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GLOSSARY 

- Adam – Adaptive Moment Estimation 

- ANN – Artificial Neural Network 

- BSM – Black-Scholes-Merton 

- CBOE – Chicago Board Options Exchange 

- DNN – Deep Neural Network 

- DTE – Days to Expiration 

- FNN – Feedforward Neural Network 

- HV – Historical Volatility 

- IV – Implied Volatility 

- K – Exercise Price or Strike Price 

- MAE – Mean Absolute Error 

- MAPE – Mean Absolute Percentage Error 

- ML – Machine Learning 

- MSE – Mean Squared Error 

- NN – Neural Network 

- RF – Random Forest 

- RMSE – Root Mean Squared Error 

- S – Current Price of the Underlying Asset 

- T – Maturity Date or Expiration Date 

- UMAP – Uniform Manifold Approximation and Projection 
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ABSTRACT 

This thesis explores a novel approach to option pricing by integrating unsupervised 

and supervised machine learning models. The objective is to assess whether these models 

can outperform the traditional Black-Scholes-Merton model and to investigate the effect 

of clustering on prediction accuracy. The analysis uses data from the Ivy DB US database, 

focusing on S&P 500 options traded on the CBOE from December 30, 2019, to December 

30, 2022. The methodology involves applying K-means clustering to segment the dataset, 

followed by training Random Forest and Deep Neural Network models on these clusters. 

The models' performances are then compared against non-clustered machine learning 

models and the BSM model. The results show that the hybrid machine learning approach 

improves option pricing accuracy. Specifically, the Deep Neural Network models achieve 

a median improvement of 39.1%, while the Random Forest models show a median 

improvement of 5.2%. This suggests the potential of integrating advanced clustering 

techniques in financial modeling for more precise option pricing. 

 

KEYWORDS: Option Pricing, Machine Learning, K-Means Clustering, Random 

Forest, Deep Neural Network 

JEL CODES: C45; C53; G1; G12; G17; G23 
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RESUMO 

Esta tese explora uma abordagem inovadora para a precificação de opções, integrando 

modelos de machine learnig supervisionados e não supervisionados. O objetivo é avaliar 

se esses modelos podem superar o modelo tradicional de Black-Scholes-Merton e 

investigar o efeito da clusterização na precisão das previsões. A análise utiliza dados do 

banco de dados Ivy DB US, focando-se em opções do S&P 500 negociadas na CBOE de 

30 de dezembro de 2019 a 30 de dezembro de 2022. A metodologia envolve a aplicação 

da clusterização K-means para segmentar o conjunto de dados, seguida pelo treinamento 

de modelos Random Forest e Deep Neural Network nesses clusters. O desempenho dos 

modelos é então comparado com os modelos de machine learnig não clusterizados e com 

o modelo BSM. Os resultados mostram que a abordagem híbrida machine learnig 

melhora a precisão da precificação de opções. Especificamente, os modelos de Deep 

Neural Network alcançam uma melhoria média de 39,1%, enquanto os modelos Random 

Forest mostram uma melhoria média de 5,2%. Isso sugere o potencial de integrar técnicas 

avançadas de clusterização na modelagem financeira para uma precificação de opções 

mais precisa. 

KEYWORDS: Option Pricing, Machine Learning, K-Means Clustering, Random 

Forest, Deep Neural Network 

JEL CODES: C45; C53; G1; G12; G17; G23 
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1. INTRODUCTION 

The derivatives market is enormous, far larger than the stock market when measured 

in terms of underlying assets. The total value of assets associated with outstanding 

derivatives transactions vastly exceeds the global gross domestic product by several 

multiples (Hull, 2017). 

A derivative is a financial instrument whose value depends (is derived) on the value 

of another variable called "underlying." Often, the underlying variables for derivatives 

are the prices of traded assets (e.g., options on stocks). However, derivatives could be 

based on almost any variable like the amount of rainfall during the summer in Portugal. 

Options have become a mainstay in the derivatives market, experiencing steady 

growth in trading volume over the past few decades. Below we can see the growth in time 

of Total Volume and Open Interest by Year for Options that have the S&P 500 as 

underlying asset and that are traded in the Chicago Board Options Exchange (CBOE). 

 

Figure I S&P 500 Options: Total Volume and Open Interest by Year 

 

An option is a derivative financial instrument that gives the holder the right, but not 

the obligation, to buy or sell an underlying asset, (such as bonds, stocks, indices, 
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commodities, etc.) at a predetermined price, known as exercise price or strike price, by a 

specific date referred to as the maturity days. 

Options are primarily classified into two categories: Plain Vanilla and Exotic. Plain 

Vanilla options are standard options, while exotic options are instruments with more 

complex features, often used to obtain specific tailor-made solutions. Plain Vanilla 

options are further divided into two main categories: Call and Put. 

Call options give the possibility, but not the obligation, to purchase the right to buy 

the underlying S at the exercise price K by the expiration T. The maximum profit at 

expiration for a long call will be given by max (𝑆 − 𝐾, 0), while for a short call it will be 

equal to min (𝐾 − 𝑆, 0). 

Put options give the possibility, but not the obligation, to purchase the right to sell the 

underlying S at the exercise price K by the expiration T. The maximum profit at expiration 

for a long put will be given by max (𝐾 − 𝑆, 0), while for a short put it will be equal to min 

(𝑆 − 𝐾, 0). 

Besides the distinction between call and put, plain vanilla options also differ by the 

type of exercise: 

• European: the buyer has the right to exercise the option only at expiration. 

• American: the buyer has the right to exercise the option at any time within the 

expiration. 

A curious anecdote told by Aristotle in the book “The Politics Book I” recounts what 

may perhaps be defined as the first use of an option. It is told that the philosopher Thales 

of Miletus, to demonstrate the utility of knowledge, predicted that there would be an 

extraordinary olive crop, and in the hearth of winter invested what little he had to secure 

the rights to all the olive presses in Miletus and Chios at a very low price, since no other 

bidder stepped forward. When the olive season came, many farmers were in search of the 

presses, and he was able to rent them out at the price he wanted. As we can see, the use 

of "options" dates back several centuries. However, despite their long history, 

determining the fair value of an option remains a complex question. 

Notable efforts to answer this question include the work of Black and Scholes, (1973), 

where in an article titled The Pricing of Options and Corporate Liabilities, published in 
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the Journal of Political Economy, proposed a closed solution for the valuation of 

European options, later in the same year Merton, (1973) in Theory of Rational Option 

Pricing published in The Bell Journal of Economics and Management Science a modified 

version that gave us what we call today the famous Black-Scholes-Merton (BSM) model. 

The objective of this thesis is to develop and evaluate a novel approach for option 

pricing using a combination of unsupervised and supervised non-parametric machine 

learning models. Specifically, we will employ K-means clustering to segment the 

datasets, followed by training Random Forest (RF) and Deep Neural Network (DNN) 

models on the resulting clusters. This hybrid approach aims to determine whether these 

machine learning algorithms can outperform the Black-Scholes-Merton (BSM) model 

and to study whether the inclusion of unsupervised clustering can improve the predictive 

accuracy of these models. Comparing the clustered machine learning and non-clustered 

models, and the BSM model could provide insights into the efficacy of these new methods 

and their potential to enhance option pricing accuracy in the evolving financial landscape. 

This dissertation is structured as follows. Chapter 2 reviews the existing literature on 

the subject, identifying and synthesizing previous research. Chapter 3 explains the BSM 

model and explores the three machine learning models: K-means clustering, RF, and 

DNN. Chapter 4 introduces the database and explains its processing for usability by our 

models. Finally, Chapter 5 synthesizes the results, providing a clear comparison of the 

models' performances.  

 

2. LITERATURE REVIEW 

2.1. Parametric Models 

A critical understanding of the Black-Scholes model's assumptions is crucial before 

delving into related research. This initial analysis will help us identify potential 

limitations and how researchers tried to develop new extensions and new formulations 

over the years that seek to incorporate the greater complexity of real world. 

The assumptions are the no-arbitrage conditions, meaning that the market already 

reflect the fair price of the option and it would not be possible to achieve risk-free profits 

through a trading strategy. Perfectly liquid markets with the absence of transaction costs 
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were assumed, as well as constant short-term interest rate. The underlying asset price 

following a random walk with a constant expected return rate and volatility and without 

any dividend payment.  

Previously, we mentioned that Merton, (1973) modified the original Black-Scholes 

formula including the possibility of dividend payments, among other alternative 

approaches for options pricing we can find: Local Volatility Models like Schroder, (1989) 

allowed volatility to vary based on the underlying asset price, better capturing the 

observed volatility smile. Stochastic Volatility Models like Hull and White, (1987) and 

Heston, (1993) where volatility itself becomes a random variable, reflecting changing 

market conditions. Statistical Series Expansion Models, such as Corrado and Su, (1996) 

which used mathematical series to approximate option prices, offering more flexibility 

but with greater computational complexity. Models with Jumps like Bates Model, (1996): 

an integration of the Merton Jump-Diffusion Model with the Heston model of stochastic 

volatility. This combination allows it to account for both sudden jumps in asset prices and 

the random fluctuation in volatility, 

 

 

 

 

2.2 Non-Parametric Models 

Despite the power of the most recent parametric models briefly described in the 

previous paragraph, they still rely on some certain economic and statistical assumptions, 

like no-arbitrage, and market completeness. Furthermore, these models do not offer a 

closed-form solution for the valuation equation, necessitating an optimization process that 

can be computationally costly. 

To overcome these problems and have more flexibility, non-parametric models using 

Machine Learning (ML) have been developed. Starting from the study of Hutchinson et 

al., (1994) where is assessed the potential value of network pricing formulas by simulating 

BSM option prices and demonstrating that learning networks can effectively approximate 

these formulas. Other studies related to option pricing using non-parametric method are: 
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Amilon, (2003) that applied Neural Network (NN) on the Swedish Stock Index call 

options. Gradojevic et al., (2009) where it has been shown that clustering by time to 

maturity and moneyness can improve the performance of a Modular Neural Network. 

More recent contributions include the works of Gaspar et al., (2020) where it has been 

created a NN that receive as an input also the average put options price per company of 

the training set, to make the learning process for pricing American put options faster.  

Ivașcu, (2021) that tested several ML algorithm to price European call options who have 

as underlying asset the WTI crude oil future contracts. Bastos, (2024) where using 

conformal quantile regression applied to gradient boosting machines shows that is 

possible to quantify uncertainty in option price predictions. 

 

3. MODELS DESCRIPTION 

3.1 The Black-Scholes-Merton Model 

As we previously introduced, Black and Scholes, (1973) provided a closed-form 

solution to the problem of pricing European options using the parabolic partial differential 

equation (PDE) presented below:  

 𝜕𝑓

𝜕𝑡
+

1

2
 𝜎2𝑆2

𝜕2𝑓

𝜕𝑆2
+ 𝑟𝑆 

𝜕𝑓

𝜕𝑆 
− 𝑟𝑓 = 0 , (1) 

where: 

 S represents the current price of the underlying asset; 

 t denotes the time; 

  measures the volatility of the underlying asset's price; 

 r risk-free rate; 

Remembering that model operates under several key assumptions: 

 There are no dividends paid during the lifetime of the derivative. 

 Trading of securities is continuous. 

 The risk-free interest rate is constant and uniform for all durations. 

 Securities are infinitely divisible with no taxes or transaction costs. 

 There are no opportunities for riskless arbitrage in the market. 
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 The stock price follows a Geometric Brownian motion with andconstant, 

defined as follow: 

 𝑑S = μS𝑑𝑡 + 𝜎𝑆𝑑𝑧 , (2) 

where: 

  is the expected return rate of the underlying asset; 

 σ is the volatility of the underlying asset; 

 dz is a Wiener process or standard Brownian motion. 

 Sdt is the drift of the underlying; 

 Sdz is the stochastic term. 

For a European Call option with time to maturity T > 0 and exercise price K > 0, at 

time T, also known as "at maturity", f(S, T) = max(𝑆 − 𝐾, 0). If 𝑆 tends to +∞, then f(S, t) 

will tend to +∞, because the value of the option will be dominated by the stock price. If 

𝑆 tends to 0, then f(𝑆, 𝑡) ≈ 0, because it would not make sense to buy at a price K > 0 a 

stock that is worth 0. 

For a European Put option with time to maturity T > 0 and exercise price K > 0, at 

time 𝑇, f(𝑆, 𝑇) = max(K – S, 0). If 𝑆 tends to +∞, then f(𝑆, 𝑡) ≈ 0, because it would not 

make sense to sell a stock at a price K < S when its value is potentially infinite. If S tends 

to 0, then f(𝑆, 𝑡) ≈ 𝐾𝑒−𝑟(𝑇−𝑡), which is the present value of its exercise price. 

 

For Call: 

 𝐶(𝑆, 𝑡) = 𝑆𝑒−𝑞(𝑇−𝑡)(𝑑1) − 𝐾𝑒−𝑟(𝑇−𝑡)(𝑑2) , (3) 

for Put: 

 𝑃(𝑆, 𝑡) = 𝐾𝑒−𝑟(𝑇−𝑡)(−𝑑2) −  𝑆𝑒−𝑞(𝑇−𝑡)(−𝑑1),   (4) 

where: 

 𝐶(S,𝑡) is the price of the call option at time 𝑡; 

 𝑃(𝑆,𝑡) is the price of the put option at time 𝑡; 

 𝑆 is the current price of the underlying asset; 
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 𝑞 indicates dividends; 

 𝐾 is the exercise price of the option; 

 𝑇 is the expiration of the option; 

 𝑟 is the risk-free interest rate; 

 Φ is the normal cumulative distribution function. 

With 𝑑1 and 𝑑2 respectively: 

 
𝑑1 =  

ln (
𝑆
𝐾) + (𝑟 − 𝑞 +

𝜎2

2 ) (𝑇 − 𝑡)

σ√𝑇 − 𝑡
,  

(5) 

 𝑑2 =  𝑑1 − σ√𝑇 − 𝑡  . (6) 

 

3.2  Unsupervised and Supervised Machine Learning algorithms 

Supervised learning leverages the power of labelled datasets. These datasets contain 

features, which are the input variables, and labels, which represent the desired output or 

target variable. Each data point acts as a training example, providing a clear pairing of 

input and its corresponding correct response. The core objective of supervised learning is 

to establish a mapping function based on this training data, allowing the model to predict 

the output for entirely new inputs. Essentially, the model learns to map unseen features 

to their corresponding labels. The success of a supervised learning model hinges on 

minimizing the error between its predictions and the true labels. 

Unsupervised learning, on the other hand, tackles the challenge of unlabelled data. 

Here, the focus shifts from predicting specific outputs to uncovering inherent patterns and 

relationships within the data itself. Unsupervised learning algorithms primarily rely on 

clustering techniques to group similar data points together, revealing hidden structures 

and providing valuable insights into the underlying organization of the data. Specifically, 

for this work, we employed the K-Means Clustering model, Random Forest (RF) and 

Deep Neural Network (DNN). 
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3.2.1 K-Means Clustering 

The K-Means algorithm partitions a dataset of N-dimensional observations into k 

clusters. Originally introduced by MacQueen, (1967) and enhanced by Lloyd, (1982) it 

aims to minimize the within-cluster variance, grouping similar observations together. 

Notation: 

 k: number of clusters; 

 Si: the set of points in cluster i; 

 i: the centroid of cluster i; 

 Z: the dataset;  

 z: random point of the dataset in ℝ𝑑 (d-dimensional space); 

 W(S) the within-cluster variance defined as: 

 

𝑊(𝑆)  = ∑ ∑ |𝑧  −  𝜇𝑖|2 

𝑧 ∈ 𝑆𝑖  

 

𝑘 − 1

𝑖= 0 

.  (7) 

The (7) is the function to minimize, where |𝑧  −  𝜇𝑖| represents the Euclidean distance 

between a point z and the centroid i. To minimize it, the algorithm follows these steps 

and uses the k-means++ method by Arthur and Vassilvitskii, (2007), to improve the 

initialization process. 

Steps: 

 Select the optimal number of clusters k; 

 Initialize the centroid i by selecting random observation z from the dataset; 

 Calculate the distance D(z) as: 

 𝐷(𝑧) = min
𝑖∈{0,…𝑘−1}

|𝑧  −  𝜇𝑖| , (8) 

then, for each point z, P(z) is computed, indicating the probability of being chosen as 

the next centroid: 

 
𝑃(𝑧) =

𝐷(𝑧)2

∑ 𝐷(𝑧)2
𝑧 ∈ Z

 , (9) 

this process is repeated until k centroids are chosen. 

The next step is to assign z to the cluster Si such that |𝑧  −  𝜇𝑖| is minimized. 
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At the end for each Si is recalculated the centroid i as the mean of all point assigned 

to the cluster: 

 


𝑖
=

1

|𝑆𝑖|
 ∑ 𝑧

𝑧 ∈𝑆𝑖

 ,  (10) 

where |Si| is the number of observations in the cluster. 

 By following these steps and using the k-means++ method for initialization, the 

algorithm iteratively assigns points to clusters and recomputes centroids until 

convergence (centroids no longer change significantly). 

 

3.2.2 Random Forest 

The Random Forest model, developed by Breiman, (2001), is a supervised learning 

algorithm that operates on the "divide and conquer" principle. It is based on ensemble 

learning, specifically aggregating various decision tree models to enhance stability and 

accuracy of predictions. The input data are divided into groups, and a decision tree is 

created for each group, the results then are aggregated to make a single prediction. It was 

demonstrated that growing trees in random subspaces helps tackle overfitting and 

improves model generalization (Ho, 1995). Random Forest is highly well known for its 

predictive accuracy and its ability to handle vast amounts of data in a multi-dimensional 

space with minimal calibration parameters required for both regression and classifications 

problems. Understanding Random Forests requires familiarity with two key components: 

 Bagging (Bootstrap Aggregation): Bagging creates new datasets by sampling 

(with replacement) from the original data. Each new dataset (called a bootstrap 

sample) trains a separate decision tree. Finally, the predictions from all trees are 

averaged for regression problems or a majority vote is taken for classification 

problems (Breiman, 1996). 

 CART (Classification and Regression Trees): The CART algorithm guides the 

construction of each tree, where at each node it finds the optimal split by 

minimizing a specific criterion. This criterion is Gini impurity for classification 

tasks and Mean Squared Error (MSE) for regression tasks (Breiman et al., 1984). 
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Each tree in a Random Forest starts with a root node containing a bootstrap sample of 

the training dataset. For a given node, using a variant of the CART, the split is chosen by 

selecting the feature and the split-point that minimize the MSE (for regression) following 

the formula: 

 
𝑀𝑆𝐸 = min

𝑗,𝑡
(
𝑁𝑙𝑒𝑓𝑡

𝑁
𝑀𝑆𝐸𝑙𝑒𝑓𝑡 +

𝑁𝑟𝑖𝑔ℎ𝑡

𝑁
𝑀𝑆𝐸𝑟𝑖𝑔ℎ𝑡) ,  (11) 

where 𝑗 is a feature, 𝑡 is the threshold, 𝑁 is the total number of samples at the node, and 

𝑁left and 𝑁right are the numbers of samples in the left and right subsets formed by the split. 

To evaluate the impurity within a single node the MSEnode is computed as follows: 

 
𝑀𝑆𝐸𝑛𝑜𝑑𝑒 =

1

𝑁𝑛𝑜𝑑𝑒
 ∑ (𝑦𝑖 − �̅�𝑛𝑜𝑑𝑒)2

(𝑖 ∈ 𝑛𝑜𝑑𝑒)

 ,  (12) 

where �̅�𝑛𝑜𝑑𝑒  node is the average of the target values in the node. 

When a node can no longer be effectively split, it becomes a leaf node. In the leaf nodes, 

the predicted value for a new observation is determined by the average of the target values 

within that node. 

Considering 𝜉 as a vector of random variables, where each random variable 

corresponds to a choice in the construction of the tree (e.g., which indices are chosen for 

the bootstrap sample, and which features are selected at each split). For a given vector x 

(containing the information of a single observation), every tree in the forest produces 

a prediction; the average of these predictions is the forest prediction, and this is described 

by: 

 

ℎ𝑓𝑜𝑟𝑒𝑠𝑡(𝑥) =
1

𝐾
∑ ℎ𝑘(𝑥, )

𝐾

𝑘=1

 ,  (13) 

where ℎ𝑘(𝑥, ) is the prediction from the 𝑘-th tree, built with the random vector 𝜉k. 
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Figure II Random Forest Regression 

 

 

 

3.2.2 Deep Neural Network 

Artificial Neural Networks (ANNs) are systems inspired by the biological neural 

networks of animal brains. The structure of the “neuron” was firstly introduced by 

McCulloch and Pitts (1943), then an early implementation of a NN was presented by 

Rosenblatt, (1958). The structure of our ANN is called Feedforward Networks, because 

the input layer, comprised of source nodes, feeds data forward to the output layer 

containing computation nodes and there are no connections carrying information back 

from the output layer (Haykin, 2009). 

We can summarize a simple ANN structure as follows: 

Neurons: Basic units of computation, receives the input, processes it and passes the 

output to the next layer.  

Layers:  

 Input Layer: first layer which has the role of receiving the unprocessed input 

data. 
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 Hidden Layers: intermediate layers composed of several neurons that process 

inputs from the previous layer. There can be one or multiple hidden layers. 

The name “Deep” derives from the number of hidden layers the ANN has. 

 Output Layer: the final layer that produces the output of the network. 

The way neurons process the information received is through functions called 

activation functions, these are divided into linear and non-linear. 

Some of the most known activation functions are:  

 Identity 𝑓(𝑥) = 𝑥 ; 

 Sigmoid (σ) 𝑓(𝑥) =
1

1+𝑒−𝑥 ; 

 Hyperbolic Tangent (tanh) 𝑓(𝑥) =
𝑒𝑥−𝑒−𝑥

𝑒𝑥+𝑒−𝑥 ; 

 Rectified Linear Unit (ReLu) 𝑓(𝑥) = max(𝑥, 0). 

The universal approximation theorem states that a feedforward neural network with 

at least a single hidden layer and non-linear activation function containing a finite number 

of neurons can approximate any continuous function on a compact subset of ℝ𝑛 

(Cybenko, 1989 and Hornik, 1991). 

The process to train a FNN is through backpropagation concept introduced by 

Rumelhart et al., (1986), following we will show how a simple FNN is trained,but first 

let’s clarify the notation we will use: 

 n = input layer’s number of neurons;  

 h = hidden layer’s number of neurons; 

 m = output layer's number of neurons; 

 x: Input vector of size n; 

 W(1): Weight matrix between the input and hidden layer, of size h×n; 

 b(1): Bias vector for the hidden layer, of size h; 

 a(1): Activation vector for the hidden layer, of size h; 

 W(2): Weight matrix between the hidden layer and output layer, of size m×h; 

 b(2): Bias vector for the output layer, of size m; 

 a(2): Activation vector for the output layer (output of the network), of size m; 

  regularization parameter; 
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 y: Target output vector of size m; 

 L: Loss function; 

 ⊙: Hadamard product; 

 η: learning rate. 

Figure III will help us to visualize the structure of a simple DNN: 

Figure III DNN simple structure 

 

Starting from the first layer the information pass from the input layer to the hidden layer, 

it is computed the weighted sum of the input plus a constant called bias and it’s applied 

the activation function selected (σ): 

 𝑧(1) = 𝑊(1)𝑥 + 𝑏(1) ,  (14) 

 𝑎(1) =  𝜎(𝑧(1)) . (15) 

Same process happens to pass information between the hidden layer and the output 

layer, where in the case of regression the activation function will be an identify function 

(ϕ): 
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 𝑧(2) =  𝑊(2)𝑎(1) + 𝑏(2), (16) 

 𝑎(2) =  𝜙(𝑧(2)) . (17) 

After this process is completed, the loss function is calculated (in case of regression 

task MSE is used), which is the difference between the network prediction and the actual 

target value, to prevent overfitting we also introduce the Ridge Regularization (L2) that 

will add a penalty term equal to the sum of the squared values of the weights: 𝜆 ∑ 𝑊𝑗
2  𝑗  

 

𝐿 =
1

𝑁
∑(𝑎𝑖 − 𝑦𝑖 )2

𝑁

𝑖=1

+ 𝜆 ∑ 𝑊𝑗
2 .

𝑗

  (18) 

This is where the mechanism of backpropagation comes in to try to improve the 

prediction power of the model. Using the chain rule of calculus, the network calculates 

the gradients of the loss function with respect to each weight and bias. There are two 

primary processes involved in this process: compute error and spread them throughout 

the network: 

The Output Layer error:  

 𝛿(2) = 𝑎(2) − 𝑦  ,  (19) 

and the Hidden Layer Error: 

 𝛿(1) = (𝑊(2))
𝑇

𝛿(2) ⊙  𝜎′(𝑧(1)) . (20) 

The first part of the equation (𝑊(2))
𝑇

𝛿(2) represents the error propagated back to the 

hidden layer. The second part 𝜎′(𝑧(1)), is the derivative of the activation function at the 

hidden layer indicating how the activation function at this stage responds to changes in 

its input. 

Once the layer errors are computed, the next step is to calculate the gradients, which 

indicate how much each parameter should be adjusted to minimize the loss: 

 ∂L

∂W(2)
= 𝛿(2)(𝑎(1))

𝑇
+ 𝜆𝑊(2) ; (21) 

 ∂L

∂b(2)
= 𝛿(2); (22) 
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 ∂L

∂W(1)
=  𝛿(1)(𝑥)𝑇 +  𝜆𝑊(1) ; (23) 

 ∂L

∂b(1)
= 𝛿(1) . (24) 

With the gradients computed, we can then update the weights and biases as: 

 
𝑊(2) =  𝑊(2) −  𝜂

∂L

∂W(2)
 ; (25) 

 
𝑏(2) =  𝑏(2) −   𝜂

∂L

∂b(2)
 ; (26) 

 
𝑊(1) =  𝑊(1) −  𝜂

∂L

∂W(1)
 ; (27) 

 
𝑏(1) =  𝑏(1) −   𝜂

∂L

∂b(1)
 . (28) 

Among the different optimisation methods, we used Adam optimiser introduced by 

Kingma et al, (2014). Adam stands for Adaptive Moment Estimation, and it combines 

other two methods AdaGrad and RMSProp. It works maintaining and updating the 

moving averages of both gradients and their squares. 

The algorithm uses the following parameters: 

 m0: first moment vector; 

 v0: second moment vector; 

 t = 0 initial timestep; 

 β1 = 0.9 and β2 = 0.99: Exponential decay rates for the moment estimates ; 

 ε: small constant to prevent division by zero; 

 gt : the gradient of the loss function at timestep t. 

For each iteration t it will update the parameters: 

Update the mean of gradients vector mt and compute the bias-corrected first moment 

estimate �̂�𝑡: 

 mt =  β1mt−1 + (1 −  β1)gt  ,    �̂�𝑡 =
𝑚𝑡

1 − 𝛽1
𝑡   (29) 
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Update of the uncentered variance of gradients vector vt and compute the bias-

corrected second moment estimate 𝑣𝑡: 

 vt =  β2vt−1 + (1 −  β2)gt
2 ,    𝑣𝑡 =

𝑚𝑡

1 − 𝛽2
𝑡  , (30) 

parameters update: 

 
𝜃𝑡 =  𝜃𝑡−1 − 𝜂

�̂�𝑡

𝜀 + √𝑣𝑡

 . (31) 

 

4. DATA AND METHODOLOGY 

This research utilized data extracted from the Ivy DB US database by OptionMetrics 

present in the Wharton Research Data Service. The dataset comprises options (secid: 

108105) with the S&P 500 as the underlying asset, spanning the period from January 1, 

2018, to December 31, 2022. 

In details the following datasets have been combined: Option Prices, Zero Coupon 

Yield Curve, Index Dividend Yield, Security Prices, Historical Volatility. 

The Option Prices dataset contains 21,242,363 rows and has the following variables: 

Date showing the date of the observation. Expiration Date indicating the date when the 

option will expire. Cp_flag to distinguish Call and Put. Strike price. Best bid and best ask 

captured at 15:59 ET to better synchronize the option price with the underlying close. 

Volume indicating the total volume of option contracts. Open Interest lagged by one day, 

indicating the number of total contracts outstanding. Implied Volatility derived by 

numerically inverting the Black-Scholes formula, using the midpoint of the best bid and 

best offer closing price as the theoretical price. 

The Zero-Coupon Yield Curve dataset contains 47,659 rows and has the following 

variables: Date showing the date of the observation. Days, showing the number of days 

to maturity. Rate, the continuously compounded zero-coupon interest rate. The structure 

is obtained enforcing the put-call parity relationship and by utilizing box spreads, a 

combination of bull call spread and a bear put spread, that involves to buying and selling 

calls and puts with the same expiration date but different strike prices. 



 

17 

 

The Index Dividend Yield dataset contains 1,259 rows and has the following 

variables: Date showing the date of the observation, and Dividend Yield. OptionMetrics 

for index options assumes that the security pays dividends continuously according to a 

continuously compounded dividend yield. The implied index dividend is calculated 

assuming a relationship of put-call parity through a linear regression model. 

In this model, the difference 𝐶−𝑃 between call and put option prices uses the bid price 

of the call and the offer price of the put, and vice versa. The regression uses three months 

of option data, excluding contracts with less than 15 days to expiry. 

The Security Prices dataset contains 1,259 rows and has the following variables: Date 

showing the date of the observation. Spot close, showing the closing price for the security 

on this date. 

The Historical Volatility dataset contains 16,367 rows and has the following 

variables: Date showing the date of the observation. Days, the number of days included 

in the calculation. Volatility, the realized volatility for different timeframes (we will use 

the 30 and 60 days). 

Integration of the datasets was primarily conducted through date matching. However, 

the Zero-Coupon Yield Curve dataset required a distinct approach, being merged with the 

other datasets through linear interpolation based on varying short-term yield rates across 

different dates. 

Various filters were applied to the datasets to ensure data quality and relevance. 

Specifically, the maturity dates for the options ranged from 14 to 252 days, covering the 

period from December 30, 2019, to December 30, 2022. To exclude illiquid options, a 

minimum volume threshold of 20 contracts per option was established. Additionally, 

implied volatility was capped at 0.8 for consistency. Recognizing the impact of dataset 

size on machine learning model performance, an equal number of observations for both 

call and put options were ensured for fair comparison. Consequently, 304 observations 

per day were selected for both call and put options datasets. As a result, we obtained two 

datasets: one for call options and one for put options, each containing 230,432 

observations. Additionally, four more datasets were created in which Implied Volatility 

(IV) was replaced with 30- and 60-day Historical Volatility (referred to as 30d-HV and 

60d-HV or HV30 and HV60). This change was made to avoid potential data leakage for 
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the machine learning models, as IV is derived from the inverse Black-Scholes-Merton 

(BSM) model using market prices. This may lead to losing information regarding the 

option’s specific volatility, especially considering the volatility smile phenomenon where 

options that are deep in-the-money or out-of-the-money generally have higher implied 

volatilities than at-the-money options. 

All our models employed a random split of 80/20 between the training and test sets, 

setting a seed to ensure reproducibility. In addition, the Deep Neural Network Model 

added another split of 20% of the training set for the validation set. After standardizing 

the variables, we ran the RF and the DNN first without applying any kind of clustering 

technique, where our machine learning models had price as the target and used the 

standard variables of the BSM model (S, K, r, σ, DTE, q) as features. The performance 

of these models was evaluated on the test set using various metrics, including Mean 

Squared Error (MSE), Root Mean Squared Error (RMSE), Mean Absolute Error (MAE), 

and Mean Absolute Percentage Error (MAPE). Then we used the Calinski-Harabasz score 

and the Elbow Method to decide the optimal number of clusters for the six datasets. 

 

Figure IV Calinski-Harabasz Score 
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Figure V Elbow Method 

For the call datasets, both methodologies found that the best number of clusters was four. 

For the put datasets, the two methods gave us different best numbers of clusters; 

specifically, the Elbow Method showed the best number of clusters to be four, while the 

Calinski-Harabasz score showed six as the best number of clusters for the Puts IV datasets 

and four for the 30d-HV and 60d-HV datasets. Therefore, we decided to proceed using 

four clusters for all the datasets. Subsequently, we applied K-Means clustering to the 

training data to group observations into clusters. We then trained a separate supervised 

ML model for each cluster.  

The Random Forests had a unique parameter manually selected, which specifies the 

number of trees used by the model to make predictions set at 100. This algorithm has the 

characteristic of being robust to overfitting, in simple words: the ability of the model to 

adapt to the details and noise of the training set too well, becoming ineffective in 

predicting unseen data. An elevated number of trees will then lead to reaching a plateau 

where the model will not improve performance, but will take longer to finish execution. 

The DNN was built with an input layer to receive the features, in addition to two 

hidden layers, each with 64 neurons, and an output layer. To avoid overfitting, all layers 

except the input layer had L2 regularization with a regularization strength equal to 0.01 

and early stopping set to five, which would stop the execution if the validation set did not 
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show improved performance for five consecutive epochs. The number of epochs for each 

model was set to 40, representing the number of times the learning algorithm will work 

through the full dataset during the training process, and the batch size was set to 32, 

determining how many samples are processed before the model's internal parameters are 

updated. In order to avoid data leakage, the performance of these models was evaluated 

on the test dataset by assigning each test observation to its respective cluster using a pre-

trained K-Means clustering model. The corresponding cluster-specific supervised ML 

model was then used to make predictions. The evaluation metrics for these clustered 

models were also recorded. We conducted an analysis of the centroids on the original 

scale to understand the characteristics of each group and check the features importance 

range. Additionally, to determine if the clustering method has created groups that are 

statistically distinct based on their feature values, we performed ANOVA test. If the 

variance between clusters is significantly higher than the variance within clusters, the 

feature is considered significant. 

The following images will summarize the workflow previously explained. 

Figure VI Hybrid Machine Learning Workflow 

The pink lines show the flow of the training data, while the green lines indicate the 

flow of the test data. The black dashed lines depict the model's status change from 

untrained to trained. Finally, the blue line represents the flow of the test data for 

evaluation. 
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5.  RESULTS  

After having presented in the previous chapters the theoretical foundations and 

detailed workings of the models and the data used, it is time to see whether RF and DNN 

performed better than BSM model, and if the K-means clustering technique had an impact 

on improving their performance. Additionally, we will go deeper into cluster centroid 

analysis that will provide insights into the clustering results. 

 

5.1 Model Performance Comparison 

Since these metrics can exhibit bias—such as Mean Squared Error (MSE), which is 

particularly sensitive to outliers due to the squaring of errors, and Mean Absolute 

Percentage Error (MAPE), which can be disproportionately impacted by values close to 

zero because it involves division by the actual values—we decided to use all the following 

metrics: 

 Mean Squared Error (MSE): 

 
𝑀𝑆𝐸 =  

1

𝑛
∑(𝑦𝑖 − 𝑦�̂�)

2

𝑛

𝑖=1

 (32) 

 Root Mean Squared Error (RMSE): 

 

𝑅𝑀𝑆𝐸 =  √
1

𝑛
∑(𝑦𝑖 − 𝑦�̂�)2

𝑛

𝑖=1

 (33) 

 Mean Absolute Error (MAE): 

 
𝑀𝐴𝐸 =  

1

𝑛
∑ |𝑦𝑖 − 𝑦�̂�|

𝑛

𝑖=1

 (34) 

 Mean Absolute Percentage error (MAPE): 

 
𝑀𝐴𝑃𝐸 =

1

𝑛
∑ [

𝑦𝑖 − 𝑦�̂�

𝑦𝑖
]  ∗  100

𝑛

𝑖=1

 (35) 
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By employing multiple evaluation metrics, we aim to achieve a more comprehensive and 

clearer understanding of the model's performance, ensuring that the assessment is 

balanced and takes various potential biases into account. 

 

TABLE I MODEL PERFORMANCE COMPARISON. 

Model Performance Comparison Table presents: Mean Squared Error (MSE), Root Mean Squared Error 
(RMSE), Mean Absolute Error (MAE), and Mean Absolute Percentage Error (MAPE) comparison across 

different machine learning models for option pricing. The models are ranked based on their MSE values. 

Values highlighted in green show better performance, while values highlighted in red show worse 

performance. 

 

In Table I, the cells in green represent lower values for each metric, indicating better 

model precision, while the cells in red highlight models with worse performance. We 

observe that the models which performed better overall, particularly in terms of MSE, are 

the Deep Neural Networks (DNNs). Specifically, the DNN with Clustering Calls IV and 

DNN with Clustering Puts IV datasets showed superior performance 

Model MSE RMSE MAE MAPE

DNN with Clustering Calls IV dataset 1.98                       1.41                       0.79                 19.12                    

DNN with Clustering  Puts IV dataset 3.07                       1.75                       0.90                 11.03                    

DNN Calls IV dataset 5.79                       2.41                       0.83                 35.84                    

DNN Puts IV dataset 6.34                       2.52                       0.92                 20.49                    

DNN with Clustering  Calls 30d-HV dataset 28.47                    5.34                       3.29                 52.52                    

DNN with Clustering  Calls 60d-HV dataset 31.88                    5.65                       3.46                 40.96                    

DNN with Clustering  Puts 30d-HV dataset 34.85                    5.90                       3.35                 25.26                    

Random Forest with Clustering Calls 60d-HV dataset 40.75                    6.38                       2.78                 9.60                       

Random Forest with Clustering Calls 30d-HV dataset 41.41                    6.44                       2.82                 10.00                    

Random Forest Calls 60d-HV dataset 41.44                    6.44                       2.74                 10.30                    

Random Forest Puts 60d-HV dataset 42.43                    6.51                       2.48                 7.32                       

DNN with Clustering  Puts 60d-HV dataset 43.17                    6.57                       3.78                 24.50                    

Random Forest Calls 30d-HV dataset 45.36                    6.73                       2.74                 10.17                    

DNN Puts 60d-HV dataset 47.10                    6.86                       3.98                 43.55                    

DNN Puts 30d-HV dataset 47.29                    6.88                       3.97                 42.81                    

Random Forest Puts 30d-HV dataset 48.39                    6.96                       2.45                 7.36                       

DNN Calls 60d-HV dataset 48.99                    7.00                       4.34                 100.29                 

Random Forest with Clustering Puts IV dataset 50.05                    7.07                       2.58                 8.34                       

DNN Calls 30d-HV dataset 50.20                    7.09                       4.65                 100.83                 

Random Forest with Clustering Puts 60d-HV dataset 52.91                    7.27                       2.45                 7.14                       

Random Forest with Clustering Calls IV dataset 54.37                    7.37                       2.81                 25.07                    

Random Forest Calls IV dataset 71.17                    8.44                       2.92                 53.94                    

Random Forest with Clustering Puts 30d-HV dataset 71.44                    8.45                       2.47                 7.21                       

Random Forest Puts IV dataset 84.84                    9.21                       2.70                 8.35                       

BSM Puts 60d-HV dataset 2,138.49            46.24                    24.11              67.94                    

BSM Puts 30d-HV dataset 2,222.80            47.15                    24.14              64.11                    

BSM Calls 30d-HV dataset 4,341.70            65.89                    35.43              293.47                 

BSM Calls 60d-HV dataset 4,685.00            68.45                    36.25              335.87                 
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To evaluate whether the introduction of the clustering technique enhanced model 

performance, we compute the difference Δ between the performance metrics of the same 

models with and without clustering, as presented in the following table.  

 

TABLE II CLUSTERING EFFECT ON MODELS' PERFORMANCE 

The table presents the differences (Δ) in MSE, RMSE, MAE, and MAPE. The models evaluated include 
Deep Neural Networks (DNN) and Random Forest (RF), both with and without clustering, across datasets 

for Calls and Puts with different volatility measures (IV and HV). A positive Δ indicates that clustering has 

improved the model's performance (cells in green), if clustering did not significantly improve the model -

0.5 < Δ < 0.5 (cells in yellow). Negative Δ means that clustering has worsened the model’s performance 

(cells in red). 

  

Overall K-Means clustering technique improved all the DNN models’ performance. 

Random Forest show mixed results, where clustering enhances performance for some 

datasets, but decreases performance for others (RF Puts 30-and-60 days HV datasets). 

As the second step to evaluate the performance of our models we conducted a residual 

analysis. From Figure VII, it is evident that the ML models are performing better than 

Model DMSE DRMSE DMAE DMAPE

DNN Calls IV dataset

DNN with Clustering Calls IV dataset 3.81      1.00          0.04       16.72        

DNN Calls 30d-HV dataset

DNN with Clustering  Calls 30d-HV dataset 21.73   1.75          1.35       48.31        

DNN Calls 60d-HV dataset

DNN with Clustering  Calls 60d-HV dataset 17.11   1.35          0.89       59.33        

DNN Puts IV dataset

DNN with Clustering  Puts IV dataset 3.27      0.77          0.02       9.46           

DNN Puts 30d-HV dataset

DNN with Clustering  Puts 30d-HV dataset 12.43   0.97          0.62       17.54        

DNN Puts 60d-HV dataset

DNN with Clustering  Puts 60d-HV dataset 3.93      0.29          0.20       19.05        

Random Forest Calls IV dataset

Random Forest with Clustering Calls IV dataset 16.79   1.06          0.10       28.87        

Random Forest Calls 30d-HV dataset

Random Forest with Clustering Calls 30d-HV dataset 3.95      0.30          0.08-       0.18           

Random Forest Calls 60d-HV dataset

Random Forest with Clustering Calls 60d-HV dataset 0.69      0.05          0.04-       0.70           

Random Forest Puts IV dataset

Random Forest with Clustering Puts IV dataset 34.79   2.14          0.12       0.01           

Random Forest Puts 30d-HV dataset

Random Forest with Clustering Puts 30d-HV dataset 23.04-   1.50-          0.02-       0.15           

Random Forest Puts 60d-HV dataset

Random Forest with Clustering Puts 60d-HV dataset 10.48-   0.76-          0.03       0.18           
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BSM. They are centered around zero, showing low variability, with a narrow interquartile 

range. This analysis also highlights the significant improvement in the DNN models due 

to the clustering method, while RFs are showing less improvement given by K-Means. 

Additionally, it reveals the tendency of the BSM models to underprice both call and put 

options, whereas the Random Forest models slightly overprice them. 

Figure VII Residual Analysis 
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5.2 Centroid Analysis 

For visual purposes in Figure VIII, we employed the Uniform Manifold 

Approximation and Projection (UMAP), a methodology introduced by McInnes et al., 

(2018). UMAP is a non-linear dimensionality reduction technique that transforms data 
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into a new coordinate system, reducing the number of dimensions while preserving both 

the local and global structure of the data as much as possible. 

Figure VIII UMAP Clusters Visualization 
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  To gain a more nuanced understanding of the clusters' characteristics, in Table III 

we present the results of the cluster centroid analysis.  

TABLE III CENTROID ANALYSIS 

The table displays key variables (K, DTE, q, r, S, IV/HV) for Calls and Puts datasets, segmented into 

clusters. Variables include strike price (K), days to expiration (DTE), dividend yield (q), risk-free rate (r), 

underlying asset price (S), and implied/historical volatility (IV/HV). Each cluster represents a group of 

similar option contracts. Colours indicate the relative values of each variable within the same dataset: 

varying across the clusters from green for higher values to red for lower values. 

 

Calls IV dataset Puts IV dataset 

Cluster K DTE q r S IV

0 3,560.74 0.22           0.016        0.004        3,458.74 0.19           

1 4,166.19 0.26           0.012        0.028        3,916.69 0.22           

2 4,550.57 0.23           0.013        0.003        4,382.94 0.15           

3 2,923.22 0.29           0.003        0.006        2,783.55 0.33           

Calls 30-d HV dataset Puts 30-d HV dataset

Cluster K DTE q r S HV30

0 3,539.22 0.22           0.016        0.004        3,454.99 0.17           

1 4,172.63 0.27           0.012        0.029        3,913.92 0.25           

2 4,542.28 0.23           0.013        0.003        4,379.96 0.15           

3 2,965.39 0.28           0.001        0.006        2,703.67 0.64           
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For Calls IV dataset: 

 Cluster 0 has a moderate strike and underlying price, the highest dividend yield. 

low volatility, and short time to expiration. On average, options within this cluster 

might be At-the-money using the formula  

 Cluster 1 has a high strike price and underlying price, moderate volatility, and the 

highest risk-free rate. 

 Cluster 2 has the highest strike price and underlying price, with the lowest 

volatility and a short time to expiration. 

 Cluster 3 has the lowest strike and underlying price, highest volatility and time to 

expiration. 

Puts IV dataset 

Cluster K DTE q r S IV

0 4,003.05 0.22          0.013       0.003       4,308.94 0.25          

1 2,338.33 0.30          0.002       0.006       2,780.37 0.50          

2 2,867.89 0.26          0.016       0.005       3,548.49 0.37          

3 3,468.97 0.30          0.012       0.031       3,920.83 0.30          

Puts 30-d HV dataset

Cluster K DTE q r S HV30

0 2,897.33 0.26          0.016       0.004       3,479.59 0.17          

1 3,954.08 0.23          0.013       0.003       4,355.06 0.16          

2 2,356.94 0.29          0.001       0.006       2,703.51 0.64          

3 3,444.08 0.30          0.012       0.029       3,920.82 0.25          

Puts 60-d HV dataset

Cluster K DTE q r S HV60

0 3,445.67 0.30          0.012       0.029       3,919.73 0.25          

1 2,367.67 0.29          0.001       0.006       2,717.86 0.66          

2 2,899.66 0.26          0.016       0.004       3,481.33 0.18          

3 3,952.99 0.23          0.013       0.003       4,357.08 0.15          

Calls 60-d HV dataset Puts 60-d HV dataset

Cluster K DTE q r S HV60

0 3,542.94 0.22           0.016        0.004        3,458.63 0.18           

1 4,171.67 0.27           0.012        0.029        3,912.91 0.25           

2 2,973.53 0.28           0.002        0.006        2,719.62 0.66           

3 4,540.88 0.23           0.013        0.003        4,378.68 0.15           
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For Calls 30-d HV dataset: 

 Cluster 0 has a moderate strike and underlying price, highest dividend yield, low 

volatility, and shortest time to expiration. 

 Cluster 1 has a high strike and underlying price, moderate volatility, and a slightly 

longer time to expiration, with the highest risk-free rate. 

 Cluster 2 has the highest strike and underlying price, with the lowest volatility and 

a short time to expiration. 

 Cluster 3 has the lowest strike and underlying price, highest volatility, and the 

longest time to expiration. 

 

For Calls 60-d HV dataset: 

 Cluster 0 has a moderate strike and underlying price, low volatility, and a shortest 

time to expiration. 

 Cluster 1 has a high strike and underlying price, moderate volatility, and a slightly 

longer time to expiration, with the highest risk-free rate. 

 Cluster 2 has the lowest strike and underlying price, highest volatility, and the 

longest time to expiration. 

 Cluster 3 has the highest strike and underlying price, with the lowest volatility and 

a short time to expiration. 

For Puts IV dataset: 

 Cluster 0 has the highest strike and underlying price, with lowest volatility, time 

to expiration and risk-free rate. 

 Cluster 1 has the lowest strike price and underlying price, the highest volatility, 

and the longest time to expiration. 

 Cluster 2 has a moderate strike price and volatility, with a relatively short time to 

expiration. 

 Cluster 3 has a high strike price and moderate volatility, with the longest time to 

expiration and the highest risk-free rate. 
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For Puts 30-d HV dataset: 

 Cluster 0 presents moderate values with the highest dividend yield. 

 Cluster 1 has the highest strike and underlying price, and the lowest volatility. 

 Cluster 2 has the lowest strike and underlying price, and highest volatility.  

 Cluster 3 has a relatively high strike and underlying price, moderate volatility, and 

the highest time to expiration. 

 

For Puts 60-d HV dataset: 

 Clusters 0 present moderate values for strike and underlying price, with highest 

time to maturity and risk-free rate. 

 Cluster 1 has the lowest strike and underlying price, and highest volatility. 

 Cluster 2 presents moderate values with the highest dividend yield. 

 Cluster 3 has the highest strike price and underlying asset price, but the lowest 

time to maturity and historical volatility. 

 

Then to check if the K-means algorithm successfully splits the data, for each dataset 

and for each feature, ANOVA was performed with a 95% confidence interval. The null 

hypothesis H0 is the means of the feature are equal across all clusters. A p-value greater 

than 0.05 suggests no significant differences. In this analysis, each feature has a p-value 

of 0.0000, which is substantially lower than the 0.05 threshold, thus confirming 

significant differences in the means of these features across the clusters. 
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Lastly, we check the range of each feature across cluster centroids, to understand how 

features varied across the clusters. 

Figure IX Features Importance Range 

 

Strike price K and Underlying price S in blue refer to the primary axis while the other 

variables, in green, are referring to the secondary axis. We can observe that the range 

depends on the nature of the variable itself, where features normally with higher value 

have the widest range. 
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6. CONCLUSION 

This study explored the potential of integrating unsupervised and supervised machine 

learning models, specifically K-means clustering, Random Forest, and Deep Neural 

Networks, in option pricing. The primary objective was to assess whether these models 

could outperform the traditional Black-Scholes-Merton model and to investigate the 

impact of clustering on predictive accuracy. The findings indicate that DNN models, 

particularly when combined with clustering techniques, showed superior performance in 

option pricing compared to both non-clustered machine learning models and the BSM 

model, while RF even if exhibited improvement in performance compared to an identical 

RF without a prior clustering step, benefited less from the latter method. A critical aspect 

is that significant changes in the financial markets could alter the values of options, as we 

showed using different volatility data. This highlights the need for continuous monitoring 

and updating of the models to adapt to evolving market conditions. Future research could 

build upon these findings, trying to apply different clustering method on different dataset 

and to avoid data leakage issues if any, investigating methodologies for predicting 

implied volatility through the application of an implied volatility surface. 
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APPENDICES 

TABLE IV DATASETS DESCRIPTIVE ANALYSIS 

 

Figure X Call Options Data: Variable Distribution Overview 

Calls IV Dataset Puts IV Dataset 

K IV DTE q r S price K IV DTE q r S price

count 230,432  230,432 230,432 230,432 230,432 230,432  230,432  count 230,432  230,432 230,432 230,432 230,432 230,432  230,432  

mean 4,020.82 19% 0.24        1.29% 0.87% 3,860.42 79.62       mean 3,384.33 32% 0.26        1.29% 0.88% 3,860.42 61.72       

std 612.76    7% 0.21        0.41% 1.12% 551.07    145.14    std 722.45    14% 0.21        0.41% 1.13% 551.07    86.03       

min 1,000.00 7% 0.06        0.00% 0.06% 2,237.40 0.03         min 600.00    6% 0.06        0.00% 0.06% 2,237.40 0.03         

25% 3,550.00 14% 0.09        1.16% 0.13% 3,400.97 11.60       25% 2,910.00 22% 0.10        1.16% 0.14% 3,400.97 10.10       

50% 4,095.00 18% 0.15        1.36% 0.24% 3,915.53 41.40       50% 3,440.00 29% 0.17        1.36% 0.24% 3,915.53 34.30       

75% 4,480.00 22% 0.31        1.61% 1.19% 4,319.94 99.10       75% 3,925.00 38% 0.35        1.61% 1.20% 4,319.94 82.60       

max 8,300.00 80% 1.00        1.90% 4.85% 4,796.56 3,651.25 max 7,600.00 80% 1.00        1.90% 4.85% 4,796.56 3,686.85 

Calls 30d-HV Dataset Puts 30d-HV Dataset

K HV30 DTE q r S price K HV30 DTE q r S price

count 230,432  230,432 230,432 230,432 230,432 230,432  230,432  count 230,432  230,432 230,432 230,432 230,432 230,432  230,432  

mean 4,020.82 20.94% 0.24        1.29% 0.87% 3,860.42 79.62       mean 3,384.33 20.94% 0.26        1.29% 0.88% 3,860.42 61.72       

std 612.76    14.47% 0.21        0.41% 1.12% 551.07    145.14    std 722.45    14.47% 0.21        0.41% 1.13% 551.07    86.03       

min 1,000.00 6.48% 0.06        0.00% 0.06% 2,237.40 0.03         min 600.00    6.48% 0.06        0.00% 0.06% 2,237.40 0.03         

25% 3,550.00 11.83% 0.09        1.16% 0.13% 3,400.97 11.60       25% 2,910.00 11.83% 0.10        1.16% 0.14% 3,400.97 10.10       

50% 4,095.00 18.61% 0.15        1.36% 0.24% 3,915.53 41.40       50% 3,440.00 18.61% 0.17        1.36% 0.24% 3,915.53 34.30       

75% 4,480.00 24.69% 0.31        1.61% 1.19% 4,319.94 99.10       75% 3,925.00 24.69% 0.35        1.61% 1.20% 4,319.94 82.60       

max 8,300.00 97.56% 1.00        1.90% 4.85% 4,796.56 3,651.25 max 7,600.00 97.56% 1.00        1.90% 4.85% 4,796.56 3,686.85 

Calls 60d-HV Dataset Puts 60d-HV Dataset

K HV60 DTE q r S price K HV60 DTE q r S price

count 230,432  230,432 230,432 230,432 230,432 230,432  230,432  count 230,432  230,432 230,432 230,432 230,432 230,432  230,432  

mean 4,020.82 21.46% 0.24        1.29% 0.87% 3,860.42 79.62       mean 3,384.33 21.46% 0.26        1.29% 0.88% 3,860.42 61.72       

std 612.76    13.70% 0.21        0.41% 1.12% 551.07    145.14    std 722.45    13.70% 0.21        0.41% 1.13% 551.07    86.03       

min 1,000.00 6.46% 0.06        0.00% 0.06% 2,237.40 0.03         min 600.00    6.46% 0.06        0.00% 0.06% 2,237.40 0.03         

25% 3,550.00 12.44% 0.09        1.16% 0.13% 3,400.97 11.60       25% 2,910.00 12.44% 0.10        1.16% 0.14% 3,400.97 10.10       

50% 4,095.00 18.67% 0.15        1.36% 0.24% 3,915.53 41.40       50% 3,440.00 18.67% 0.17        1.36% 0.24% 3,915.53 34.30       

75% 4,480.00 25.08% 0.31        1.61% 1.19% 4,319.94 99.10       75% 3,925.00 25.08% 0.35        1.61% 1.20% 4,319.94 82.60       

max 8,300.00 75.46% 1.00        1.90% 4.85% 4,796.56 3,651.25 max 7,600.00 75.46% 1.00        1.90% 4.85% 4,796.56 3,686.85 
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Figure XI Put Options Data: Variable Distribution Overview 
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