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Abstract 

The rapid growth and increasing prominence of cryptocurrencies in the global financial 

market have brought new challenges in risk management and asset allocation. The high 

volatility and interconnectedness of digital assets make understanding risk contagion 

crucial for investors, portfolio managers, and regulators. Network Science provides a 

powerful framework for studying these interdependencies by modeling relationships as 

networks where assets are connected based on various metrics, such as correlations or 

causality measures. The primary objective of this research is to identify price contagion 

among cryptocurrencies, using Network Science methodologies to analyze these 

transmission effects and offering practical insights for risk management and portfolio 

optimization. 

The methodology starts with a Network Science approach to model the relationships 

between cryptocurrencies. Correlation networks are created to visualize the connections 

between digital assets, indicating where strong relationships and potential contagion 

effects may occur. To enhance this analysis, Granger causality tests are applied to assess 

the directionality of these relationships, identifying predictive connections where the 

performance of one cryptocurrency may impact another. Finally, the Louvain algorithm, 

a community detection technique within Network Science, is used to cluster 

cryptocurrencies into groups based on the strength of their interconnections, providing 

insights into the structural composition of the cryptocurrency market. 

The network-based approach reveals significant interconnections among 

cryptocurrencies, with correlation networks indicating clusters of assets that share strong 

relationships. Granger causality analysis provides evidence of directional risk 

transmission, suggesting specific paths through which risk may propagate. The Louvain 

algorithm identifies groups of highly interconnected cryptocurrencies, offering insights 

into potential diversification strategies and highlighting areas where risk mitigation may 

be necessary. 

The results inform investors and portfolio managers on managing risk by identifying 

groups of cryptocurrencies with strong interdependencies, which may impact 
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diversification strategies. Additionally, the findings provide valuable insights for 

regulators aiming to monitor systemic risk in the cryptocurrency market. 

This study advances the understanding of risk contagion in the cryptocurrency market by 

integrating Network Science methodologies, including correlation networks, causality 

analysis, and community detection. It offers a comprehensive view of interdependencies 

and risk transmission, providing practical guidance for constructing more resilient 

cryptocurrency portfolios. 
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Resumo 

O rápido crescimento e a crescente proeminência das criptomoedas no mercado financeiro 

global trouxeram novos desafios em gestão de risco e alocação de ativos. Devido à 

elevada volatilidade e interconexão dos ativos digitais, compreender o contágio de risco 

é fundamental para investidores, gestores de portfólios e reguladores. A Ciência das 

Redes fornece uma forte estrutura para estudar estas interdependências, modelando 

relações como redes onde os ativos estão conectados com base em vários critérios, como 

correlações ou medidas de causalidade. O objetivo principal deste trabalho é identificar o 

contágio de preços entre criptomoedas, utilizando metodologias de Ciência das Redes 

para analisar estes efeitos de transmissão e oferecendo perspetivas práticas para a gestão 

de risco e otimização de portfólios. 

A metodologia deste projeto começa com uma abordagem de Ciência das Redes para 

modelar as relações entre criptomoedas. São criadas redes de correlação para visualizar 

as conexões entre ativos digitais, indicando onde relacionamentos fortes e potenciais 

efeitos de contágio podem ocorrer. Para aprimorar esta análise, são aplicados testes de 

causalidade de Granger para avaliar a direção destas relações, identificando conexões 

preditivas onde o desempenho de uma criptomoeda pode impactar outra. Por fim, é 

utilizado o algoritmo de Louvain, uma técnica de deteção de comunidades dentro da 

Ciências das Redes, para agrupar criptomoedas em grupos com base na força das suas 

interligações, proporcionando perspetivas sobre a composição estrutural do mercado de 

criptomoedas. 

A abordagem baseada em redes revela interligações significativas entre criptomoedas, 

com as redes de correlação a mostrar agrupamentos de ativos que partilham relações 

fortes. A análise de causalidade de Granger fornece evidências de transmissão direcional 

de risco, sugerindo caminhos específicos através dos quais o risco pode propagar-se. O 

algoritmo de Louvain identifica grupos de criptomoedas fortemente interligadas, dando 

perspetivas sobre potenciais estratégias de diversificação e destacando áreas onde pode 

ser necessária a mitigação de risco. 

Os resultados informam investidores e gestores de carteiras sobre a gestão do risco, ao 

identificar grupos de criptomoedas com fortes interdependências, que podem impactar 

as estratégias de diversificação. Adicionalmente, as conclusões fornecem perspetivas 
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importantes para os reguladores que visam monitorizar o risco sistémico no mercado de 

criptomoedas.  

Esta investigação tenta contribuir para o aprofundamento do conhecimento e 

compreensão sobre a propagação de risco no mercado de ativos digitais, procurando 

incorporar metodologias provenientes da Ciência das Redes, tais como redes de 

correlação, análise de causalidade e deteção de comunidades. Por outro lado, procura 

proporcionar uma visão abrangente das diferentes interdependências e da transmissão de 

risco, oferecendo orientações práticas para a construção de carteiras de criptomoedas 

mais resilientes.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Palavras-chave: Criptomoedas, Ciência das Redes, Comunidades, Testes de causalidade 

de Granger, Rede de Correlação 
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Chapter 1. Introduction  

1.1 Motivation 

Cryptocurrencies are a modern topic in the financial world, and we are talking about a 

market that has been constantly evolving. Cryptocurrencies are digital currencies that 

function as decentralized mediums of exchange through computer networks (Aparicio et 

al, 2020). To provide an idea of how long these digital assets have been around, a brief 

introduction to the first cryptocurrency, Bitcoin (BTC), is going to be presented. 

Launched in January 2009, Bitcoin reached a value of $1,000 by November 2013, 

establishing itself as the leading cryptocurrency. In the following figure (Figure 1), it is 

illustrated the price of BTC from its release (2009) to the present years.  

 

Figure 1: Bitcoin Price in US dollars 

 

This work examines the price contagion based on Network Science, more specifically, on 

complex networks. These complex networks are graphs that show important topological 

features and that study individual elements, called nodes, and their interactions, called 

edges. In this case, these links will represent the correlations between several digital 

assets.  



Marta Melo                  Analysis of the Cryptocurrency market: A Network Science Approach 

2 

 

In order to study a way to construct portfolios from the cross-correlation networks of 

cryptocurrencies, some known methods will be adopted, such as Granger Causality, 

Community Detection, thresholds, and a few network metrics. 

First of all, it is important to apply a threshold value after computing all Spearman 

correlations between the assets in order to preserve only strong and significant 

relationships. This also helps to prevent having a network that has too many weak 

connections and, consequently, that is too dense and difficult to analyze.  

For the purpose of studying the temporal dependence between the data, the Granger 

Causality test was applied between any two cryptocurrencies that have significant 

correlations based on the current time window (window size of 6 months (183 days) and 

window step of 1 month (30 days)). If the results for each one of these tests show a p-

value below 0.05, this means that there is statistical significance, and an edge is added to 

the graph, making a directed network.  

Regarding community detection, methods are applied to identify clusters of strongly 

connected cryptocurrencies within the network, showing groups of digital assets that 

share strong connections. These clusters make the network structure easier to understand 

and provide insights into how the different nodes are connected.  

Finally, some network metrics are computed in order to evaluate the performance of the 

Network, providing a meaningful understanding of several aspects of the behavior of the 

graph. This work measures the out-degree centrality, that is, the proportion of nodes that 

a certain node's outgoing edges are connected to. It also determines the network density, 

which measures the fraction of the number of actual edges in the Network by the 

maximum possible number of edges. Betweenness centrality is another metric that is 

studied and used to find nodes that serve as a bridge from one part of the Network to 

another, detecting the amount of a node's influence over the flow of information within 

the Network. 

 

1.2 Objectives 

The main objective of the present work is to study the price contagion between several 

digital assets, analyzing where a change in prices in one cryptocurrency can spread to 
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other cryptocurrencies, influencing the stability of this market. This is achieved by 

analyzing a dynamic network of correlations and, from it, explore the diverse 

communities that those assets form along a temporal window and examine different key 

measures to evaluate these graphs. 

 

1.3 Document Structure 

The following describes the organization of the project and the content of each chapter: 

• Chapter 2 briefly describes some works that already exist in this area, highlighting 

key findings and their connection to the current work. 

• Chapter 3 describes the methodology employed in the research, outlining the 

techniques used to gather and analyze the data. 

• Chapter 4 presents the results obtained from this study, as well as some discussion 

of the main findings and their implications.  

• Chapter 5 concludes by synthesizing key findings and proposing potential avenues 

for future research. 
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Chapter 2. Literature Review 

The main focus of this project is to study the relations between several financial assets 

based on Network Science and various other methods in order to construct solid and 

trustworthy complex networks. There are numerous related works on this subject, with 

many different important outcomes. In this section, I am going to mention some of these 

works, as well as their key findings and how they are related to my study. 

 

2.1. Background 

As it was already said before, cryptocurrencies are a relatively new type of assets that call 

into question financial stability and risk management. To study this special type of 

financial asset, it will explore in this sub-section some foundational theories related to 

risk theory and quantitative finance, namely fundamental concepts about risk contagion 

and correlation in the financial field.  

Risk is a wide concept in finance that explains the uncertainty associated with the future 

performance of assets, which is defined as the likelihood an outcome or investment's 

actual gain will differ from the expected outcome or return. There are two different types 

of risk: systemic risk, which affects the entire market, and idiosyncratic risk, which is 

specific to individual assets. Regarding the cryptocurrency market, due to the speculative 

nature of these assets, they exhibit high levels of market risk, as well as a high level of 

contagion risk. Risk contagion refers to the transmission of financial shocks from one 

market or financial asset to others, which can generate a financial crisis.  

To study this risk contagion, it is very useful to use Network Science, as it allows to 

understand the dynamics of contagion in financial systems. In this case, the 

cryptocurrency market can be represented by a network, where all the different digital 

assets are nodes, and the connections between them are the edges, which represent the 

correlations among these variables. This correlation is also an important matter in the 

financial sector, as it is a known statistical measure used to quantify the relationship 

between any two variables. (Xu & Gao, 2019), (Andersen, Bollerslev, Christoffersen, & 

Diebold, 2005), (Kenett, Huang, Vodenska, Havlin, & Stanley, 2015). 



Marta Melo                  Analysis of the Cryptocurrency market: A Network Science Approach 

5 

 

In cryptocurrency markets, it is fundamental to understand how correlations evolve, 

especially in periods of market stress. Unlike traditional assets, cryptocurrencies exhibit 

extreme volatility and speculative behavior, which can cause rapid shifts in correlation 

structures. For this reason, understanding correlation networks can be a powerful tool for 

investors to identify critical cryptocurrencies that may act as risk propagation channels, 

also detecting periods of more vulnerability to systemic events. 

Community detection refers to the identification of groups of nodes within a network that 

are more densely connected to each other than the rest of the network. There are numerous 

algorithms for this process, namely the Louvain Algorithm, that which will be the one 

used in this study, which is a method based on the optimization of modularity, a measure 

of the relative density of edges inside the community in relation to the edges outside. 

Other known methods for Community Detection are the Girvan-Newman algorithm, that 

applies a divisive approach, deleting edges with maximum betweenness to find 

community structures; the INFOMAP method, which focuses on information 

compression and uses random walks to identify communities. The LPA algorithm a 

method that assigns labels to nodes based on their neighbors; and the SCAN algorithm, 

that focuses on the structural properties of Networks to identify clusters of interconnected 

nodes. (Huang, Chen, Ren, & Wang, 2021) 

By incorporating these notions into the study, this background aims to provide a 

comprehensive understanding of the risks associated with cryptocurrencies and the 

approaches to evaluate and manage these risks effectively.  

2.2. Related Works 

In this section, it is presented some of the relevant research conducted in this field, 

structured in a Literature Review table, as it is shown next. This table points the main 

characteristics of each study, such as the central objective, what data was used, as well as 

the methods used. With the intention of enhancing the key points of the table and 

clarifying the insights provided by the literature, it will also explore some of the subjects 

discussed, as well as the main conclusions of each study. 
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Table 1: Literature Review Table 

References Objective Data Methods Conclusions 

(Ioannidis, 

Sarikeisoglou, 

& Angelidis, 

2023) 

Portfolio 

construction 

based on 

Network 

Science. 

Daily returns of 

26 stocks from 

the DJIA index 

from January 

1998 to 

December 2022. 

Pearson correlation; 

Transfer Entropy; 

Threshold 

technique: weak 

correlations 

between the interval 

[-0,1;0,1]; Rolling 

Window of 2 years. 

Low centrality stock 

portfolios have the 

highest long-term risk-

adjusted returns; High 

centrality portfolios are 

the riskiest; Transfer 

Entropy portfolios are 

the best in crises. 

(Li, Jiang, 

Tian, Li, & 

Zheng, 2018) 

Filter the noise 

interference and 

understand the 

driving 

mechanism of 

different 

network 

interactions.  

Logarithmic 

returns of 200 

stocks from the 

CSI 300 index 

(Chinese stock 

market) and 400 

from the S&P 

500 from 2009 

to 2016. 

125-day moving 

window; Global 

motion (eigenmode 

of the largest 

eigenvalue); PMFG 

filtered network. 

Optimal assets can be 

found in peripheral 

positions of the global 

motion matrix. 

(Wu, Tuo, & 

Xiong, 2015) 

Stock 

correlation 

network built to 

investigate 

community 

structure. 

SSE 180-index 

component 

stocks from 

2009 to 2011. 

Community 

Structure Detection: 

GN algorithm. 

Stocks in the same 

industry are assigned to 

the same community; 

Correlations among 

different industries.  

(Zheng & 

Song, 2018) 

Networks of 

stock markets 

are constructed 

by using the 

Grager causality 

tests. 

Index data of 34 

major stock 

markets in Asia, 

America, 

Europe and 

Oceania from 

2004 to 2017. 

Sliding Window; 

Granger Causality 

tests. 

Network topology shifts 

significantly during 

crises; A causal 

relationship between any 

two stock markets can 

usually be established 

with one stock market. 

(Výrost, 

Lyócsa, & 

Granger 

causality 

networks to 

model the 

Daily closing 

prices from 20 

stock market 

indices from 4 

ARMA model; 

Rolling samples of 

3 months; Granger 

Impact of the US stock 

market has declined; 

Temporal proximity of 

market closing times 
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References Objective Data Methods Conclusions 

Baumöhl, 

2015)  

complex 

relationships of 

return 

spillovers. 

continents (20 

developed 

countries), from 

2006 to 2013. 

Causality tests; 

Spatial probit. 

influence return 

spillovers. 

(Isogai, 2017) Analysis of a 

dynamic 

correlation 

network of 

highly volatile 

financial asset 

returns. 

Japanese Stock 

returns are listed 

on the TSE. 

Hierarchical 

recursive Network 

clustering groups of 

stocks into a 

dynamic network 

using model-based 

correlation 

estimation. 

Three sub-period 

correlation networks 

show stability over time, 

with higher correlations 

during stressed periods 

(T3) compared to normal 

periods (T1 and T2). 

 

The work by Ioannidis, Sarikeisoglou, & Angelidis (2023), studies the construction of a 

portfolio of daily stocks from the Dow Jones Industrial Average (DJIA) based on Network 

Science. These networks are estimated from the Pearson correlation coefficient and 

Transfer Entropy. The main key findings conclude that peripheral portfolios of low 

centrality stocks are the best in the long term and that the Markowitz portfolio is the most 

reliable in the long term. In contrast, central portfolios of high centrality stocks are more 

uncertain and in times of crisis, portfolios based on Transfer Entropy perform better.   

In the study by Li, Jiang, Tian, Li, & Zheng (2018), portfolios with varied performances 

are built from network filtering and peripherality measures. These networks are 

constructed using the full cross-correlation matrix and the global-motion one, 

respectively, and it is demonstrated that the peripherality in a global-motion network can 

work as an indicator for identifying optimal assets. This study also concludes that the 

global-motion cross-correlation matrix is useful in portfolio optimization and that 

peripheral nodes are more profitable and well-diversified than central nodes.    

The paper “Network Structure Detection and Analysis of Shanghai Stock Market” (Wu, 

Tuo, & Xiong, 2015), aims to investigate the community structure of the component 

stocks of SSE (Shanghai Stock Exchange) 180-index, a stock correlation network is 

constructed to find the intra-community and inter-community. The methodology used for 
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the community structure is based on the GN algorithm on an un-weighted network with 

different thresholds that are set according to coefficient distribution. The result of the 

network community structure analysis shows that the stock market has obvious industrial 

characteristics, as most of the stocks in the same industry or in the same supply chain are 

assigned to the same community. It also shows that there exist correlations among 

different industries. 

In “Dynamic Contagion of Systemic Risks on Global Main Equity Markets Based on 

Granger Causality Networks” (Zheng & Song, 2018), 156 causal networks of stock 

markets are built using the Granger Causality tests and time series sliding window based 

on stock index data of 34 major stock markets in the world from 2004 to 2017. The results 

show that contagions between any two stock markets is established with one stock market 

on average and that the markets that have a significant impact in systemic risk contagion 

are the ones with a higher intermediate contagion ability. It is also concluded that despite 

having weak network correlations, markets with strong media ability perform a crucial 

role in risk contagion, such as the markets of Australia, Korea, and Japan. 

The study by Výrost, Lyócsa, & Baumöhl (2015) examines the structure of return 

spillovers by creating Granger causality networks using daily closing prices of 20 

developed markets from 2nd January 2006 to 31st December 2013. The main findings 

conclude that the most influential returns originate from European stock markets, while 

the influence of the US stock market was stronger before and during the financial crisis 

than afterward. 

In the analysis made by Isogai (2017), it is used a network clustering algorithm to study 

a dynamic correlation network of 1324 Japanese stock returns over 8 years. This work 

contributes to two methods of dimensionality reduction that extract important information 

from complex correlation networks. The first method is the reduction of a large 

correlation network into a smaller factor correlation network, and the second is based in 

the reduction of a time series of a correlation network into a number of representative 

correlation networks.    

In all of these previously presented studies, the authors apply several network metrics, 

that is, quantitative measures utilized to assess and track the performance and reliability 

of a network while also providing valuable insights into diverse aspects of network 
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behavior. From the analysis of these metrics, it is easy to understand that the 

predominantly used are centrality measures, namely the Degree Centrality and the 

Betweenness Centrality, which represent the number of edges connected to a node and 

the number of shortest paths that pass through a given node, respectively.   

One of the main divergences of this work relative to most of the papers analyzed it is the 

type of correlation coefficient used to analyze the interdependencies between the data. It 

is usual to compute the correlation coefficient using the Pearson correlation, which 

measures linear relationships between two variables, assuming that a change in one 

variable is proportional to a change in another, based on their raw data. However, in my 

analysis, I opted to use the Spearman correlation coefficient, as it captures monotonic 

relationships, whether these are linear or not. Considering that this project studies the 

cryptocurrency market and that this market is extremely volatile and dynamic, the use of 

the Spearman correlation coefficient is more appropriate for the construction of the 

networks. 
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Chapter 3. Methodology 

This chapter explains the data collection process and methodologies used for the 

construction and analysis of the correlation networks, utilizing the CRISP-DM 

framework to guide the methodology (Chapman, et al., 2000, Costa & Aparicio, 2020, 

2021) This process consisted of computing the daily logarithm returns of the prices of 

cryptocurrencies, determining the correlations matrices based on these returns using a 

moving window approach, and applying a threshold value to filter weak correlations. 

Following that, correlation networks were created, and the Granger causality tests were 

applied to determine the direction of the contagion between the nodes. Furthermore, using 

the Louvain algorithm, the detection of communities in the same networks was 

performed, with the aim of finding relevant groups of cryptocurrencies that show related 

correlation patterns. 

 

3.1. Data 

This study analyzes daily closing prices of 58 cryptocurrencies form January 1, 2020, to 

May 11, 2024. It is important to note that as cryptocurrencies are a relatively new topic, 

the lack of long-term historical data restricts the capability to capture wider market trends 

and extended dependencies between cryptocurrencies. 

Daily logarithm returns were calculated from closing prices, 𝑟𝑖(𝑡) = log(𝑃𝑖(𝑡)) −

log(𝑃𝑖(𝑡 − 1)). This data was collected from  https://coinmarketcap.com/, a price-

tracking website for cryptoassets in the rapidly growing cryptocurrency space. In the 

following table (Table 2) it is possible to see all cryptoassets used for this work, as well 

as their main descriptive statistics.  

Table 2: Descriptive statistics of the cryptocurrencies 

crypto ticker mean std min max 

Bitcoin BTC 7.60E-05 3.19E-02 -1.74E-01 1.36E-01 
Cardano ADA -1.19E-03 4.67E-02 -3.01E-01 2.19E-01 
AGIX AGIX 8.56E-04 1.11E-01 -1.93E+00 1.84E+00 
AIOZ AIOZ -4.21E-05 8.57E-02 -4.67E-01 7.48E-01 
Akash Network AKT 1.33E-04 6.29E-02 -2.74E-01 3.30E-01 
Algorand ALGO -1.86E-03 5.33E-02 -3.70E-01 4.18E-01 

https://coinmarketcap.com/
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crypto ticker mean std min max 

Arweave AR 4.67E-04 7.11E-02 -3.03E-01 4.21E-01 
Cosmos ATOM -9.82E-04 5.74E-02 -4.93E-01 2.74E-01 
Avalanche AVAX -3.18E-05 6.01E-02 -4.54E-01 2.46E-01 
Axie Infinity AXS -2.35E-05 6.68E-02 -4.99E-01 5.30E-01 
Bitcoin Cash BCH -1.02E-03 4.96E-02 -4.35E-01 4.60E-01 
Binance BNB -6.16E-05 3.98E-02 -4.04E-01 2.72E-01 
Bitcoin BEP2 BTCB 7.78E-05 3.17E-02 -1.77E-01 1.35E-01 
Chiliz CHZ -1.16E-03 5.94E-02 -4.57E-01 3.77E-01 
Cronos CRO -2.06E-04 4.81E-02 -2.34E-01 2.79E-01 
Dai DAI -3.55E-07 1.60E-03 -2.54E-02 1.90E-02 
Dogecoin DOGE -1.04E-03 5.40E-02 -4.52E-01 3.71E-01 
Polkadot DOT -1.54E-03 5.17E-02 -4.77E-01 2.52E-01 
eGold EGLD -1.35E-03 5.19E-02 -3.96E-01 3.23E-01 
Ethereum Classic ETC -1.25E-03 5.30E-02 -3.89E-01 3.46E-01 
Ethereum ETH -2.80E-04 4.07E-02 -3.17E-01 2.26E-01 
Fetch.ai FET 1.36E-03 6.90E-02 -4.38E-01 3.33E-01 
Filecoin FIL -2.90E-03 5.81E-02 -4.26E-01 3.52E-01 
Flow FLOW -3.13E-03 5.74E-02 -3.63E-01 3.38E-01 
Fantom FTM -7.66E-05 7.20E-02 -5.63E-01 3.04E-01 
Gala GALA 1.02E-03 8.50E-02 -5.20E-01 8.10E-01 
The Graph USD GRT6719 -1.44E-03 6.37E-02 -4.87E-01 4.67E-01 
Hedera Hashgraph HBAR -8.28E-04 5.45E-02 -4.21E-01 5.49E-01 
Internet Computer ICP -3.26E-03 6.16E-02 -3.64E-01 3.48E-01 
Injective INJ 2.95E-04 6.69E-02 -4.20E-01 4.01E-01 
JasmyCoin JASMY -4.23E-03 1.07E-01 -8.50E-01 1.29E+00 
KuCoin KCS -1.33E-04 4.82E-02 -4.96E-01 4.16E-01 
Lido DAO LDO -8.93E-04 7.99E-02 -5.10E-01 3.93E-01 
UNUS SED LEO LEO 4.79E-04 3.30E-02 -2.00E-01 4.41E-01 
Chainlink LINK -1.12E-03 5.32E-02 -4.66E-01 2.76E-01 
Litecoin LTC -1.35E-03 4.62E-02 -4.41E-01 2.48E-01 
Polygon MATIC -2.26E-04 6.02E-02 -3.91E-01 4.58E-01 
Maker MKR -5.61E-04 5.05E-02 -2.83E-01 4.23E-01 
NEAR NEAR 3.72E-04 6.64E-02 -4.44E-01 3.61E-01 
Neo NEO -1.76E-03 5.52E-02 -4.54E-01 3.46E-01 
OKB OKB 3.88E-04 4.70E-02 -4.01E-01 2.90E-01 
Quant QNT 7.64E-04 5.45E-02 -3.19E-01 3.55E-01 
Render RNDR 2.42E-03 7.84E-02 -4.30E-01 3.61E-01 
THORChain RUNE -9.47E-04 7.14E-02 -5.53E-01 3.20E-01 
Sandbox SAND -8.76E-05 6.75E-02 -4.59E-01 4.56E-01 
Solana SOL 1.11E-03 6.24E-02 -5.50E-01 2.82E-01 
Lido Staked ETH STETH -2.75E-04 4.05E-02 -3.03E-01 2.13E-01 
Stacks USD STX4847 1.19E-04 6.31E-02 -4.09E-01 5.23E-01 
Theta Network THETA -1.51E-03 5.74E-02 -4.94E-01 2.48E-01 
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crypto ticker mean std min max 

Tron TRX -4.74E-06 3.70E-02 -3.83E-01 1.94E-01 
Uniswap USD UNI7083 -1.49E-03 5.49E-02 -4.03E-01 4.34E-01 
USD Coin USDC -5.56E-08 1.14E-03 -2.84E-02 2.10E-02 
Tether USDT -4.76E-07 4.23E-04 -3.93E-03 4.62E-03 
VeChain VET -1.62E-03 5.20E-02 -4.09E-01 2.53E-01 
Wrapped Bitcoin WBTC 7.29E-05 3.19E-02 -1.75E-01 1.35E-01 
Stellar XLM -1.67E-03 4.43E-02 -3.62E-01 4.76E-01 
Monero XMR -1.10E-03 4.62E-02 -5.34E-01 3.45E-01 
Ripple XRP -9.23E-04 4.76E-02 -3.96E-01 5.49E-01 

 

 

3.2. Network Construction 

The present section aims to describe in detail all the processes that were made to reach 

the final version of the dynamic correlation networks and their corresponding 

communities.  

3.2.1. Threshold Value 

As was already mentioned before, one of the key points in the construction of networks 

is the application of a threshold value to ensure that weak connections are put aside and 

do not interfere with the rest of the work.  

For that, graphs were built where the various values of some network metrics, such as 

betweenness centrality, clustering coefficient, and density, for different threshold values 

were seen (Figures 2 to 6). 
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Figure 2: Betweenness Centrality for different Threshold values 

 

 

Figure 3: Density Values for different Threshold Values 
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Figure 4: Clustering Coefficient for different values of threshold 

 

 

Figure 5: Clustering coefficient for different density values 
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Figure 6: Assortativity for different threshold values 

 

From the analysis of these figures, it is possible to conclude that betweenness centrality 

shows significant fluctuations at lower threshold values, making it easier to identify the 

role that certain cryptocurrencies play in connecting different communities.  

It is also possible to analyze that regarding the density and the clustering coefficient, both 

values decrease as the threshold increases, translating into a less connected network and 

a reduction of dense subgraphs as weak correlations are filtered out.  

In Figure 5, it is clear that as the Network becomes denser, that is, has more connections, 

and the clustering coefficient also increases, reflecting a higher local interconnectedness. 

Regarding assortativity, this value floats around zero, indicating no clear tendency for 

nodes of similar degrees to connect, which goes along with the speculative and volatile 

nature of the cryptocurrency market.  

From these figures, it was concluded that the threshold value to use in the filtration of 

correlations was 0.5, as it is the value that corresponds to a network that preserves the 

most important connections, allowing key nodes to be identified as central connectors, 
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while also filtering out weak and irrelevant correlations that may make the Network's 

structure difficult to understand. This is appropriate since the project deals with 

cryptocurrencies that have higher values of correlations between them, and so, it is 

possible to have a clearer network structure that is focused only in strong connections, 

also simplifying the detection of communities.  

3.2.2. Correlation matrix 

The first step, after gathering and transforming all the data necessary to model the initial 

graphs, is to compute all cross-correlations using a sliding window approach. For this, it 

is defined a window size of 6 months (approximately 183 days), so that it is long enough 

to capture meaningful correlation patterns, and a step size of 1 month (approximately 30 

days). Subsequently, a correlation matrix is computed, where each element represents the 

Spearman correlation coefficient (formula below) between two assets for the current time 

window's data. In this same matrix, it is applied a value of threshold, which has been 

explained in the previous sub-section, with the purpose of eliminating weak relationships, 

highlighting only relevant and impactful connections. This procedure translates into the 

following formula: 

𝐶𝛿 = {
𝐶𝑖𝑗 ,   𝑖𝑓 |𝐶𝑖𝑗| ≥ 𝛿

0, 𝑖𝑓 |𝐶𝑖𝑗| < 𝛿
 

Where 𝐶𝛿 corresponds to the thresholded value of the correlation between variable I and 

variable j, and δ represents the threshold value. 

 This whole process results in a total number of 31 matrices of thresholded correlations. 

As the Spearman correlation coefficient is defined as the Pearson correlation coefficient 

between the rank variables, we have that the formula is given by: 

𝑟𝑠 = 𝜌[𝑅[𝑋], 𝑅[𝑌]] =
𝑐𝑜𝑣[𝑅[𝑋], 𝑅[𝑌]]

𝜎𝑅[𝑋]𝜎𝑅[𝑌]
 

Where ρ is the Pearson correlation coefficient applied to the rank variables, 

𝑐𝑜𝑣[𝑅[𝑋], 𝑅[𝑌]] is the covariance of the rank variables and 𝜎𝑅[𝑋] and 𝜎𝑅[𝑌] are the 

standard deviations of the rank variables. 
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3.2.3. Granger Causality 

The next step is to implement the Granger Causality Tests so that it is possible to 

determine if one variable helps forecast the future values of another variable. It is 

important to acknowledge that Granger Causality Tests have certain limitations, such as 

the assumption of linearity and the stationary requirement. In the case of cryptocurrencies, 

these can exhibit non-linear patterns due to market sentiment or speculative behavior. 

However, despite these limitations, this method is a helpful resource for understanding 

predictive relations in time series data, particularly in the volatile cryptocurrency market. 

In this case, a graph for each matrix, where the nodes represent all cryptocurrencies, was 

created from the correlation matrices, which were described in the previous subsection. 

Afterward, it is iterated over pairs of nodes with non-zero correlations in order to test the 

causality between each pair. For each test, the p-values that indicate whether the lagged 

values of one variable (cryptocurrency A) are statistically significant on the other 

(cryptocurrency B) are examined. If these p-values of the causality tests are below the 

significance level of 0.05, it adds an edge to the Network from cryptocurrency A to 

cryptocurrency B. At the end of this procedure, the result is 31 different directed networks 

that are already set to be analyzed in the matter of communities.  

 

3.3. Community Detection 

Lastly, the final step of this project is to find the different communities for each Network. 

Community detection plays an important role in understanding the natural divisions that 

exist in the Network, as well as showing how nodes are organized. The fact that the 

networks are divided into sub-groups also helps to analyze and interpret the information 

that each Network is giving, allowing to identify clusters that share similar characteristics 

or present stronger connections than with the rest of the Network.  

For this, it is implemented the Louvain algorithm, a method used in large networks with 

the aim of optimizing the modularity of the Network. This modularity refers to a measure 

that quantifies the strength of the division of a network into clusters, analyzing the density 

of edges within a community compared to the density of edges between different 

communities. The modularity formula is defined as the following: 
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𝑄 =
1

2𝑚
∑ ∑[𝐴𝑖𝑗 −

𝑘𝑖𝑘𝑗

2𝑚
]𝛿(𝑐𝑖, 𝑐𝑗)

𝑁

𝑗=1

𝑁

𝑖=1

 

where 𝐴𝑖𝑗 represents the adjacency matrix (1 if there is an edge between nodes i and j, 

and 0 otherwise), 𝑘𝑖 is the number of edges attached to node i, 𝑚 is the total number of 

edges in the graph, 𝑁 is the total number of nodes in the graph, 𝑐𝑖 is the community to 

which the node i belongs, and δ is the Kronecker delta function:  

𝛿(𝑐𝑖 , 𝑐𝑗) = {
1 𝑖𝑓 𝑐𝑖 𝑎𝑛𝑑 𝑐𝑗 𝑎𝑟𝑒 𝑡ℎ𝑒 𝑠𝑎𝑚𝑒 𝑐𝑙𝑢𝑠𝑡𝑒𝑟

0 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
 

 

The Louvain algorithm is split into two phases that are repeated iteratively, the first one 

involving assigning each node to its own community, then iteratively merging nodes into 

communities until the local modularity can no longer be increased. The second phase is 

where the detected communities are aggregated into a single node, and the steps in phase 

one are repeated to further improve modularity at a higher level.   
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Chapter 4. Results and discussion 

This chapter will present the networks and their respective communities, as well as the 

main conclusions from its analysis. It will also be presented some comparisons relative 

to the studies presented in the Literature Review. 

4.1. Results 

In this sub-section, the results will be divided into two parts, the first one referring to the 

construction of the networks with the Granger Causality tests, and the second is where it 

is presented the communities that were found, derived from the same networks.  

4.1.1. Networks 

As it was already said before, one of the first steps after loading the data is to compute 

the cross-correlations for all the cryptocurrencies and then apply the threshold value, 

resulting in 31 correlation matrixes along the time frame of the variables. In the following 

figure, we can see the matrix correlation for the first time window, where all the 

cryptocurrencies are on and the x and y axes. It is possible to observe that meaningless 

correlations in the interval ]-0.5;0.5[ were despised, as we have only values in the interval 

[-1;-0.5] ∪ [0.5;1] or 0. 

 

Figure 7: Correlation matrix for the first time window 
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Applying the Granger Causality Tests to the pairs of variables that show significant 

correlations is the next step, resulting in 31 directed networks that will be explored right 

away. 

 

Figure 8: Granger Causality Network for the first moving window 

In this figure, it is possible to see the network for the first time-window, characterized 

by a total of 789 edges and density of approximately 0.2387, meaning that about 

23.87% of all possible connections between nodes are presented.  
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Figure 9: Granger Causality Network for the second moving window 

In Figure 9, the number of edges decreases significantly from the first to the second 

moving-window, containing only a total of 342 edges. The density of this network also 

decreases to 0.1034, indicating a reduction in the connectivity.  
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Figure 10: Granger Causality Network for the third moving window 

Regarding the third moving window network (Figure 10), this graph reflects a continued 

reduction in the number of edges and in the density, as its values are, respectively, 311 

and 0.0941, translating into an even less connected network. 

Furthermore, the results for the in/out-degree and betweenness centrality measures and 

the density for each one of these networks were printed (Table 3).  

Table 3: Metrics for the first moving window network 

Ticker In-Degree Out-Degree BC 

BTC 0.2105 0.4912 0.0051 

ADA 0.1579 0.4035 0.0031 

AGIX 0.0351 0.2281 0.0034 
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Ticker In-Degree Out-Degree BC 

AIOZ 0.1754 0.0000 0.0000 

AKT 0.0175 0.0526 0.0000 

ALGO 0.3860 0.3860 0.0283 

AR 0.0000 0.0000 0.0000 

ATOM 0.2456 0.0877 0.0027 

AVAX 0.0351 0.2982 0.0002 

AXS 0.0351 0.0351 0.0004 

BCH 0.5789 0.3158 0.0265 

BNB 0.4561 0.4035 0.0151 

BTCB 0.1579 0.4737 0.0056 

CHZ 0.2982 0.2281 0.0157 

CRO 0.2982 0.7018 0.0292 

DAI 0.0000 0.0000 0.0000 

DOGE 0.2807 0.5263 0.0277 

DOT 0.2281 0.1754 0.0017 

EGLD 0.0877 0.1579 0.0014 

ETC 0.2982 0.3684 0.0071 

ETH 0.3684 0.3509 0.0085 

FET 0.0351 0.1228 0.0005 

FIL 0.2632 0.2281 0.0025 

FLOW 0.0702 0.0702 0.0019 

FTM 0.3509 0.0175 0.0001 

GALA 0.0000 0.0000 0.0000 

GRT6719 0.2632 0.0877 0.0022 

HBAR 0.4035 0.0877 0.0042 

ICP 0.5088 0.5965 0.0682 

INJ 0.4912 0.4211 0.0404 

JASMY 0.0000 0.0000 0.0000 

KCS 0.2982 0.2456 0.0063 

LDO 0.1228 0.4912 0.0052 

LEO 0.0000 0.0000 0.0000 

LINK 0.5439 0.2632 0.0261 

LTC 0.3684 0.4386 0.0104 

MATIC 0.6491 0.5088 0.0529 

MKR 0.2807 0.6140 0.0169 

NEAR 0.1754 0.1404 0.0015 

NEO 0.5263 0.3860 0.0281 

OKB 0.0877 0.4211 0.0020 

QNT 0.0000 0.0000 0.0000 

RNDR 0.0000 0.0000 0.0000 

RUNE 0.4386 0.0702 0.0032 

SAND 0.4561 0.2632 0.0114 

SOL 0.3158 0.0526 0.0011 
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Ticker In-Degree Out-Degree BC 

STETH 0.3333 0.3860 0.0218 

STX4847 0.0526 0.0877 0.0000 

THETA 0.3860 0.1228 0.0031 

TRX 0.3860 0.1754 0.0024 

UNI7083 0.2105 0.2632 0.0018 

USDC 0.0175 0.0000 0.0000 

USDT 0.0000 0.0175 0.0000 

VET 0.2982 0.3158 0.0060 

WBTC 0.1930 0.4912 0.0046 

XLM 0.1930 0.2281 0.0136 

XMR 0.3333 0.1579 0.0041 

XRP 0.4386 0.3860 0.0186 

 

From this analysis, it is shown that certain cryptocurrencies, like 'MATIC' and 'LINK', 

hold significant in-degree centrality, suggesting that they receive a high volume of 

influence from other assets, making them pivotal within the Network. This finding 

implies that these assets may serve as market leaders or key indicators of future trends. 

In contrast, cryptocurrencies with high out-degree centrality, such as 'CRO' and 'MKR', 

influence many other assets and can serve as tools for diversification in portfolio 

construction. These insights suggest practitioners should closely monitor assets with 

strong network centrality for potential leadership in market movements while isolating 

peripheral assets for safer, less volatile investment strategies. 

On the contrary, looking only for the tickers that have value 0 for the three metrics, it is 

possible to conclude that 'AR', 'DAI', 'GALA', 'JASMY', 'LEO', 'QNT' and 'RNDR' are 

assets that do not communicate with any other variables, also visible in the network figure 

(Figure 10) as these are the nodes that are isolated from the Network. 

In order to have an idea of the number of connections in each Network along the time 

frame, a graph was printed with the total number of edges (y-axis) for each of the time-

window Network (x-axis) (Figure 11). 
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Figure 11: Number of edges for each moving-window Network 

Analyzing the graph, it is evident that the moving windows 11, 12, and 13 have the higher 

values for the total of edges in the Network, corresponding to the dates between 25th 

February 2022 and 26th August 2022, 26th March 2022 and 24th September 2022, and 24th 

April 2022 and 23rd October 2022, respectively. These spikes in network density between 

February and October 2022 indicate a period of intensified correlation among 

cryptocurrencies, potentially driven by external events such as regulatory announcements 

or macroeconomic changes (e.g., inflation concerns and interest rate hikes). An example 

that could be related to these spikes is the geopolitical tension between Russia and 

Ukraine, which escalated in February 2022 and caused significant fluctuations in global 

markets (Izzeldin, Muradoğlu, Pappas, Petropoulou, & Sivaprasad, 2023). In periods of 

uncertainty, investors can either turn to cryptocurrencies as a safe haven or sell off their 

cryptocurrency assets to cover losses in traditional markets. 

Practitioners can use these network insights to understand how external factors influence 

correlation spikes within cryptocurrency markets, offering an opportunity to hedge 

against broader market risks by diversifying across less correlated assets during market 

turbulence.  
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4.1.2. Community Detection 

The last step to reach the main target of this project is to compute the different 

communities for each of the previously mentioned networks, applying the Louvain 

algorithm for community detection. The results are the following:  

 

 

Figure 12: Number of communities for each moving-window Network 

As demonstrated by the figure, in this case, the moving-window Network with a higher 

number of communities is the 29th, corresponding to the time span from 14th September 

2023 to 14th March 2024 and having a total number of 15 communities. 

Next, it will present some networks with distinct communities illustrated in different 

colors to simplify their interpretation (Figures 13, 14, and 15). 
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Figure 13: Communities for the first moving window network 

The figure above presents the network of cryptocurrencies for the first moving window, 

with the different cryptocurrencies represented by the nodes and the relationships 

between them being the edges that link the different nodes. It is also possible to see the 

different communities in this network, each one of them being of a different color. 
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Figure 14: Communities for the 29th moving window network 

In Figure 14, it is represented the same structure as Figure 13, and it is possible to 

conclude that cryptocurrencies like 'TRX', 'RUNE', 'OKB', 'MKR', 'XMR', 'BNB', 

'USDT', 'AKT', 'USDC', 'LEO', 'DAI', and 'AIOZ' are isolated nodes, as they do not have 

any edges linked to them and form a single-node community.  
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Figure 15: Communities for the last moving window network 

The interpretation of Figure 15 is consistent with the previous two figures, where the 

community structures and relationships among cryptoassets are illustrated equally. 

Analysis of the network visualizations reveals three major communities consistently 

appearing across all time periods, namely, the red, blue, and green ones in Network of 

time-window 1 (Figure 13), the green, light blue, and dark blue in the Network of time-

window 29 (Figure 14), being this the one that has the highest number of communities. 

In the last moving-window network, four notable communities are present, in the colors 

pink, light green, orange, and dark blue (Figure 15). Regarding the first Network (Figure 

13) and comparing with the results from Table 3, it can be noted that the nodes with higher 

betweenness centrality, such as 'ICP', 'MATIC' and 'INJ', are the ones in the larger 
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communities mentioned above, implying that these variables act as connectors for nodes 

that might be distant from each other in terms of shortest paths. 

With respect to the isolated nodes, it can be said that the ones that do not have any 

connection coming in or from it are the ones that correspondingly have zero or very low 

values in the network metrics that were already presented. This could translate into 

cryptocurrencies that are more independent from the rest of the dataset but also lack 

influence on the dynamics of the networks. Examples of these nodes are 'LEO' and 'DAI', 

which are disconnected nodes in all three networks introduced, but also 'USDC' and 

'USDT' that in the first moving window, form a community with only each other and in 

the last networks are separated and act alone in both graphs. 

 

4.2. Discussion 

This project follows the primary procedures as most of the works referenced, in the sense 

that it also employs network theory to analyze financial markets. However, while the 

generality of the other studies applies different methodologies, such as Transfer Entropy, 

Pearson Correlation, and Granger causality tests, to define connections between financial 

assets, mostly stocks, and market indexes, the present work diverges slightly as it focuses 

on the investigation of the relationships in the cryptocurrency market. The fact that the 

dataset used in this analysis differs in various characteristics from datasets used in other 

works implies that the results have a different interpretation, although using similar 

methods.  

In the research made by Wu, Tuo, & Xiong (2015), it is concluded that stocks in the same 

industry often tend to group together, forming the basis of communities, whereas in this 

case, community detection may reflect some market sentiment patterns, giving potential 

insights into how interconnected different segments of the cryptocurrency market are. 

It is also important to mention that, in addition to similar approaches, some of the same 

network metrics were used in these studies, namely Degree Centrality and Betweenness 

Centrality. In agreement with the different interpretations of the outcomes, in this case, a 

high degree of centrality for a cryptocurrency variable could possibly mean that this asset 
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is a leader in the involved market. In contrast, in the cases of traditional assets, this 

significant value could translate into key sectors.  
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Chapter 5. Conclusion 

This study advances our understanding of cryptocurrency market dynamics through 

network analysis, yielding several key findings and implications while acknowledging 

certain limitations. 

Summarizing what has been made, the correlation between 58 cryptocurrencies was 

investigated using the Granger Causality tests and Community Finding methods. This 

analysis was performed using a moving window approach, allowing to grasp the 

dynamics of the cryptocurrency market over the years, more specifically, over 3 years.  

The key findings of this study reveal that these networks show meaningful variations in 

their structure and in the connections among the various nodes that represent the digital 

assets. Analysis of network evolution reveals a significant increase in cryproasset 

interdependencies between February and October 2022. Furthermore, along with the 

Louvain algorithm to detect different communities, the fundamental result is that there is 

a larger number of communities in the later time windows, particularly in the third to last, 

which exhibits a total of 15 distinct communities. 

One of the most practical applications of this study is in portfolio optimization. High 

centrality assets like 'MATIC' may be included as risk-heavy components in an aggressive 

portfolio, while isolated assets like 'DAI' and 'LEO' can provide a hedge against market-

wide movements, serving as risk-averse assets. By utilizing community detection 

insights, practitioners can segment their portfolios into core holdings, risk-on assets, and 

isolated hedges, thus creating a multi-tiered investment strategy that adapts to both short-

term and long-term market fluctuations. 

The main findings of this project provide important insights to investors who deal with 

this type of assets, as they can use them to build diversified portfolios that balance risk 

by grouping high-risk assets with lower-risk hedges and strategically managing exposure 

to potential contagion within the cryptocurrency market. 

Future research directions include: 

• Investigating the impact of external market factors; 

• Extending the analysis to include more or other cryptocurrencies; 

• Developing predictive models based on network metrics; and 
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• Exploring alternative community detection algorithms. 
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