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Resumo

Compreender o ritmo dos nadadores de elite durante as competicGes € essencial para melhorar
0 seu desempenho em provas de longa distancia. Este estudo explora as estratégias de ritmo
adotadas pelos atletas nas provas de 800m e 1500m livres nos Jogos Olimpicos de 2024, com
um foco especifico na identificacdo dos fatores que explicam as variaces da velocidade de
natacdo e na avaliacdo de qual o modelo de machine learning que melhor as prevé.

Inicialmente, foi considerada uma abordagem baseada na classificacdo, com o objetivo de
prever perfis de ritmo a partir de caracteristicas da prova. No entanto, devido ao tamanho e a
natureza limitada do conjunto de dados, esta abordagem foi descartada. Como alternativa,
adotou-se uma metodologia em duas etapas: (i) foram exploradas estratégias de ritmo através
de agrupamento hierarquico aglomerativo; e (ii) foram utilizados modelos baseados em
regressao para explicar e prever a velocidade do nadador ao longo da prova.

A andlise de agrupamentos revelou trés perfis distintos de ritmo nos 800m, duas estratégias em
forma de U (um mais rapido e outro mais lento) e uma estratégia de ritmo positivo, enquanto
dois perfis em forma de U foram identificados nos 1500m. Os testes estatisticos confirmaram
que estes agrupamentos estavam associados ao sexo, ao tempo de entrada e a variabilidade do
ritmo (CV%), mas ndo a classificac&o final da prova.

Para estudar os determinantes da velocidade, foram geradas novas variaveis, incluindo a
aceleracdo, a distancia até a chegada e o tempo do parcial anterior. A analise de importancia
das caracteristicas identificou o sexo, a aceleracdo e o tempo de entrada como os preditores
mais fortes. Entre os modelos testados, o Gradient Boosting apresentou o melhor desempenho
preditivo, superando o Random Forests, as Redes Neurais e a regressao OLS. A andlise dos
residuos, incluindo o teste de Durbin-Watson, confirmou a robustez estatistica dos modelos.

Palavras-Chave: estratégia de ritmo, natacéo, previsao de velocidade, machine learning, Jogos
Olimpicos, modelos de regressao.
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Abstract

Understanding how elite swimmers pace themselves during competition is essential for
improving performance in long-distance events. This study explores the pacing strategies
adopted by athletes in the 800m and 1500m freestyle races at the 2024 Olympic Games, with
a particular focus on identifying the factors that explain variations in swimming velocity and
evaluating which machine learning model best predicts it.

Initially, a classification-based approach was considered, aiming to predict pacing profiles from
race features. However, due to the limited size and nature of the dataset, this approach was
discarded. As an alternative, a two-step methodology was adopted: (i) pacing strategies were
explored through agglomerative hierarchical clustering; and (ii) regression-based models were
used to explain and predict swimmer velocity throughout the race.

The clustering analysis revealed three distinct pacing profiles in the 800m, two U-shaped
patterns (one faster and one slower) and one positive-split strategy, while two U-shaped
profiles were identified in the 1500m. Statistical tests confirmed that these clusters were
associated with sex, entry time, and pacing variability (CV%), but not with final race ranking.

To study the determinants of velocity, new variables, including acceleration, distance to the
finish line, and previous split, were computed. Feature importance analysis identified sex,
acceleration, and entry time as the strongest predictors. Among the models tested, Gradient
Boosting revealed the best predictive performance, outperforming Random Forests, Neural
Networks, and traditional OLS regression. Residual analysis, including the Durbin-Watson test,
confirmed the statistical robustness of the models.

Keywords: pacing strategy, swimming, velocity prediction, machine learning, Olympic
Games, regression models.
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Glossary

Al — Artificial Intelligence

ANN — Artificial Neural Network

CV (%) — Coefficient of Variation

DT — Decision Tree

FAMD - Factor Analysis of Mixed Data
GB — Gradient Boosting

ML — Machine Learning

MLP — Multi-Layer Perceptron

MAE — Mean Absolute Error

MSE — Mean Squared Error

OLS - Ordinary Least Squares

PR — Precision-Recall

RF — Random Forest

RMSE — Root Mean Square Error
RFE — Recursive Feature Elimination
SSB- Sum of Squares Between groups
SSE — Sum of Squares Error

SVM — Support Vector Machine
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1 Introduction

Pacing, the distribution of effort across a race, is a critical determinant of performance in
endurance sports, especially swimming. In long-distance events like the 800m and 1500m
freestyle, optimal pacing can differentiate between reaching the podium or not. Recent
literature identifies the U-shaped pacing strategy as a dominant pattern among elite swimmers,
often characterised by fast starts and finishes, with a relative slowdown in the middle of the
race.

Although pacing has been extensively studied in sports like running and cycling, swimming
remains comparatively underexplored, particularly from a data science perspective. Traditional
performance analysis in swimming has relied on basic statistics and descriptive metrics.
However, advances technologies have increased the availability of data. In this specific case,
granular split-time data opens new opportunities to leverage machine learning techniques to
gain a deeper understanding of the athlete's behaviour and race dynamics.

The main objectives of this study are to understand the pacing profiles adopted by elite
swimmers in the 800m and 1500m freestyle events at the 2024 Olympic Games, to assess the
key factors that influence their in-race velocity and to identify the most effective machine
learning model for predicting the swimmers’ velocity. Initially, the goal was to predict each
athlete’s pacing strategy through classification models using performance-related features.
However, due to the small dataset, this classification approach was ultimately discarded.

This study begins with a literature review aimed at exploring previous research on pacing
strategies in swimming, the application of machine learning techniques in sports performance
analysis, and an in-depth review of the techniques that were applied throughout the study. Next,
the data and methodology are presented, including a description of the variables used and the
preprocessing steps. The methodological process can be divided into three main phases: (i) the
first phase involves exploratory and unsupervised analysis to identify and characterize the
pacing profiles adopted by athletes; (ii) the second phase focuses on determining the key
features that influence swimming velocity, supported by regression modelling; (iii) in the third
phase, various predictive models are tested and evaluated to determine which algorithm best
explains swimming velocity, considering model accuracy and robustness. Following this, the
discussion of the results obtained in the different stages is discussed and interpreted in light of
the revised literature. Finally, the conclusion summarises the main findings of the study and
proposes directions for future research.
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2 Literature Review

This chapter includes a thorough review of the existing literature on pacing strategies in long-
distance freestyle swimming, particularly the 800 and 1500-meter events. It further explores
the application of statistical methods and highlights the growing importance of machine
learning in sports, pointing out its limited application in swimming. The aim is to uncover the
pacing strategies used by elite swimmers in their races and to determine the key factors that
influence these strategies.

2.1 Machine Learning

Artificial intelligence (Al) can be defined as a set of systems that enable machines to have
human-like intelligence, including the ability to learn, perceive, reason, and interact (Russell
& Norvig, 2022).

Machine learning (ML), a core subset of Al, is the analysis of algorithms that allows systems
to learn and enhance their performance based on experience (Sah, 2020). ML has three primary
approaches: supervised, unsupervised, and reinforcement learning (Figure 1). The key
difference between supervised and unsupervised learning is the type of data used. Supervised
learning uses labelled datasets, allowing the algorithms to learn to classify data points or predict
outcomes with improved accuracy over time (Kotsiantis, 2007). This approach includes two
major categories: regression (for continuous outputs) and classification (for discrete outputs)
(Bousquet et al., 2004). On the contrary, unsupervised learning models work with unlabelled
data to uncover hidden patterns without any human intervention (Mahesh, 2020). Typical tasks
for this approach include clustering, association, and dimensionality reduction.
Reinforcement learning involves an agent that learns to make decisions by interacting with an
environment. The agent obtains feedback in the form of rewards or penalties for the actions it
performs, being the goal of maximising the total reward (Sah, 2020).

Machine Learning

Supervised Learning Unsupervised Learning Rienforcement Learning
A4
Classification Regression Clustering

Figure 1: Types of Machine Learning

Given the variety of approaches in ML, selecting the appropriate models depends on the
characteristics of the problem and the structure of the data. This study used both supervised
and unsupervised learning techniques to explore different aspects of swimmer performance.
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Unsupervised learning was used to identify distinct pacing strategy profiles, while supervised
models were applied not only to attempt classification of those strategies but also to explain
and predict velocity during the race, a continuous variable closely related to pacing behaviour.
To address these objectives, a combination of advanced algorithms, including Neural
Networks, Decision Trees, Support Vector Machines, and ensemble models! such as Random
Forest and Gradient Boosting, were implemented. The following sections describe each of
these methods.

2.1.1 Unsupervised Algorithms

As mentioned, unsupervised learning is a branch of ML used to detect hidden patterns and
groupings in datasets that do not have predefined labels.

When the dataset to be analysed contains both categorical and continuous variables, traditional
Principal Component Analysis (PCA) is not suitable for dimensionality reduction. In such
cases, Factorial Analysis of Mixed Data (FAMD) can be an effective alternative (Audigier et
al., 2016). FAMD is a key component technique for summarising and characterising mixed
data, primarily intended to investigate individual similarities, the connections among variables,
and to relate the analysis of individuals to that of the variables. It can be viewed approximately
as a combination of PCA and Multi Correspondance Analysis (MCA). Specifically, the
continuous variables are scaled to unit variance while the categorical variables are converted
into a disjunctive data table and afterwards scaled according to the specific scaling of MCA
(Pagés, 2014).

One of the most common tasks is Clustering, which seeks to classify different data points based
on their similarities or patterns. A Hierarchical Clustering method forms groups (clusters) by
recursively dividing the instances in either a top-down or bottom-up manner. This technique
can be divided into Agglomerative and Divisive hierarchical clustering (Rokach & Maimon,
2005).

For this study, the Agglomerative technique was used. In this technique, each object first
represents a cluster of its own, then clusters are gradually combined until the desired cluster
structure is achieved. To measure similarity between instances, Gower distance is the most
suitable for datasets containing mixed data types, as it combines different distance metrics
depending on the nature of each attribute. The overall dissimilarity is computed as an average
of the individual attribute distances (Liu et al., 2024):

1 14
d(x;, xx) = —z d; (i, xjk)
P&

where p is the number of variables, and d;(x;;, x;; ) is the distance between 2 observations,

which is computed different whether the variables is continuous or categorical (Liu et al.,
2024).

To compute the distance between two clusters, there are several options, including Single
Linkage, Average Linkage, Complete Linkage and Ward’s method (Miyamoto, 2022). Average

1 Ensemble leaning refers to the technique of combining multiple models to produce a more robust
predictive outcome (Mahesh, 2020).
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Linkage defines the distance between two clusters as the average of all pairwise distances
between the elements of each cluster. This method is particularly appropriate in conjunction
with the Gower distance.

Another method commonly used for continuous data is Ward’s method, which minimises the
total within-cluster variance, and it considers the loss of information that occurs when clustered
together. The key measurement used is the Error Sum of Squares (ESS), which calculates the
squared differences between each instance and the centroid (mean) of its cluster. It can be
represented as:

nclust n v
= 2
ESS = z ZZ(X”'" —Xi),
i=1 j=1k=1
where:
Xijx is the value of the variable k for the instance j in the cluster i.

- X, is the mean value of the variable k within a cluster i.
- v isthe number of variables

2.1.2 Supervised Algorithms

Supervised algorithms are ML models that learn the relationship between input features and
known outputs. Depending on the nature of the task and structure of the data, these models can
be used for either classification or regression.

One of the simplest to understand supervised machine learning algorithms is Ordinary Least
Squares (OLS), commonly known as Linear Regression. This model is called simple linear
regression when only one independent variable is used. However, when two or more
independent variables are involved, it is referred as multiple linear regression (Lindholm et al.,
2019). The model can be represented by:

Y = ﬁo + ﬁlxl + ﬁzXz + -+ ,Bpxp + &,

where Y represents the dependent variable, x; the independent variables, the coefficients S; are
the parameters of the models and ¢ the error associated with the observed values for Y.

Decision Trees (DT) is an algorithm that classifies instances by grouping them based on feature
values. In a decision tree, each node represents a feature in an instance to be classified, and
each branch represents a value that the node can assume. Instances are classified at the root
node and arranged according to their feature value (Kotsiantis, 2007) , as illustrated in Figure
2.
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Figure 2: Decision Tree Scheme
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Support Vector Machines (SVM) is viewed as a complex algorithm that can provide high
accuracy, even when the data sizes are limited (Singh et al., 2016). This algorithm is commonly
used for classification problems and can handle both linear and nonlinear classification tasks.
SVM discriminates between two classes by identifying the best hyperplane that maximises the
distance between the nearest data points of opposite classes. The optimal hyperplane can be
calculated in the following way:

Wo'x+b0:O,

where w is the weight vector, x is the input, and b is the bias term. As various hyperplanes
can be classes, maximising the margin between points allows the algorithm to identify the
optimal decision boundary between classes. This allows SVM to effectively generalise to new
data and produce accurate classification predictions.

Radom Forest (RF) is a supervised machine learning algorithm, more specifically, an
ensemble learning algorithm, that uses DT as its base. This method introduces randomness
when building each tree, aiming to create an uncorrelated forest of decision trees, to the
bootstrap aggregation method. The bootstrap method selects a random sample from the training
data with replacement, and after multiple data samples are generated and the models are trained
separately, their predictions are aggregated to produce a final output (Lindholm et al., 2019).
The main difference between DT and RF is that DT considers all possible future outcomes, and
RF only selects a subset of those features. Some of the advantages that RF include its robustness
to noise, scalability and lower risk of overfitting (Singh et al., 2016). Since the swimming data
can have a degree of noise, such as unusually slow times, RF can be a great solution to handle
these irregularities while still providing useful insights about the data.

Adaptive Boosting (AdaBoost) is also an ensemble learning algorithm that can be used for both
classification and regression tasks, although is most commonly applied to classification tasks.
This technique is often implemented using decision tree learners and works by consecutively
building new models that focus on correcting the errors made by the previous ones. In each
iteration, a greater weight is given to the misclassified instance, allowing the model to
progressively improve its overall prediction accuracy (Zounemat-Kermani et al., 2021).
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Similar to AdaBoost, Gradient Boosting (GB) is an ensemble learning algorithm that combines
weak learners to form stronger learners to form a predictive model. Unlike AdaBoost, GB
minimises the loss function by fitting new models to the residuals of the previous ones in an
iterative manner. This method can be used for both classification and regression. In each
iteration, the algorithm discards weaker predictors and selects the most efficient learners
(Bentéjac et al., 2021). The GB model can be mathematically expressed as:

En(x) = Fm—l(x)+pmhm(x);

where F,,_; represents the previous model, p,, is the weight applied to the m*" function, and
h,, is the base learner (Bentéjac et al., 2021). To minimise the prediction error, p,, is
represented by:

n
pm = argmin ) L (3, Fp-1(0)+Pmhn ().
i=1

The Multilayer Perception (MLP) is a supervised machine learning algorithm that uses
artificial neural networks. It is inspired by the structure of the human brain; it is composed of
interconnected layers of nodes, also called neurons (Albon, 2018). MLP consists of three main
components: an input layer that receives the input features, one or more hidden layers where
the data is processed through weight connections and activation functions, and an output layer
that generates predictions based on the outputs of the hidden layers (Kotsiantis, 2007), as
shown in Figure 3.

0l0|®

® @
@0 O
o O

Figure 3: MLP algorithm architecture

J

2.2 Machine Learning in Sports

In recent years, Al has seen a rise in development and adaptation across multiple fields. Once
considered a niche topic, tools like ChatGPT are now commonly used daily by millions,
demonstrating the integration of Al into our daily lives. This led to a surge of interest among
researchers, who now have more to investigate (Collins et al., 2021). One of the areas where
researchers have focused with the “bomb” of Al is in sports, using machine learning models
from making score predictions to predicting athletes’ injury risks.
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As society has become more performance-driven, the pursuit of excellence in athletics has
grown stronger, supported by advances in science and technology. This is where ML models
can be a big ally.

One of the most notable applications of ML in sports is outcome prediction. Various algorithms,
such as neural networks, support vector machines (SVM), random forests, logistic regression,
and k-nearest neighbours (k-NN), have been applied to predict match results and player
performance metrics across sports like football, basketball, and cricket (Horvat & Job, 2020).

In football, a study was conducted to determine whether ball possession affects the goal-
scoring likelihood with the objective of assisting coaches in real-time strategy formulation
(Markopoulou et al., 2024).

ML is used more and more to identify talent and tailor training. By evaluating physical and
psychological data, ML can be a valuable tool for coaches to identify young athletes with a
high potential of becoming elite athletes, and to customise training programs based on their
specific performance profiles (Jauhiainen et al., 2019). For instance, wearable technology
integrated with ML accuracy and field knowledge allows coaches and sports scientists to
respond immediately to biomechanical or physiological changes, enhancing safety and
performance (Vec et al., 2024) (Alaguraja & Selvakumar, 2023).

Another critical area is injury risk assessment. ML algorithms have been very useful in
accessing patterns associated with injuries, using pre-season measures, such as past injuries,
training load, and anthropometry measures. These predictive models can help coaches to focus
resources in injury risk management as well as give practitioners insights to the specific types
of injuries an athlete is more likely to sustain before the start of the season (Rommers et al.,
2020).

2.3 Pacing strategies in swimming and their impact on the result

Swimming has seen a notable increase in global interest, both in terms of athlete participation
and spectator engagement. The pressure to achieve personal best times and maintain
competitive advantages has driven athletes and coaches to find innovative strategies for
performance enhancement.

Olympic swimming events involve different phases to reduce the number of competitors.
Events are initially divided into sub-events, called heats, and the top swimmers from the heats
(usually the top 16) go to the semifinals, where they are split into two heats. The top 8 from
the semifinals advance to the final, where the medallists are chosen. For longer events, from
200m up, the 8 fastest times from the heats go through the finals. For each race, the athlete is
attributed a lane based on their time from the previous round, with the fastest and second-fastest
athletes occupying the middle lanes.

The result of a race can be influenced by many factors, such as stroke efficiency, start and turn
performance, pacing strategy, underwater phase, race tactics, lane assignment, physiological
factors, competitor awareness, and environmental conditions.

Pacing strategy is a key factor for the result of the race, especially in single sports, and this
factor has been amply studied in some sports like cycling, running, but in swimming, there are
still few researches that can guide the coaches and athletes on what impact does have pacing
strategy and how can they adjust the training to improve this indicator.
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Pacing is the rate at which the athlete completes a certain distance. In swimming, this tends to
vary by type of event and stroke. Several pacing strategies are commonly observed:
Negative Split: The swimmer increases speed in the latter half of the race.
- Positive Split: The swimmer starts at a high speed but gradually declines his pace.
- Even Pacing: The swimmer maintains a consistent pace throughout the race.
- All-Out Strategy: Maximum effort from the start, typically seen in sprint events.
- Parabolic or U-Shaped Pacing: Speed decreases in the middle and increases toward
the end.
- Variable Pacing: Characterized by inconsistent speed with no discernible pattern; the
least used by elite swimmers.

Long-distance events such as 800m and 1500m freestyle require a finely tuned balance between
endurance and strategic energy expenditure. As such, the pacing strategy employed by an
athlete can significantly influence their final standing (McGibbon et al., 2018). While pacing
has been studied across various endurance sports, its influence becomes more pronounced as
the event duration increases.

For elite athletes competing in 800m and 1500m freestyle races, the parabolic/U-shape pacing
strategy is the most frequently observed. This approach allows for an effective distribution of
energy, with reduced speed during the middle phase and a final increase in speed toward the
finish. It supports an optimal balance of aerobic and anaerobic energy, conserving anaerobic
reserves for a strong final acceleration. In contrast, the swimmers who choose positive pacing
(starting fast and gradually slowing) experience higher anaerobic energy depletion early in the
race, leading to fatigue and reduced performance in the latter stages (Foster et al., 2003).

While many studies have examined pacing strategies in elite swimmers, few have focused
specifically on Olympic data. Given that athletes typically peak at the Olympic Games after
four years of targeted training, analysing data from the 2024 Games offers a unique opportunity
to assess how pacing strategies correlate with top-tier performance.

Medal-winning swimmers often display less variability in mid-race segments and maintain
higher speeds in the final 500 meters, especially in the 1500m event. Stroke frequency and
stroke length also emerge as critical indicators to predict pacing stability (Morais et al., 2023).

The position that the athlete takes early in the race is also a determining factor in the likelihood
of winning a medal. Being among the top three swimmers by the 600m mark significantly
increases the likelihood of winning (Lara & Del Coso, 2021).

Gender also plays a role in pacing dynamics. Men tend to exhibit greater pacing variability
across strokes, suggesting reliance on explosive speed at certain points. In contrast, women
generally maintain a more even pace throughout the race, reflecting endurance-oriented
strategies (Moser et al., 2021).

The coefficient of variation (CV) is commonly used to assess lap-to-lap variability throughout
the race. Lower CV values indicate a more stable pacing and are often associated with higher
performance levels. In a study conducted for the top 60 all-time ranked 1500m male freestyle
swimmers, researchers found that maintaining the speed during the middle phase (500-1000m)
is the most critical determinant of success, as swimmers who slow down significantly mid-race
struggle to regain speed in the final 500m. The most successful swimmers demonstrated less
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lap-to-lap variability (CV), with a balance approach between speed and energy conservation
(Hotub et al., 2023).

2.4 From Basic Statistics to Machine Learning in Swimming

Pacing strategy is a crucial factor influencing performance in long-distance freestyle swimming
competitions such as 800 and 1500m races. The methodological approaches employed to study
pacing behaviours have relied on traditional statistical methods, but there is an increasing
interest in applying machine learning techniques to more effectively understand complex,
nonlinear connections in race performance data.

The predominant analytical approach found in the literature relies on traditional statistical tests,
particularly the use of Analysis of Variance (ANOVA) alongside Bonferroni post-hoc tests.
These techniques have played a crucial role in analysing lap-to-lap pacing variability and in
identifying performance differences across different groups, such as elite vs. junior swimmers,
male vs. female, and medallists vs. non-medallists (Hotub et al., 2023; Lara & Del Coso, 2021).
ANOVA allows researchers to determine whether pacing varies significantly among groups and
race segments, while post-hoc tests clarify the locations of these differences. For instance,
Morais et al. (2023) demonstrated that medallists often exhibit lower lap-to-lap variability and
a more significant final push, reinforcing the efficacy of a parabolic pacing strategy.

Furthermore, time-series analysis examined how pacing evolves throughout a race. This
approach enabled researchers to classify pacing strategies such as parabolic (U-shaped),
positive, negative, and even pacing, depending on the variations in race speed across different
segments (Oliveira et al., 2019). Although these methods provide understanding of the time-
based allocation of effort, they are fundamentally descriptive and frequently constrained to
generalisations at the group level, rather than insights tailored to individual athletes, which is
critical for personalised training and feedback.

To address these restrictions, a few recent studies have explored the application of machine
learning models, particularly decision trees, to analyse how split-time variables and mid-race
speed patterns predict performance outcomes. Oliviera et al. (2019) specifically used CHAID
(Chi-squared Automatic Interaction Detection) algorithm to evaluate pacing data from
Olympic finalists. This approach facilitated the identification of key predictive variables, such
as mid-race velocity, and their hierarchical role in performance categorisation. Medallists
demonstrated considerably more consistent pacing during the race's middle segments, a trend
that CHAID effectively recognised without relying on linear assumptions.

Nonetheless, machine learning applications in pacing analysis remain rare. The swimming
science community continues to rely on traditional statistical models, likely because of their
interpretability and historical significance. However, with advancements in data accessibility
and computational resources, machine learning methods present a way to achieve more
personalised and predictive modelling of racing strategies. They can manage a wider array of
variables, identify non-linear relationships, and provide improved predictive accuracy for
immediate decision-making in coaching.

In conclusion, although traditional statistical methods have established strong bases for
comprehending pacing strategies in swimming, the integration of machine learning can offer a
significant opportunity for the future. Most existing studies continue to rely on traditional
methods.

Joana Afonso Pinto 9



Pacing Strategies in 800m and 1500m Freestyle:
A Data-Driven Analysis from the 2024 Olympic Games

3 Methodology

There are many methodologies that researchers use in machine learning projects, but in this
case, the CRISP-DM methodology (Cross-Industry Standard Process for Data Mining) will
be followed, which is the most common approach. To uncover the pacing strategies that elite
swimmers used in the 20204 Olympic Games in the 800m and 1500m freestyle, determine the
key factors that influence in-race velocity, and identify which ML model best explains velocity.
This process model for data mining consists of six iterative phases: Business Understanding,
Data Understanding, Data Preparation, Modelling, Evaluation, and Deployment (Costa &
Aparicio, 2020; Schroer et al., 2021).

The first phase is Business Understanding, where the problem and the objective are assessed.
The aim of data mining is a crucial phase in this stage, which in this study is to uncover
underlying patterns in the data and identify which variables most significantly influence pacing
behaviour and performance outcomes.

The next step is Data Understanding, which involves collecting data from various resources
and identifying the most suitable data to achieve the study's objective. This includes the data
collection, exploring and describing the data, and checking the data quality.

For this study, the data used is from the World Aquatics online site, the information is referent
to the 2024 Olympic Games for the swimming races of 800m and 1500m. The 800m event
consists of 16 laps of 50 meters, and the 1500m race consists of 30 laps of 50 meters. The
original dataset was composed of 13 variables (Table 1).

Table 1: Original variables of the dataset

Name of Variable Description Data Type

Event Race Distance (800m or | Continuous
1500m)

Type Type of race (e.g, Heat, | Nominal
Final)

Lane Lane assignment in the race | Discrete

Name Swimmer’s full name Nominal

Sex Sex of the swimmer (M/F) Nominal

Country The country the swimmer is | Nominal
representing

Birthday Birth date of the swimmer Discrete

Entry Time Swimmer’s official entry | Continuous
time before race (seconds)

Distance Distance mark (e.g., 50m, | Discrete
100m, etc.)

Time Cumulative race time at | Continuous
distance (seconds)

Rank Position at each split distance | Ordinal

Split Partial Split time for each | Continuous
50m segment (seconds)

Final Rank Final rank in the event Ordinal
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The dataset contains a total of 2,687 records, categorised by event type, including 384 records
from 800m female events, 684 records from 800m male events, 719 records from 1500m
female events, and 960 records from 1500m male events. Specifically, within the 800m event,
there are 1,008 records, corresponding to 18 female athletes and 31 male athletes, with an
average athlete age of 23 years. The mean reaction time is 0.717 seconds, while the average
split time per 50 meters is 30.281 seconds. Athletes’ ages range from 17 to 39 years old.
Reaction times vary significantly, with the fastest recorded reaction of 0.64 seconds and the
slowest of 0.81 seconds. Additionally, the fastest split time documented was 25.42 seconds,
while the slowest split time was 36.62 seconds.

In the context of the 1500m events, the dataset contains 1,679 records, representingl18 female
athletes and 24 male athletes. The mean reaction time in these events is approximately 0.72
seconds, ranging from 0.61 seconds to 0.84 seconds. The average split time per 50 meters is
30.84 seconds, with individual times ranging from 26.12 seconds to 34.98 seconds. The
youngest athlete is 16 years old, while the oldest is 39, with an overall average age of 24 years.

In the next phase, Data preparation, the selection of the data to be used is conducted, along
with the application of various models aimed at enhancing data quality. For this study, the heats
and final event data were used. Additionally, new variables were calculated not only to enable
a more detailed investigation of pacing strategies but also to capture the dynamics of in-race
velocity, therefore providing a foundation for analysing the factors influencing velocity (Table
2).
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Table 2: New variables calculated (Feature Engineering)

Name of Variable Description Data Type

Age Age of swimmer on the date when the | Discrete
Olympic swimming events started
(27/07/2024).

Velocity Instantaneous velocity (m/s). It | Continuous

corresponds to the difference in splits
per race and per type.

Acceleration Change of velocity between splits or | Continuous
over time

Coefficient of Variation CV = — % 100, Continuous

(CV%) Xvelocity

where  syeocity IS the standard
deviation and X,¢jocity IS the mean of
velocity. It measures the stability of
pacing through the race and allows for
assessing lap to lap variability.

Speed Variability Standard Deviation of Velocities. Continuous

Start Speed Average velocity during the first third | Continuous
of the race.

Middle Speed Average velocity during the middle | Continuous
third of the race.

End Speed Average velocity during the final | Continuous
third of the race.

Final Speed Velocity during the last 50m of the | Continuous
race.

Prev Velocity Velocity of the previous split for the | Continuous
same swimmer, race and type.

Prev Split Split time of the previous segment. Continuous

Meters to Finish Distance remaining to complete the | Continuous

race at each split.

Following feature engineering, feature selection techniques were applied to reduce the number
of input variables, improve model interpretability, and prevent overfitting. This technique is
the selection of subsets of variables that together have good predictive power. This can be done
manually or automatically (Guyon & Elisseeff, 2003). This technique has numerous
advantages, including a reduction in training duration, simplification of the models for
enhanced interpretability, mitigation of dimensionality and a decrease in the likelihood of
overfitting.

The importance of feature selection becomes more evident in instances where irrelevant
predictors may negatively impact the model’s performance. This is especially true for
algorithms such as SVM and Neural Networks, as well as for Linear and Logistic Regression
models, which are highly sensitive to correlated predictors. By using these techniques, one can
effectively eliminate redundancy and reduce multicollinearity, leading to a more reliable and
accurate model.

Feature selection can be divided into three primary methods: wrappers, filters and embedded

methods. Each approach offers unique advantages and is suited to different contexts within the
modelling process:
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- Filter methods are techniques that select features without the use of any machine
learning algorithms, select variables as a pre-processing step, independently of the
chosen predictor.

- Wrapper methods use machine learning algorithms to select features with the most
predictive power.

- Embedded methods are used to select features during the model training phase.

For categorical features, relevance can be assessed using the chi-square score, a filter method.

Once all the pre-processing steps are completed and the data is selected, the next stage involves
the modelling of the data, referred to as Modelling. This phase involves selecting the
algorithms that will be employed to reach the stated objective and determining how the data
will be utilised within the models. These choices can be assessed through various criteria.

Following the Modelling phase, it is essential to evaluate the results obtained through a fifth
phase known as Evaluation. For this aim, a set of evaluation techniques and performance
metrics were chosen.

To ensure that the results uncovered in an analysis are generalizable to an independent, unseen
dataset, cross-validation is used (Larose, 2015). The most common techniques are twofold
cross-validation and k-fold validation. In K-fold cross-validation, the data is split into k equally
sized subsets, or folds. In each iteration, onefold is used as the test set, the remaining folds are
used to train the model, and evaluated in the test set. This process is repeated k times, with
each fold serving once as the test set. The model’s overall performance is then estimated by
averaging the evaluation results from all k iterations. (Kubben et al., 2019) ( Figure 4)

1st TRAIN TEST TRAIN TRAIN TRAIN TRAIN
2" | TRAIN TRAIN TEST TRAIN TRAIN TRAIN
3rd | TRAIN TEST TRAIN TEST TRAIN TRAIN

4th | TRAIN TEST TRAIN TRAIN TEST TRAIN

K lterations (K-Folds)

5th | TRAIN TEST TRAIN TRAIN TRAIN MEST

Figure 4: K-Fold Cross Validation

Once the cross-validation procedure is defined, several error-based metrics were used to
quantify the difference between predicted and actual values. In the context of this study, both
regression and classification models were evaluated using appropriate metrics.

For regression tasks, which aim to predict the swimmer’s velocity, the following metrics were
applied:
- The Mean Absolute Error (MAE) is the mean of the absolute values of individual
prediction errors across all observations (Tatachar, 2021). It can be represented by the
following formula:
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1,
MAE == [V,
nds 4
1=
where n represents the number of observations and Y;—Y; represents the absolute errors.

- Mean Squared Error (MSE) also measures the average magnitude of the errors, brut
unlike MAE, it squares the individual differences, penalising larger errors more heavily
(Tatachar, 2021):

n

1 ~
st =23 (-7

i=1

- The Root Mean Squared Error (RMSE) is the square root of MSE, and provides an
interpretable error value in the same units as the target (Tatachar, 2021). It is given the
following formula:

RMSE =

- R? or Coefficient of Determination represents the explained variance of the dependent
variables by the independent variables (Tatachar, 2021). It can be represented by the
following formula:

~\2
La(Y-7)

n

2 _
R* = o2
=1

In contrast, for classification models, used initially in the attempted prediction of pacing
strategy, the following metrics were applied to evaluate the performance:
- Accuracy measures the proportion of correct predictions made by the model out of all
of the predictions (Grandini et al., 2020). It can be calculated in the following way:

(TP +TN)
(TP + TN + FP + FNY’

Accuracy =

where, a True Positive (TP) occurs when a positive observation is correctly classified
as positive by the model. A False Positive (FP) refers to a negative observation that is
incorrectly classified as positive. A True Negative (TN) occurs when a negative
observation is correctly classified as negative. A False Negative (FN) happens when a
positive observation is incorrectly classified as negative by the model (Grandini et al.,
2020).

- Precision measures the proportion of true positive observations among the observations
that were predicted as positive by the models (Grandini et al., 2020). Can be calculated
by the following formula:

TP

Precision = m
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- Recall measures the proportion of positive observations that were correctly predicted
by the model out of all the actual positive observations and can be calculated by the
following formula:

TP

Recall = ———.
et =P + FN)
- The Macro F1-Score is a metric used to evaluate the performance of multi-call
classification models and combines precision and recall (Grandini et al., 2020). It is
calculated by the formula:

Macro Average Precsion * Macro Average Recall
F1—Sc0re=2*( - ),
Macro Average Precsion™1 x Macro Average Recall™1

where Macro Average Precision and Recall are the arithmetic mean of the metric for a
single class, where k is a class generic:

YK_, Precision,
K )
YK _iRecall,
= :

Macro Average Precision =

Macro Average Recall =

Beyond standard performance evaluation, a set of statistical tests were applied to validate the
assumptions of the models. These tests were used depending on the nature of the data and the
modelling objective, whether classification or regression.

When building a regression model, one of the important assumptions is that the residuals (or
errors) are independent from one observation to the next. If this assumption is violated,
meaning the residuals are correlated, it may indicate that the model hasn’t fully captured the
structure of the data. This can affect the accuracy of the model’s predictions and the reliability
of any conclusions drawn. To assess whether this assumption holds, the Durbin-Watson test
was applied, which is specifically designed to detect autocorrelation in the residuals. This test
is especially useful when working with sequential or time-related data, where values close
together may be more similar than expected (Hyndman & Athanasopoulos, 2018). Using the
Durbin—Watson test helps ensure that the model is well specified and that the residuals behave
as expected, random, uncorrelated, and centred around zero. If significant autocorrelation were
found, it would suggest the presence of missing variables or underlying patterns not accounted
for by the model.

In addition, an Analysis of Variance (ANOVA) was conducted to determine whether
significant differences existed between the means of various groups. This technique is a
parametric statistical model used to compare the means of three or more independent groups,
with the aim of identifying whether at least one of the group mean significantly differs from
the others. The core principle of ANOVA lies in decomposing the total variance observed in the
data into two components: between-group variance and within-group variance (also known as
residual variance) (Afonso & Nunes, 2019). The test statistic follows the F-distribution and is

calculated as:
MTS

MSE’
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Where MTS = ==, MSE = ~ . Here, SSB = %X, n;(X, — X)? represents the between-

groups sum of squares and SSE yK 12 (X — X)2, denotes the within-group (or
residual) sum of squares. K is the number of groups, and n is the total number of observations.

The null hypothesis (Ho) states that all group means are equal. Rejecting the null hypothesis in
the ANOVA F-test only indicates that at least one group mean differs from the others, it does
not specify which means are significantly different. To determine which specific pairs of group
means differ, a post hoc test is required (Afonso & Nunes, 2019).

The Chi-Square test is a non-parametric statistical test used to determine if categorical
variables are independent of each other. It compares the observed frequencies (0;) of each
category combination to the expected frequencies (E;) under the assumption that the variables
are independent (Afonso & Nunes, 2019). The test statistic is calculated as:

O—E)2

M::

i=1

where K is the number of classes. The null hypothesis (Ho) assumes that two variables are
independent. It is rejected if the test statistic exceeds the critical value for a given significance
level a, normally a = 0.05. (Afonso & Nunes, 2019)

The final phase is Deployment, in which the created model is put into action as a software or a
concluding report, along with its maintenance.
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4 Results

4.1 Classification of Pacing Strategies

The initial approach to this study began with a classification objective, where the goal was to
predict each athlete’s pacing strategy based on race characteristics. For analysing the 800m,
the data was grouped by athlete, event, and race type. The variables chosen were Entry Time,
Reaction, Start Speed, Middle Speed, End Speed, CV (%), Final Sprint, Final Rank, Age, Sex,
Type, and Country.

The first step was using FAMD, a dimensionality reduction technique appropriate for datasets
containing both numerical and categorical variables. The analysis of the screen plot pointed to
the retention of two components, revealing that the first two components explained
approximately 31% of the total variance, suggesting moderate structure but limited
dimensionality capture (Annex 1).

Following this, agglomerative hierarchical clustering was applied to the two-dimensional
component space using Ward’s method and Euclidean distance. Although the scree plot
initially suggested a solution of five clusters, this configuration did not yield clearly separable
groups (Annex 2). A three-cluster solution was ultimately chosen, as it provided better
separation and interpretability of pacing patterns. These clusters were manually interpreted
based on speed profiles and labelled as follows:

- Cluster 1: Slower U-Shaped:;
- Cluster 2: Faster U-Shaped;
- Cluster 3: Positive Split (with slight drop at the end).

After clustering, the clusters were treated as pseudo-labels for classification purposes,
transforming the unsupervised problem into a supervised classification task. This allowed
exploration of which swimmer features were most influential in predicting pacing strategy. To
identify the most relevant predictors for pacing strategy classification, a combination of filter,
embedded, and wrapper methods was employed. Categorical variables were evaluated using
the Chi-square test, while numerical features were first filtered based on variance thresholds,
then assessed through decision tree—based feature importance, and finally refined using
Recursive Feature Elimination (RFE). This multi-step selection process resulted in a final
feature set comprising: Start Speed, Middle Speed, End Speed, Final Sprint, Final Rank, CV
(%), Lane, Type and Sex.

Four supervised learning models were trained: DT, RF, SVM, and MLP. Hyperparameters were
tuned via GridSearchCV, and DTs were constrained to a maximum depth of 2 to avoid
overfitting. The best models were compared, and the RF showed the best validation
performance

As seen in Annex 3 and Annex 4 the RF model demonstrated the strongest overall performance.
It achieved the highest validation accuracy and F1-score, indicating a strong ability to
generalise and identify patterns in swimmer pacing profiles based on the selected features. The
MLP also performed well, achieving consistent validation results. However, its perfect fit on
the training data suggests a greater risk of overfitting, which is common when working with
small datasets and highly flexible models. The SVM offered solid and stable performance,
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although it lagged slightly behind Random Forest in terms of predictive strength, particularly
on more complex or less frequent patterns. The DT model, while interpretable and
straightforward, exhibited the weakest validation metrics, along with the largest gap between
training and validation scores, highlighting limitations in generalisation when applied to new
data.

4.2 Pacing Strategy Characterisation

Due to the poor quality of the FADM results and to better characterise pacing strategies, a
second unsupervised approach was adopted using Gower distance-based agglomerative
hierarchical clustering.

Since the sample size is small, the dataset contains mixed data, and there is no predefined
number of clusters, the most appropriate method is agglomerative hierarchical clustering.
Moreover, as performance times may include extreme cases or outliers (e.g., standout
performances), hierarchical methods are particularly suited for detecting such atypical patterns.
The Gower distance was used to compute dissimilarity, as it is specifically designed to handle
mixed data types. Average linkage was selected for the clustering process, balancing the
distances within and between clusters to ensure interpretability and robustness.

For the 800m events, the scree plot (Annex 5), based on the elbow method, suggested an
optimal number of three clusters. On the other hand, the silhouette score peaks at two clusters
(Annex 6), but the score for the three clusters is still quite high. Choosing three clusters
provides a good balance between model interpretability and capturing meaningful subgroup
variation.

Average Pacing Profiles by Cluster - 800m

Cluster
- 1

2
351+ 3

36

34 4

337

31: ./- \

301

Speed

294

StartSpeed MiddleSpeed EndSpeed FinalSprint
Race Segment

Figure 5: Average pacing profiles across race segments for each cluster in the 800m events

When analysing the pacing profiles (Figure 5), Cluster 1 and Cluster 2 followed a U-shaped
strategy, characterised by faster starting and finishing segments with relatively slower middle
segments. However, Cluster 2 consisted of faster athletes overall, while Cluster 1 showed
similar pacing dynamics but at a slightly slower pace. Cluster 3, containing only a single
athlete, followed a positive split strategy, progressively slowing down throughout the race.

To better understand the in-depth key differences, a cluster-wise comparison revealed that
Cluster 1 included athletes with mid-range entry times, consistent pacing (low CV%), and a
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higher proportion of female swimmers. While Cluster 2 was composed mostly of male athletes,
with slightly higher CV%, suggesting more variation in pacing, but still relatively steady
execution. And Cluster 3 (single athlete) had the slowest final result and erratic pacing and thus
is interpreted as an atypical case (Annex 7 - Annex 12).

Now, looking into the 1500m events, two clusters emerged from the hierarchical clustering.
Both demonstrated a U-shaped pacing strategy, but the main distinguishing factor was speed
Cluster 1 was composed of faster swimmers compared to Cluster 2 (Figure 6).

Average Pacing Profiles by Cluster - 1500m
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Figure 6: Average pacing profiles across race segments for each cluster in the 1500m events

Upon further analysis, Cluster 1 consisted predominantly of male athletes with faster entry
times and slightly greater pacing variability and Cluster 2 included mostly female athletes, had
slower entry times, but more consistent pacing, as reflected in lower CV%. (Annex 15, Annex
16, Annex 17, Annex 18, Annex 19 and Annex 20)

To formally assess whether the clusters differed significantly in terms of performance or

demographic variables, ANOVA tests (for continuous variables) and chi-squared tests (for
categorical variables) were conducted. The summary of results is presented in Table 3.
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Table 3: ANOVA and Chi-square statistical comparison of clusters for 800m and 1500m races

Variable Test Type 800m Results 1500m Results
Final Rank ANOVA ; :3_’223560 g _ 8:2;24
CV (%) ANOVA g _ 3_‘8382 5 - 8:225?9
Entry Time ANOVA szzlg_t.égg Fp:=4(? (())3 053
Reaction Time ANOVA Z : ggé?o g : 3223§6
Race Type Chi-squared X; _ 8_60'18; );()2:0.7;;72%3
Sex Chi-squared X; : 8%&?8 X; : g%ggg
Country Chi-squared sz :: g gfgg X; : gzg(l)z

The statistical analysis came to confirm the prior conclusions about the cluster differences it
revealed that, independent of the cluster, it did not significantly explain athletes’ final rankings
in either the 800m or 1500m events, suggesting that while pacing strategies may influence race
dynamics, they do not directly determine performance outcomes. In the 800m, there were
significant differences between clusters in pacing variability (CV%), entry time, and race type,
indicating a more tactically diverse race structure. In contrast, the 1500m showed fewer
between-cluster differences, with only entry time emerging as a significant factor, suggesting
a more uniform strategic approach in longer-distance events. Entry time (seed time) was the
most consistent differentiator across both events, implying that pre-race expectations and
physiological capacity may shape pacing behaviours. Additionally, sex was strongly associated
with cluster membership in both races, reflecting gender-based differences in pacing profiles.
Reaction time showed no significant differences across clusters, and nationality was not
associated with the pacing cluster in either event. These results highlight that clustering
primarily reflects different pacing strategies and demographic traits rather than determining
competitive success.

4.3 Key Determinants of Velocity

Another major objective of this study was to identify which features most strongly influence
swimming speed during the 800m and 1500m Olympic events. To explore this, a series of new
performance-derived variables were computed: Speed, Previous Speed, Previous Split,
Acceleration, and Meters to Finish. These were designed to reflect both performance status and
race progression.

As a first step, Spearman correlation analysis (Annex 21) was applied to detect potential

multicollinearity among the candidate variables. For both race distances, variables that were
highly correlated were filtered to avoid redundancy and overfitting. Only one variable from
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each highly correlated pair was retained to ensure the robustness of the subsequent model. The
final set of predictors selected to explain velocity included: Acceleration, Entry Time, CV (%),
Distance, Age, Reaction Time, Rank, Sex, and Type.

For this part of the study, a Random Forest Regressor was employed. RF is a robust, non-
parametric ensemble learning method known for its ability to handle non-linear relationships,
account for feature interactions, and tolerate noisy or unbalanced data without requiring strict
distributional assumptions. It also provides feature importance rankings, making it particularly
well-suited for exploratory modelling in complex datasets such as this.

The RF was applied to both the 800m and 1500m datasets to evaluate the relative importance
of the selected predictors. In both cases, the model identified Sex, Acceleration, and Distance
as the most impactful features in predicting instantaneous swimming velocity. (Annex 22 and
Annex 23). This consistent result across both distance points to a shared set of determinants
governing in-race speed: physiological attributes (reflected by sex and acceleration) and
positional context within the race (distance to finish).

4.4 Predictive Modelling of Velocity

Based on the Random Forest feature importance results, variables with importance below 0.01
were considered negligible and thus excluded from the final model. This means the features
selected were Sex, Acceleration Distance and Entry Time.

First it was done the estimation of the OLS models, for both events.

OLS Regression Results

Dep. Variable: Velocity R-squared:

Model: 0LS Adj. R-squared:

Method: Least Squares F-statistic:

ERH Sat, 27 Sep 2025 Prob (F-statistic): 2.15e-267
Time: 19:22:54 Log-Likelihood: 1685.5
No. Observations: lees

Df Residuals: 1ee3

Df Model: 4

Covariance Type: nonrobust

Acceleration

Entry Time (s) -0.0837

Distance -4.754e-05
-0.0844

Omnibus: . Durbin-Watson:

Prob(Omnibus): . Jarque-Bera (JB): 424.583
L H . Prob(JB): 6.35e-93
Kurtosis: . Cond. No. 4. 77e+d4

Figure 7: OLS - 800m

Joana Afonso Pinto 21



Pacing Strategies in 800m and 1500m Freestyle:
A Data-Driven Analysis from the 2024 Olympic Games

0

Dep. Variable:
Model:

Method:

DENCH

Time:
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Df Residuals:
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Least

Acceleration
Entry Time (s)
Distance

-0.00819
-1.8089%e-85

Omnibus:
Prob(Omnibus):
Skew:
Kurtosis:

Velocity

Sat, 27 S5ep 2025

LS Regression Results

R-squared:

Adj. R-sguared:
F-statistic:

Prob (F-statistic):
Log-Likelihood:

oLs
Squares

16:33:18
1679
1674

4

nonrobust

Durbin-Watson:
Jarque-Bera (JB):
Prob(JB):

Cond. MNo.

Figure 8: OLS - 1500m

-0.082
-2.21e-85

4188.228
6.00
1.13e+05

For the estimations of the remaining algorithms, GridsearchCV was used, using scikit-learns
module (Albon, 2018). The results from this optimal search can be observed in Annex 24 and
Annex 25. To ensure the robustness and generalizability of the models, a cross-validation
approach was employed. Specifically, k-fold cross-validation (with k = 5) was used during
hyperparameter tuning to evaluate model performance across different data partitions. This
helped mitigate overfitting and provided more stable estimates of model accuracy and
predictive power, particularly important given the relatively small sample size of the dataset
(Reyaz et al., 2022).

To identify the model with the best predictive power, the tables bellow summarize the
evaluation metrics of each model for each race.

Table 4: Evaluation Metrics of the algorithms - 800m races

Algorithm MAE MSE RMSE R?

OLS 0.032 0.002 0.046 0.709
Randon Forest 0.010 0.000 0.015 0.968
MLP 0.025 0.001 0.035 0.819
AdaBoost 0.019 0.001 0.027 0.898
Gradient Boosting 0.009 0.000 0.014 0.972

Table 5: Evaluation Metrics of the algorithms - 1500m races

Algorithm MAE MSE RMSE R?

OLS 0.024 0.001 0.035 0.786
Randon Forest 0.008 0.000 0.012 0.976
MLP 0.015 0.000 0.021 0.925
AdaBoost 0.015 0.000 0.020 0.929
Gradient Boosting 0.009 0.000 0.012 0.974
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Observing Table 4Table 5, indicate that Gradient Boosting consistently shows the highest
predictive performance across both the 800m and 1500m races. It yields the lowest error
metrics (MAE, MSE, RMSE) and the highest R2 values, indicating strong model fit and minimal
deviation between predicted and actual values. Random Forest also performs very well, closely
following Gradient Boosting in all metrics, and can be considered a reliable alternative.

In contrast, MLP displays signs of overfitting and poor generalisation, with notably higher
errors and a lower R? value, indicating that it may not be well-suited for this specific dataset,
probably due to its size. OLS, while conceptually simple and widely used, yields the weakest
performance, with the lowest R? value of 0.709 for the 800m and 0.786 for the 1500m events,
indicating that it fails to capture much of the variance in the target variable.

These results highlight the superiority of ensemble learning approaches, particularly Gradient
Boosting, for modelling velocity based on athlete and race characteristics in middle-distance
events.

The results of the Durbin-Watson and the mean of the residual, to assess the quality of the
models, are represented in in Table 6 andTable 7.

Table 6: Precision Metrics of the algorithms - 800m races

Algorithm Durbin-Watson Test Mean of Residuals
OLS 0.682 -0.000000
Randon Forest 1.969 0.00060
MLP 1.504 0.00395
AdaBoost 1.310 -0.00224
Gradient Boosting 2.000 0.00001
Table 7: Precision Metrics of the algorithms - 1500m races

Algorithm Durbin-Watson Test Mean of Residuals
OLS 0.739 -0.000000
Randon Forest 1.941 0.00015
MLP 1.603 0.00000
AdaBoost 1.150 -0.000178
Gradient Boosting 1.987 0.00004

Table 6 and Table 7 show that the mean residuals for all models are very close to zero,
indicating that the models are generally unbiased in their predictions; no model under- or over-
predicted the target values. This is a good indicator of good accuracy in terms of central
tendency.

The Durbin-Watson test was applied to assess the presence of autocorrelation in the residuals.
Values close to two indicate the absence of autocorrelation, which is the desired outcome in
predictive modelling. In both races, Durbin-Watson statistics are similar, reflecting that the
models produce highly consistent predictions across both datasets. This consistence reinforces
the reliability of the results. Among the models, Gradient Boosting and RF achieved the best
Durbin-Watson values, suggesting that their residuals behave like noise, uncorrelated and
random, further confirming the model’s robustness.
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Finally, figures Figure 9 and Figure 10 illustrate the predicted values generated by the best-
performing model, Gradient Boosting, alongside the actual speed data throughout the race in

the test dataset.
Gradient Boosting Prediction - 800m
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Figure 9: Predicted vs. real data of velocity across splits in the test phase for 800m events
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Figure 10: Predicted vs. real data of velocity across splits in the test phase for 1500m events
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5 Discussion

The findings were pretty consistent with what was seen in other studies about pacing strategies
in competitive swimming, especially regarding the U-shaped pacing common in long-distance
events. In both the 800m and 1500m races, most swimmers followed this U-shaped profile,
which aligns well with research from Morais (2023) and McGibbon (2018). These studies
highlighted how elite swimmers often start and finish strong while pacing themselves more
conservatively in the middle of the race to manage their energy.

In the 800m race, three different pacing profiles were spotted. Two of them followed the U-
shaped path but varied in overall speed, showing a clear distinction between faster and slower
swimmers. The third profile displayed a positive split, meaning there was a gradual decrease
in speed throughout the race. Interestingly, demographic trends were observed: male swimmers
tended to show more variability in their pacing, while female swimmers maintained greater
consistency. This observation is in line with Moser (2021), who noted physiological and
strategic differences between the sexes when it comes to race execution.

When looking at the 1500m, the pacing variability among athletes was less pronounced.
Although U-shaped strategies remained prevalent, the primary distinction between the two
groups lays in the overall speed, separation faster from slower swimmers. This relative
consistency in pacing likely reflects the more significant aerobic demands of longer races,
emphasising the need for careful energy management, which is in line with previous research.

Interestingly, even though there were clear pacing strategies, they didn't strongly correlate with
final race rankings. This suggests that how a swimmer paces themselves isn't the sole factor in
determining their success. Lara & Del Coso (2024) reflected this notion, stating that pacing is
more about an athlete's physiological profile and race plan than their actual competitive
placement.

In terms of what drives performance, factors like Sex, Acceleration, and Distance were
influential across both race distances. These insights emphasise the significance of
physiological traits, like power output and fatigue resistance, as well as race dynamics, in
controlling speed in real-time. Entry time also played a significant role, suggesting that what
swimmers achieved before the race can impact their pacing strategies during it.

On the predictive side, the Gradient Boosting model performed exceptionally well in terms of
accuracy for swimmer velocity, with RF also showing strong results. Both outperformed
standard methods like OLS and MLP, proving better at capturing the complex patterns and
interactions in our mixed datasets. Plus, the best models showed no signs of autocorrelation in
their residuals and had near-zero means, indicating their predictions are reliable. This
reinforces the idea that ensemble models are excellent tools for understanding the intricacies
of athletic pacing.
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6 Conclusion and Future Works

This study investigated the pacing behaviour of elite swimmers in the 800m and 1500m
freestyle events at the 2024 Olympic Games through a data-driven approach. By applying
machine learning techniques, both unsupervised (hierarchical clustering) and supervised
(Gradient Boosting, Random Forests, SVM, and MLP), it was possible to explore velocity
patterns across race segments and identify the features most influential in predicting these
patterns.

The results confirmed the presence of commonly observed pacing strategies, such as the U-
shaped pattern, and highlighted important individual characteristics associated with in-race
speed variation. While the pacing strategy itself was not explicitly predicted, the study
demonstrated that certain features, such as Sex, Event Distance, Acceleration, and CV (%), play
a key role in shaping velocity dynamics. Clustering revealed consistent groupings among
swimmers, particularly differentiated by sex and entry time, without a direct link to final race
ranking.

Among the predictive models evaluated, Gradient Boosting emerged as the most accurate and
robust, with low residual error and no signs of autocorrelation, as confirmed by residual
analysis and the Durbin-Watson test. These results suggest that ensemble learning methods are
highly effective in modelling complex athletic performance data and offer promising
applications in sports analytics.

In practical terms, several implications emerge for athletes and coaches. The predominance of
U-shaped pacing strategies suggests that training should reinforce controlled starts and finishes,
alongside a steady pace through the middle race segments. The significant role of acceleration,
especially in the final splits, points to the value of training that targets closing speed and fatigue
resistance. Furthermore, the association between lower CV% and higher pacing consistency
supports the inclusion of pace stability drills in elite training. The results also indicate that
performance dynamics differ by sex and entry time, suggesting that training and race strategy
should be tailored to individual profiles rather than following a one-size-fits-all approach.

Despite these contributions, the study has several limitations. The sample size was limited to a
single competition, the 2024 Olympic Games, and certain relevant variables, such as training
load, stroke efficiency, or physiological data, were not available. The pacing profiles were
inferred from available velocity data, which, while useful, may not fully capture the complexity
of race strategy.

Future research could build on these findings by expanding the dataset to include multiple
competitions, broader demographics, or longitudinal performance data. Additionally,
incorporating real-time physiological variables, such as heart rate, oxygen uptake, or lactate
levels, could enhance the predictive power of the models and enable more detailed profiling of
energy management and fatigue. Another direction could involve the use of wearable sensor
data and real-time tracking to develop adaptive pacing tools for coaching and feedback.
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Annexes

Annex 1: Screen plot FADM for Classification - 800m events
Scree Plot (FAMD)
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Annex 2: Screen plot for Agglomerative Hierarchical Clustering for Classification problem - 800m
Scree Plot (Agglomerative Hierarchical Clustering) - FADM
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Annex 3: Model’s performance for Classification problem - 800m events

Train Validation
Best RF 1.04/-0.0 0.906+/-0.07
Best SVM 0.997+/-0.01 0.862+(-0.04

Best DT 0.947+/-0.02 0.802+/-0.11
Best NN 1.0+/-0.0 0.881+/-0.08
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Annex 4: Evaluation metrics for the Classification problem - 800m events

Random Forest
Fl: 8.906 = 0.072
Accuracy: 8.922 + 0.049

SVM
Fl: 9.862 + 0.042
Accuracy: 8.873 + 0.039

Decision Tree
Fl: ©.802 + @.112
Accuracy: 0.827 + @.093

Neural Network
Fl: 9.881 + 0.080
Accuracy: ©.891 + @.078

Annex 5: Screen plot for Agglomerative Hierarchical Clustering - 800m
Scree Plot (Agglomerative Hierarchical Clustering) - 800m
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Annex 6: Silhouette scores - 800m
Mean Silhouette vs. Number of clusters - 800m
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Annex 7: Boxplot of Final rank by Cluster - 800m events
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Annex 8: Boxplot of CV (%) by Cluster - 800m events
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Annex 9: Boxplot of Entry Time by Cluster - 800m events
Entry Time by Cluster - 800m
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Annex 10: Boxplot of Reaction Time by Cluster - 800m events
Reaction by Cluster - 800m
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Annex 11: Bar chart of Type of race distribution by Cluster - 800m events
Type Distribution by Cluster - 800m
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Annex 12: Bar chart of Sex distribution by Cluster - 800m events
Sex Distribution by Cluster - 800m
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Annex 13: Screen plot 1500m

Scree Plot (Agglomerative Hierarchical Clustering) - 1500m
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Annex 14: Silhouette scores - 1500m events
Mean Silhouette vs. Number of clusters - 800m
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Annex 15: Boxplot of Type of race by Cluster - 1500m events
FinalRank by Cluster - 1500m
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Annex 16: Boxplot of CV (%) by Cluster - 1500m events
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Annex 17: Boxplot of Entry time by Cluster - 1500m events
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Annex 18: Boxplot of Reaction time by Cluster - 1500m events
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Annex 19: Bar chart of Type of race distribution by Cluster - 1500m events
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Type Distribution by Cluster - 1500m
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Annex 20: Bar chart of Sex distribution by Cluster - 1500m events
Sex Distribution by Cluster - 1500m
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Annex 21: Spearman Correlation Heatmap for all of the races

Spearman Correlation Heatmap
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Annex 22: Feature Importance - 800m

Feature Importance (Random Forest) - 800m
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Annex 23: Feature Importance - 1500m
Feature Importance (Random Forest) - 1500
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Annex 24: Best hyperparameters for ML Models using GridSearchCV - 800m events

Tuning Random Forest...
Best Params: {'regressor': RandomForestRegressor(random_state=42), 'regressor__max_depth': 1@, 'regressor__n_estimators': 108}
Best MSE (CV): 0.0002

Tuning MLP...
Best Params: {'regressor': MLPRegressor(max_iter=1000, random_state=42), 'regressor__alpha': 8.01, 'regressor__hidden_layer_sizes': (5@, 5@)}
Best MSE (CV): 0.0008

Tuning AdaBoost...
Best Params: {'regressor': AdaBoostRegressor(random_state=42), 'regressor__learning_rate': 1.8, 'regressor__n_estimators': 50}
Best MSE (CV): 0.0006

Tuning GradientBoosting...
Best Params: {'regressor': GradientBoostingRegressor(random_state=42), 'regressor__learning_rate': 0.1, 'regressor__max_depth': 3, 'regressor__n_estimators': 200}
Best MSE (CV): 0.0002
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Best MSE (CV): 0.0002

Tuning MLP.

Best Params: {'regressor':

Best MSE (Cv): ©.0008

Tuning AdaBoost...

Best Params: {'regressor':

Best MSE (CV): ©.0006

Tuning GradientBoosting...
: GradientBoostingRegressor{random_state=42), 'regressor__learning_rate': 8.1, 'regressor__max_depth': 3, 'regressor__n_estimators': 200}

Best Params: {'regressor
Best MSE (CV): ©.0002

Annex 25: Best hyperparameters for ML Models using GridSearchCV - 1500m events

Best Params: {'regressor':

RandomForestRegressor( lom_state=42), 'regressor__max_depth': 18, 'regressor__n_estimators': 100}

MLPRegressor(max_iter=1080, random_state=42), 'regressor__alpha': 8.81, 'regressor__hidden_layer_sizes': (5@, 50)}

AdaBoostRegressor(random_state=42), 'regressor__learning_rate': 1.8, 'regressor__n_estimators': 50}
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