤4,3 + 𝑤4,4 + 𝑤4,5 

… … .. 

𝑤1000000,1 

 

 

𝑡1 = 2  

𝑡2 = 0  

𝑡3 = 3 

𝑡4 = 5  

… 

𝑡1000000 = 1  

Tail Data 

resample 

(8) 
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Step 8: Repeat all previous steps until all Risk Cells are addressed. 

Finally, it follows a calibration of the Risk Cell losses to check the consistency of results, 

considering two types of estimation lines of the Minimum Capital Requirements (MCR) 

(Reynecke, 2018): 

• Undiversified: The Risk Cell loss percentiles are summed as independent parcels, like 

the formula below: 

𝑀𝐶𝑅 = 𝐿𝑝
1 + 𝐿𝑝

2 + ⋯ + 𝐿𝑝
𝑛 = ∑ 𝐿𝑝

𝑖𝑛
𝑖=1   

 

 

• Fully Diversified: The Risk Cells losses are summed, and then the percentile of that 

sum is estimated, as it follows: 

 

𝑀𝐶𝑅 = 𝑝𝑡ℎ 𝑞𝑢𝑎𝑛𝑡𝑖𝑙𝑒 𝑜𝑓 (𝑆𝐿1, 𝑆𝐿2, … , 𝑆𝐿1000000) 

 

 

 

Typically, banks adopt a more conservative position when estimating the capital losses, due to 

the uncertainty about its provisions, so the banks prefer a version that estimates higher amounts 

of capital (Anghelache & Olteanu, 2009). Since the Undiversified scenario previews a higher 

supplement than the other one, then the Undiversified is considered as the preferred approach 

to be used in OR management (Cooper, Piwcewicz, & Warren, 2014) and (Reynecke, 2018). 

According to the CCR, “The operational risk measure shall capture potentially severe tail 

events, achieving a soundness standard comparable to a 99,9 % confidence interval over a 

one-year period”. 

This means that the Minimum Capital Requirements for one year, according to this model, are 

the sum of the 99,9% quantiles of the Risk Cell losses simulated through Monte Carlo, as shown 

in equation (11): 

𝑀𝐶𝑅 =  ∑ 𝐿99.9
(𝑖)

𝑛

𝑖=1

 

 

 

 

  

(9) 

• 𝐿99.9
(𝑖)

−  99,9𝑡ℎ 𝑞𝑢𝑎𝑛𝑡𝑖𝑙𝑒 𝑜𝑓 𝑡ℎ𝑒 𝑠𝑖𝑚𝑢𝑙𝑎𝑡𝑒𝑑 𝑙𝑜𝑠𝑠𝑒𝑠 𝑓𝑜𝑟 𝑟𝑖𝑠𝑘 𝑐𝑒𝑙𝑙 𝑖 

𝐿𝑝
𝑖 −  𝑝𝑡ℎ 𝑞𝑢𝑎𝑛𝑡𝑖𝑙𝑒  𝑜𝑓 𝑡ℎ𝑒 𝑖𝑡ℎ𝑆𝑖𝑚𝑢𝑙𝑎𝑡𝑒𝑑 𝑅𝑖𝑠𝑘 𝐶𝑒𝑙𝑙 𝑙𝑜𝑠𝑠 (𝑆𝑅𝐶𝐿) 

𝑛 − 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑟𝑖𝑠𝑘 𝑐𝑒𝑙𝑙𝑠 

𝑆𝐿 = 𝑆𝑅𝐶𝐿1 + 𝑆𝑅𝐶𝐿2 + ⋯ + 𝑆𝑅𝐶𝐿𝑛 
𝑆𝑅𝐶𝐿𝑖 − 𝑖𝑡ℎ 𝑆𝑖𝑚𝑢𝑙𝑎𝑡𝑒𝑑 𝑅𝑖𝑠𝑘 𝐶𝑒𝑙𝑙 𝐿𝑜𝑠𝑠 
𝑛 − 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑟𝑖𝑠𝑘 𝑐𝑒𝑙𝑙s 

(10) 

(11) 
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4. Application 
 

As seen in the previous chapter, the results obtained with the model depend directly on the way 

the Risk Cells are built, since frequency and severity are simulated per Risk Cell. Basel II 

defines 56 Risk Cells in the quantification of the Operational Risk (seven types of risk affecting 

eight lines of business), but banks can use a different structure (Lambrigger, Shevchenko, & 

Wüthrich, 2007). So, as explained in Chapter 3, it was possible to use only the risk categories. 

In our particular case study, it was necessary to aggregate the cells due to scarce data in most 

of them. Therefore, we performed two types of aggregation of the risk categories from the 

Capital Requirements Regulation, applying the Monte Carlo simulation to calculate the 

minimum capital requirements the bank must hedge against capital losses. 

 

4.1. Database and Software 

To develop the model, the algorithm was constructed in R language code. With the help of 

Excel, the database was imported from the bank and displayed in tables for the frequency, 

severity, and Monte Carlo results. 

The data is available from 2008, but only years 2011-2021 (11 complete years) have been used, 

with the purpose of certifying that the losses belong to a period where the system of collection 

was sturdy, either in the method or the source, avoiding in this way anomalies in collected loss 

values. 

Originally, the database contained 66 419 contracts that caused several incidents (with or 

without financial impact) and some of them were identified as risk sources. Since the OR model 

has influence in ICAAP conclusions, a decision was made to include only internal losses with 

financial impact, remaining 54 430 records of incidents. Also, the database consists of 65 fields, 

but only seven were used to build the model, namely: 

• Registration Date, the date when the event was detected by the bank; 

• Closing Date, the date of registration after the risk department verifies the loss 

occurrence and its regulatory classification; 

• Loss Amount, corresponding to the Gross Loss Amount from equation (1) for both 

aggregation types; 

• Recovered Amount, the capital directly recovered from the loss originated by the 

event (used for aggregation 1); 

• Open Amount, the amount of loss potentially at risk (used for aggregation 2); 

• Event Type, the risk category of the event (see Appendix 3) 
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• Group, to check if the institution to which the model is applied corresponds or not 

to the group of branches and subsidiaries. 

The next two sections describe in detail the two aggregation procedures that have been 

followed, making clear the differences and similarities between them. One important aspect is 

that, after filtering all the information, only the Liquid Loss Amount, the date field, and the 

event type are required to construct the two variants of the model. 

 

4.2. Aggregation 1 

As already mentioned, only internal data with financial impact is considered. The date field is 

going to be the registration date and the Liquid Loss Amount is 

 

Liquid Loss Amount = max(Loss Amount − Recovered Amount, 0) ≥ 250 

 

This resulted in 7549 cases, distributed among the seven categories described in article 324 of 

the CRR as shown in Figure 4.1. 

 

 

 

 

 

 

 

 

 

Figure 4.1. Distribution of Events Among the Seven Categories – Aggregation 1 

 

In this variant, according to the bank’s decision and the rules of aggregation described in section 

3.2, it was decided to aggregate the categories into the following Risk Cells:  

- EL7 - includes loss events classified as Execution, Delivery and Process Management; 

- ELgr - includes events related with Internal Fraud (EL1); External Fraud (EL2); 

Employment Practices and Workplace Safety (EL3); Clients, Products and Business 

Practices (EL4); Damage to Physical Assets (EL5); Business Disruption and System 

Failures (EL6). 

1.92%

74.74%

0.77%
2.15%

0.60%

0.13% 19.70%

EL1 EL2 EL3 EL4 EL5 EL6 EL7

(12) 
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After mapping the event types for each contract according to Aggregation 1, the data is prepared 

for the frequency modelling. As explained in the methodology, for each Risk Cell their events 

were counted per Quarter, resulting in 44 Quarters (11 years x 4 quarters) that were labeled as 

in Figure 4.2. 

 

 
 

Figure 4.2. Frequency of Events per Quarter for Aggregation 1 

 

From the data shown in Figure 4.2 (see Appendix 5), it was possible to estimate the frequency 

parameters: 

 

Table 4.1. Frequency Parameters for Aggregation 1 

 

 

 

 

 

Observing the values in both Risk Cells, the Critical Ratio is much higher than 2, which means 

the Negative Binomial distribution will be selected to simulate the number of events. Looking 

into the Risk Cell ELgr, the huge mean and variance values are two remarkable aspects to 

notice, due to its massive representation in the dataset, more than 80% (80,30%) of total loss 

events and to the significant variability of the number of events from quarter to quarter ( Figure 

4.2).  

Although the variance for the Risk Cell EL7 (20% of the losses) is lower, meaning the count of 

events does not fluctuate at so extraordinary levels, it has a Critical Ratio of 5,61, which is still 

high enough for the Negative Binomial to be chosen. 
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Number of Events per Quarter

Elgr EL7

Risk Cell Name Mean Variance Critical Ratio Lambda Size Mu 

ELgr 137.77 14114.32 102.45 137.77 1.59 137.74 

EL7 33.80 189.75 5.61 33.80 8.22 33.80 
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The next step was to decide which threshold value would be more suitable to define the Body 

and the Tail of the loss distribution, using the methodology explained in Chapter 3.  

According to the bank, there is no external information about the Thresholds to be used. So, 

following the methodology from the severity model in 3.3.2, a percentile line must be chosen 

for each Risk Cell with sufficiently smooth parameters to guarantee an acceptable number of 

events in the Tail. Tables 4.2 and 4.3 provide an overview of the results for the two Risk Cells 

under analysis. 

 

Table 4.2. Finding the Body-Tail threshold for Risk Cell EL7, Aggregation 1 

 

 

 

 

 

 

 

 

 

 

 

 

Table 4.3. Finding the Body-Tail threshold for Risk Cell ELgr, Aggregation 1 
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The percentile 98% was chosen for ELgr and percentile 93% was chosen for EL7, returning a 

threshold of 10001,94€ and 22792,94€ respectively for the two Risk Cells. As so, it was possible 

to proceed with the estimation of the parameters for Lognormal distribution, required to 

simulate the loss amounts exceeding the thresholds for the two Risk Cells. Results are in Table 

4.4. 

Table 4.4. Severity parameters for Aggregation 1 

Risk Cell Threshold 

Quantile 

Threshold Fitted 

Distribution 

Parameter 1 Parameter 2 Bodyweight 

ELgr 0.98 10001.94 Lognormal 10.7208 1.5244 0.8839 

EL7 0.93 22792.94 Lognormal 10.9676 0.8867 0.4157 

 

In other words, this means that 88,39% of the outcomes for ELgr must be simulated from the 

body part (41,57% for EL7), and the remaining 11,61% (58.43%) must be simulated from the 

tail part, applying the algorithms described in Chapter 3.  

Tables 4.5-4.8 show the results of Monte Carlo method (in Euros). A sequence of 16 tests have 

been performed (4 tests for each of 𝑘 = 1000, 𝑘 = 10000, 𝑘 = 100000 and 𝑘 = 1000000 

iterations) to assess the model’s efficiency and to verify if there is a relation between the number 

of simulations and the accuracy in the returned outputs. 

 

Table 4.5. Monte Carlo Results After 1000 Iterations, Aggregation 1 

 

 

 

 

 

 

Table 4.6. Monte Carlo Results After 10000 Iterations, Aggregation 1 

 

 

 

 

 

 

 

 

Names RiskCell ExpectedLoss 90% 99% 99.90% 99.99%

EL7 7 10878602.20 23785442.41 39692465.82 56120480.15 65381413.92

ELgr 1 8814593.06 13307675.79 19087886.30 23639751.15 23722389.29

Undiv. Undiv. 19693195.26 37093118.20 58780352.12 79760231.30 89103803.20

Fully. Div. Fully. Div. 19693195.26 33453931.45 49482904.87 69338211.84 78708676.43

Names RiskCell ExpectedLoss 90% 99% 99.90% 99.99%

EL7 7 10338890.85 21717481.35 43606030.11 54612361.26 68584013.49

ELgr 1 9019106.033 13610620.79 17875148.48 21210574.35 24465101.65

Undiv. Undiv. 19357996.89 35328102.15 61481178.59 75822935.61 93049115.14

Fully. Div. Fully. Div. 19357996.89 31270615.49 54044453.55 66365083.82 74323043.95

Names RiskCell ExpectedLoss 90% 99% 99.90% 99.99%

EL7 7 10130652.24 22274600.03 38873285.81 56526154.50 63496670.15

ELgr 1 8730797.05 13038976.88 18004884.73 19528709.28 19797520.92

Undiv. Undiv. 18861449.29 35313576.90 56878170.54 76054863.79 83294191.07

Fully. Div. Fully. Div. 18861449.29 31370240.41 50041987.29 65019651.38 71544742.00

Names RiskCell ExpectedLoss 90% 99% 99.90% 99.99%

EL7 7 10409356.49 22291213.18 40835558.06 62930945.39 71050875.08

ELgr 1 8619068.46 13052482.13 18357142.53 20668694.75 22936650.76

Undiv. Undiv. 19028424.94 35343695.30 59192700.59 83599640.14 93987525.84

Fully. Div. Fully. Div. 19028424.94 31376924.61 49850562.88 76180515.99 76637465.34

Names RiskCell ExpectedLoss 90% 99% 99.90% 99.99%

EL7 7 10546515.74 22543601.53 42762106.59 61882855.54 76079352.84

ELgr 1 8708105.31 13115476.85 18028973.42 22205621.45 25519438.13

Undiv. Undiv. 19254621.05 35659078.38 60791080.02 84088476.99 101598790.97

Fully. Div. Fully. Div. 19254621.05 32156950.10 52198347.76 70045738.01 85498610.62

Names RiskCell ExpectedLoss 90% 99% 99.90% 99.99%

EL7 7 10563147.83 22612463.73 42134878.12 63480711.23 79989486.58

ELgr 1 8742962.13 13184170.72 18009417.04 22702121.30 24823809.47

Undiv. Undiv. 19306109.96 35796634.45 60144295.16 86182832.53 104813296.05

Fully. Div. Fully. Div. 19306109.96 31936338.53 51842123.28 69373378.76 89558209.98

Names RiskCell ExpectedLoss 90% 99% 99.90% 99.99%

EL7 7 10571566.90 22563064.32 42753531.52 58527947.33 81542970.41

ELgr 1 8687460.23 13068039.05 17795020.52 21845163.20 25437591.45

Undiv. Undiv. 19259027.14 35631103.36 60548552.05 80373110.54 106980561.85

Fully. Div. Fully. Div. 19259027.14 31870598.69 51358332.71 71334009.92 90458680.20

Names RiskCell ExpectedLoss 90% 99% 99.90% 99.99%

EL7 7 10564070.68 22431488.14 42276212.7 57609269.37 67669528.55

ELgr 1 8698051.54 13047666.05 17901891.7 22471452.09 26314299.01

Undiv. Undiv. 19262122.22 35479154.19 60178104.4 80080721.45 93983827.56

Fully. Div. Fully. Div. 19262122.22 32095011.01 51343019.82 65223716.91 74422458.98
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Table 4.7. Monte Carlo Results After 100000 Iterations, Aggregation 1 

 

 

 

 

 

 

Table 4.8. Monte Carlo Results After 1000000 Iterations, Aggregation 1 

 

 

 

 

 

  

To analyze further the results, the whole procedure was repeated assuming a different 

aggregation, Aggregation 2. The purpose is to seek confirmation of the results and make 

conclusions more reliable. 

 

4.3. Aggregation 2 

Likewise the first aggregation, only internal information with financial impact was used, but 

with three relevant differences: 

- The date field is the closing date (accounting date); 

- The Liquid Loss Amount formula is: 

Liquid Loss Amount = max(Loss Amount + Open Amount, 0) ≥ 250 

- Only losses occurred in Portuguese entities were included. 

After applying these rules 8313 cases remained, representing the new variant of the Operational 

Risk model, which includes more events. This is due to the Liquid Loss Amount formula, which 

adds a strictly positive variable (the Open Amount) to the Loss amount, surpassing easier the 

250€ amount. This allows more events to be included, and the number of events that belong to 

non-Portuguese institutions is not enough to maintain the same number of events as in 

Aggregation 1. 

Figure 4.3 displays how these events are distributed among the seven categories described in 

article 324 of the CRR.  

Names RiskCell ExpectedLoss 90% 99% 99.90% 99.99%

EL7 7 10537034.48 22563143.05 42233561.77 61908927.35 87261569.14

ELgr 1 8715609.48 13083588.77 18035955.90 22603776.92 26148064.73

Undiv. Undiv. 19252643.96 35646731.83 60269517.67 84512704.27 113409633.87

Fully. Div. Fully. Div. 19252643.96 31996530.25 51662648.14 71711232.05 93949929.94

Names RiskCell ExpectedLoss 90% 99% 99.90% 99.99%

EL7 7 10474634.49 22461606.16 41680030.29 61171228.65 83621560.06

ELgr 1 8718161.14 13117688.82 17994451.23 22111189.25 26292473.74

Undiv. Undiv. 19192795.62 35579294.98 59674481.52 83282417.90 109914033.80

Fully. Div. Fully. Div. 19192795.62 31942563.17 50934611.52 71131406.11 92277548.32

Names RiskCell ExpectedLoss 90% 99% 99.90% 99.99%

EL7 7 10537487.94 22559977.49 42056938.64 63284651.00 81707646.15

ELgr 1 8708964.19 13075498.92 18005038.45 22253052.50 25317281.95

Undiv. Undiv. 19246452.13 35635476.41 60061977.09 85537703.50 107024928.11

Fully. Div. Fully. Div. 19246452.13 31925092.15 51371609.97 72897120.24 94234143.80

Names RiskCell ExpectedLoss 90% 99% 99.90% 99.99%

EL7 7 10480998.64 22349131.84 41864038.65 62288344.39 96532925.81

ELgr 1 8730944.52 13103742.24 17976366.85 22312555.79 27150516.64

Undiv. Undiv. 19211943.16 35452874.08 59840405.50 84600900.19 123683442.44

Fully. Div. Fully. Div. 19211943.16 31643761.62 51292793.84 70943918.52 104958375.71

Names RiskCell ExpectedLoss 90% 99% 99.90% 99.99%

EL7 7 10481912.20 22402431.38 41794723.52 61498409.96 86545229.22

ELgr 1 8717433.83 13110877.26 18047572.23 22337891.10 26292251.41

Undiv. Undiv. 19199346.03 35513308.63 59842295.75 83836301.06 112837480.62

Fully. Div. Fully. Div. 19199346.03 31801779.41 51250772.68 71038304.13 96212569.99

Names RiskCell ExpectedLoss 90% 99% 99.90% 99.99%

EL7 7 10488180.78 22434878.35 41868449.06 61919029.45 84383921.67

Elgr 1 8725024.84 13127118.19 18024949.62 22277754.43 26209923.40

Undiv. Undiv. 19213205.62 35561996.55 59893398.68 84196783.88 110593845.06

Fully. Div. Fully. Div. 19213205.62 31844077.78 51400898.97 71500264.80 92911413.66

Names RiskCell ExpectedLoss 90% 99% 99.90% 99.99%

EL7 7 10482448.78 22409003.95 41696209.83 61689034.76 86777648.86

ELgr 1 8722805.59 13115872.36 18053682.89 22277945.49 25934338.41

Undiv. Undiv. 19205254.37 35524876.32 59749892.72 83966980.25 112711987.27

Fully. Div. Fully. Div. 19205254.37 31805922.38 51165017.97 71100047.40 96069587.11

Names RiskCell ExpectedLoss 90% 99% 99.90% 99.99%

EL7 7 10483646.02 22506551.49 42784574.92 60902312.28 94000633.95

ELgr 1 8734803.33 13137383.19 17475780.44 21969306.37 24883444.35

Undiv. Undiv. 19218449.35 35643934.67 60260355.35 82871618.65 118884078.30

Fully. Div. Fully. Div. 19218449.35 32018869.64 51387043.97 71041444.39 101873002.77

(13) 
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Figure 4.3. Distribution of Events Among the Seven Categories – Aggregation 2 

 

This time, the bank decided to perform a new aggregation, considering again two Risk Cells, 

but as two groups of categories instead of isolating one category as an individual Risk Cell 

from the remaining ones. Like in the first aggregation, the EL2 and EL7 categories present the 

major parts of the dataset (see Figures 4.2-4.3), being EL2 76% of the total losses registered 

and EL7 18%. So, the bank decided to join the less representative categories into these two: 

EL5 is aggregated into EL2 for being the smallest one, constituting 46 events of the dataset 

(ELgr1), while EL1, EL3, EL4 and EL6 are joint to EL7, forming the ELgr2. 

From now on, all the steps will replicate what has been done for Aggregation 1. Figure 4.4 

shows the number of occurrences per Risk Cell and per quarter. 

 

 
 

Figure 4.4. Frequency of Events per Quarter for Aggregation 2 
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From this data (see Appendix 5), it was possible to calculate the frequency parameters (time 

measured in quarters): 

Table 4.9. Frequency Parameters for Aggregation 2 

Risk Cell Name Mean Variance Critical Ratio Lambda Size Mu 

ELgr1 145.25 16116.42 110.96 145.25 1.56 145.28 

ELgr2 43.68 324.22 7.42 43.68 7.66 43.68 

 

Looking at these results, it is possible to see similarities with what was observed in Aggregation 

1, in the sense of having again an extremely high ratio for ELgr1 (76,88% of the full dataset) 

and both Critical Ratios being greater than 2. The Negative Binomial distribution is the model 

chosen for the frequency variable of the two Risk Cells. 

For this simulation, it was not necessary to perform a fitting table to define the Body-Tail 

threshold for the loss distributions, because the bank required the thresholds to be 10000€ for 

ELgr1 and 100000€ for ELgr2. We used then these amounts to estimate the parameters of the 

Lognormal distribution and to calculate the corresponding bodyweights, in order to proceed 

with the Monte Carlo simulation. 

 

Table 4.10. Severity Parameters for Aggregation 2 

Risk Cell Threshold Fitted Distribution Parameter 1 Parameter 2 Bodyweight 

ELgr1 10000 Lognormal 10.0472 1.1525 0.9835 

ELgr2 100000 Lognormal 12.5862 1.1163 0.6543 

 

Now 98,34% of the outcomes for ELgr1 must be simulated from the body part (65,43% for 

ELgr2), and the remaining 1,66% (34.57%) from the tail part. 

Tables 4.11-4.14 below show the results of Monte Carlo method in Euros. Again, a sequence 

of 16 tests was performed (four tests for each of each k, 𝑘 = 1000, 𝑘 = 10000, 𝑘 =

100000 and 𝑘 = 1000000  simulations for the same reasons given in Section 4.2, before 

presenting the results for Aggregation 1. 

 

 

 

 

 

 

 

Names RiskCell ExpectedLoss 90% 99% 99.90% 99.99%

ELgr1 1 1256925.38 2616882.24 4819388.06 6165430.50 6480800.59

ELgr2 2 38219177.87 60827320.50 85209444.04 97690324.63 101816397.49

Undiv. Undiv. 39476103.25 63444202.74 90028832.09 103855755.12 108297198.08

Fully. Div. Fully. Div. 39476103.25 62070142.82 86556636.32 98635736.68 102160235.50

Names RiskCell ExpectedLoss 90% 99% 99.90% 99.99%

ELgr1 1 1230536.17 2604955.71 5022522.61 6069437.90 7160521.40

ELgr2 2 39242071.32 60123722.48 84096182.74 111190608.29 120402706.56

Undiv. Undiv. 40472607.49 62728678.19 89118705.35 117260046.19 127563227.97

Fully. Div. Fully. Div. 40472607.49 61561601.56 86160639.93 111638184.77 121359497.74

Names RiskCell ExpectedLoss 90% 99% 99.90% 99.99%

ELgr1 1 1223003.05 2664706.01 4987879.68 6582082.42 6890553.99

ELgr2 2 39760531.25 62107801.16 86007528.04 116693559.60 118774597.12

Undiv. Undiv. 40983534.31 64772507.17 90995407.72 123275642.02 125665151.11

Fully. Div. Fully. Div. 40983534.31 63593039.05 86349599.59 119134969.86 119802682.25

Names RiskCell ExpectedLoss 90% 99% 99.90% 99.99%

ELgr1 1 1233697.97 2671536.44 4631802.11 6139870.42 6359232.81

ELgr2 2 40318614.71 61305192.74 89279136.90 107398339.39 140264938.33

Undiv. Undiv. 41552312.69 63976729.18 93910939.01 113538209.81 146624171.14

Fully. Div. Fully. Div. 41552312.69 62429348.26 90251602.29 112215405.46 141712676.47

Table 4.11. Monte Carlo Results After 1000 Iterations for Aggregation 2 
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4.4.  Results and Discussion 

 

Since this model is stochastic, the results vary whenever it is made a simulation, which justifies 

the need to perform four tests for each input number. This allows to study the sensibility of 

oscillation on the results every time a simulation is running. 

Analyzing the given outputs carefully, for both models it is visible that the expected loss and 

the losses associated to each quantile generated by Monte Carlo tend to fluctuate less with the 

increase of the number of simulations. 

Looking into Aggregation 1, the expected losses oscillate between 18,8 and 19,7 million Euros 

(M€), which results a difference of around 831000€ each time the Monte Carlo replicates 𝑘 =

1000 simulations, but if it is set 𝑘 = 1000000 iterations, the results lean towards 19,2 M€, 

Table 4.14. Monte Carlo Results After 1000000 Iterations for Aggregation 2 
 

Names RiskCell ExpectedLoss 90% 99% 99.90% 99.99%

ELgr1 1 1213428.80 2554723.80 4675956.41 6704225.49 8696909.29

ELgr2 2 39609700.68 61689043.22 87477045.63 110294528.10 131369636.98

Undiv. Undiv. 40823129.48 64243767.02 92153002.04 116998753.59 140066546.27

Fully. Div. Fully. Div. 40823129.48 62941290.97 88721887.62 111527945.11 132819033.63

Names RiskCell ExpectedLoss 90% 99% 99.90% 99.99%

ELgr1 1 1212386.88 2558998.81 4653638.88 6717485.01 8765168.26

ELgr2 2 39562203.32 61632822.40 87230314.64 109521774.05 129660939.42

Undiv. Undiv. 40774590.20 64191821.21 91883953.53 116239259.06 138426107.68

Fully. Div. Fully. Div. 40774590.20 62875467.90 88523048.48 110587490.00 131227305.70

Names RiskCell ExpectedLoss 90% 99% 99.90% 99.99%

ELgr1 1 1212091.13 2559894.36 4673140.00 6703391.19 8664566.56

ELgr2 2 39577469.05 61600141.79 87204742.01 110031663.19 133119792.78

Undiv. Undiv. 40789560.19 64160036.15 91877882.01 116735054.37 141784359.35

Fully. Div. Fully. Div. 40789560.19 62840802.66 88437502.10 111223843.63 134454699.15

Names RiskCell ExpectedLoss 90% 99% 99.90% 99.99%

ELgr1 1 1213985.10 2562608.24 4676505.25 6734852.62 8992202.89

ELgr2 2 39597625.30 61678786.59 87244804.13 109787319.43 131601662.33

Undiv. Undiv. 40811610.40 64241394.83 91921309.38 116522172.05 140593865.22

Fully. Div. Fully. Div. 40811610.40 62939143.28 88537433.42 111192848.99 133041710.19

Names RiskCell ExpectedLoss 90% 99% 99.90% 99.99%

ELgr1 1 1215214.167 2563377.331 4629100.657 6782397.155 8792220.849

ELgr2 2 39643546.36 61926990.89 87774826.64 112078722.5 134995346

Undiv. Undiv. 40858760.53 64490368.23 92403927.29 118861119.7 143787566.9

Fully. Div. Fully. Div. 40858760.53 63134561.94 89077742.55 112907313.4 135512678.5

Names RiskCell ExpectedLoss 90% 99% 99.90% 99.99%

ELgr1 1 1216460.11 2552116.33 4695213.76 6708049.65 9006941.19

ELgr2 2 39612523.29 61822057.06 87635993.88 110265382.59 130054109.75

Undiv. Undiv. 40828983.39 64374173.39 92331207.63 116973432.24 139061050.93

Fully. Div. Fully. Div. 40828983.39 63121644.46 88966070.22 111481380.27 131818300.29

Names RiskCell ExpectedLoss 90% 99% 99.90% 99.99%

ELgr1 1 1212832.14 2569655.31 4659355.32 6758767.64 8421236.41

ELgr2 2 39611185.67 61650483.76 87444962.52 112258184.30 132634053.83

Undiv. Undiv. 40824017.81 64220139.07 92104317.84 119016951.94 141055290.24

Fully. Div. Fully. Div. 40824017.81 62915971.03 88855655.86 113191699.40 134179722.25

Names RiskCell ExpectedLoss 90% 99% 99.90% 99.99%

ELgr1 1 1211912.21 2557628.60 4687841.10 6635200.38 8956879.69

ELgr2 2 39517367.86 61583715.92 86987751.38 111428762.54 128813128.81

Undiv. Undiv. 40729280.08 64141344.52 91675592.48 118063962.92 137770008.50

Fully. Div. Fully. Div. 40729280.08 62822164.30 88286956.71 112516751.12 130549139.51

Names RiskCell ExpectedLoss 90% 99% 99.90% 99.99%

ELgr1 1 1187383.507 2488879.126 4499485.639 6286158.215 7435982.487

ELgr2 2 39884735.27 62125821.73 86744620.1 106340341.1 124573113.2

Undiv. Undiv. 41072118.78 64614700.85 91244105.74 112626499.3 132009095.7

Fully. Div. Fully. Div. 41072118.78 63425484.97 88138016.02 108011198.5 125039816.3

Names RiskCell ExpectedLoss 90% 99% 99.90% 99.99%

ELgr1 1 1206858.369 2526679.789 4658788.412 6552875.25 7931285.963

ELgr2 2 39873403.57 62031327.16 87950768.77 107910896.9 125102783.7

Undiv. Undiv. 41080261.94 64558006.95 92609557.18 114463772.2 133034069.7

Fully. Div. Fully. Div. 41080261.94 63378404.2 89197990.63 109065608.6 126583199.7

Names RiskCell ExpectedLoss 90% 99% 99.90% 99.99%

ELgr1 1 1218024.65 2578140.32 4697676.59 6734575.29 8192448.35

ELgr2 2 39676209.94 62055661.65 87252123.54 109654444.73 121071295.26

Undiv. Undiv. 40894234.59 64633801.96 91949800.14 116389020.01 129263743.61

Fully. Div. Fully. Div. 40894234.59 63202122.13 89061592.62 110135291.28 122565780.79

Names RiskCell ExpectedLoss 90% 99% 99.90% 99.99%

ELgr1 1 1213517.356 2570986.894 4655280.976 6413494.165 7349261.909

ELgr2 2 39649455.09 61636399.95 87204213.3 111179928.5 129474889.7

Undiv. Undiv. 40862972.44 64207386.84 91859494.28 117593422.6 136824151.6

Fully. Div. Fully. Div. 40862972.44 62810414.5 88281768.57 111905839.6 130335635.9

Table 4.12. Monte Carlo Results After 10000 Iterations for Aggregation 2 
 

Table 4.13. Monte Carlo Results After 100000 Iterations for Aggregation 2 
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with a maximum difference around 19000€. Although in the case of 𝑘 = 10000  and  𝑘 =

100000 simulations differ similarly in the expected loss, it is evident that the quantiles are more 

unstable for the first input number than the second. For example, the 99,9% percentile goes 

from 80,1 to 86,2 M€ for 𝑘 = 10000 simulations, whereas for 𝑘 = 100000 it waves between 

83,3 and 85,5 M€. 

Moving to Aggregation 2, the expected loss varies between 40,77 and 40,83 M€, returning then 

a difference of almost 50000€ when 𝑘 = 1000000 , while in the case of 𝑘 = 1000 simulations 

the expected loss differs between 39,4 and 41,6 M€, which corresponds to an imprecision of 

around 2,1 M€. 

Focusing only on the results for 𝑘 = 1000000 and assuming the capital regulatory is the mean 

of the results displayed in the four tables (column of quantile 99,9% and row the Undiversified, 

see end of Section 3.4), from the first model it is estimated a capital regulatory of 83,7 M€ to 

the bank with all the restrictions, aggregations and orders demanded to ensure they have enough 

capital to perform all the operations and protect against market randomness. The second model 

predicts 116,6 M€ of event losses to the 99,9% quantile according to the bank’s requests 

accomplished. 

Furthermore, it is evident that the expected losses are closer between the two groups in the first 

model than between those in the second model. Also, in both models, the Risk Cells that 

contained less categories (less diverse) generated more capital losses than the more diverse Risk 

Cells. 

In this case, the first model EL7 generated around 10,48M of loss capital and ELgr 8,72M, 

being this last Risk Cell a more diversified group that covers six event types, while in the second 

model ELgr1 generates losses of amount 1,21M and ELgr2 of amount 39,6M. ELgr1, which 

has a major slice of the data by event type, is little diversified, containing only events related 

with Damage to Physical Assets and External Fraud. 

This analysis may raise many questions about the outcomes, but throughout the report some 

variables that could modify the values of frequency and severity parameters were identified, 

and therefore the results through Monte Carlo model. 

There is a ‘suspicion’ about the Liquid Loss Amount formula, because in the first model the 

recovered amount is deducted while in the second the open amount is added, and since both 

formulas present only non-negative values, the Liquid Loss Amount values in general will be 

higher in Aggregation 2 - which may explain why the total expected loss and the quantiles for 

Undiversified and Fully Diversified Scenarios present higher values than the ones in 

Aggregation 1. 
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Another aspect to point out is in the severity table, specifically in the selected Threshold value 

for each Risk Cell, because it determines how many events are considered in the Tail a key 

aspect to quantify the simulated loss amounts. Those allow to estimate the bodyweights, the Mu 

(the mean), and the Sigma (standard deviation) parameters through maximum likelihood 

estimation. In Aggregation 1, the highest threshold corresponds to EL7, and it was 22792,94€ 

while in Aggregation 2 was 100000€ for ELgr2, which is 4,39 times larger. This means that in 

Aggregation 2, the tails for the loss distribution are thicker than in Aggregation 1, because the 

Threshold is multiplied by the number of events generated for the Tail distribution10, and it is 

enough that one of these variables increases for a higher loss value to appear.   

Although the controlling variables can modify the results, the initial dataset is not mutable, 

which implies that if the OR model is applied to other datasets with the same structure and 

column names, it is impossible to change the original column values including the event types 

of each occurrence. For this study approach, 94,4% of the occurrences in the filtered dataset 

belong either to the ‘External Fraud’ or ‘Execution, Delivery & Process Management’ loss 

event types, for both models, remaining then the other 5,6% to the other five categories, which 

means there are not many choices of aggregations to study the frequency and severity besides 

the ones made. 

 

 

 

 

 

 

  

 
10 6th step of the Monte Carlo simulation in chapter 3.4 
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5. Conclusion 

This framework demonstrates an empirical approach to measure the capital risk through 

advanced methods, with the purpose of obtaining Minimum Capital Requirements for effects 

of ICAAP decision making. 

It is a model that can be explored and manually adjusted, for example in the Liquid Loss 

Amount formula, in the Risk Cells and in the Thresholds, creating opportunities to analyze some 

of them. 

Since this model does not follow all the quantitative standards from the CRR (article 322), it 

may be seen as incomplete.  

Nevertheless, I think it is an interesting model that can be computed in programming languages. 

Additionally, it is not very common to find a project that directly applies mathematical 

knowledge and programming skills to test and experiment in the financial sector. The essay 

explores a hypothesis possibly helpful to the world of financial mathematics, thus presenting an 

opportunity to exhibit the academic knowledge for a real-life project. 

Finally, this academic internship in KPMG gave me tools and knowledge useful to my future 

career, it was an excellent experience to progress in the professional world.  
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Appendix  

Appendix 1 – Internship Plan Chronogram 

 March April May June July August 

Training       

Key point analysis       

Metrics development       

Results analysis       

Report preparation       

 

Source: Author’s elaboration 

 

Appendix 2 – Process and Internal Data Quantitative Standards 

2. The standards relating to Process are the following: 

a) an institution shall calculate its own funds requirement as comprising both expected loss and 

unexpected loss, unless expected loss is adequately captured in its internal business practices. 

The operational risk measure shall capture potentially severe tail events, achieving a soundness 

standard comparable to a 99,9 % confidence interval over a one year period; 

b) an institution's operational risk measurement system shall include the use of internal data, 

external data, scenario analysis and factors reflecting the business environment and internal 

control systems as set out in paragraphs 3 to 6. An institution shall have in place a well 

documented approach for weighting the use of these four elements in its overall operational risk 

measurement system; 

c) an institution's risk measurement system shall capture the major drivers of risk affecting the 

shape of the tail of the estimated distribution of losses; 

d) an institution may recognise correlations in operational risk losses across individual 

operational risk estimates only where its systems for measuring correlations are sound, 

implemented with integrity, and take into account the uncertainty surrounding any such 

correlation estimates, particularly in periods of stress. An institution shall validate its correlation 

assumptions using appropriate quantitative and qualitative techniques;  

e) an institution's risk measurement system shall be internally consistent and shall avoid the 

multiple counting of qualitative assessments or risk mitigation techniques recognised in other 

areas of this Regulation. 
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3. The standards relating to Internal Data are the following: 

a) an institution shall base its internally generated operational risk measures on a minimum 

historical observation period of five years. When an institution first moves to an Advanced 

Measurement Approach, it may use a three-year historical observation period;  

b) an institution shall be able to map their historical internal loss data into the business lines 

defined in Article 317 and into the event types defined in Article 324, and to provide these data 

to competent authorities upon request. In exceptional circumstances, an institution may allocate 

loss events which affect the entire institution to an additional business line "corporate items". 

An institution shall have in place documented, objective criteria for allocating losses to the 

specified business lines and event types. An institution shall record the operational risk losses 

that are related to credit risk and that the institution has historically included in the internal 

credit risk databases in the operational risk databases and shall identify them separately. Such 

losses shall not be subject to the operational risk charge, provided that the institution is required 

to continue to treat them as credit risk for the purposes of calculating own funds requirements. 

An institution shall include operational risk losses that are related to market risks in the scope 

of the own funds requirement for operational risk; 

c) an institution's internal loss data shall be comprehensive in that it captures all material 

activities and exposures from all appropriate sub-systems and geographic locations. An 

institution shall be able to justify that any excluded activities or exposures, both individually 

and in combination, would not have a material impact on the overall risk estimates. An 

institution shall define appropriate minimum loss thresholds for internal loss data collection;  

d) aside from information on gross loss amounts, an institution shall collect information about 

the date of the loss event, any recoveries of gross loss amounts, as well as descriptive 

information about the drivers or causes of the loss event; 

e) an institution shall have in place specific criteria for assigning loss data arising from a loss 

event in a centralised function or an activity that spans more than one business line, as well as 

from related loss events over time; 

f) an institution shall have in place documented procedures for assessing the on-going relevance 

of historical loss data, including those situations in which judgement overrides, scaling, or other 

adjustments may be used, to what extent they may be used and who is authorised to make such 

decisions 

Source: EU Regulation 575/2013, article 322(2-3) 
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Appendix 3 – Risk Categories and their respective Labels 

 

 

 

 

 

 

 

 

 

Source: Article 324 of the European Regulation 575/2013 

 

Appendix 4 – Paragraph 667 from the Basel II 

“Given the continuing evolution of analytical approaches for operational risk, the Committee is 

not specifying the approach or distributional assumptions used to generate the operational risk 

measure for regulatory capital purposes. However, a bank must be able to demonstrate that its 

approach captures potentially severe ’tail’ loss events. Whatever approach is used, a bank must 

demonstrate that its operational risk measure meets a soundness standard comparable to that of 

the internal ratings-based approach for credit risk (i.e. comparable to a one year holding period 

and a 99.9th percentile confidence interval)." 

 

Source: Basel Committee on Banking Supervision 

 

 

 

 

 

 

 

 

 

 

 

 

Event type Risk Cell Label 

Internal Fraud EL1 

External Fraud EL2 

Employment Practices and Workplace Safety EL3 

Clients, Products and Business Practices EL4 

Damage to Physical Assets EL5 

Business Disruption and System Failures EL6 

Execution, Delivery & Process Management EL7 
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Appendix 5 – Tables with the Number of Events per Quarter for Aggregations 1 and 2 

                                                          
Source: Author’s elaboration 

Elgr EL7

2011Q1 602 31

2011Q2 126 37

2011Q3 80 61

2011Q4 182 38

2012Q1 107 37

2012Q2 82 51

2012Q3 83 28

2012Q4 74 74

2013Q1 100 52

2013Q2 213 38

2013Q3 69 26

2013Q4 98 49

2014Q1 92 41

2014Q2 78 38

2014Q3 339 45

2014Q4 91 42

2015Q1 135 35

2015Q2 270 38

2015Q3 176 33

2015Q4 156 43

2016Q1 289 32

2016Q2 283 39

2016Q3 101 23

2016Q4 265 29

2017Q1 346 25

2017Q2 86 28

2017Q3 77 18

2017Q4 94 34

2018Q1 108 37

2018Q2 396 27

2018Q3 51 22

2018Q4 166 17

2019Q1 114 20

2019Q2 101 24

2019Q3 95 25

2019Q4 125 73

2020Q1 49 25

2020Q2 44 16

2020Q3 32 33

2020Q4 38 30

2021Q1 14 19

2021Q2 15 27

2021Q3 8 16

2021Q4 12 11

ELgr1 ELgr2

2011Q1 606 38

2011Q2 160 43

2011Q3 56 88

2011Q4 185 55

2012Q1 104 53

2012Q2 73 68

2012Q3 78 46

2012Q4 69 68

2013Q1 99 65

2013Q2 249 56

2013Q3 84 32

2013Q4 99 75

2014Q1 93 55

2014Q2 72 42

2014Q3 331 51

2014Q4 60 88

2015Q1 122 54

2015Q2 305 39

2015Q3 181 46

2015Q4 163 58

2016Q1 332 36

2016Q2 323 39

2016Q3 119 28

2016Q4 321 35

2017Q1 389 28

2017Q2 105 33

2017Q3 81 20

2017Q4 100 40

2018Q1 106 32

2018Q2 406 38

2018Q3 50 23

2018Q4 168 25

2019Q1 119 22

2019Q2 111 27

2019Q3 99 38

2019Q4 136 84

2020Q1 52 23

2020Q2 53 18

2020Q3 34 38

2020Q4 36 44

2021Q1 17 35

2021Q2 21 37

2021Q3 12 30

2021Q4 12 29


