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1. ABSTRACT 

 

This internship report will provide an extensive summary of my time spent working as an 

intern actuarial analyst in the Financial Services team at KPMG Portugal, with the focus on 

"Loss Reserving: An Inflation-Adjusted Model for Claims Provisions in General Insurance."  

 

KPMG Portugal is an expert company in offering services related to audit, tax, and consulting. 

The branch of Financial Services is dedicated to risk management, regulatory compliance, 

and actuarial services. The profession of actuarial uses actuarial techniques comprised of 

statistical and mathematical models, actuarial analysts forecast and estimate future liabilities 

to ensure clients' financial stability and regulatory compliance, being used in many decisions, 

giving its clients the power to mitigate risks, and achieve long-term financial sustainability. 

 

Due to its importance and real-world relevance in the insurance sector, a non-life 

insurance/general insurance related project was the focus of my project. This model was 

focused on claims reserving, using statistical methodologies to obtain claims provisions, 

showing the expected future payments of past claims and their financial impact. Insurers must 

comprehend how inflation affects future payments of past claims to properly set aside 

reserves, mitigate risks, and establish effective pricing tactics. 

Claims provisions are obtained using sophisticated computations that take into account five 

distinct approaches and use the three inputs, those methodologies are Chain Ladder, variants 

of the Link-Ratio deterministic, Grossing Up Factors, and Grossing Up Worst Factors. 

Additionally, the model incorporates inflation, yielding a more precise measurement.  

 

This model improves the accuracy and dependability of actuarial forecasts, demonstrating the 

role that precise claims provision calculations play in risk management and regulatory 

compliance. By looking at claims provision with an inflation-adjusted viewpoint, we can not 

only fill a significant gap in current actuarial methods but also support the overall aim of 

enhancing financial forecasting precision in the insurance sector. 

The model was intensely tested for statistical significance during the process. The model was 

later fitted with an inflation adjustment, taking into consideration past and future inflation for 

more efficient and practical results, after careful considerations and testing. The future 

inflation was obtained using ARIMA forecasting and Exponential smoothing forecasting, 

with the help of R-Studio and Microsoft Excel using time series analysis. 

 

In addition, the report mentions some of the nature of actuarial work at KPMG, emphasizing 

the importance of teamwork and communication with other teams, such as finance, 

compliance, and data analytics. Additionally, the report discusses the link between aligning 

actuarial assumptions with dynamic market conditions and the importance of maintaining data 

integrity. 

 

Keywords: Actuarial Techniques, Actuarial Methodologies, Inflation-Adjusted, Inflation 

Forecast, Statistical Significance, Sensitivity Test, Loss Reserving, Claims Provisions, Claims 

Reserves, Chain Ladder, Grossing Up, Worst Factors, Average Factors, Average T-Factors, 

Link Ratio Deterministic, General Insurance. 
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1.2. GLOSSARY 

 

Term    Definition 

CV   Coefficient of Variation 

CI   Confidence Interval 

Qu   Quartile 

ADF   Augmented Dickey-Fuller test 

KPSS   Kwiatkowski-Phillips-Schmidt-Shin test 

PP   Phillips-Perron test 

P-value A statistical measure that determines the significance of the 

assumptions in hypothesis testing 

Tibble A modern reimaging form of the data that allows for a cleaner 

interface, and prevents data handling issues 

ARIMA(p,d,q) Autoregressive integrated moving average of orders p,d,q 

AR   Autoregressive 

MA   Moving Average 

p    Number of AR terms 

q   Number of MA terms 

d   Number of differences to achieve stationarity 

SARIMA  Seasonal Arima model 

AIC   The Akaike Information Criterion   

AICC   Corrected AIC  

BIC   Bayesian Information Criterion 

Auto-ARIMA A function that automatically chooses the ARIMA model with the 

best orders of (p,d,q) that minimize AIC, AICC, and BIC 

Bias    Mean Error 

RMSE    Root Mean Squared Error 

MAE    Mean of the absolute error  

MPE    Mean percentage errors 

MAPE   Mean absolute percentage errors 

MASE   Mean absolute squared error 

MAE naive   Mean absolute error produced by a naive forecast 

Naive forecast  Simple forecasting method which uses the most recent observation 

as the predicted value for the following time period 

ACF1   Auto-correlation function at lag 1 
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2. INTRODUCTION 

 

Over the period of the three months as an Actuarial Analyst intern at KPMG Portugal, I 

was privileged to understand some of the functions of an Actuarial Analyst within the 

Financial Service team and to master the mentioned topic as the project of my internship.  

This internship report aims to provide a capture my contributions throughout the 

internship at KPMG Portugal. A key aspect that will be emphasized in the information 

sharing process is the practical use of actuarial techniques within the actual financial 

institutions with emphasis on projects conducted in the firm. Additionally, the study 

investigates how the mentioned actuarial procedures are used in risk management to 

preserve the stability of the clients' financial organizations, notably in the insurance and 

pension fund sectors. Through detailed analysis, it will demonstrate the role and 

importance of actuaries in the field by providing information regarding the day-to-day 

tasks and duties of these specialists within the KPMG Financial Services department. 

In this internship, my role included contributing to clients’ projects, mostly related to 

pension funds, life, and non-life insurance. Some of my responsibilities were attending 

trainings and education programs, contributing to projects providing calculations in 

compliance with actuarial works and strategies, preparing actuarial reports, and analyzing 

large datasets to ensure financial efficiency and regulatory compliance conducting 

actuarial valuations. Specific methods as cash flow modeling, mortality and morbidity 

analysis, reserve calculations, and risk assessment were followed in my internship.  

As a starting point of my internship, I have completed the essential risk management 

trainings offered by KPMG. Professional service firms like KPMG must have strong risk 

management to navigate complex and highly regulated environments. To make sure 

everyone follows the rules and maintains a high level of professionalism, KPMG requires 

all staff to participate in thorough training programs such as Global Independence, 

Integrity, Data Privacy, Information Protection, and Cloud Confidentiality. These courses 

are carefully planned to provide employees with the necessary knowledge and skills to 

effectively handle risks and follow the company's ethical standards. Through 

implementing thorough risk management training, companies such as KPMG can 

improve their capacity to navigate intricate regulatory environments, safeguard 

confidential data, and uphold the confidence of their clients. 

Moreover, I had a thorough learning process about Insurance guidelines and IFRS 17 and 

Solvency regulations. KPMG's insurance guides are crucial in helping to promote 

ongoing learning and sharing of knowledge in the insurance sector. These guides provide 

information on challenges specific to certain industries, new regulations, and upcoming 

trends, helping professionals stay updated and improve insurance portfolio management, 

strengthen business resilience, and helps making informed decisions. 

KPMG professionals can ensure compliance and transparency only by mastering IFRS 

17, which helps managing the complexities of financial reporting for insurance contracts. 

Businesses handling the detailed accounting of insurance must be familiar with IFRS 17 

and all of its elements. Through proficiency in aggregate, onerous contract recognition, 

General Measurement Model (GMM), Variable Fee Approach (VFA), Premium 

Allocation Approach (PAA), Contractual Service Margin (CSM), and Loss Component 
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(LC), and other standard components, we may guarantee adherence, boost financial 

transparency, and offer clients with significant perceptions into their financial 

performance. Similarly, to maintain their financial stability, comply with legal 

obligations, and foster confidence among stakeholders, insurers need to understand 

Solvency standards. 

The focus of my Master’s Final Work is to create a new KPMG template for general 

insurance that calculates quarterly claims provision by simply inputting the clients’ 

historical data of number of claims, amounts paid, and claim costs. Sophisticated 

calculations using those 3 inputs obtain claims provisions, while accounting for 5 

different methodologies. The model also has the allows for inflation inclusion, providing 

a more accurate measure. Having the inputs of other claims data such as claims numbers 

and claims costs, the model can be extended to predict the expect future values of those 

inputs.  

The decision to prioritize general insurance’s claims provision, particularly by factoring 

in inflation for future predictions, is supported by its vital importance and real-world 

relevance in the insurance sector. Claims provision is a vital component of actuarial 

practice, necessary for guaranteeing the financial stability and adherence to regulations 

of insurance firms. By including inflation in these predictions, the project tackles an 

important element that greatly influences the worth of upcoming claims, thus improving 

the accuracy and dependability of actuarial forecasts. 

In today's economic environment, with inflation rates becoming more unpredictable, 

traditional actuarial techniques might not be able to accurately forecast future obligations. 

This project seeks to address this deficiency by offering a more holistic method that 

considers the economic factors impacting claims. Insurers must comprehend how 

inflation affects future payments of past claims to properly set aside reserves, mitigate 

risks, and establish effective pricing tactics. By looking at claims provision with an 

inflation-adjusted viewpoint, we can not only fill a significant gap in current actuarial 

methods but also support the overall aim of enhancing financial forecasting precision in 

the insurance sector. This highlights the selected subject's significant relevance and 

importance for my internship report, demonstrating the crucial role of actuarial work in 

the current rapidly changing economic landscape.  

In addition, participating in other projects will be mentioned in the appendix due to their 

irrelevance to the report’s topic. Those diverse projects included complex calculations for 

pension funds and life annuities, and the preparation of actuarial-specific reports, with the 

use of diverse methodologies. Comprehensive evaluations of pension fund and life 

annuity’s financial health and sustainability have been conducted. Statistical analysis 

were used for historical data interpretation and determining reserve amounts, ensuring 

regulatory compliance and financial stability for insurance companies, enhancing my 

comprehensive understanding of the complex role of actuarial analysis. 

Furthermore, some of my tasks and responsibilities throughout the internship included 

preparing and revising detailed reports, attending team meetings, extracting and 

evaluating data, and continuously updating actuarial models based on the latest data and 

regulatory changes.  
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2.1. Research Questions   

1. What are the advantages of completing an internship in actuarial analysis from a 

professional and academic standpoint, and how does recording this experience 

advance knowledge of actuarial science's practical applications? 

This topic highlights the usefulness of internship reports for both professional and 

personal development, emphasizing the role that practical experience plays in 

bridging the theoretical knowledge gap and its practical implementation in the 

field. 

2. Value of Claims Provisions Calculations: What part do precise claims provision 

calculations play in risk management and regulatory compliance, and how do they 

improve the financial stability of insurance companies? 

This issue highlights the significance of accuracy in these computations by 

addressing the crucial role that claims provisions play in preserving solvency and 

meeting commitments to policyholders. 

3. Finding Claims Provisions: What techniques may be used to fill in the spaces 

below the triangle in actuarial calculations in order to ascertain claims provisions 

through the collection and decumulation of data? 

The methods utilized in actuarial analysis to efficiently estimate claims provisions 

are the subject of this inquiry, which also emphasizes the need of data 

visualization in triangular tables for comprehending liabilities. 

4.  Appropriateness or Worth of the Applied Methodologies: How do the 

methodologies employed in this internship for claims reserving compare to 

industry norms and are they adequate and valuable in offering precise estimates? 

This inquiry assesses the suitability and efficacy of the chosen approaches, 

encouraging a dialogue on their dependability and conformity to industry best 

practices. 

5. To what extent does the inclusion of inflation adjustments in claims provision 

models follow from statistical tests and analyses, and how does this affect the 

precision of liability estimations in the future? 

The purpose of this inquiry is to determine whether or not inflation should be 

taken into account calculating claims provisions using advanced statistical 

analysis, question explores the impact of inflation adjustments on the provisioning 

procedure and overall financial health of insurance firms. 

6. Past or Future Inflation in the Model: Does the inclusion of past and 

future inflation rates in claims provision models provide more accurate and 

thorough forecasts or is it adequate to simply apply future inflation rates? 

In order to comprehend their effect on the dependability of claims provisions, this 

question invites investigation into the advantages and disadvantages of employing 

both historical and projected inflation rates. 

7. Forecasting Inflation: What statistical methods and models are most effective for 

reliably forecasting inflation, and how can these forecasts be integrated into 

actuarial practices? 

This question highlights how important it is to have trustworthy inflation 
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forecasting methods in order to create precise financial models for risk 

management and insurance. 

8.  How may statistical significance testing affect risk management decision-making 

and what effect does it have on the validity of claims provision models in actuarial 

practice? 

The significance of statistical techniques in actuarial model validation is 

emphasized in this question, which is essential to guaranteeing the robustness and 

dependability of the models used to estimate claims provisions. 

9. Can the model be extended for other purposes? This question aims to explore the 

possibility of acquiring other future results such as claim numbers and claim costs 

using the same model. 

These research questions seek to thoroughly examine actuarial techniques, their 

efficiency, and the obstacles encountered within my experience, all while taking into 

account the wider consequences on financial stability and regulatory adherence. 

Identification of the Gap: Despite focusing on claims provisions and including inflation 

considerations for future forecasting in my internship project, there is still a lack of 

understanding regarding how much this practice improves the accuracy and reliability of 

claim projections. Current research frequently highlights conventional actuarial 

techniques for setting aside funds for claims but does not focus on how inflation affects 

this process. Hence, the issue exists in assessing how well incorporating inflation into 

predictions for claims provision can enhance readiness for future payments in the 

insurance industry. 

 

2.2. Theoretical and managerial relevance 

2.2.1. Theoretical Relevance 

The study's theoretical significance stems from its added insights into actuarial science 

and financial forecasting within existing literature. Conventional actuarial techniques 

frequently fail to consider the ever-changing characteristics of economic factors like 

inflation, which can result in possible errors in claims reserves. This study improves the 

theoretical framework in actuarial analysis by including inflation in forecasting models, 

resulting in a more thorough and dependable approach to predicting future amounts to be 

paid in regards to past claims, referencing courses from the Masters in actuarial science 

at ISEG, such as PRVS - Loss Reserving, GAP-CA - Asset-Liability Management, 

MSOLV - Solvency Models and MP-CA - Time Series. This improvement in approach 

may result in enhanced models that more accurately represent actual conditions, thus 

pushing forward the field of actuarial science.  

2.2.2. Managerial Relevance 

From a management point of view, the findings of this research hold great importance for 

insurance firms and financial organizations. Ensuring precise claims provisioning is 

essential for upholding financial stability, adhering to regulations, and managing risks 

effectively. By factoring in inflation when projecting claims, managers can make more 
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accurate predictions of future debts, impacting strategic planning, pricing tactics, and 

reserve handling. This enhanced precision enables insurers to predict financial 

requirements more accurately, distribute resources more efficiently, and improve overall 

financial strategizing. Moreover, recognizing how inflation affects claims can assist in 

creating proactive plans to reduce potential financial risks, ultimately resulting in more 

sustainable business practices and enhanced financial performance.    
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3. Methodological Approach 

 

3.1. Claims provisioning 

Insurers are required to maintain reserves, also known as claims provisions, to guarantee 

protection against potential obligations arising from past insurance claims. Those 

requirements are key to ensure that an insurer can meet its obligations towards 

policyholders in the cases of claims. Claims provisions consist of Case Reserves, Incurred 

But Not Reported Reserves (IBNR), and Incurred But Not Enough Reported Reserves 

(IBNER). Accurately estimating and managing claims provisions can prevent potential 

solvency issues. 

For a number of reasons, the accurate estimation of claims provision is quite important. 

First, it has an immediate effect on the solvency and financial stability of an insurer. 

Underestimating liabilities as a result of inadequate provisioning puts the insurer's 

capacity to pay obligations from past claims at jeopardy. Under frameworks such as 

Solvency II, insurers are required to maintain a best estimate of claims provisions, which 

is based on projected future cash flows from claims discounted to present value (Dreksler 

et al., 2015). Additionally, since insurers must pay for both present and future payments 

of past and present claims, claims provisions have an impact on premium pricing. 

Accurate estimation also guarantees transparency and adherence to legal frameworks, 

especially when it comes to financial reporting (Cazzari and Moreira, 2022).  

Numerous deterministic models and procedures are used in the process of computing 

claims provisions across various business lines. In order to keep sufficient reserves, these 

models are used to estimate the amounts and expenses of past claims. Typical models 

comprise the Chain Ladder Method, and variants of the Link Ratio Deterministic such as 

Average Factors, Average T Factors, and the Worst Factor. To estimate the future, these 

models use historical information such as total paid amounts and the percentage of claims 

that were recorded. Every approach has advantages and disadvantages, and the best one 

is chosen depending on the particulars of the data and the industry being studied.  

Expert opinion integration into stochastic models for the chain ladder methodology is 

explored by Verrall and England (2002), who show how important deterministic models 

and cutting-edge statistical methods are to calculate and validate claims provisions, 

maintaining actuarial compliance and financial stability. 

3.1.1. Deterministic Models for Claims Provisions 

The most common deterministic methods that can be used in the models for claims 

provisions are Chain Ladder, some variants of the Link Ratio Deterministic, and also 

Grossing Up Factor and Grossing Up Worst Factor. First, the underlying conditions must 

be suitable to use any of the methodologies, hence the statistical significance must be 

confirmed. Meeting all underlying assumptions and requirements is key to obtain reliable 

and accurate results. 

Examining the Adequacy of the Statistical Indicators 
To make sure that the selected models appropriately represent potential future payments 
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due to incurred liabilities, intensive testing and validation are necessary when analyzing 

the validity of statistical indicators. These indicators are used by actuaries to evaluate the 

adequacy of the reserves set aside and make any required adjustments to their models and 

assumptions. The goodness-of-fit tests, confidence intervals, and standard error of 

estimates are examples of key indicators.  

Merz and Wüthrich (2015) highlight the significance of these statistical indicators by 

talking about the prediction inaccuracy of the chain ladder reserving method used on 

correlated run-off triangles. Their study sheds light on the validity and precision of the 

chain ladder approach and emphasizes the necessity of thorough statistical analysis in 

claims reserving. 

Recognizing and Evaluating Techniques 
It is essential to comprehend and evaluate every technique utilized in the initial 

computations to accurately estimate reserves. This entails a thorough examination of the 

employed methodologies, which include sophisticated statistical procedures and software 

programs like RStudio for bootstrap techniques and the Thomas Mack model. These 

techniques take into consideration the variability and uncertainty in the data, which 

strengthens the robustness of reserve estimates. 

In the discussion of the Mack chain ladder model's application of one-year and ultimate 

reserve risk, Szatkowski and Delong (2021) further highlight the usefulness of 

sophisticated modeling tools in actuarial practice (Cambridge University Press & 

Assessment). 

3.1.1.1. Chain Ladder 

An established method in actuarial science for determining reserves in general insurance 

is the Chain Ladder method. This method's basic premise is to forecast future payments 

owing to past claims by applying development factors derived from previous claims 

experience to historical claims data. Actuaries can more accurately forecast outstanding 

liabilities by evaluating the way claims evolve over time through the analysis of run-off 

triangles (England & Verrall, 2002; Mack, 1993). When determining claims provisions, 

many actuaries prefer the Chain Ladder technique because of its simplicity and clarity, as 

it involves fewer assumptions than more complex stochastic models (Pinheiro et al., 

2003). The method's value in reserve estimate is further supported by the fact that it can 

be tailored to diverse data patterns and has demonstrated performance across a range of 

business domains. The Chain Ladder linear model was represented in state space by 

Verrall (1989), who also supplied a mathematical framework that highlights the method's 

assumptions and improves its suitability for use in actuarial practice. In order to guarantee 

correct reserve estimates, this study emphasized how crucial it is to validate these 

assumptions. 

A starting point is always confirming the validity of the Chain ladder. Being a base for 

all the other methodologies, its solidness also reflects the legitimacy of the others.  

Key assumptions of the chain ladder are homogeneity, independence, consistency of 

development factors, and sufficiency of data.  

Homogeneity: The claims in each development period should be comparable in character, 

which means that the data utilized should be homogeneous. To preserve uniformity, any 
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notable modifications to the policy's terms, claims handling procedures, or other elements 

should be taken into consideration. 

To guarantee the accuracy of actuarial calculations, homogeneity in development factors 

is essential. The premise of homogeneity is supported when the mean of the development 

components significantly surpasses their standard deviation, indicating a stable average 

and a lack of variability (Carrato, 2019). Furthermore, for modeling to be effective, 

development factors must be consistent over time. This is because consistent factors 

guarantee that the factors will not change over time, resulting in more accurate forecasts 

(Actuarial Standards Board, 2013). 

Consistency of Development Factors: It relies on the idea that claims evolve in a 

predictable way over time, from one period to the next. This suggests that the ratios of 

claims paid (or reported) are constant and future-projectable from one development era 

to the next. 

Independence: The approach centers on the idea that each period's claim development 

occurs independently of the others.  

The Chi-square test compares observed and expected frequencies across categories, 

which is a popular method for demonstrating the independence of variables. According 

to statistical methods such as those described by Embrechts, Paul, et al. (1997) in 

Categorical Data Analysis, the variables can be regarded as independent if the computed 

Chi-square statistic is less than the critical value at a particular significance level. 

Sufficiency of Data: To accurately estimate the development factors, there must be a 

sufficient amount of previous data. Typically, this requires access to claims data spanning 

several years in order to accurately observe the development pattern. 

Hiabu and Nielsen (2016) have shown the method's adaptability and resilience in various 

reserving scenarios, demonstrating the statistical significance of the model in real-world 

applications and supporting its fundamental assumptions. Conditions being met, all other 

models may be used accordingly.  

3.1.1.2. Other models (Variants of the Link Ratio Deterministic): 

The link ratio deterministic approach provides the basis for some of the methodologies 

that will be used in this study, such as the Worst Factors, Average Factors, Average T-

Factors. Other methods such as Grossing Up Factor and Grossing Up Worst Factor are 

also often employed by KPMG. Actuarial scientists frequently utilize the mentioned 

methods to obtain claims provisions using historical data. Establishing development 

factors from the ratios of cumulative claims between subsequent periods is the basic idea 

behind the link ratio method, which aids in the estimation of liabilities. The Link Ratio 

Deterministic, as mentioned by England and Verrall (2002), enables actuaries to 

recognize patterns and forecast claims development with confidence. The link ratio 

approach's adaptability to varied situations and data characteristics is due to its flexibility, 

which allows it to handle multiple tactics like pessimism, grossing up and averaging. 

The worst factor method is a conservative method that assumes homogeneity being based 

on the worst-case scenario, it is useful situations where negative developments in claims 
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may raise worries. It uses the highest development factor in the historical data as a base 

in reserves estimation, as proven by Peremans et al. (2018).  

Similarly, the Grossing Up Worst factors method bases the worst observed scaling factor 

when calculating the reserves. These 2 methods assume homogeneity and extremism. 

Extremism is usually seen as an inherent assumption in approaches such as the worst 

factor model, especially when working with extreme value theory in the insurance 

industry. Grossing Up Worst Factors acts as a safety net against underestimating 

liabilities in situations where claims experience is highly unclear or volatile. Since that 

these techniques are based on the idea that extreme values, or worst-case scenarios, 

predominate in the modeling approach, there is no need for empirical validation. 

According to well-established theoretical frameworks like those covered in publications 

like Modelling Extremal Events for Insurance and Finance (Embrechts et al., 1997), this 

assumption concentrates on outlier risk.  

The Average Factors method assumes a constant development factor for the claims data 

which is the average of the development factors of the provided set of data, offering a 

more balanced perspective. Its foundation is the idea that historical trends will hold true, 

mitigating the impact of anomalies or outlier data that might distort outcomes. The 

validity of this method was extensively studied by Mack (1993).  

The Average T-Factors work in the same way, but it allows for time adjustment, in 

attempt to limit data fluctuations and provide a more reliable and adjustable estimate.  

Grossing Up Factors method scales reserve based on an assumed percentage, as per 

England and Verrall (2002). Using the Grossing Up Factors method, reported claims are 

adjusted by a factor to reflect the anticipated development of future payments. This 

technique is especially helpful for long-tail claims since it guarantees that all prospective 

future obligations are recorded. Actuaries seek to increase the precision of their reserve 

estimates by grossing up the claim’s amounts. 

Average Factors, Average T-Factors, and Grossing Up Factors assume consistency, 

stability of averages or time, proportional scaling and homogeneity.  The coefficient of 

variation (CV) in statistical analysis can be used to evaluate how stable averages are over 

time. In general, minimal variability and steady data are indicated when the CV is less 

than 10%. This has been used in a number of areas, including economic modeling, quality 

control, and clinical trials. For example, (Shechtman, 2013) point out that a reduced CV, 

especially one below 10% is frequently a sign of consistency and stability in quantitative 

tests and can be utilized to demonstrate the long-term trustworthiness of data. 

3.1.2. Claims Provisions calculation: Extending triangles, 

Accumulation and Deaccumulation for missing years 

Having knowledge acquired from our master’s course “PRVS - Loss Reserving” and 

“GAP-CA - Asset-Liability Management” has been an advantage, allowing me to 

understand the concept of triangles, knowing the methods and importance of its 

validation. 

In actuarial science, data triangles are essential instruments, notably for claims reserving. 

They arrange data according to developmental stages, which facilitates the identification 
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of patterns and trends across time. Ensuring the precision and dependability of actuarial 

models designed to project future claim liabilities requires validating these data sets. This 

subsection examines into several sophisticated methods for verifying data triangles, 

stressing their significance in upholding strong actuarial procedures. 

In several publications, the significance of validating data triangles in actuarial science is 

emphasized, and numerous sophisticated methods for guaranteeing the precision and 

dependability of claims reserving models are covered. 

Use of statistical diagnostic tests is one of the main techniques for validating data 

triangles. A thorough analysis of stochastic models for claims reserving is given by 

(England and Verrall, 2006), who emphasize the significance of residual diagnostics in 

confirming the hypotheses that underlie these models. Actuaries can identify 

abnormalities and departures from model assumptions with the aid of residual 

diagnostics, which include residual plot analysis and standardized residual analysis. This 

helps to guarantee that the data triangles appropriately capture the underlying claims 

processes. Actuaries can improve the accuracy of their reserving estimations by using 

these diagnostic tests to find and fix any biases or inconsistencies in the data. 

(Mack, 1993) presents a stochastic chain-ladder model that enables actuaries to compare 

projected and actual outcomes over time to assess the accuracy of their reserve 

predictions. This back-testing strategy sheds light on the dependability of various 

reserving techniques and aids in locating any regular biases in the data sets. Actuaries can 

enhance the accuracy of their claims reserving procedures and their models by regularly 

validating data triangles through back-testing. 

With the goal to improve the validation process, (Wüthrich and Merz, 2015) investigate 

the integration of machine learning algorithms with conventional actuarial procedures. 

Actuaries can find links and patterns in complex data by using machine learning models, 

which may not be seen using other techniques. This hybrid technique offers a more 

dynamic and adaptable framework for claims reserving in addition to increasing the 

accuracy of data triangle validation. 

The processes of accumulation and decumulation are essential for controlling future 

cashflows in non-life insurance. This requires performing quarterly adjustments for 

missing years and predicting future claim payments. Inflation effects must be taken into 

account in order for these estimates to be accurate. The future cash outflows needed to 

settle claims are impacted by inflation adjustments, which take into account how money 

changes in value over time.  

Mack (1993) emphasizes the necessity of taking economic considerations into account in 

order to preserve the accuracy of future cashflow projections in his discussion of the 

importance of inflation adjustments in claims reserving. The works of Wüthrich and Merz 

(2015), expound on dynamic modeling approaches that account for inflation and other 

economic factors, contain the precise methodologies for integrating inflation effects. 

In actuarial practice, development triangles are essential for estimating ultimate claims 

and evaluating the sufficiency of reserves. To assure the validity of the finalised triangles, 

the original estimates must be adjusted and corrected. Revision of historical data, 

application of suitable adjustment factors, and verification that the triangles appropriately 

depict the claims evolution over time are all part of this procedure. 
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As per Green and Iarkowski (2021); for accurate claims estimation , we must extend the 

triangles, the space below them must be filled in using suitable methodologies. In order 

to accurately reserve, this extension aids in forecasting future payments of past claims 

and calculating the ultimate estimate. To assess how variations in inflation impact 

insurance reserves, further sensitivity analysis is required.  

Quarterly data based Model 
For run-off triangles, using quarterly data rather than annual data can yield substantial 

advantages, especially in general insurance (non-life insurance), where claims tend to 

show more regular patterns of emergence and settlement. More responsiveness is possible 

with quarterly data, which can also give actuaries early warning of trends or changes in 

claims patterns. In short-tail business lines, where claims can develop and settle more 

quickly, this is very helpful. England and Verrall (2002) point out that regular, detailed 

data can help refine projections and adjustments for future obligations by seeing patterns 

earlier and increasing the accuracy of reserves. England and Verrall (2002) has also 

pointed out that as long as the data is appropriately modified for the period-specific 

properties, stochastic techniques like the Chain Ladder can be applied successfully to any 

time aggregation, including quarterly periods. 

Quarterly statistics for general insurance is particularly helpful in identifying seasonal or 

cyclical differences in claims, which may be more noticeable in certain industries such 

as travel and motor insurance. While there may be some seasonality in the motor 

insurance market, it is usually not as significant as in other insurance markets, like 

agriculture or travel, where there are pronounced spikes in claims at particular periods of 

the year. 

According to Pinheiro et al. (2003), forecasting models for claims provisions can be 

improved by using higher frequency data, such as quarterly data which can reveal 

seasonal patterns more successfully than annual data. This enables insurers to respond to 

shifts in the market, in claims, or in regulatory settings faster. On the other hand, there 

are other opinions disagreeing with the use of quarterly data in seasonal lines of business 

such as agriculture and travel insurance. 

To conclude, these established techniques may be adapted to work with quarterly data for 

our model which is mainly designated to fit for motor insurance without sacrificing their 

robustness, and they frequently gain from the greater granularity that comes with more 

regular observations. 

 

3.2. Inflation Adjusted Model fitting 

Forecasts of inflation can have a big impact on insurance firms' reserves. Increased 

inflation drives up the cost of claims, particularly in industries like construction and 

energy that significantly rely on commodity pricing. The significance of these projections 

in financial reserve planning is underscored by the Monetary Policy Committee's (MPC) 

emphasis on reining in inflation (Pettinger, 2021). 

(Sepp, 2022) indicated that inflation impacts both property damage and business 

disruption losses, insurers must take this into account when forecasting reserves for future 

payments of incurred claims.  
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For the efficiency of claims provision models and to guarantee that reserves are adequate 

to pay future obligations linked to past claims, inflation must be taken into account. In 

past years, inflation has had a big impact on insurance products. This is especially true 

for non-life insurance, as shifting economic conditions can cause claims to rise 

significantly over time. Actuaries can find patterns that could affect future expectations 

by analyzing past inflation rates, which provide insightful information about historical 

trends (Deloitte, 2020). The Society of Actuaries (2021) states that under-reserving 

significantly due to inflation can put an insurer's financial viability and regulatory 

compliance in jeopardy. 

To appropriately predict future liabilities, incorporating projections for both historical and 

future inflation into claims provision models is a must. Actuaries can spot patterns that 

could affect future payments by using historical inflation rates, which provide insightful 

information about previous economic situations. Comprehending these past patterns can 

improve risk evaluation and sufficiency of reserves. On the other hand, future inflation 

forecasts are essential because they enable actuaries to make proactive model 

adjustments, guaranteeing that reserves will still be adequate to pay anticipated claims in 

an inflationary environment. 

According to research, under-reserving can result from neglecting to account for inflation, 

especially in non-life insurance where long-term commitments are subject to influences 

from inflation. The necessity for insurers to implement more detailed inflation 

adjustments based on past and projected future patterns has been highlighted by the recent 

increase in inflation, which has forced a reevaluation of conventional reserving 

procedures (Giuffre and Borselli, 2023).  

The importance of using future inflation projections in actuarial models is emphasized by 

research by EIOPA (2023), pointing out that these adjustments have the potential to 

significantly increase the accuracy of liability calculations. Accurate inflation forecasts 

are also necessary to keep pricing competitive and reduce the hazards brought on by 

unstable economies. In the tightly controlled insurance sector, inflation-accounting 

models can show an active approach to financial management and adhere to the industry's 

regulations. Furthermore, the Financial Stability Board (2024) has emphasized the 

importance of considering inflation when setting insurance prices to maintain long-term 

stability and ensure companies can remain profitable and flexible in response to market 

changes. 

 

According to EIOPA (2023), the insurance sector sees a significant enhancement in the 

precision of reserves and claims provisions with the application of an inflation-adjusted 

model. Actuaries can make more precise predictions of future financial obligations by 

considering fluctuations in purchasing power and the value of money with time in their 

models. 

It is imperative that reserve calculations take inflation into account. Sensitivity analyses 

are useful in deciding whether inflation should be applied retroactively to past claims or 

simply to predicted future payments. By examining the sufficiency and accuracy of 

reserves, these evaluations make sure that the real economic costs driven by inflation 

trends are reflected in them. 
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3.2.1. Testing the possibility of fitting an Inflation-Adjusted Model 

In actuarial science, analysis is a vital technique, particularly when attempting to 

comprehend how inflation affects claims forecasting. 

This subtopic examines the use of analysis by actuaries the effects of past claims in 

forecasting future payments and accounting for inflation. In order to estimate future 

payments, analyzing the models is useful for assessing the link between historical 

inflation rates and claim costs. Actuaries may anticipate future payments that are adjusted 

for inflation by using previous data, which guarantees precise financial planning and risk 

management. 

Detailed models that illustrate how inflation rates affect claims expenses over time are 

frequently included in Actuarial reports. Setting premiums, calculating reserves, and 

guaranteeing regulatory compliance all depend on this information.  

Accurate claims projection requires examining historical inflation rates and projecting 

future inflation. Actuaries apply econometric models and historical inflation trends to 

forecast future rates. To guarantee that reserves are sufficient to meet potential 

obligations, this aids in modifying claims estimates to match the predicted economic 

conditions.  

Poufinas et al. (2023) talk about forecasting motor insurance claims using machine 

learning techniques, such as regression models. They discovered that forecast accuracy is 

much increased by include variables like weather and car sales. By adding inflation as a 

predictive variable, such methods can be modified for general insurance, improving the 

accuracy of claims projections.  

Actuaries can gain insights into the possible financial impact by performing sensitivity 

analysis to determine the relationship between inflation rates and reserve needs. In order 

to help insurers prepare for different economic scenarios and ensure appropriate reserve 

levels to cover future payments in regard to ongoing claims, this approach involves 

changing inflation rates inside actuarial models to see how reserve estimations fluctuate. 

IFOA (1989) indicates the essentiality of sensitivity analysis in assessing how various 

inflation scenarios impact reserve estimates, guaranteeing the accuracy and dependability 

of the reserves. Sensitivity analysis serves as a decisive tool for analyzing the robustness 

of forecasting models, particularly in evaluating the impact of various inflation rates on 

future payments forecasts. A deeper grasp of the potential risk and uncertainty related to 

the forecasts is made possible by the ability to observe how variations in inflation affect 

the output through the introduction of random inflation scenarios into the model.  

Sensitivity analysis not only helps determine how much claims cost fluctuation results 

from variations in inflation, but it also strengthens the model's credibility by showcasing 

the model's adaptability to outside economic variables. According to studies (Saltelli et 

al., 2000; (Tolk and Rainey, 2014), sensitivity analysis is crucial to financial modeling 

because it sheds light on the correlations between variables and facilitates decision-

making in the face of uncertainty. This methodology verifies 

the possibility of incorporating inflation into the model and that it is always possible to 

effectively modify the model's predictions to account for various inflationary scenarios. 
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LMA (2022) have also justified the applicability of adjusting future payments estimates 

by using economic forecasts and applying inflation indices to historical claims data. 

 

3.3. Forecasting Inflation 

Before performing a forecast, analyzing the data is a must, to be able to know which 

model can be fitted. The inflation data being used is the yearly inflation data for Portugal 

between 1999 and 2022 by Statista (2024) as a reference, since that 1999 is the year of 

introduction of the Euros as a currency in Portugal. 

The data also includes a forecast of the inflation in Portugal until year 2028. This forecast 

was done by Aaron O'Neill, to avoid referencing the past few years’ extremely high 

inflation rates to our forecast. The forecasted inflation rates by (O'Neill, 2024) bring 

stability to the desired forecast, being based on economic assumptions. 

As per (O'Neill, 2024), Portugal's average inflation rate was predicted to drop by 0.2% 

between 2023 and 2028. Notably, this general decline does not continue in 2026 and 2027. 

In 2028, the predicted rate of inflation is 2.04%. This indicator, according to the 

International Monetary Fund, is a gauge of inflation based on changes in the average 

consumer price index from year to year. The latter represents the average price level of a 

nation using a standard basket of products and services for consumers. The figures 

displayed here are the % change in this index metric from year to year. 

3.3.1. Preliminary Analysis of the Inflation Data set  

Regression analysis and time series analysis are necessary to determine whether inflation 

can be forecasted from the provided dataset. Time series models enable us to look for 

patterns in the inflation data, such as seasonality or trends, whereas regression analysis is 

useful in determining the relationship between past inflation rates and other variables. We 

can choose a suitable forecasting technique if the dataset passes these tests. 

3.3.1.1. Regression Analysis 

In terms of regression models, we have one independent variable, which is time and one 

dependent variable, which is inflation therefore we are looking for simple linearity.  

Simple linear regression assumes homogeneity, when there is homogeneity of variance, 

also known as homoscedasticity, the amount of the prediction error is relatively constant 

across the range of values for the independent variable.  

The first assumption is normality: The distribution of the data is normal, another 

assumption is independence of observations: There are no unobserved associations 

between the observations in the dataset, which were gathered using statistically sound 

sampling techniques, and the final assumption is linearity, the line of greatest fit through 

the data points is a straight line (rather than a curve or some other type of grouping factor), 

indicating a linear relationship between the independent and dependent variables 

(Evans,2020).  

The following step after meeting the regression requirements is to verify that the model 

appropriately describes the data by looking at the residual plots and goodness-of-fit 
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statistics and seek to identify any trends in the residuals. If trends are seen, it may be 

necessary to use a more sophisticated model. 

In the case of absence of linearity, a regression model cannot be a good fit. Other models 

need to be explored. 

3.3.1.2. Absence of regression, Alternative model (Time Series) 

In case of failure to fit a regression model, time series analysis can be used in attempt to 

fit a time series forecasting model. 

Starting with time series analysis, we should verify Stationarity, verifying that the 

residuals are steady even if you choose to use a straightforward linear regression model. 

The reasoning for that is that non-stationary residuals may indicate that some patterns in 

the data have not been fully captured by the model. 

Hyndman and Athanasopoulos (2018) advise to use linear regression models for data with 

linear connections, and to use time series models such as ARIMA and exponential 

smoothing in data with no linear patterns, such as trends and seasonality.  

Time series forecasting is highly dependent on stationarity since forecasts made using 

non-stationary data may be erroneous. The paper emphasizes the importance of 

conducting stationarity tests, including as the Augmented Dickey-Fuller (ADF) test, the 

Ljung-Box test, the Phillips-Perron (PP) test, and the Kwiatkowski-Phillips-Schmidt-

Shin (KPSS) test, to determine whether a dataset is stationary (Monigatti, 2023).  

The ADF test's stationarity is assessed by looking for unit roots, investigating various 

statistical techniques, and confirming the assumptions of time series forecasting models 

such as ARIMA. Testing whether the data behaves randomly is essential for establishing 

stationarity. The Ljung-Box test looks for autocorrelation over several lags in a time 

series. In the meantime, the KPSS test (Kwiatkowski-Phillips-Schmidt-Shin) rejects 

stationarity when a trend is found in the time series by analyzing if the data has a 

consistent trend or variance over time. 

3.3.2. Choosing the Model for forecasting Inflation 

In order to increase the accuracy of inflation forecasts, a number of techniques have been 

used in economic planning and policymaking. Due to its simplicity and statistical 

resilience, ARIMA (Auto-Regressive Integrated Moving Average) and exponential 

smoothing stand out among them. 

3.3.2.1. Stationarity: ARIMA (Auto-Regressive Integrated Moving Average) 

Gaining the knowledge from the master’s course “MP-CA - Time Series”, it can be 

confirmed that ARIMA models can capture a variety of data patterns, including trends 

and seasonality, they are frequently employed for time series forecasting.  

Defining ARIMA, it means auto regressive moving averages. The term AR (Auto-

Regressive) describes a technique for predicting future values of a series based on past 

values. It shows the degree to which the present value is influenced by prior values. By 

adding the mistake of earlier forecasts into the model, the MA (Moving Average) 

component evaluates the impact of prior forecast errors on the current value. To 



22 
 

accurately forecast time series data, AR and MA work together to help identify underlying 

trends in the data. 

ARIMA is a widely used time series model for forecasting stationary data. In the 

discussion of ARIMA models' use in forecasting, Nokeri (2021) highlights how well these 

models handle linear trends in financial data. This study examines ARIMA and its 

seasonal variation, SARIMA, showing how useful they are for forecasting future values 

based on historical data. This is especially helpful for inflation forecasting, as past 

inflation rates can reveal patterns for the future. 

A study by Jagero, Mageto, and Mwalili (2023) used a hybrid ARIMA-ANN (Artificial 

Neural Network) model to predict Kenyan inflation rates. As their research showed, 

ARIMA models are good at describing linear relationships, but when combined with 

ANN, they can better handle non-linear patterns and produce forecasts that are more 

accurate.  

Paul Goodenough covers the significance of forecasting model accuracy as well as the 

several metrics used to assess it, such as Mean Absolute Scaled Error (MASE) and Mean 

Absolute Error (MAE). It draws attention to the fact that lower values of these metrics 

correspond to greater model performance, supporting the project's methodology of 

choosing the best model in accordance with these standards (Goodenough, 2021). 

The debate backs the choice of ARIMA, highlighting the significance of model fit and 

accuracy when working with data that has been adjusted for inflation. 

In the case of trends and seasonality, seasonal Auto-Regressive Integrated Moving 

Average (SARIMA) can be a good fit, where SARIMA is a seasonal data-handling 

version of the ARIMA model. To capture the recurring seasonal behavior in the data, 

seasonal differencing, additional seasonal autoregressive terms, and moving average 

terms are used. For datasets displaying periodic swings, like sales, temperatures, or other 

data with a definite seasonality across time, SARIMA is frequently employed in time 

series forecasting. 

3.3.2.2. Non-Stationarity 

In the case of absence of stationarity in the dataset, other models need to be explored to 

forecast the inflation. One option is to fit a model that does not require stationarity, and 

another option is to attempt to stationarize the dataset.  

3.3.2.2.1. Exponential Smoothing 

Even though (Nissi, Jane, et al, 2017) have concluded that ARIMA, with its compounding 

feature and low error values, is the best option is supported by the thorough analysis of 

forecast accuracy measures, this justifies the inclusion of exponential smoothing to 

illustrate various scenarios. 

The simplicity of exponential smoothing lies within the idea that it does not require the 

stationarity of the data. Time series forecasting also makes heavy use of exponential 

smoothing techniques, such as simple, double, and triple exponential smoothing. To 

predict future values, these methods use weighted averages of historical observations, 

with higher weights assigned to more recent observations. When it comes to capturing 

trends and seasonal impacts in inflation data, this technique is especially helpful. 
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Hyndman, Rob, et al. (2008) conducted research that shows that exponential smoothing 

can be a very helpful technique for producing accurate inflation projections.  

Makridakis et al. (1971) describes various forecasting methods and emphasizes the 

importance of selecting the appropriate model based on the properties of the data and the 

forecasting requirements. 

It implies that data in which future values depend on previous values are a good fit for 

compounding techniques, such as ARIMA. This validates the project's decision to employ 

ARIMA and compounding  

The article's observations on model selection procedures support the project's approach 

of contrasting models, among which is exponential smoothing to determine which model 

has the lowest forecast error. 

3.3.2.2.2. ARIMA Model of Differences  

The ARIMA model of differences is frequently used to stationarize a non-stationary time 

series modeling by differencing the data. Differences refer to this process of differencing, 

when seasonality or trends in the data are eliminated in order to stabilize the variance and 

mean over time.  

Differencing is performed by deducting the prior observation from the present 

observation, this procedure eliminates trends and gradually stabilizes the mean. The 

process of differencing can be repeated for as many orders as needed until stationarity is 

achieved.  

3.3.2.3. Stationarity and Non-Stationarity conclusion  

The integration of exponential smoothing techniques with ARIMA provides a strong 

foundation for predicting inflation. These techniques, which are backed by empirical 

research, give economists and decision-makers useful tools for precisely predicting 

inflation patterns. After testing the significance for our forecast, a more thorough and 

accurate forecast results can be obtained by utilizing the advantages of each model, which 

is essential for efficient economic planning and decision-making. 

3.3.3. Testing the forecasting Models 

Important criterias for evaluating forecasting model effectiveness are the Akaike 

Information Criterion (AIC), corrected AIC (AICC), and Bayesian Information Criterion 

(BIC). In order to prevent overfitting, AIC and AICC penalize models for complexity 

while rewarding quality of fit. Contrarily, BIC has a higher penalty for more parameters 

and is especially helpful for comparing models among larger datasets (Dheer, 2024). In 

order to improve forecasting dependability, these factors work together to select the best 

model by striking a balance between complexity and accuracy. 

When interpreting AIC, AICC and BIC values, lower values indicate a better-fitting 

model, suggesting a balance between model complexity and goodness of fit. Specifically, 

AICC adjusts AIC for small sample sizes, making it more reliable in those contexts. BIC 

generally favors simpler models more than AIC does, as it imposes a stronger penalty for 

additional parameters. Thus, when comparing models, select the one with the lowest AIC, 
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AICC, or BIC value for the best performance in terms of forecasting accuracy and 

simplicity (Minitab, 2024). 

A statistical metric called log likelihood is used to assess how well a statistical model fits 

a collection of observed data. The log likelihood is widely utilized in various statistical 

models, including regression analysis, generalized linear models, and time series analysis. 

AIC, AICC, and BIC model selection criteria are crucial for these models. By maximizing 

the log likelihood, statisticians can determine which model best fits the data by finding a 

balance between fit and complexity.  

 

When comparing and assessing the efficacy of different forecasting methods, a variety of 

additional accuracy metrics are commonly included in forecasting model evaluation. 

These measures shed light on a number of forecast quality parameters, including bias, 

accuracy, and the capacity to identify underlying patterns in the data. A model's tendency 

to consistently overestimate or underestimate the real values is indicated by the mean 

forecast error, sometimes referred to as the Bias. (Singh, 2021) The root mean squared 

error (RMSE), which gives larger errors a higher weight than smaller errors, and the mean 

absolute error (MAE) are used to measure how accurate the forecasts are overall. A scale-

independent measure of accuracy is provided by the mean percentage error (MPE) and 

mean absolute percentage error (MAPE), which normalize predicted mistakes in relation 

to the actual values.  

The mean absolute scaled error (MASE) offers information about the relative 

performance of the forecast by comparing its accuracy to a naive benchmark model. The 

autocorrelation function at lag 1 (ACF1) is another tool used to assess the presence of 

autocorrelation in the residuals. It shows if any patterns are still not explained by the 

model. Numerous research (Hyndman & Koehler, 2006; Makridakis, Wheelwright, & 

Hyndman, 1998) have shown that combining these indicators enables a thorough 

assessment of forecasting models. These comparison methods allow for a comprehensive 

and subtle evaluation of forecast performance, which aids in identifying the model that is 

best suited for practical application. 
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4. EMPIRICAL WORK  

 

This chapter explores the empirical work conducted in this project. I will detail the 

methods and procedures adopted throughout the process, the chapter explores the critical 

examination and adjustment of assumptions.  

Additionally, the potential option of fitting inflation-adjustment model will be presented 

in detail, evaluating the possible impact of fitting inflation into the model. This chapter 

also includes forecasting inflation with the help of multiple models, testing and 

comparing the forecasting models. 

Finally, I will detail how to fit the chosen inflation forecast into the base model, enhancing 

its efficiency. The results and outcomes of the works presented in this chapter will be 

detailed in the results chapter.  

 

4.1. Introduction and objective 

The project's main objective is to assess and enhance the calculations for claims 

provisions in the general insurance sectors by applying a variety of statistical techniques 

and deterministic models, such as Chain Ladder, Worst Factors, Average Factors, 

Average T-Factors, Grossing Up Factors, and Grossing Up Worst Factors. This required 

analyzing data on paid amounts, claim expenses, and claim volume on a quarterly basis. 

The objective was to guarantee precise and sufficient provisioning through the adoption 

of diverse actuarial methodologies and models in reference to the help of what have been 

studied in the master’s course “GAP-CA - Asset-Liability Management.”  

The first step in this topic involved calculating the non-adjusted for inflation claims 

provisions Model, using the strategies of KPMG for the clients and comparing our results 

to theirs.  

Afterwards, future inflation is forecasted and tested, and a new project is created requiring 

new calculations for the inflation adjusted Claims Provisions model. 

Lastly, the newly created proforma by me will be used by KPMG in audits as a new 

template for calculating claims provisions including and excluding the effect of inflation 

for quarterly data. For such template, the actuary is only required to add the quarterly 

inputs, adjust the inflation inputs for the more recent years, and if needed add the more 

recent inflation forecast input. The proforma then automatically outputs the expected 

amounts to be paid per period, expected costs and claim provisions for each methodology. 

 

4.2. Base Claims Provision Model 

First, the inputs received by the client team are imported. Those inputs include the 

quarterly accumulated paid amounts, number of claims, and claim costs from the first 
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quarter of year 2007 until the fourth quarter of year 2022 for Motor Insurance line of 

business.  

Afterwards, a tab for the calculations of the amounts paid and a tab for the claims costs 

are added. Those tabs’ inputs are the respective data until the date of calculations, the 

fourth quarter of 2022. The triangle of cumulative amounts paid of the most recent periods 

is shown below. 

 

 

Figure 4.2.1: Run-off Triangle of cumulative amounts paid 

 

4.2.1. Data Triangles validation for Historical Claims Data 

Calculating tail factors can provide a sign regarding the settlement and reporting of the 

claims, providing an understanding if additional costs are likely to be required (England 

& Verrall, 2002; Pinheiro et al., 2003). 

We start by calculating the tail factors for years the last 3 years: 2020, 2021, and 2022. 

Within the KPMG methodologies, the tail factor is calculated by the formula below.   

(4.1)    

Tail factor for a quarter =
Cumulative claims cost at the end of the period

Cumulative amount paid for the time period 
 

 Where cumulative claims cost at the end of the period refers to the total settled 

claims cost of the last quarter available, which is the 4th quarter of 2022. 

 The cumulative amount paid for the time period is the cumulative amount paid in 

the quarter for which the tail factor is being calculated. 

We then find the average of tail factors for each of the 3 years, to make sure all tail factors 

are close to 1 as expected.  

The calculated section for the average tail factors is as presented below. 

 

Year 0 Year 1 Year 2

Year Quarter Q1 Q2 Q3 Q4 Q1 Q2 Q3 Q4 Q1 Q2 Q3 Q4

2020 Q1 352,404 1,786,236 2,239,612 2,363,222 2,448,343 2,496,361 2,548,302 2,566,748 2,574,196 2,574,196 2,634,882 2,636,011

Q2 141,952 1,172,953 1,448,808 1,529,524 1,596,005 1,610,694 1,661,162 1,662,487 1,668,029 1,666,182 1,668,837

Q3 386,020 1,879,735 2,190,411 2,332,976 2,392,205 2,435,479 2,468,063 2,468,203 2,468,962 2,484,962

Q4 455,335 2,006,262 2,406,649 2,470,315 2,565,384 2,615,661 2,633,986 2,636,125 2,642,870

2021 Q1 369,066 1,523,082 1,720,194 1,814,072 1,862,187 1,895,087 1,910,896 1,913,621

Q2 510,820 2,029,175 2,452,245 2,676,927 2,810,196 2,825,714 2,845,473

Q3 438,664 2,154,781 2,582,855 2,792,438 2,868,459 2,899,335

Q4 422,960 2,293,636 2,789,536 2,950,954 3,046,937

2022 Q1 418,086 1,906,888 2,248,971 2,370,384

Q2 443,001 1,928,553 2,490,103

Q3 377,658 1,958,314

Q4 405,345

Cumulative Amounts Paid
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Figure 4.2.1.1: Average Tail factors per year 

  

Analyzing the table above, we observe that all averages of tail factors are close to 1, where 

an average of tail factors that is close to 1 indicates that the majority of claims have been 

settled and reported, lowering the possibility of major future developments in the claims. 

The validity of the data set gives an indication that fitting the desired model is a practical 

idea. 

4.2.2. Development factors calculation per method 

Although data from 2007 is available, KPMG requirements and standards advise on the 

referencing of more recent data, which offers a better reflection of current trends and 

claims development, the calculation for the development factors’ starting point is 2013. 

This can be explained by the changes in rules, market conditions, and company practices, 

earlier data may not completely reflect the current claims conditions. 

The development factors are then calculated for all quarters between the first quarter of 

2013 and the fourth quarter of 2022, totaling to 40 development periods for the first 

quarter of 2023. The first development period is for quarter 1 of 2023 is 10 years from 

the first quarter of 2013, the second development period is 9 years and 3 quarters from 

Q2 of 2013, and the third entry is 9 years and 2 quarters from Q3 of 2013 and so on 

4.2.2.1. Chain Ladder Development Factors 

The development factors for chain ladder are calculated by the following formula: 

(4.2)  

Chain ladder development factor for development period k

=
∑ Cumulative amounts paid for development period k + 1n−1

k

∑ Cumulative amounts paidn−1
k  for development period k

 

 Where n is the last period available for the development period k 

4.2.2.2. Overall development factors (For the Link Ratio Deterministic) 

The overall development factors are referenced for the variants of the link ratio 

deterministic. For each development period, the development factors are calculated by 

dividing the cumulative amounts paid of the following quarter by this quarter’s 

cumulative amounts paid. For illustration, the formula is presented below.  

(4.3) 

Development factor for year development period k

=
Cumulative amount paid for development period k + 1

Cumulative amount paid for development period k
 

Year 2020 2021 2022

Average Tail Factors 1.003486952 1.002439466 1.002009



28 
 

4.2.2.2.1. Worst factor 

The development factor for the worst factor methodology returns the largest value of the 

overall development factors for each development period. 

4.2.2.2.2. Average Factor 

The development factor with reference to the average factor’s methodology uses the 

average of the calculated overall development factors for each development period. 

4.2.2.2.3. Average T-Factor 

The first step in this method is to agree on a certain number of years to reference for this 

methodology, this agreed number of years will be called “T years”. The development 

factors are then found by returning the average of the last T years’ calculated overall 

development factors for each development period.  

4.2.2.3. Additional Factors for KPMG methods 

Additional factors recommended by KPMG are grossing up factors and grossing up worst 

factors. The theory underlying those approaches is more adaptable and made for extreme 

or variable settings, as previously discussed in the literature review, resulting in 

noticeably different components and projections.  

4.2.2.3.1. Grossing Up Factors 

The first step to find the grossing up development factors is to establish the grossing up 

adjustments F(k) for all 40 development periods, where F(1) is equal to the expected 

cumulative amounts paid for the first quarter of 2013 obtained by chain ladder.  

We can then obtain the grossing up factor references for all quarters from Q1 2013 by 

dividing the respective development period’s cumulative amounts paid by the grossing 

up adjustment for the first development period. 

From the 2nd development period onwards, the grossing up adjustment F(k) is calculated 

as indicated below: 

(4.4)   

Grossing Up Adjustment F(k)

=  
Cumulative amount paid for development period k

Average(G(1), G(2), … , G(k − 1)
 

 Where G(k) is the Grossing Up factor references for development period k. 

After obtaining the grossing up adjustment for period k, we can deduce the grossing up 

factor references by the formula below: 

(4.5) 

Grossing Up factor reference G(k)

=
Cumulative amount paid for development period k

F(k)
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The triangle of grossing up factor references for all development periods can be filled 

accordingly. The grossing up development factors per development period is the last entry 

of the period’s grossing up factor references. 

4.2.2.3.2. Grossing Up Worst Factors 

To obtain the development factors for the Grossing Up Worst factors method, we use the 

same methodology as the Grossing Up factors with minor changes. 

The first development period’s grossing up worst adjustment is equal to the cumulative 

amounts paid for the quarter before. The grossing up worst factor references for all 

quarters starting Q1 2013 are then obtained by dividing the respective period’s cumulative 

amounts paid by the grossing up worst adjustment for the first development period. 

From the 2nd development period onwards, the grossing up adjustment WF(k) is 

calculated as indicated below: 

(4.6) 

Grossing Up Worst Adjustment WF(k)

=
Cumulative amount paid for development period k

min(H(1), H(2), … , H(k − 1)
 

 Where H(k) is the Grossing Up worst Factor’s reference for development period 

k. 

After obtaining the grossing up adjustment for period k, we can deduce the grossing up 

factor references by the formula below: 

(4.7) 

Grossing Up Worst factor reference H(k)

=
Cumulative amount paid for development period k

WF(k)
 

The triangle of grossing up factor references for all development periods can be filled 

accordingly.  

The grossing up worst factors per development period is the period’s last entry of the 

triangle of grossing up worst factor references.  

4.2.2.4. Factors per method 

The table of factors per development period are presented in the figure below for 

reference.  
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Figure 4.3.2.1: Factors per Method for all Development Periods 

 

Year Quarter

Development

period

k

Development

factors

Chain

Ladder

Development

factors

Worst 

Factors

Development 

factors 

Average 

Factors

Development 

factors 

Average 

T-Factors

Grossing 

Up 

Factors

Grossing 

Up 

Worst 

Factors

2013 Q1 1 4.218 8.263 4.473 5.055 0.174 0.079
2013 Q2 2 1.177 1.308 1.183 1.219 0.75 0.599
2013 Q3 3 1.046 1.092 1.048 1.058 0.885 0.773
2013 Q4 4 1.025 1.05 1.026 1.033 0.928 0.832
2014 Q1 5 1.013 1.033 1.014 1.015 0.951 0.862
2014 Q2 6 1.009 1.034 1.01 1.011 0.964 0.879
2014 Q3 7 1.005 1.02 1.005 1.004 0.974 0.897
2014 Q4 8 1.003 1.011 1.003 1.003 0.978 0.898
2015 Q1 9 1.003 1.008 1.003 1.002 0.981 0.901
2015 Q2 10 1.003 1.024 1.003 1.003 0.984 0.906
2015 Q3 11 1.001 1.006 1.001 1.001 0.987 0.925
2015 Q4 12 1.002 1.009 1.002 1.002 0.988 0.928
2016 Q1 13 1.001 1.01 1.002 1.001 0.99 0.931
2016 Q2 14 1.001 1.005 1.001 1.001 0.992 0.936
2016 Q3 15 1 1.009 1 1 0.993 0.938
2016 Q4 16 1.001 1.013 1.001 1.001 0.993 0.944
2017 Q1 17 1.003 1.058 1.003 1 0.994 0.946
2017 Q2 18 1.001 1.014 1.001 1.001 0.996 0.966
2017 Q3 19 1 1.002 1 1 0.997 0.966
2017 Q4 20 1 1.001 1 1 0.997 0.968
2018 Q1 21 1 1.004 1 1 0.997 0.968
2018 Q2 22 1.002 1.032 1.002 1.002 0.997 0.968
2018 Q3 23 1 1.004 1 1 0.999 0.988
2018 Q4 24 1 1.001 1 1 0.999 0.988
2019 Q1 25 1 1 1 1 0.999 0.988
2019 Q2 26 1 1 1 1 0.999 0.988
2019 Q3 27 1 1.001 1 1 0.999 0.988
2019 Q4 28 1 1 1 1 0.999 0.988
2020 Q1 29 1 1 1 1 0.999 0.988
2020 Q2 30 1 1.004 1 1 0.999 0.988
2020 Q3 31 1 1 1 1 0.999 0.992
2020 Q4 32 1.001 1.007 1.001 1.001 0.999 0.992
2021 Q1 33 1 1 1 1 1 0.999
2021 Q2 34 1 1 1 1 1 0.999
2021 Q3 35 1 1.001 1 1 1 0.999
2021 Q4 36 1 1 1 1 1 1
2022 Q1 37 1 1 1 1 1 1
2022 Q2 38 1 1 1 1 1 1
2022 Q3 39 1 1 1 1 1 1
2022 Q4 40 1 1 1 1 1 1
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Commenting on the figure above, it is important to note that because of their underlying 

philosophy and calculation procedure, the grossing up factors and grossing up worst 

factors differ greatly from the conventional chain ladder method and link ratio factors. In 

summary, the growth of proportionate claims is not the same concept for the grossing up 

elements. Rather, they rely on modifications made to the amounts paid at each period, 

with the factors intended to scale the observed amounts according to specific guidelines.  

4.2.3. Finding claims provisions per methodology. 

Firstly, the area below the triangles is filled for each methodology. We can then obtain 

the data for each methodology separately and find the claims provisions per method. 

The expected cumulative amounts paid per development period is then obtained with 

calculating for the future years, by filling the area below the triangle for each 

methodology separately. This can be obtained by multiplying the period’s respective 

cumulative amounts paid or the claims costs by the period’s development factor for each 

methodology.  

The claims provisions per development period are calculated as the expected cumulative 

amounts paid of the respective period minus the previous period’s cumulative amounts 

paid or claims costs for each method. 

We have now obtained claims provisions per method side by side for each calculation, as 

it is shown below for illustration. Those results can be compared to the clients’ calcultion 

for claims provisions for further analysis, as to be discussed in the results chapter. 
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Figure 4.2.4.1: Claims Provisions per Method for all Development Periods 

 

Year Quarter
Development 

period

Claims 

provision 

Chain Ladder

Claims 

provision 

Worst 

Factors

Claims 

provision 

Average 

Factors

Claims 

provision 

Average T-

Factors

Claims 

provision 

Grossing 

Up Factors

Claims 

provision 

Grossing 

Up Worst 

Factors

2013 Q1 1 0 0 0 0 0 0

2013 Q2 2 0 0 0 0 0 0

2013 Q3 3 -163 0 -169 -169 -169 0

2013 Q4 4 -406 0 -418 -418 -418 0

2014 Q1 5 -640 0 -663 -663 -663 0

2014 Q2 6 -116 2747 -184 -184 -184 2747

2014 Q3 7 -271 2873 -354 -354 -355 2873

2014 Q4 8 -576 3604 -700 -700 -700 3604

2015 Q1 9 2703 32287 2792 2792 2768 32165

2015 Q2 10 2233 32573 2280 2280 2255 32450

2015 Q3 11 3429 47831 3598 3598 3558 47708

2015 Q4 12 3385 52348 3545 3545 3500 52082

2016 Q1 13 3086 50473 3228 3228 3184 50162

2016 Q2 14 2509 46058 2664 2664 2626 43408

2016 Q3 15 2362 44368 2505 2505 2469 40697

2016 Q4 16 2031 47962 2216 2216 2177 44005

2017 Q1 17 1918 46286 2060 2060 2025 39747

2017 Q2 18 2157 59111 2237 2237 2198 39808

2017 Q3 19 9096 170222 8993 8993 8776 111956

2017 Q4 20 10485 192440 10348 10348 10118 117896

2018 Q1 21 9387 170823 9275 9328 9074 102729

2018 Q2 22 9759 175760 9649 9894 9441 107644

2018 Q3 23 11592 210911 11442 12024 11228 102067

2018 Q4 24 21357 436182 21388 13292 20755 184302

2019 Q1 25 22215 452472 22296 15334 21692 178847

2019 Q2 26 23189 493403 23360 15298 22676 205156

2019 Q3 27 24210 462603 24187 16871 23575 193005

2019 Q4 28 33034 573681 33319 24252 32589 242694

2020 Q1 29 32280 491924 32524 24437 31889 203848

2020 Q2 30 22743 324226 22852 17525 22429 134729

2020 Q3 31 41147 552749 41707 34591 41022 256454

2020 Q4 32 51401 614532 51750 42296 50989 291645

2021 Q1 33 43060 469909 43358 37183 42785 216608

2021 Q2 34 77955 769303 78200 66922 77313 326604

2021 Q3 35 107002 908087 108498 102088 107489 398947

2021 Q4 36 154283 1087986 156731 155483 155566 487237

2022 Q1 37 181940 1006552 186120 202764 184967 478081

2022 Q2 38 315526 1382421 324221 370939 322133 730945

2022 Q3 39 637844 2024712 659307 784217 651269 1312441

2022 Q4 40 1861422 6406963 2018233 2464383 1917825 4744746
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4.2.4. The validity of the assumptions of the methodologies 

For facilitation, the summarized requirements of all methodologies are presented in the 

figure below. 

 

 

Figure 5.2.4.1: Assumptions of each methodology 

 

4.2.4.1. Homogeneity and Consistency of Development Factors 

Homogeneity is a requirement for all the methodologies, while consistency of 

development factors is a requirement for Chain Ladder. 

The table below represents the means and standard deviation of the raw data of amounts 

paid for each development period. 

 

Assumptions of 

Methods

Chain 

Ladder

Worst 

Factor

Grossing 

Up Worst 

Factors

Grossing 

Up Factors

Average 

Factors

Average T-

Factors

Homogeneity ✓ ✓ ✓ ✓ ✓ ✓

Independence ✓

Consistency of 

Development 

Factors

✓ ✓ ✓ ✓

Sufficiency of 

Data
✓

Extremism ✓ ✓

Stability of 

Averages over 

Time

✓ ✓ ✓

Proportional 

Scaling
✓ ✓ ✓
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Figure 6.2.4.2: Means and standard deviation of Amounts Paid per Quarter 

Year Quarter Means Standard 

2007 Q1 0.020566 0.002848974

Q2 0.001468 0.001344335

Q3 0.004414 0.001435657

Q4 0.002148 0.001437846

2008 Q1 0.006155 0.00145574

Q2 0.005249 0.00146119

Q3 0.004582 0.00144776

Q4 -0.004439 0.001289403

2009 Q1 0.000473 0.001251441

Q2 0.000751 0.001269632

Q3 0.009935 0.001086037

Q4 0.003159 0.000966927

2010 Q1 0.000471 0.000943343

Q2 0.002868 0.000912229

Q3 0.001029 0.00091501

Q4 0.001504 0.000919993

2011 Q1 5.25E-05 0.000930205

Q2 0.002543 0.000923953

Q3 0.001478 0.000938123

Q4 0.001637 0.000944952

2012 Q1 0.001365 0.00094314

Q2 0.00015 0.000953472

Q3 0.000449 0.000977706

Q4 8.22E-05 0.000986283

2013 Q1 0.002408 0.000985018

Q2 0.000992 0.001053628

Q3 0.002858 0.00106123

Q4 0.006662 0.001048727

2014 Q1 0.007955 0.001060024

Q2 0.005538 0.001070706

Q3 0.005655 0.001089888

Q4 0.00554 0.001105461

2015 Q1 0.00758 0.001111877

Q2 0.00026 0.001051128

Q3 0.001321 0.001066286

Q4 0.00396 0.001043051

2016 Q1 0.004482 0.001062135

Q2 0.003811 0.000992828

Q3 0.001429 0.001007395

Q4 0.001217 0.001019965

2017 Q1 0.002105 0.001116413

Q2 0.001657 0.001132757

Q3 0.001778 0.001150957

Q4 0.004014 0.00117943

2018 Q1 0.009495 0.001185047

Q2 0.003648 0.001189731

Q3 0.007695 0.001213008

Q4 0.007444 0.001252784

2019 Q1 0.015781 0.001250004

Q2 0.011311 0.00128472

Q3 0.008929 0.001333984

Q4 0.007673 0.001392497

2020 Q1 0.024977 0.001318223

Q2 0.003305 0.00097632

Q3 0.001893 0.001020764

Q4 0.005259 0.00106607

2021 Q1 0.01232 0.001018578

Q2 0.01861 0.000664386

Q3 0.004052 0.000626708

Q4 0.014579 0.000670678

2022 Q1 0.014497 0.000409232

Q2 0.005354 0.000533656

Q3 0.032381 0

Q4 0 0
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Looking at the table, we observe a constant pattern of low standard deviations in 

comparison to the means for each of the periods. This indicates that the data is 

homogenous, and we can also conclude that the development factors are consistent.   

4.2.4.2. Independence 

Independence is one of the requirements for Chain Ladder method. Testing for 

independence means that we need to prove the small correlation in the data set for the 

development factors of Chain Ladder. 

We will perform the independence test using Chi-squared test. The first step is to 

categorize our development factors for each of the models into 3 groups: low, medium 

and high values. The table is presented below. 

 

 

Figure 7.2.4.3: Chi-square test: Data grouping 

 

The following step is to calculate the Chi squared statistic, x2 . This is obtained by the 

following formula: 

(4.8) 

x2 = ∑
Observed count − Expected counts

Total number of observations
  

(4.9) 

 Where the Expected counts is calculated as: 
Row total−Column total

Total number of observations
 

Doing so, we reach a Chi-squared statistic of 16.248, with a degree of freedom of 10, 

where the degree of freedom is calculated as: (Row total − 1) × (Column total − 1).  

Comparing the Chi-squared statistic at 5% significance level with a critical value of 

18.307, we can confirm the independence of the data.  

4.2.4.3. Extremism 

Extremism is an assumption for Worst Factors and Grossing Up Worst Factors methods, 

it is rooted in the methodology that they focus intentionally on worst-case scenarios to 

produce larger scales of future liabilities. 

Classification
Chain 

Ladder

Worst 

Factor

Average 

Factors

Average T 

Factors

Grossing 

Up Factors

Grossing 

Up Worst 

Factors

Low 10 0 10 12 33 35

Medium 28 38 28 26 7 5

High 2 2 2 2 0 0
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Hence, extremism does not need to be proven statistically significant for validity, it can 

simply be assumed. 

4.2.4.4. Stability of Averages over time 

This requirement is key for Grossing Up Factors, Average Factors, and Average T-

Factors. This can be proved by using the coefficient of variation. The first step is finding 

the means and standard deviations for the claims provisions for the 3 methodologies. Then 

we finally find the coefficient of variation by dividing the standard deviation of all 3 

means by the average of all 3 means.  

The coefficient of variation was calculated as 7.4674091%, which is lower than 10%. 

This signifies the stability of the averages over time.  

4.2.4.5. Proportional Scaling and sufficiency of data  

Having a small coefficient of variation of 7.4674091% demonstrates that proportional 

scaling exists. A low coefficient of variation lower than 10% imply that the data is 

consistent over time, and that the claims amounts increase and decrease proportionally 

over time.  

Besides, having such huge data set of quarterly data between 2013 and 2022, we can 

conclude the sufficiency of the data. 

4.2.4.6. Meeting all assumptions 

All assumptions and requirements for each methodology have been met, meaning that the 

environment is reasonable for fitting the desired models. 

4.2.5. Testing the base model for Statistical Significance: Bootstrap test 

Aiming to test the validity of the created model, a test for statistical significance is 

performed using bootstrap with the sampling assumption. 

Due to the complexity of transferring the data and results to RStudio, a bootstrap test has 

been performed manually using Microsoft Excel. As a starting point, numerous 

simulations have been generated where each simulation involved generating random 

samples of the real data set of amounts paid. To be more precise, I selected random values 

from this dataset using the Excel formula =INDEX(Cumulative Amounts Paid, 

RANDBETWEEN(1, N),t),where the actual dataset is in sheet Amounts paid between 

cells D13 and BO76, where N is the number of development periods in the dataset which 

is 64, and t is the quarter being calculated. 

The following step was to calculate the claims provisions for each simulation using all 

methodologies. The mean of the samples is found by simply getting the mean of claim 

provisions of all simulations, and the standard deviation is found by the excel formula 

=STDEV.P() 

Lastly, the 99% Confidence Interval and the 95% Confidence Interval have been 

constructed to evaluate the accuracy of my model.  

The hypothesis of the performed tests is as below: 
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Null Hypothesis (H0): The claims provisions model is not significantly different from the expected 

values. 

H0: The calculated claims provision falls within the range of Bootstrap estimates. 

Alternative Hypothesis (H1): The claims provisions model is significantly different from the expected 

values. 

H1: The calculated claims provision does not fall withing the range of Bootstrap estimates. 

The formulas used to calculate the confidence intervals are presented below:  

(4.10) 

Mean of error =
standard deviation × critical value

√(number of samples)
 

Where the critical value for 95% significance level is 1.645 and the critical value for 99% 

significance level is 2.575. 

The confidence interval is then deduced as the following range: 

[Mean − Margin of error, Mean + Margin of error] 

The obtained confidence intervals are presented in the table below: 

 

 

Figure 8.2.5.1: Bootstrap Test for the Base Model: Confidence Intervals 

 

The outcomes and findings of the performed Bootstrap test is to be presented and 

discussed in detail within the results chapter in section 5.2.2. Bootstrap Test for testing 

the Adequacy of the Model 

 

4.3. Forecasting Inflation 

For inflation forecasting, the yearly inflation data for Portugal between 1999 and 2022 by 

Statista (2024) will be used, this data also includes the yearly forecasted inflation until 

2028. The inflation data is presented below.  

 

Methodology Lower 95 CI Upper 95 CI Lower 99 CI Upper 99 CI

Chain Ladder 1,319,717 6,464,484 511,253 7,272,948

Worst Factor -16,416,666 31,567,053 -23,956,964 39,107,352

Average Factors -26,350,154 15,458,069 -32,920,018 22,027,933

Average T-Factors -26,351,421 15,461,684 -32,922,052 22,032,315

Grossing Up Factors -17,663,380 74,415,290 -32,132,885 88,884,795

Grossing Up Worst Factors -20,578,218 24,726,608 -27,697,548 31,845,938
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Figure 9.3.1: Yearly Inflation Rates in Portugal 

 

This dataset is then converted to quarterly inflation rates and is then imported to RStudio 

for further workings. 

4.3.1. Testing the inflation dataset  

Firstly, exponential smoothing can be used for forecasting inflation without perquisites 

and requirements, but the options of forecasting using other models should also be 

explored to choose the best fit. Hence, the inflation dataset should be tested using 

regression analysis and time series analysis to significantly choose the appropriate model 

for forecasting inflation.  

4.3.1.1. Regression Analysis  

The regression analysis will be performed with the help of RStudio libraries ggplot2, 

dplyr, broom, and ggpubr. This analysis is done to test the possibility of forecasting 

inflation with linear regression. As an overview, checking the summary of the quarterly 

inflation data in Portugal from 1999 until 2028 is a perquisite.  A presentation of the 

summary of regression analysis key statistical values is provided below. 
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Figure 10.3.1.1: Regression Analysis: Summary of Quarterly Inflation Data 

 

These statistical values represent the dataset's distribution, comprise the Minimum, First 

Quartile (1st Qu), Median, Mean, Third Quartile (3rd Qu), and Maximum.  

After analyzing the data, we can conclude that the quarterly data set's lowest inflation rate 

is -0.2258%, its largest is 2.0134%, and its average is 0.05332%. 25% of the dataset is 

below 0.02434%, 75% of the dataset is below 0.07050%, and 50% of the dataset is below 

0.05332%. The simple regression outputs among the quarters show acceptable and 

realistic results in comparison to the real-life inflation rates.  

4.3.1.1.1. Testing Normality 

A histogram is made to verify visual normality. The following is the hypothesis that is 

tested for normality: 

Null Hypothesis (H0): The data is normally distributed. 

Alternative Hypothesis (H1): The data is not normally distributed. 

The histogram of the quarterly inflation rates presented below is created as a check for 

normality of the dataset.  

 

 

Figure 11.3.1.2: Histogram of the Quarterly Inflation Data 

 

Looking at the histogram, we deduce that the inflation data is normally distributed, and 

we accept the null hypothesis. The first requirement of the simple regression analysis is 
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met, the histogram shows the normality of the quarterly inflation data in Portugal from 

1999 until 2022. 

4.3.1.1.2. Testing Linearity 

In terms of linearity, plotting the historical data of inflation rates in Portugal may be 

sufficient to identify any linearity trends.  

Below is presented a plot of inflation rates in Portugal against time, in search for linear 

relationship. 

 

 

Figure 12.3.1.3: Linear plot of the Quarterly Inflation Data 

 

The linear regression fit is represented by the blue line, which slopes slightly downward. 

The confidence interval, which displays fit uncertainty, is shown by the dark region 

surrounding the line. The black dots, or data points, are dispersed, but not too far from, 

the regression line. Despite some variation among the data points, a linear relationship 

appears to be implied by the general trend. The data points do, however, exhibit some 

spread around the line, suggesting that although a linear model is a fair fit, other models 

or factors might also need to be considered for a more precise prediction. 

Hence with the help of our master’s course “MR-CA - Risk Models”, we perform 

additional testing using the R-squared coefficient and the coefficient of determination. 

This test’s hypothesis is: 

Null Hypothesis (H0): There is no linear relationship between the variables (Pearson 

correlation coefficient is equal to 0). 

Alternative Hypothesis (H1): There is a significant linear relationship between the 

(Pearson correlation coefficient is not equal to 0). 

We proceed with running the codes below, we have reached the presented results. 
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Figure 13.3.1.4: Pearson Correlation test on the Inflation Dataset 

 

Looking at the results above, we observe that the acquired Pearson correlation coefficient 

indicate a very weak negative linear relationship between the variables time and inflation, 

hence we reject the null hypothesis.  

4.3.1.1.3. Testing Independence 

Due to the absence of linearity, there is no need to look for any hidden links between the 

variables, although it is fair to say that inflation and time are most likely to be independent 

because inflation is more linked to other factors like economic conditions. 

We can conclude that the data do not fit well into the linear model. It suggests that factors 

other than those in the model could significantly affect inflation more than the time, 

therefore we do not have to test the data for homogeneity. 

4.3.1.2. Time Series Analysis (Stationarity) 

The first requirement for time series analysis has been met by proving the non-linearity 

of the data set. We now aim to prove the stationarity of the data set. 

The upcoming tests will be performed on a 10% significance level, as a 10% cutoff point 

in the assessment of inflation data for forecasting may allow for possible fluctuations in 

economic indicators and acknowledge the difficulties involved in predicting inflation, 

particularly in a dynamic economic landscape. In addition, it can indicate that the analysis 

was early in nature, allowing for more research and improvement in later studies while 

lowering the possibility of Type I errors, where type I error is when a null hypothesis that 

is true is mistakenly rejected. 

Checking for stationarity, the stationarity tests are performed on our dataset of quarterly 

inflation rates between 1999 and 2028. The testing will be done using ADF, KPSS, Ljung-

Box, and PP tests, with the hypothesis at 10% significance level as follows: 

Null Hypothesis (H0): The time series is stationary (P-value < 0.1) 

Alternative Hypothesis (H1): The time series is non-stationary (P-value > 0.1) 

Running the codes presented below we obtain the p-value of the ADF test. 
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Figure 14.3.1.5: Stationarity testing: ADF Test on the Dataset 

 

The p-value for the ADF test is big, which suggests that the dataset is not stationary, 

rejecting the null hypothesis. By further testing, we raise the significance level, and the 

data then becomes stationary. Hence, we do not exclude the idea of fitting an auto ARIMA 

model, subject to further testing. 

 

 

Figure 15.3.1.6: Stationarity testing: Other Stationarity tests on the Dataset 

 

On the other hand, the KPSS test accepts the idea of stationarity of the original dataset, 

as we may deduce that the data is stationary at 10% significance level with such small p-

value of 0.07495. The p-value of the PP test is also very small, which concludes 

stationarity of the dataset. Similarly, the Ljung-Box test indicates that the dataset is 

stationary with such small p-value. In summary, we accept the H0 and deduce that the 

data set is stationary.  
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4.3.1.2.1. Stationarizing the dataset 

We now try to use the differencing method to check if the data becomes stationary using 

the ADF test. The testing will be done using ADF test, with hypothesis at 10% 

significance level as follows: 

Null Hypothesis (H0): The difference of the inflation is stationary (P-value < 0.1). 

Alternative Hypothesis (H1): The difference of inflation is non- stationary (P-value > 

0.1). 

The codes below were run to execute the differencing method, and then testing it. 

 

 

Figure 16.3.1.7: Stationarizing the Dataset: ADF Test on the Dataset of Difference 

 

The result obtained for the ADF test suggests that the difference of the inflation rates 

model is stationary at 10% significance level. 

In summary, we have sufficient proof that the dataset and the difference of the dataset are 

both stationary. Hence, we may use both Arima models and exponential smoothing to 

forecast the inflation rates from 2028 onwards, ensuring careful consideration and 

validations against the historical data. 

4.3.1.2.2. Seasonality and trends check 

Moreover, we can also explore other models that may be fitted, then we can decide which 

model is a better fit. We can now explore the possibility of having seasonality in the 

timeseries, which opens the door for a seasonal ARIMA model.  

Running the codes below, a plot will be outputted which may show seasonality.  
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Figure 17.3.1.8: Seasonality Check: R codes for plotting the Dataset 

 

Below is the plot of the decomposition of trends in our timeseries.  

 

 

Figure 18.3.1.9: Seasonality Check: Plot of the Dataset 

 

Looking at the graph above, we can capture trends. We can conclude that this timeseries 

may have seasonality, which opens the door for a seasonal Arima model to forecast 

inflation.  

4.3.2. Forecasting Inflation 

4.3.2.1. Model 1: Auto-ARIMA models 

Using library forecast on RStudio, we run the codes provided below, accompanied with 

the results and assumptions. 
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The first line converts the dataset into a tibble. We then apply the auto-ARIMA to decide 

for us the order that suits our model best, by running the codes below. 

 

 

Figure 19.3.2.1: Model 1: R codes for applying Auto-ARIMA function 

 

We hence obtain the results of the inflation data. The ARIMA(0,1,0) model was chosen 

by the Auto ARIMA process, signifying that the number of autoregressive items is zero 

and the number of moving averages (MA) is zero, meaning that there is no 

autocorrelation, while the 1 refers to the order of differencing. This suggests that the 

series' stationarity was attained with only a first-order differencing (d=1). In time series 

data, differencing is frequently used to eliminate trends or stabilize variation. 

Relative to the inflation data, the model's estimated variance of 5.884e-06 is small, which 

can be explained by capturing variability effectively after differencing. 

The log likelihood value of 437.26 is relatively big, making the model a better fit.  

Such negative values of AIC, AICC, and BIC is common, as a better trade-off between 

model complexity and data fit is indicated by lower values. 

We perform the forecast then using the r-formula “forecast()” to obtain the expected 

inflation rates of the 1st quarter of 2023 until the last quarter of 2038. The graph presented 

below shows the obtained results, along with the 80 and 95 Confidence Intervals. 

 

 

Figure 20.3.2.2: Forecast 1: Plot of the Auto-ARIMA Model forecast. 
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In summary, the ARIMA(0,1,0) model does the job for short-term inflation forecasting; 

longer-term projections and the capture of unexpected economic developments may 

require more complicated models, which are subject to continuous evaluation. 

4.3.2.2. Model 2: Auto-ARIMA for the differences model 

Following the same auto-ARIMA procedures for the model of differences, we obtain the 

presented below forecast, with the 80 and 95 Confidence Intervals. 

 

 

Figure 21.3.2.3: Forecast 2: Plot of the forecast of the Auto-ARIMA Model of 

Differences. 

 

4.3.2.3. Model 3: Seasonal Arima (SARIMA) 

Below is attached the codes ran on RStudio, accompanied by the results for the seasonal 

Arima model. 

 

 

Figure 22.3.2.4: Model 3: R Codes and Results of SARIMA Model 
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The ar1 parameter for the short-term autocorrelation is captured by the coefficient 0.8899, 

which indicates a positive correlation between the inflation value today and the inflation 

value one period ago. The coefficient -0.5268 of the Seasonal AR parameter, or sar1, 

shows a negative correlation between the same quarter's inflation in prior years (seasonal 

period 4). 

The seasonal MA parameter, or sma1, has a coefficient of 0.6698, indicating that the 

moving average of errors from prior seasons has an impact on the present inflation 

estimate. 

mean: A continuous adjustment to the series mean is shown by the mean term, which is 

0.0064. 

The variance is notably small with a value of 5.788e-06, indicating that the model 

captures the variability of the inflation data. The SARIMA model fits the data better than 

the Auto ARIMA model, as indicated by the higher log likelihood value of 443.74. 

In comparison to the Auto ARIMA model, AIC, AICC, and BIC have negative values, 

with lower values suggesting a better trade-off between model complexity and data fit. 

The model takes into account both seasonal and non-seasonal factors, making the model 

appropriate for predicting inflation over a period of several quarters. 

Performing the forecast, we reach the forecast presented by the plot below. 

 

 

Figure 23.3.2.5: Forecast 3: Plot of SARIMA forecast 

 

To summarize, it seems that the SARIMA(1,0,0)(1,0,1) model is a good fit for predicting 

inflation. Given that it incorporates seasonal components and fits the data slightly better 

than the AutoARIMA model, it is possible that it will produce more accurate forecasts, 

especially over longer forecasting horizons. 
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4.3.2.4. Model 4: Exponential smoothing 

This forecast has been performed using Microsoft Excel’s Forecast property. This 

forecast is done straight forward after inputting the inflation rates between 1999 and 2028. 

We then obtain the expected future quarterly inflation rates in Portugal between the 

beginning of 2023 and the end of 2038. The images attached below show the plot of 

inflation rates between 1999 and 2038. 

 

 

Figure 24.3.2.6: Forecast 4: Plot of Exponential Smoothing forecast 

 

The obtained results are explained by the figure below: 

 

 

Figure 25.3.2.7: Results of Forecast 4 (Exponential Smoothing) 
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4.3.3. Choosing the adequate model for Inflation Forecasting 

The following analysis helps us to choose the most adequate model, or the model that is 

expected to have the least errors. 

The first step is to always find the error by subtracting the actual data from the respective 

forecasted data for each observation. 

The bias, also known as the mean error, is the average of the errors. 

The Root Mean Squared Error, RMSE is the square root of the average error squared. 

The Mean of the absolute error, MAE is the average of the sumitions of the absolute 

values of the errors.  

Mean percentage errors, MPE is the percentage of errors. The formula is presented below 

for illustration, where at is the tth observation of actual data and ft is the tth osbervation of 

the forecasted values.  

(4.11) 

MPE =  
100%

n
∑

at − ft

at

n

t=1

 

Mean Absolute Percentage Error is the sum of absolute error divided by each period 

separately. 

Mean absolute squared error, MASE is calculated by dividing MAE by MAE naive, 

where MAE naive is the mean absolute error produced by a naive forecast, where a naive 

forecast is a simple forecasting method which uses the most recent observation as the 

predicted value for the next time period. 

ACF1 is the autocorrelation of errors at lag one, it reflects the influence of previous values 

on current values in a time series. 

Analyzing those values help us to reach our desired model.  

The r-codes used to apply those formulas on r-studio are presented below. 
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Figure 26.3.3.1: R Codes for testing the forecasting Models. 

 

Calculating for all the models, the results below were obtained. 

 

 

Figure 27.3.3.2: Results of the Accuracy tests for the forecasting Models 

 

Analyzing those results, we can conclude that exponential smoothing’s values are the 

most adequate. With a very small bias within the acceptable range [-1,1], a very low 

MAE, an acceptable MPE, a good MAPE indicator of 1.29% which means that the 

forecast is 98.71% accurate, a poor MASE which can be overlooked by the other results, 

and a positive autocorrelation at lag 1.  

 

4.4. Inflation-Adjusted Model 

Before fitting the Inflation-Adjusted Model, sensitivity analysis is required to observe the 

claims amounts fluctuation results from variations in inflation. 

Auto ARIMA
ARIMA for 

differences
SARIMA

Exponential 

Smoothing

Bias 0.0150588 -0.00507 0.002622 -0.022191

RMSE 0.0157459 0.00685 0.005589 0.0221908

MAE 0.0150588 0.005326 0.004108 0.0238074

MPE -61.87231 -100 -68.1349 -1.154112

MAPE 1043.594 100 308.2198 1.2905655

MASE 19.34717 6.842137 5.277602 1.4068735

ACF1 0.8065906 0.806591 0.78402 1
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4.4.1. Exploring the possibility to fit an Inflation-Adjusted Model 

(Sensitivity Analysis) 

To know if the inflation adjusted model can be fit into the current model, sensitivity 

analysis is required. This is simply done by calculating using multiple random inflation 

rates and checking the adequacy of those random results. 

In my sensitivity analysis, random quarterly inflation rates have been generated between 

0.5% and 5% yearly inflation rates. Now the historical inflation is added to our original 

data to make sure that the model considers historical inflation data also. This section will 

be explained in detail in the upcoming section 4.4.2. Inflation Application into the base 

Model  

The following step is to simply apply the randomly generated future inflation rates into 

our adjusted claims provision by the formula below: 

(4.12) 

Sensitivity Provision
= Adjusted Claims Provision 
× (1 + random inflation rates)Time Period 

The results and conclusions of the sensitivity analysis will be presented in the Results 

chapter in details in section 5.2.3. Can we fit an Inflation Adjusted Model (Sensitivity 

Analysis)? 

4.4.2. Inflation Application into the base Model  

Applying inflation to the historical data cannot be operated with cumulative data. Hence, 

we start by obtaining the incremental payments triangle by subtracting each cumulative 

amount paid from the previous cumulative amount paid. 

To apply historic quarterly inflation into our raw data, the quarterly inflation adjustment 

for past data is calculated to reflect the effect of all time periods’ inflation rates. It is 

calculated by (1+the quarter’s inflation rate) by (1+all the following quarters’ inflation 

rates), where the inflation rates being used are between the 1st quarter of 2013 and the 4th 

quarter of 2022. The obtained inflation rates and the inflation adjustments are shown in 

the table below.  
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Figure 28.4.2.1: Presenting historic Inflation and Inflation Adjustments per quarter 

 

The past inflation is then applied to the historical incremental payments by multiplying 

the quarter’s incremental payment by its inflation adjustment. We can then find the new 

cumulative payments considering historic inflation, by summing up the subsequent 

incremental payments. The triangle of revised cumulative payments including historical 

inflation for the most recent years is shown below. 

 

Quarter 1+Inflation Inflation adjustment

Q1 2013 1.0009985 1.140482

Q2 2013 1.0009985 1.139345

Q3 2013 1.0009985 1.138208

Q4 2013 1.0009985 1.137073

Q1 2014 0.9994996 1.135939

Q2 2014 0.9994996 1.136507

Q3 2014 0.9994996 1.137076

Q4 2014 0.9994996 1.137645

Q1 2015 1.0012477 1.138215

Q2 2015 1.0012477 1.136797

Q3 2015 1.0012477 1.13538

Q4 2015 1.0012477 1.133965

Q1 2016 1.0014966 1.132552

Q2 2016 1.0014966 1.13086

Q3 2016 1.0014966 1.12917

Q4 2016 1.0014966 1.127482

Q1 2017 1.0039762 1.125797

Q2 2017 1.0039762 1.121339

Q3 2017 1.0039762 1.116898

Q4 2017 1.0039762 1.112474

Q1 2018 1.0029866 1.108068

Q2 2018 1.0029866 1.104769

Q3 2018 1.0029866 1.101479

Q4 2018 1.0029866 1.098199

Q1 2019 1.0007492 1.094929

Q2 2019 1.0007492 1.09411

Q3 2019 1.0007492 1.093291

Q4 2019 1.0007492 1.092472

Q1 2020 0.9997499 1.091654

Q2 2020 0.9997499 1.091927

Q3 2020 0.9997499 1.0922

Q4 2020 0.9997499 1.092474

Q1 2021 1.0022424 1.092747

Q2 2021 1.0022424 1.090302

Q3 2021 1.0022424 1.087863

Q4 2021 1.0022424 1.085429

Q1 2022 1.0201337 1.083

Q2 2022 1.0201337 1.061626

Q3 2022 1.0201337 1.040673

Q4 2022 1.0201337 1.020134
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Figure 29.4.2.2: Triangle of revised cumulative payments with past inflation 

 

The next step is to find the development factors for each of the methodologies using the 

same methods employed previously in section 4.2.2. Development factors calculation per 

method. The new factors are presented below for illustration. 

 

Year 0 Year 1 Year 2

Year Quarter Q1 Q2 Q3 Q4 Q1 Q2 Q3 Q4 Q1 Q2 Q3 Q4

2020 Q1 384,703 1,950,344 2,445,521 2,580,562 2,673,577 2,725,931 2,782,437 2,802,458 2,810,524 2,810,524 2,873,679 2,874,831

Q2 155,002 1,281,061 1,582,425 1,670,628 1,743,112 1,759,092 1,813,871 1,815,306 1,821,189 1,819,267 1,821,976

Q3 421,612 2,053,456 2,392,946 2,548,384 2,612,818 2,659,789 2,695,077 2,695,226 2,696,016 2,712,338

Q4 497,442 2,192,212 2,628,755 2,698,015 2,801,205 2,855,655 2,875,110 2,877,336 2,884,217

2021 Q1 403,295 1,661,522 1,875,952 1,977,850 2,029,959 2,064,886 2,081,339 2,084,118

Q2 556,949 2,208,710 2,667,922 2,911,252 3,052,735 3,068,883 3,089,040

Q3 477,206 2,339,928 2,803,532 3,026,031 3,105,144 3,136,642

Q4 459,093 2,485,035 3,011,495 3,179,479 3,277,394

2022 Q1 452,787 2,033,337 2,389,333 2,513,191

Q2 470,301 2,016,275 2,589,131

Q3 393,019 2,005,499

Q4 413,506

Cumulative Amounts Paid (including historical inflation)
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Figure 30.4.2.3: Factors per method for the Inflation-Adjustment Model 

 

Then, the area below the triangle is filled for each model using each of methodologies, 

finding the cumulative paid amounts for each model taking historical inflation into 

account.  

Year Quarter
Development 

period

Development 

factors

 Chain Ladder

Development 

factors

Worst Factors

Development 

factors

Average Factors

Development 

factors 

Average T-

Factors

Grossing Up 

Factors

Grossing Up 

Worst Factors

2013 Q1 1 4.200022 8.26483 4.462908 5.039178 0.17514 0.078796

2013 Q2 2 1.175251 1.307862 1.181975 1.217741 0.751751 0.605013

2013 Q3 3 1.04596 1.091206 1.047635 1.057952 0.886512 0.776907

2013 Q4 4 1.024579 1.048598 1.025557 1.032504 0.928478 0.834273

2014 Q1 5 1.013107 1.033246 1.013403 1.01513 0.952125 0.121076

2014 Q2 6 1.009152 1.033527 1.009585 1.0113 0.964859 0.88127

2014 Q3 7 1.004758 1.019904 1.004678 1.00397 0.974076 0.899538

2014 Q4 8 1.00296 1.010366 1.002983 1.003325 0.978622 0.900996

2015 Q1 9 1.002814 1.008228 1.002712 1.002013 0.981531 0.90315

2015 Q2 10 1.002813 1.022471 1.002977 1.003284 0.984182 0.908618

2015 Q3 11 1.001346 1.006429 1.001314 1.00119 0.987093 0.926215

2015 Q4 12 1.002028 1.008428 1.002032 1.001759 0.988377 0.929408

2016 Q1 13 1.001463 1.009348 1.001555 1.00138 0.990371 0.931877

2016 Q2 14 1.001095 1.004411 1.00103 1.001025 0.991905 0.936512

2016 Q3 15 1.000174 1.008893 1.000198 0.999891 0.99293 0.938508

2016 Q4 16 1.000727 1.013051 1.000749 1.000937 0.993106 0.945088

2017 Q1 17 1.002605 1.057354 1.002635 0.999994 0.993846 0.947013

2017 Q2 18 1.000758 1.013653 1.000744 1.000859 0.996348 0.967602

2017 Q3 19 1.000121 1.001534 1.000121 1.000181 0.997084 0.967475

2017 Q4 20 1.000079 1.000929 1.00008 1.000097 0.997203 0.968959

2018 Q1 21 1.000247 1.003422 1.000239 1.000239 0.997283 0.968959

2018 Q2 22 1.001976 1.030784 1.001917 1.001917 0.997521 0.968959

2018 Q3 23 1.000086 1.003953 1.000067 1.000067 0.999384 0.988772

2018 Q4 24 1.000026 1.000864 1.000018 1.000018 0.99945 0.989015

2019 Q1 25 0.999867 1.000034 0.999875 0.999875 0.999468 0.98903

2019 Q2 26 1.000007 1.000405 1.000007 1.000007 0.999343 0.989063

2019 Q3 27 0.999958 1.000618 0.999966 0.999966 0.99935 0.989131

2019 Q4 28 0.999962 1.000037 0.999959 0.999959 0.999316 0.989131

2020 Q1 29 0.999922 1.000028 0.999917 0.999917 0.999275 0.989155

2020 Q2 30 1.000284 1.003576 1.000312 1.000312 0.999192 0.989155

2020 Q3 31 0.999883 1 0.999873 0.999873 0.9995 0.992692

2020 Q4 32 1.000744 1.00662 1.000791 1.000791 0.999373 0.992692

2021 Q1 33 0.999945 1.000017 0.99994 0.99994 1.000158 0.999236

2021 Q2 34 0.999959 1 0.999956 0.999956 1.000098 0.999254

2021 Q3 35 1.000114 1.000747 1.000101 1.000101 1.000054 0.999254

2021 Q4 36 0.999943 1 0.999941 0.999941 1.000155 1

2022 Q1 37 0.999952 1 0.999951 0.999951 1.000096 1

2022 Q2 38 0.999955 1 0.999953 0.999953 1.000047 1

2022 Q3 39 1 1 1 1 1 1

2022 Q4 40 1 1 1 1 1 1
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Afterwards, we find the projected increments in order to apply future inflation to future 

payments. In other words, we find the incremental payments for the area below the 

triangle for each of the models by subtracting each cumulative payment from the previous 

cumulative payment. 

Using compounding, the incremental payments for the future years are then multiplied by 

the relevant future inflation rate, to obtain the new incremental payments including the 

future inflation. 

4.4.3. Inflation-Adjusted Claims Provisions 

To finalize, the revised cumulative payments are calculated by adding the previous 

quarter’s cumulative payment to the current quarter’s incremental payment with future 

inflation for each model. Just like that, it is straightforward to get the claims provisions 

by deducing the respective cumulative amounts paid from the previous value of the 

cumulative amounts. The figure below shows the provisions of the inflation-adjusted 

model.  
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Figure 31.4.3.1: Claims Provision per method for the Inflation-Adjustment Model 

  

Year Quarter
Development 

period

Claims 

provision 

Chain Ladder

Claims 

provision 

Worst 

Factors

Claims 

provision 

Average 

Factors

Claims 

provision 

Average T-

Factors

Claims 

provision 

Grossing Up 

Factors

Claims 

provision 

Grossing Up 

Worst 

Factors

2013 Q1 1 0 0 0 0 507881.5 507881.5

2013 Q2 2 0 0 0 0 474592 474592

2013 Q3 3 -177.078 0 -183.229 -183.229 441190.9 441362.7

2013 Q4 4 -457.597 0 -471.183 -471.183 534184.5 534612.7

2014 Q1 5 -748.134 0 -774.341 -774.341 523767.7 524451.6

2014 Q2 6 -220.966 2991.883 -297.452 -297.452 452128.3 455137.4

2014 Q3 7 -373.728 3335.041 -471.309 -471.309 471022.3 474343.4

2014 Q4 8 -703.442 4454.488 -853.694 -853.694 581122.2 585571.8

2015 Q1 9 2973.806 36492.27 3053.067 3053.067 545646.7 576180.8

2015 Q2 10 2525.688 38341.5 2577.885 2577.885 544833.8 576187.8

2015 Q3 11 4126.446 58224.58 4328.564 4328.564 541111 587473.7

2015 Q4 12 4466.63 67593.73 4683.192 4683.192 582036.6 632982.9

2016 Q1 13 3514.187 61214.8 3673.117 3673.117 553477.9 602687.6

2016 Q2 14 3059.932 57690.88 3248.772 3248.772 471615.4 514264.1

2016 Q3 15 2705.017 54056.12 2863.07 2863.07 433041.6 472953.8

2016 Q4 16 2449.778 59882.31 2663.07 2663.07 457494.9 501088.7

2017 Q1 17 2390.297 58999.55 2564.373 2564.373 401297.9 440489.1

2017 Q2 18 2726.008 74434.79 2824.967 2824.967 380167.8 419222.5

2017 Q3 19 10735.79 203595.7 10603.52 10603.52 381491.9 491678.2

2017 Q4 20 13062.71 240209.1 12865.56 12865.56 389740.5 504455.9

2018 Q1 21 12173.28 221970.8 11986.71 12046.86 329741.8 429130

2018 Q2 22 13179.24 235357.2 12993.09 13276.12 319391.6 423309.2

2018 Q3 23 14206.17 212895.3 14009.9 14690.59 296969.6 392791

2018 Q4 24 25970.68 469072.8 25868.21 16631.33 329387 506070.8

2019 Q1 25 27714.7 564911.8 27690.8 19165.75 306522.4 475759.8

2019 Q2 26 30140.69 639324.4 30210.95 19785.74 309713.4 506564.2

2019 Q3 27 31669.11 614230.1 31535.51 21333.93 282104.3 464390.6

2019 Q4 28 41798.63 735840.1 41965.17 30977.8 332487.2 557483

2020 Q1 29 40891.66 636482.6 41036.97 30889.42 272625 457173.8

2020 Q2 30 29519 426437.6 29542.86 22778.12 176963.2 298282

2020 Q3 31 53089.19 726600 53655.59 44143.65 270969.4 500162

2020 Q4 32 66669.4 823242.4 66933.19 54380.67 295616.4 550637.1

2021 Q1 33 55904.05 638572.4 56155.85 47674.55 216024.3 399507.3

2021 Q2 34 101339 1055409 101489.7 86220.8 325778.5 588557.8

2021 Q3 35 136371 1229476 137904.3 127385.1 351544.7 659894.2

2021 Q4 36 193988.8 1469572 196852 192737 395251.3 744831

2022 Q1 37 223585.7 1342830 228723 245210.4 336401.4 642046.9

2022 Q2 38 376884.8 1798505 387844.9 439022.7 430477.7 842511.6

2022 Q3 39 730604.8 2521609 757414.3 895734.6 709456.3 1356490

2022 Q4 40 2073173 7626401 2256477 2756854 1955660 4842451
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5. Results: Effect of Inflation on claims provisions 

 

This chapter will detail the outcomes of my internship at KPMG Portugal, covering the 

results and outcomes of each of the mentioned procedures, along with the conclusion of 

the whole experience.  

My internship has been both informative and influential, focusing on the real-world 

implementation of forecasting techniques and how they fit into actuarial modeling. The 

main topic involving the calculation of claims provisions, which are an essential 

component of risk and insurance management, as well as the application of multiple 

approaches to assess the effect of inflation on these provisions.  

 

5.1. Reasoning and planning 

This project focuses on the impact of historical and future inflation on claims provisions 

for general insurance. By comparing multiple actuarial methodologies against the client 

calculated provisions, we aimed to assess the accuracy and robustness of each method. 

This allowed us to examine both the technical and financial implications of using different 

models when inflation is factored into future liabilities.  

Including historical and projected future inflation in the models is a crucial component of 

this research, as the insurers’ future obligations are significantly shaped by inflation, 

especially in such long-tailed insurance line where claims stay unsettled for longer 

periods where inflation compounds over time. Besides, the cost of repairs, medical and 

legal fees, and many other general-insurance specific elements are tied by inflation. 

Inflation inclusion also reduces the likelihood of reserve shortages. Compared to more 

conventional models that might not fully consider shifting economic situations, this offers 

a significant improvement. 

 

5.2. Interpreting and testing the results of the base model (Not including 

Inflation Adjustment) 

5.2.1. Base Model Results 

The table presented below shows the results for the base model without inflation per each 

model. 
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Table 5.2.1.1: Results of the Base Model for Claims Provisions 

31/12/2022 

Client 

calculated 

Provision 

Total 

Provision 

Chain 

Ladder 

Total 

Provision 

Worst 

Factor 

Total 

Provision 

Average 

Factors 

Total 

Provision 

Average T 

Factors 

Total 

Provision 

Grossing 

up factor 

Total 

Provision 

Grossing 

up worst 

factor 

Amounts Paid 4,048,096 3,724,570 19,846,385 3,922,397 4,463,101 3,799,874 11,560,040 

Difference %  -7.99% 390.26% -3.11% 10.25% -6.13% 185.57% 

Absolute 

Difference  -323,526 15,798,289 -125,699 415,005 -248,223 7,511,943 

 

Looking at the results, we observe that the Worst Factor method produced a pessimistic 

estimate of 390.26% higher than the client’s estimate, other methods like Average Factors 

and Grossing Up Factor remained relatively close to the client calculated provision. The 

Chain Ladder model produced provisions of €3.72M, closely aligning with the client’s, 

being 7.99% lower.  

5.2.2. Bootstrap Test for testing the Adequacy of the Model 

These results and conclusions presented above look adequate, but they do not sufficiently 

indicate the significance of the methodologies. In other words, the data needs to be tested 

for statistical significance. 

The table of results of the Confidence Intervals at 95% confidence level and at 99% 

confidence level obtained in section 4.2.5. Testing the base model for Statistical 

Significance: Bootstrap test is presented in the figure below, using the sampling 

assumption. 

 

 

Figure 5.2.2.1: Results of the Bootstrap Test for the Base Model: Confidence Intervals 

 

Practically looking at the results we can confirm that our calculations for claims 

provisions fall within the range for each of the 6 methodologies. It can be deduced that 

Methodology Results Lower 95 CI Upper 95 CI Lower 99 CI Upper 99 CI

Chain Ladder 3724570.219 1,319,717 6,464,484 511,253 7,272,948

Worst Factor 19846384.86 -16,416,666 31,567,053 -23,956,964 39,107,352

Average Factors 3922397.399 -26,350,154 15,458,069 -32,920,018 22,027,933

Average T-

Factors
4463100.898 -26,351,421 15,461,684 -32,922,052 22,032,315

Grossing Up 

Factors
3799873.523 -17,663,380 74,415,290 -32,132,885 88,884,795

Grossing Up 

Worst Factors
11560039.54 -20,578,218 24,726,608 -27,697,548 31,845,938



59 
 

our models are statistically significant, is a representative of the true risk associated with 

claims provisions, and that the calculations are consistent with the real data’s variability.  

We can confidently say that the discrepancies between the client's calculations of claims 

provisions and ours cannot be the result of coincidence. Rather, they are a sign of true 

variations in the approaches or assumptions made by the client.  

5.2.3. Can we fit an Inflation Adjusted Model (Sensitivity Analysis)? 

In this subsection, the results obtained from the base claims provision model is compared 

to the sensitivity test results, as presented in the table below. 

 

Table 5.2.3.1: Sensitivity Analysis: Sensitivity Results of Claims Provisions per method 

31/12/2022 

Client 

calculated 

Provision 

Total 

Provision 

chain 

ladder 

Total 

Provision 

Worst 

Factor 

Total 

Provision 

Average 

Factors 

Total 

Provision 

Average T 

Factors 

Total 

Provision 

Grossing 

up factor 

Total 

Provision 

Grossing up 

worst factor 

Amounts 

Paid 4,048,096 3,724,570 19,846,385 3,922,397 4,463,101 3,799,874 11,560,040 

Sensitivity 

check 

Amounts 

Paid  3,884,930 21,198,090 4,096,765 4,633,800 17,910,931 25,955,661 

 

As per the table above, we can tell that the claims provision estimates obtained from the 

random inflation rates are larger than their counterparts in the first row, suggesting that 

inflation significantly raises the reserve requirements for all techniques. We can observe 

modest increases as in the estimates of Chain Ladder, Average Factors, Worst Factors, 

and Average T-Factors. On the other hand, there are much greater adjustments in the 

estimates of Grossing Up Factor and Grossing up Worst Factor, signifying that those 

methods are over responsive to the inflation addition. In other words, the sensitivity 

analysis signify that the model is responsive to the inflation effect, except for Grossing 

Up Factors and Grossing up Worst Factors. 

The conclusion that including inflation in the model is both required and suitable can be 

drawn, given that the sensitivity analysis demonstrates consistent rises in all provision 

estimates. Because the provisions derived from the sensitivity check account for the 

increasing expenses linked with inflation, they better position the insurer to handle future 

claim payments. 
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5.3. Inflation-Adjusted model for Claims Provision in General 

Insurance 

5.3.1. Inflation-Adjusted Model Results 

Although the Grossing Up Factors and Grossing up Worst Factors have shown huge 

discrepancies in the sensitivity analysis, I have decided to include them in the model in 

any case, as they may show to be significant with the inclusion of the real inflation rates. 

In case not, the results of those methods will be disregarded in the Inflation-Adjusted 

Model.  

The table below shows the results of the claims provisions for all models, accounting for 

historical and forecasted future inflation. 

 

Table 5.3.1.1: Inflation-Adjusted Model Results: Claims Provision per method 

31/12/2022 

Client 

calculated 

Provision 

Provision 

chain 

ladder 

Provision 

Worst 

Factor 

Provision 

Average 

Factors 

Provision 

Average T 

Factors 

Provision 

Grossing 

up factor 

Provision 

Grossing 

up worst 

factor 

Amounts 

Paid 4,048,096 4,330,928 25,010,256 4,563,188 5,143,837 17,910,931 25,955,661 

Difference 

%  6.99% 517.83% 12.72% 27.07% 342.45% 541.18% 

Absolute 

Difference  282,832 20,962,160 515,092 1,095,741 13,862,835 21,907,565 

 

Looking at the results, we observe that the Chain Ladder estimate has increased to 6.99% 

higher than the client’s estimate. The Worst Factor method tends to overestimate in 

inflationary times, increasing to become 517.83% over the client calculated provision. 

The Grossing Up Worst Factor displayed an inflated difference of +541.18% indicating 

a large increase in the Grossing Up Factor as well, suggesting the exclusion of those 

methods in the Inflation-Adjusted Model.  

5.3.2. Overall Model Conclusions 

Different viewpoints on estimating claims provisions are offered by the many actuarial 

models which were used, including Grossing Up, Average Factors, Worst Factor, Chain 

Ladder, and Average T Factors. Because of this diversity, we were able to compare the 

accuracy of each technique with and without inflation adjustments using the client's past 

claims data.  

In this study, the Chain Ladder technique proves to be the most precise and trustworthy 

model for estimating claims provisions when explicit inflation correction is performed. 

The balance of this model rests in its capacity to capture historical patterns of 

development while seamlessly accounting for inflationary impacts and avoiding 

exaggerating responses to extraordinary or transient events. 

The accuracy of the Chain Ladder approach originates from its projection of future trends 

based on real claims development using robust historical data. Unlike the Worst Factor 
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approach, it avoids relying too much on extreme scenarios and offers more dynamic, 

inflation-adjusted estimates than more straightforward models like Average Factors. 

Because of this, it is the ideal approach for insurers who want their provisioning systems 

to be resilient and precise, especially in the face of inflationary pressures. 

The difference between our results and the client’s results can be explained by several 

factors. Firstly, looking at the base model without inflation adjustment, the differences 

can be explained by the different assumptions, data, parameter choices and development 

factors employed by each party. Secondly, the client calculated provision may be based 

on extremely basic predictions about future inflation or a less detailed treatment of 

inflation. Our models offer a more data-driven methodology by taking into consideration 

current economic developments, which inevitably results in more dynamic projections. 

Moreover, the worst-case situations such as Worst Factor and Grossing Up approaches 

produce are helpful in scenario planning, but they can cause large deviations in normal 

provisioning, particularly in contexts with moderate inflation.  

Moreover, the deviation in comparison to the inflation adjusted model is explainable due 

to including real and forecasted inflation data. Because the inflation-adjusted model 

accounts for both past and future inflation, it yields more accurate and efficient outcomes. 

With the exclusion of the Grossing Up Factor and Grossing up Worst Factor methods due 

to the huge discrepancies in their estimates, we can predict how changes in the economy 

will affect future claim payments by accounting for inflation in the future using the rest 

of the methodologies. This makes it possible to estimate reserves more realistically, 

ensuring that the insurance provisions are better equipped to withstand any inflationary 

pressures that may arise. As a result, the model offers a more dependable foundation for 

keeping adequate reserves, enhancing risk control, and guaranteeing the insurance 

portfolio's long-term financial viability. 

Also, apart from claims provision calculation, this model provides estimates of the 

expected future amounts paid, expected future claims number, and expected future claims 

costs with and without inflation’s effect.  

Besides, acquiring the development factors is key for each claims related information. 

This means that we can also obtain the development factors for claims numbers or claims 

costs using the same methods employed for amounts paid, and the model can then be 

extended to project the expected future claim costs or the expected future claims numbers 

respectively.  

Lastly, I would like to comment with regards to the controversy regarding the 

unsuitability of the use of quarterly data in the existence of seasonality. As this model is 

created with inputs of Motor insurance claims, the model can be fitted on quarterly data 

due to the absence of significant seasonality. In the case of fitting the same model on 

other lines of general insurance, the respective data can be simply grouped into yearly 

rather than quarterly and the model will work with the same efficiency after minor 

changes on the development factors, as the inflation rates are presented in yearly and 

quarterly in my model. 
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5.4. Overview of the experience 

The internship provided a priceless chance to apply actuarial ideas and methods to useful, 

real-world tasks. The main project in this internship involved calculating claims 

provisions using six different methodologies., where I have evaluated several forecasting 

techniques and concluded that the chain ladder method was the most accurate and 

dependable way to estimate future payments of past claims. The significance of inflation 

adjustments in actuarial models was highlighted by the integration of historical and 

predicted inflation, which offered crucial insights into the long-term implications on 

claims provisions. 

Including inflation adjustment required a solid grasp of time series forecasting and its 

application in practical situations, in addition to a deep comprehension of the actuarial 

methodologies that underpin it. I learned a great deal about managing and accounting for 

economic factors in actuarial models through this assignment, which highlights the need 

of taking inflation into account when making long-term financial plans.  

The necessity of choosing the appropriate model for the available data was highlighted 

by the successful application of exponential smoothing for inflation forecasting. The 

project's ultimate success depended heavily on this method's capacity to manage the 

inherent volatility in inflation data while producing steady and accurate estimates. 

Apart from the core project, I have also contributed to other types of projects which are 

explained in the appendix. I have helped create an actuarial report and a Solvency II 

master file report, and I have contributed to calculating mathematical provisions for 

different lines of business, which deepened my comprehension of regulatory obligations 

and how they support insurance firms' financial stability.  

I now have a greater understanding of the significance of precise modeling, actuarial 

soundness, and regulatory compliance thanks to these experiences. These studies have 

also improved my comprehension of the complexities associated with long-term liabilities 

while fortifying my capacity to evaluate and reconcile huge datasets critically. All things 

considered, the internship improved my technical skills, emphasized the value of accurate 

actuarial analysis, and equipped me for any obstacles in the future. 

The knowledge acquired from this work directly relates to the issues that insurers are 

currently facing, as precise forecasting and financial planning are more crucial than ever. 

The techniques and strategies I have picked up throughout this experience will surely be 

a great starting point for me as I approach actuarial problems in the future. 
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Appendix 

 

In this chapter, I will mention some of the topics that are relevant to my internship 

experience at KPMG, but they do not add a big value to the reader. 

 

Claims Provisions base model: Amounts paid data presentation 

For reference, the triangle of cumulative amounts paid for the Motor insurance data of 

the latest years from the triangles used in this project calculations are presented below.  
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Triangle of Cumulative Amounts Paid 



70 
 

 

Calculations for Audits: Advanced Mathematical Provision Models for 

Pensions and Life Annuities: Addressing Longevity and Interest Rate 

Risk 

To guarantee accuracy and consistency between our estimates and the client's estimates, 

calculation of the mathematical provisions is part of the audit process. This subtopic 

focuses on sophisticated mathematical provision models for life annuity and pension 

calculations used in Audits specifically. It explores the complexities of these models, 

concentrating in particular on the manner in which they can handle interest rate risk and 

longevity. "Mathematical Provisions", often referred to as MP is the sum that the insurer 

retains to meet liabilities arising from insurance or pension funds’ contracts, as calculated 

by actuarial methodologies (The Central Bank of the Republic of Kosovo, 2016). 

Empirical proof of the usefulness of stochastic modeling techniques in addressing 

longevity risk in pension valuations is presented in this paper (Ronkainen, 2012), 

indicating that more accurate estimates of future pension requirements require conducting 

an extensive investigation of past mortality data and future mortality projections.  

To calculate the present value of future cash flows and account for variables like interest 

rates, mortality rates, and investment returns, these valuations require sophisticated 

mathematical computations (Pitacco, 2016). 

With the help of our master’s courses “MAFI-CA - Financial Mathematics” and “MASV 

- Survival Models and Life Contingencies”, it has been very convenient for me to 

understand the concepts, ideas and applications for this project. 

The goal of this project is to compute the client’s Mathematical Provision, often referred 

to as MP using our methods, and compare it to the client's current estimated provision, 

using Microsoft Excel and Excel VBA for some specific company standard macros. This 

stage guarantees uniformity and pinpoints any inconsistencies that might require 

attention. 

 

Audits for Life Annuities  

As a starting point, our team classifies the members into 4 categories in accordance with 

the client’s scheme. Individual members with payments in advance, individual with 2 

heads (Joint Life Annuity) with payments in arrears, Group 105&110 with annual 

premium payments done in advance, and Group 112 with annual payments done in 

arrears.  

Client’s data for all members are then imported in reference to each category to the 

calculations Excel file, including members’ Policy number, the frequency of premiums 

payment, the insureds’ date of Birth, the fractioning for premiums, Term of the policy, 

the effective date of the policy, technical interest rate applied to the policy, and Premium 

amounts. 
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The first step is to calculate the member’s age at date of calculation and age at date of 

joining service, where the 2 used mortality tables for this scheme is TV88/90 and TPRV 

93. Then, we index the present value of life annuity for the member based on the age 

nearest, based on the respective mortality table.  

Using KPMG specialized macros, the Present value of term life annuities is calculated 

for each category with respect to each category’s timing and frequency of payments, 

while accounting for the number of years in which the annuity is payable. This calculation 

is done to double confirm that the present values used by client from the mortality tables 

is matching with our calculated present value of the temporary life annuities.  The KPMG 

Mathematical Provision is then calculated by multiplying the Cashflows of premium by 

the term annuity present value limited by Age payable, depending on the member’s 

Category Code. Multiplying the Age of reference limits the calculation by the retirement 

age or the minimum age for payments. 

The total KPMG Mathematical provision is calculated for each category by summing the 

Mathematical Provisions for all members of the respective category.  

In a separate sheet, the results are presented. Side by side, is presented the client’s 

estimated total Mathematical Provisions for each group and ours as presented below.  

 

 

Life Annuity Audit: Calculated Mathematical Provisions 

 

Analyzing the data above, the difference between the Mathematical Provisions calculated 

by us and the one calculated by the client for group individual and group 112, while the 

differences for group 105&110 is extremely high.  The differences of the values in the 

balance sheet also suggests that the balance sheet is not reflecting the correct 

mathematical provisions which are required for the liabilities of life annuities. 

Upon analysis, the overall difference between ours and the client’s mathematical 

provisions of 2.99% can be explained by the client’s underestimation of future liabilities. 

Given the huge variances in Group 105&110, this is causing the overall discrepancy. Such 

differencing explains the need for a detailed review of the assumptions and calculation 

methodologies employed by the client.  
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Audits for Pension Funds 

As a first step, the members are classified into 3 groups. Members with redeemable 

pension, members with non-redeemable pension for life, and members with temporarily 

non-redeemable pension. The Mortality table for all pensioners is TV 88/90, the Mortality 

table for deferred pensions is TD 88/90, while the Minimum Age for orphans' pensions 

is 26, and the Normal retirement age is 60 for both genders. 

The present value of the annuity is indexed from the relevant mortality table for each 

group, then the present value of the revised temporary annuity is calculated using the 

KPMG macros only for non-minors. Both annuity values are then compared to confirm 

that they are equal. 

First, we find the initial mathematical provision by multiplying the initial technical base 

factor by the initial pension, and then we calculate the actual mathematical provision by 

multiplying the actual pension by the actual technical base factor.  

We can now easily find the reserves by subtracting the initial and actual mathematical 

provisions, then presenting the totals along with the clients’ as below.  

 

 

Pension Funds Audit: Calculated Mathematical Provisions 

 

Analyzing the balance sheet differences, we find a huge difference between the balance 

sheet and KPMG's calculated provisions of 333.2%. This implies that the client’s balance 

sheet is also significantly underreporting the liability.  

Comparing our calculations with the clients’, we conclude that both calculations are very 

comparisonable. The small discrepancies suggest that the client’s assumptions and 

methods may not be aligned. 
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Data Validation for Actuarial Report on Technical Provisions 

As part of the project, I helped with the actuarial report production, paying special 

attention to the data processing and technical provision checks. The aim of such tasks is 

to maintain the actuarial calculations' integrity and accuracy as well as the actuarial 

report's general dependability. 

The objectives of such tasks are to handle and confirm the information needed to compute 

technical provisions, to do extensive validations and checks to guarantee the 

completeness and quality of the data, to comprehend and record the actuarial calculations' 

methods and underlying presumptions, and to assist in the documentation of an accurate 

and thorough actuarial report. 

This was performed by gathering and analyzing the data needed for the technical 

specifications from historical records, internal systems, and external reports. This data 

comprised details about the policyholder, claims, premiums, and other pertinent actuarial 

inputs. Thorough examinations were conducted to guarantee the data's accuracy, 

consistency, and completeness. 

 

Creating the Master File for Solvency: Solvency II file review note 

For this project, a variety of data sets, including cash flows, actuarial assumptions, market 

risks, and technical specifications, had to be systematically integrated. Our goal was to 

create an accurate and thorough master file that accurately reflected the client's current 

financial situation and risk profile. 

The cashflow data is extracted from the client provided financial statements and historical 

financial records, which includes cash inflows and outflows from insurance policies to 

the relevant tabs interpreting the expenses, revenues and financial positions.  

Solvency capital requirements data is imported from the solvency capital requirements 

tool and is applied to the solvency capital requirements tabs, to output the capital 

requirements per risk category.  

Technical provisions data is imported from the internal actuarial reports and external 

actuarial reviews. This data contains information on the assumptions of the best estimate, 

and it is applied to the assumptions on the best estimate and technical provisions tabs 

which outputs the impact of the market movements on the financial position. 

Actuarial data such as defined statistical measures, mortality rates, and lapse rates are 

provided by the client, and it is applied to the actuarial assumptions sheets, outputting the 

forecasted future claims, overall risk exposure, and policy lapses. 

Market risks data is imported from the risk management reports, and the previous masters 

file review, which then outputs the capital requirements per risk category. 


