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Resumo 
 

Compreender o ritmo dos nadadores de elite durante as competições é essencial para melhorar 

o seu desempenho em provas de longa distância. Este estudo explora as estratégias de ritmo 

adotadas pelos atletas nas provas de 800m e 1500m livres nos Jogos Olímpicos de 2024, com 

um foco específico na identificação dos fatores que explicam as variações da velocidade de 

natação e na avaliação de qual o modelo de machine learning que melhor as prevê. 

 

Inicialmente, foi considerada uma abordagem baseada na classificação, com o objetivo de 

prever perfis de ritmo a partir de características da prova. No entanto, devido ao tamanho e à 

natureza limitada do conjunto de dados, esta abordagem foi descartada. Como alternativa, 

adotou-se uma metodologia em duas etapas: (i) foram exploradas estratégias de ritmo através 

de agrupamento hierárquico aglomerativo; e (ii) foram utilizados modelos baseados em 

regressão para explicar e prever a velocidade do nadador ao longo da prova. 

 

A análise de agrupamentos revelou três perfis distintos de ritmo nos 800m, duas estratégias  em 

forma de U (um mais rápido e outro mais lento) e uma estratégia de ritmo positivo, enquanto 

dois perfis em forma de U foram identificados nos 1500m. Os testes estatísticos confirmaram 

que estes agrupamentos estavam associados ao sexo, ao tempo de entrada e à variabilidade do 

ritmo (CV%), mas não à classificação final da prova. 

 

Para estudar os determinantes da velocidade, foram geradas novas variáveis, incluindo a 

aceleração, a distância até à chegada e o tempo do parcial anterior. A análise de importância 

das características identificou o sexo, a aceleração e o tempo de entrada como os preditores 

mais fortes. Entre os modelos testados, o Gradient Boosting apresentou o melhor desempenho 

preditivo, superando o Random Forests, as Redes Neurais e a regressão OLS. A análise dos 

resíduos, incluindo o teste de Durbin-Watson, confirmou a robustez estatística dos modelos. 

 

Palavras-Chave: estratégia de ritmo, natação, previsão de velocidade, machine learning, Jogos 

Olímpicos, modelos de regressão. 
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Abstract 

 
Understanding how elite swimmers pace themselves during competition is essential for 

improving performance in long-distance events. This study explores the pacing strategies 

adopted by athletes in the 800m and 1500m freestyle races at the 2024 Olympic Games, with 

a particular focus on identifying the factors that explain variations in swimming velocity and 

evaluating which machine learning model best predicts it. 

Initially, a classification-based approach was considered, aiming to predict pacing profiles from 

race features. However, due to the limited size and nature of the dataset, this approach was 

discarded. As an alternative, a two-step methodology was adopted: (i) pacing strategies were 

explored through agglomerative hierarchical clustering; and (ii) regression-based models were 

used to explain and predict swimmer velocity throughout the race. 

The clustering analysis revealed three distinct pacing profiles in the 800m, two U-shaped 

patterns (one faster and one slower) and one positive-split strategy, while two U-shaped 

profiles were identified in the 1500m. Statistical tests confirmed that these clusters were 

associated with sex, entry time, and pacing variability (CV%), but not with final race ranking. 

 

To study the determinants of velocity, new variables, including acceleration, distance to the 

finish line, and previous split, were computed. Feature importance analysis identified sex, 

acceleration, and entry time as the strongest predictors. Among the models tested, Gradient 

Boosting revealed the best predictive performance, outperforming Random Forests, Neural 

Networks, and traditional OLS regression. Residual analysis, including the Durbin-Watson test, 

confirmed the statistical robustness of the models. 

 

Keywords: pacing strategy, swimming, velocity prediction, machine learning, Olympic 

Games, regression models. 
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1 Introduction 
 

Pacing, the distribution of effort across a race, is a critical determinant of performance in 

endurance sports, especially swimming. In long-distance events like the 800m and 1500m 

freestyle, optimal pacing can differentiate between reaching the podium or not. Recent 

literature identifies the U-shaped pacing strategy as a dominant pattern among elite swimmers, 

often characterised by fast starts and finishes, with a relative slowdown in the middle of the 

race. 

 

Although pacing has been extensively studied in sports like running and cycling, swimming 

remains comparatively underexplored, particularly from a data science perspective. Traditional 

performance analysis in swimming has relied on basic statistics and descriptive metrics. 

However, advances technologies have increased the availability of data. In this specific case, 

granular split-time data opens new opportunities to leverage machine learning techniques to 

gain a deeper understanding of the athlete's behaviour and race dynamics. 

 

The main objectives of this study are to understand the pacing profiles adopted by elite 

swimmers in the 800m and 1500m freestyle events at the 2024 Olympic Games, to assess the 

key factors that influence their in-race velocity and to identify the most effective machine 

learning model for predicting the swimmers’ velocity. Initially, the goal was to predict each 

athlete’s pacing strategy through classification models using performance-related features. 

However, due to the small dataset, this classification approach was ultimately discarded. 

This study begins with a literature review aimed at exploring previous research on pacing 

strategies in swimming, the application of machine learning techniques in sports performance 

analysis, and an in-depth review of the techniques that were applied throughout the study. Next, 

the data and methodology are presented, including a description of the variables used and the 

preprocessing steps. The methodological process can be divided into three main phases: (i) the 

first phase involves exploratory and unsupervised analysis to identify and characterize the 

pacing profiles adopted by athletes; (ii) the second phase focuses on determining the key 

features that influence swimming velocity, supported by regression modelling; (iii) in the third 

phase, various predictive models are tested and evaluated to determine which algorithm best 

explains swimming velocity, considering model accuracy and robustness. Following this, the 

discussion of the results obtained in the different stages is discussed and interpreted in light of 

the revised literature. Finally, the conclusion summarises the main findings of the study and 

proposes directions for future research. 
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2 Literature Review 
 

This chapter includes a thorough review of the existing literature on pacing strategies in long-

distance freestyle swimming, particularly the 800 and 1500-meter events. It further explores 

the application of statistical methods and highlights the growing importance of machine 

learning in sports, pointing out its limited application in swimming. The aim is to uncover the 

pacing strategies used by elite swimmers in their races and to determine the key factors that 

influence these strategies. 

 

2.1 Machine Learning 
 

Artificial intelligence (AI) can be defined as a set of systems that enable machines to have 

human-like intelligence,  including the ability to learn, perceive, reason, and interact (Russell 

& Norvig, 2022). 

 

Machine learning (ML), a core subset of AI, is the analysis of algorithms that allows systems 

to learn and enhance their performance based on experience (Sah, 2020). ML has three primary 

approaches: supervised, unsupervised, and reinforcement learning (Figure 1). The key 

difference between supervised and unsupervised learning is the type of data used. Supervised 

learning uses labelled datasets, allowing the algorithms to learn to classify data points or predict 

outcomes with improved accuracy over time (Kotsiantis, 2007). This approach includes two 

major categories: regression (for continuous outputs) and classification (for discrete outputs) 

(Bousquet et al., 2004). On the contrary, unsupervised learning models work with unlabelled 

data to uncover hidden patterns without any human intervention (Mahesh, 2020). Typical tasks 

for this approach include clustering, association, and dimensionality reduction.  

Reinforcement learning involves an agent that learns to make decisions by interacting with an 

environment. The agent obtains feedback in the form of rewards or penalties for the actions it 

performs, being the goal of maximising the total reward (Sah, 2020). 

 

 

 
 

Figure 1: Types of Machine Learning 

 

Given the variety of approaches in ML, selecting the appropriate models depends on the 

characteristics of the problem and the structure of the data. This study used both supervised 

and unsupervised learning techniques to explore different aspects of swimmer performance. 
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Unsupervised learning was used to identify distinct pacing strategy profiles, while supervised 

models were applied not only to attempt classification of those strategies but also to explain 

and predict velocity during the race, a continuous variable closely related to pacing behaviour. 

To address these objectives, a combination of advanced algorithms, including Neural 

Networks, Decision Trees, Support Vector Machines, and ensemble models1 such as Random 

Forest and Gradient Boosting, were implemented. The following sections describe each of 

these methods. 

 

2.1.1 Unsupervised Algorithms  
 

As mentioned, unsupervised learning is a branch of ML used to detect hidden patterns and 

groupings in datasets that do not have predefined labels.  

 

When the dataset to be analysed contains both categorical and continuous variables, traditional 

Principal Component Analysis (PCA) is not suitable for dimensionality reduction. In such 

cases, Factorial Analysis of Mixed Data (FAMD) can be an effective alternative (Audigier et 

al., 2016). FAMD is a key component technique for summarising and characterising mixed 

data, primarily intended to investigate individual similarities, the connections among variables, 

and to relate the analysis of individuals to that of the variables. It can be viewed approximately 

as a combination of PCA and Multi Correspondance Analysis (MCA). Specifically, the 

continuous variables are scaled to unit variance while the categorical variables are converted 

into a disjunctive data table and afterwards scaled according to the specific scaling of MCA 

(Pagès, 2014).  

 

One of the most common tasks is Clustering, which seeks to classify different data points based 

on their similarities or patterns. A Hierarchical Clustering method forms groups (clusters) by 

recursively dividing the instances in either a top-down or bottom-up manner. This technique 

can be divided into Agglomerative and Divisive hierarchical clustering (Rokach & Maimon, 

2005). 

 

For this study, the Agglomerative technique was used. In this technique, each object first 

represents a cluster of its own, then clusters are gradually combined until the desired cluster 

structure is achieved. To measure similarity between instances, Gower distance is the most 

suitable for datasets containing mixed data types, as it combines different distance metrics 

depending on the nature of each attribute. The overall dissimilarity is computed as an average 

of the individual attribute distances (Liu et al., 2024):  

 

𝑑(𝑥𝑖, 𝑥𝑘) =  
1

𝑝
∑ 𝑑𝑗(𝑥𝑗𝑖 , 𝑥𝑗𝑘)

𝑝

𝑗=1

 

 

where 𝑝 is the number of variables, and 𝑑𝑗(𝑥𝑗𝑖 , 𝑥𝑗𝑘) is the distance between 2 observations, 

which is computed different whether the variables is continuous or categorical (Liu et al., 

2024). 

 

To compute the distance between two clusters, there are several options, including Single 

Linkage, Average Linkage, Complete Linkage and Ward’s method (Miyamoto, 2022). Average 

                                                 
1 Ensemble leaning refers to the technique of combining multiple models to produce a more robust 
predictive outcome (Mahesh, 2020). 
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Linkage defines the distance between two clusters as the average of all pairwise distances 

between the elements of each cluster. This method is particularly appropriate in conjunction 

with the Gower distance. 

 

Another method commonly used for continuous data is Ward’s method, which minimises the 

total within-cluster variance, and it considers the loss of information that occurs when clustered 

together. The key measurement used is the Error Sum of Squares (ESS), which calculates the 

squared differences between each instance and the centroid (mean) of its cluster. It can be 

represented as:  

 

𝐸𝑆𝑆 =  ∑ ∑ ∑(𝑋𝑖𝑗𝑘 − 𝑋̅𝑖∙𝑘)
2

𝑣

𝑘=1

𝑛

𝑗=1

𝑛𝑐𝑙𝑢𝑠𝑡

𝑖=1

, 

where:  

- 𝑋𝑖𝑗𝑘 is the value of the variable 𝑘 for the instance 𝑗 in the cluster 𝑖. 

- 𝑋̅𝑖∙𝑘 is the mean value of the variable 𝑘 within a cluster 𝑖. 
- 𝑣 is the number of variables 

 

2.1.2 Supervised Algorithms  

 

Supervised algorithms are ML models that learn the relationship between input features and 

known outputs. Depending on the nature of the task and structure of the data, these models can 

be used for either classification or regression.  

 

One of the simplest to understand supervised machine learning algorithms is Ordinary Least 

Squares (OLS), commonly known as Linear Regression. This model is called simple linear 

regression when only one independent variable is used. However, when two or more 

independent variables are involved,  it is referred as multiple linear regression (Lindholm et al., 

2019). The model can be represented by: 

 

𝑌 =  𝛽0 +  𝛽1𝑥1 + 𝛽2𝑥2 + ⋯ +  𝛽𝑝𝑥𝑝 + 𝜀, 

 

where 𝑌 represents the dependent variable, 𝑥𝑖 the independent variables, the coefficients 𝛽𝑖 are 

the parameters of the models and 𝜀 the error associated with the observed values for 𝑌. 

 

Decision Trees (DT) is an algorithm that classifies instances by grouping them based on feature 

values. In a decision tree, each node represents a feature in an instance to be classified, and 

each branch represents a value that the node can assume. Instances are classified at the root 

node and arranged according to their feature value (Kotsiantis, 2007) , as illustrated in  Figure 

2. 
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Figure 2: Decision Tree Scheme 

 

Support Vector Machines (SVM) is viewed as a complex algorithm that can provide high 

accuracy, even when the data sizes are limited (Singh et al., 2016). This algorithm is commonly 

used for classification problems and can handle both linear and nonlinear classification tasks. 

SVM discriminates between two classes by identifying the best hyperplane that maximises the 

distance between the nearest data points of opposite classes. The optimal hyperplane can be 

calculated in the following way:  

 

𝑤0 ∙ 𝑥 + 𝑏0 = 0, 
 

where  𝑤 is the weight vector, 𝑥 is the input, and 𝑏 is the bias term.  As various hyperplanes 

can be classes, maximising the margin between points allows the algorithm to identify the 

optimal decision boundary between classes. This allows SVM to effectively generalise to new 

data and produce accurate classification predictions. 

 

Radom Forest (RF) is a supervised machine learning algorithm, more specifically, an 

ensemble learning algorithm, that uses DT as its base. This method introduces randomness 

when building each tree, aiming to create an uncorrelated forest of decision trees, to the 

bootstrap aggregation method. The bootstrap method selects a random sample from the training 

data with replacement, and after multiple data samples are generated and the models are trained 

separately, their predictions are aggregated to produce a final output (Lindholm et al., 2019). 

The main difference between DT and RF is that DT considers all possible future outcomes, and 

RF only selects a subset of those features. Some of the advantages that RF include its robustness 

to noise, scalability and lower risk of overfitting (Singh et al., 2016). Since the swimming data 

can have a degree of noise, such as unusually slow times, RF can be a great solution to handle 

these irregularities while still providing useful insights about the data.   

 

Adaptive Boosting (AdaBoost) is also an ensemble learning algorithm that can be used for both 

classification and regression tasks, although is most commonly applied to classification tasks. 

This technique is often implemented using decision tree learners and works by consecutively 

building new models that focus on correcting the errors made by the previous ones. In each 

iteration, a greater weight is given to the misclassified instance, allowing the model to 

progressively improve its overall prediction accuracy (Zounemat-Kermani et al., 2021). 
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Similar to AdaBoost, Gradient Boosting (GB) is an ensemble learning algorithm that combines 

weak learners to form stronger learners to form a predictive model. Unlike AdaBoost, GB 

minimises the loss function by fitting new models to the residuals of the previous ones in an 

iterative manner. This method can be used for both classification and regression. In each 

iteration, the algorithm discards weaker predictors and selects the most efficient learners 

(Bentéjac et al., 2021). The GB model can be mathematically expressed as:  

 

𝐹𝑚(𝑥) = 𝐹𝑚−1(𝑥)+𝜌𝑚ℎ𝑚(𝑥), 
 

where 𝐹𝑚−1 represents the previous model, 𝜌𝑚 is the weight applied to the 𝑚𝑡ℎ function, and 

ℎ𝑚 is the base learner (Bentéjac et al., 2021). To minimise the prediction error, 𝜌𝑚 is 

represented by:  

 

𝜌𝑚 = arg min
𝜌

∑ 𝐿 (𝑦𝑖, 𝐹𝑚−1(𝑥)+𝜌𝑚ℎ𝑚(𝑥)).

𝑛

𝑖=1

 

 

The Multilayer Perception (MLP) is a supervised machine learning algorithm that uses 

artificial neural networks. It is inspired by the structure of the human brain; it is composed of 

interconnected layers of nodes, also called neurons (Albon, 2018). MLP consists of three main 

components: an input layer that receives the input features, one or more hidden layers where 

the data is processed through weight connections and activation functions, and an output layer 

that generates predictions based on the outputs of the hidden layers (Kotsiantis, 2007), as 

shown in  Figure 3. 

 

Figure 3: MLP algorithm architecture 

 

2.2 Machine Learning in Sports 
  

In recent years, AI has seen a rise in development and adaptation across multiple fields. Once 

considered a niche topic, tools like ChatGPT are now commonly used daily by millions, 

demonstrating the integration of AI into our daily lives. This led to a surge of interest among 

researchers, who now have more to investigate (Collins et al., 2021). One of the areas where 

researchers have focused with the “bomb” of AI is in sports, using machine learning models 

from making score predictions to predicting athletes’ injury risks.  
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As society has become more performance-driven, the pursuit of excellence in athletics has 

grown stronger, supported by advances in science and technology. This is where ML models 

can be a big ally.  

 

One of the most notable applications of ML in sports is outcome prediction. Various algorithms, 

such as neural networks, support vector machines (SVM), random forests, logistic regression, 

and k-nearest neighbours (k-NN), have been applied to predict match results and player 

performance metrics across sports like football, basketball, and cricket (Horvat & Job, 2020). 

 

 In football, a study was conducted to determine whether ball possession affects the goal-

scoring likelihood with the objective of assisting coaches in real-time strategy formulation 

(Markopoulou et al., 2024). 

 

ML is used more and more to identify talent and tailor training. By evaluating physical and 

psychological data, ML can be a valuable tool for coaches to identify young athletes with a 

high potential of becoming elite athletes, and to customise training programs based on their 

specific performance profiles (Jauhiainen et al., 2019). For instance,  wearable technology 

integrated with ML accuracy and field knowledge allows coaches and sports scientists to 

respond immediately to biomechanical or physiological changes, enhancing safety and 

performance (Vec et al., 2024) (Alaguraja & Selvakumar, 2023). 

Another critical area is injury risk assessment. ML algorithms have been very useful in 

accessing patterns associated with injuries, using pre-season measures, such as past injuries, 

training load, and anthropometry measures. These predictive models can help coaches to focus 

resources in injury risk management as well as give practitioners insights to the specific types 

of injuries an athlete is more likely to sustain before the start of the season (Rommers et al., 

2020). 

 

2.3 Pacing strategies in swimming and their impact on the result 
 

Swimming has seen a notable increase in global interest, both in terms of athlete participation 

and spectator engagement. The pressure to achieve personal best times and maintain 

competitive advantages has driven athletes and coaches to find innovative strategies for 

performance enhancement.  

 

Olympic swimming events involve different phases to reduce the number of competitors. 

Events are initially divided into sub-events, called heats, and the top swimmers from the heats 

(usually the top 16) go to the semifinals, where they are split into two heats. The top 8 from 

the semifinals advance to the final, where the medallists are chosen. For longer events, from 

200m up, the 8 fastest times from the heats go through the finals. For each race, the athlete is 

attributed a lane based on their time from the previous round, with the fastest and second-fastest 

athletes occupying the middle lanes.  

 

The result of a race can be influenced by many factors, such as stroke efficiency, start and turn 

performance, pacing strategy, underwater phase, race tactics, lane assignment, physiological 

factors, competitor awareness, and environmental conditions.  

 

Pacing strategy is a key factor for the result of the race, especially in single sports, and this 

factor has been amply studied in some sports like cycling, running, but in swimming, there are 

still few researches that can guide the coaches and athletes on what impact does have pacing 

strategy and how can they adjust the training to improve this indicator. 
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Pacing is the rate at which the athlete completes a certain distance. In swimming, this tends to 

vary by type of event and stroke. Several pacing strategies are commonly observed:  

- Negative Split: The swimmer increases speed in the latter half of the race. 

- Positive Split: The swimmer starts at a high speed but gradually declines his pace. 

- Even Pacing: The swimmer maintains a consistent pace throughout the race. 

- All-Out Strategy: Maximum effort from the start, typically seen in sprint events. 

- Parabolic or U-Shaped Pacing: Speed decreases in the middle and increases toward 

the end. 

- Variable Pacing: Characterized by inconsistent speed with no discernible pattern; the 

least used by elite swimmers. 

 

Long-distance events such as 800m and 1500m freestyle require a finely tuned balance between 

endurance and strategic energy expenditure. As such, the pacing strategy employed by an 

athlete can significantly influence their final standing (McGibbon et al., 2018). While pacing 

has been studied across various endurance sports, its influence becomes more pronounced as 

the event duration increases. 

 

For elite athletes competing in 800m and 1500m freestyle races, the parabolic/U-shape pacing 

strategy is the most frequently observed. This approach allows for an effective distribution of 

energy, with reduced speed during the middle phase and a final increase in speed toward the 

finish. It supports an optimal balance of aerobic and anaerobic energy, conserving anaerobic 

reserves for a strong final acceleration. In contrast, the swimmers who choose positive pacing 

(starting fast and gradually slowing) experience higher anaerobic energy depletion early in the 

race, leading to fatigue and reduced performance in the latter stages (Foster et al., 2003). 

 

While many studies have examined pacing strategies in elite swimmers, few have focused 

specifically on Olympic data. Given that athletes typically peak at the Olympic Games after 

four years of targeted training, analysing data from the 2024 Games offers a unique opportunity 

to assess how pacing strategies correlate with top-tier performance.  

 

Medal-winning swimmers often display less variability in mid-race segments and maintain 

higher speeds in the final 500 meters, especially in the 1500m event. Stroke frequency and 

stroke length also emerge as critical indicators to predict pacing stability (Morais et al., 2023). 

 

The position that the athlete takes early in the race is also a determining factor in the likelihood 

of winning a medal. Being among the top three swimmers by the 600m mark significantly 

increases the likelihood of winning (Lara & Del Coso, 2021). 

 

Gender also plays a role in pacing dynamics. Men tend to exhibit greater pacing variability 

across strokes, suggesting reliance on explosive speed at certain points. In contrast, women 

generally maintain a more even pace throughout the race, reflecting endurance-oriented 

strategies (Moser et al., 2021).  

 

The coefficient of variation (CV) is commonly used to assess lap-to-lap variability throughout 

the race. Lower CV values indicate a more stable pacing and are often associated with higher 

performance levels. In a study conducted for the top 60 all-time ranked 1500m male freestyle 

swimmers, researchers found that maintaining the speed during the middle phase (500-1000m) 

is the most critical determinant of success, as swimmers who slow down significantly mid-race 

struggle to regain speed in the final 500m. The most successful swimmers demonstrated less 
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lap-to-lap variability (CV), with a balance approach between speed and energy conservation 

(Hołub et al., 2023). 

 

2.4 From Basic Statistics to Machine Learning in Swimming 
 

Pacing strategy is a crucial factor influencing performance in long-distance freestyle swimming 

competitions such as 800 and 1500m races. The methodological approaches employed to study 

pacing behaviours have relied on traditional statistical methods, but there is an increasing 

interest in applying machine learning techniques to more effectively understand complex, 

nonlinear connections in race performance data.  

 

The predominant analytical approach found in the literature relies on traditional statistical tests, 

particularly the use of Analysis of Variance (ANOVA) alongside Bonferroni post-hoc tests. 

These techniques have played a crucial role in analysing lap-to-lap pacing variability and in 

identifying performance differences across different groups, such as elite vs. junior swimmers, 

male vs. female, and medallists vs. non-medallists (Hołub et al., 2023; Lara & Del Coso, 2021). 

ANOVA allows researchers to determine whether pacing varies significantly among groups and 

race segments, while post-hoc tests clarify the locations of these differences. For instance, 

Morais et al. (2023) demonstrated that medallists often exhibit lower lap-to-lap variability and 

a more significant final push, reinforcing the efficacy of a parabolic pacing strategy.  

 

Furthermore, time-series analysis examined how pacing evolves throughout a race. This 

approach enabled researchers to classify pacing strategies such as parabolic (U-shaped), 

positive, negative, and even pacing, depending on the variations in race speed across different 

segments (Oliveira et al., 2019). Although these methods provide understanding of the time-

based allocation of effort, they are fundamentally descriptive and frequently constrained to 

generalisations at the group level, rather than insights tailored to individual athletes, which is 

critical for personalised training and feedback.  

 

To address these restrictions, a few recent studies have explored the application of machine 

learning models, particularly decision trees, to analyse how split-time variables and mid-race 

speed patterns predict performance outcomes. Oliviera et al. (2019) specifically used CHAID 

(Chi-squared Automatic Interaction Detection) algorithm to evaluate pacing data from 

Olympic finalists. This approach facilitated the identification of key predictive variables, such 

as mid-race velocity, and their hierarchical role in performance categorisation. Medallists 

demonstrated considerably more consistent pacing during the race's middle segments, a trend 

that CHAID effectively recognised without relying on linear assumptions. 

 

Nonetheless, machine learning applications in pacing analysis remain rare. The swimming 

science community continues to rely on traditional statistical models, likely because of their 

interpretability and historical significance. However, with advancements in data accessibility 

and computational resources, machine learning methods present a way to achieve more 

personalised and predictive modelling of racing strategies. They can manage a wider array of 

variables, identify non-linear relationships, and provide improved predictive accuracy for 

immediate decision-making in coaching.  

 

In conclusion, although traditional statistical methods have established strong bases for 

comprehending pacing strategies in swimming, the integration of machine learning can offer a 

significant opportunity for the future. Most existing studies continue to rely on traditional 

methods.  
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3 Methodology 
 

There are many methodologies that researchers use in machine learning projects, but in this 

case, the CRISP-DM methodology (Cross-Industry Standard Process for Data Mining) will 

be followed, which is the most common approach. To uncover the pacing strategies that elite 

swimmers used in the 20204 Olympic Games in the 800m and 1500m freestyle, determine the 

key factors that influence in-race velocity, and identify which ML model best explains velocity. 

This process model for data mining consists of six iterative phases: Business Understanding, 

Data Understanding, Data Preparation, Modelling, Evaluation, and Deployment (Costa & 

Aparicio, 2020; Schröer et al., 2021). 

 

The first phase is Business Understanding, where the problem and the objective are assessed. 

The aim of data mining is a crucial phase in this stage, which in this study is to uncover 

underlying patterns in the data and identify which variables most significantly influence pacing 

behaviour and performance outcomes. 

 

The next step is Data Understanding, which involves collecting data from various resources 

and identifying the most suitable data to achieve the study's objective. This includes the data 

collection, exploring and describing the data, and checking the data quality.  

 

For this study, the data used is from the World Aquatics online site, the information is referent 

to the 2024 Olympic Games for the swimming races of 800m and 1500m. The 800m event 

consists of 16 laps of 50 meters, and the 1500m race consists of 30 laps of 50 meters. The 

original dataset was composed of 13 variables (Table 1). 

 
Table 1: Original variables of the dataset 

Name of Variable Description  Data Type 

Event Race Distance (800m or 

1500m) 

Continuous 

Type Type of race (e.g, Heat, 

Final) 

Nominal 

Lane Lane assignment in the race Discrete 

Name Swimmer’s full name Nominal 

Sex Sex of the swimmer (M/F) Nominal 

Country The country the swimmer is 

representing 

Nominal 

Birthday Birth date of the swimmer Discrete 

Entry Time Swimmer’s official entry 

time before race (seconds) 

Continuous 

Distance Distance mark (e.g., 50m, 

100m, etc.) 

Discrete 

Time Cumulative race time at 

distance (seconds) 

Continuous 

Rank Position at each split distance Ordinal 

Split Partial Split time for each 

50m segment (seconds) 

Continuous 

Final Rank Final rank in the event Ordinal 
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The dataset contains a total of 2,687 records, categorised by event type, including 384 records 

from 800m female events, 684 records from 800m male events, 719 records from 1500m 

female events, and 960 records from 1500m male events. Specifically, within the 800m event, 

there are 1,008 records, corresponding to 18 female athletes and 31 male athletes, with an 

average athlete age of 23 years. The mean reaction time is 0.717 seconds, while the average 

split time per 50 meters is 30.281 seconds. Athletes’ ages range from 17 to 39 years old. 

Reaction times vary significantly, with the fastest recorded reaction of 0.64 seconds and the 

slowest of 0.81 seconds. Additionally, the fastest split time documented was 25.42 seconds, 

while the slowest split time was 36.62 seconds.  

 

In the context of the 1500m events, the dataset contains 1,679 records, representing18 female 

athletes and 24 male athletes. The mean reaction time in these events is approximately 0.72 

seconds, ranging from 0.61 seconds to 0.84 seconds. The average split time per 50 meters is 

30.84 seconds, with individual times ranging from 26.12 seconds to 34.98 seconds. The 

youngest athlete is 16 years old, while the oldest is 39, with an overall average age of 24 years. 

 

In the next phase, Data preparation, the selection of the data to be used is conducted, along 

with the application of various models aimed at enhancing data quality. For this study, the heats 

and final event data were used. Additionally, new variables were calculated not only to enable 

a more detailed investigation of pacing strategies but also to capture the dynamics of in-race 

velocity, therefore providing a foundation for analysing the factors influencing velocity (Table 

2).  
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Table 2: New variables calculated (Feature Engineering) 

Name of Variable Description Data Type 

Age Age of swimmer on the date when the 

Olympic swimming events started 

(27/07/2024). 

Discrete 

Velocity Instantaneous velocity (m/s). It 

corresponds to the difference in splits 

per race and per type. 

Continuous 

Acceleration Change of velocity between splits or 

over time 

Continuous 

Coefficient of Variation 

(CV%) 
𝐶𝑉 =

𝑐

𝑥𝑣𝑒𝑙𝑜𝑐𝑖𝑡𝑦
× 100, 

where 𝑠𝑣𝑒𝑙𝑜𝑐𝑖𝑡𝑦 is the standard 

deviation and 𝑥𝑣𝑒𝑙𝑜𝑐𝑖𝑡𝑦 is the mean of 

velocity. It measures the stability of 

pacing through the race and allows for 

assessing lap to lap variability. 

Continuous 

Speed Variability Standard Deviation of Velocities. Continuous 

Start Speed Average velocity during the first third 

of the race. 

Continuous 

Middle Speed Average velocity during the middle 

third of the race. 

Continuous 

End Speed Average velocity during the final 

third of the race. 

Continuous 

Final Speed Velocity during the last 50m of the 

race. 

Continuous 

Prev Velocity Velocity of the previous split for the 

same swimmer, race and type. 

Continuous 

Prev Split Split time of the previous segment. Continuous 

Meters to Finish Distance remaining to complete the 

race at each split. 

Continuous 

 

Following feature engineering, feature selection techniques were applied to reduce the number 

of input variables, improve model interpretability, and prevent overfitting. This technique is 

the selection of subsets of variables that together have good predictive power. This can be done 

manually or automatically (Guyon & Elisseeff, 2003). This technique has numerous 

advantages, including a reduction in training duration, simplification of the models for 

enhanced interpretability, mitigation of dimensionality and a decrease in the likelihood of 

overfitting.  

 

The importance of feature selection becomes more evident in instances where irrelevant 

predictors may negatively impact the model’s performance. This is especially true for 

algorithms such as SVM and Neural Networks, as well as for Linear and Logistic Regression 

models, which are highly sensitive to correlated predictors. By using these techniques, one can 

effectively eliminate redundancy and reduce multicollinearity, leading to a more reliable and 

accurate model. 

 

Feature selection can be divided into three primary methods: wrappers, filters and embedded 

methods. Each approach offers unique advantages and is suited to different contexts within the 

modelling process:  
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- Filter methods are techniques that select features without the use of any machine 

learning algorithms, select variables as a pre-processing step, independently of the 

chosen predictor.  

- Wrapper methods use machine learning algorithms to select features with the most 

predictive power.  

- Embedded methods are used to select features during the model training phase. 

 

For categorical features, relevance can be assessed using the chi-square score, a filter method.  

 

Once all the pre-processing steps are completed and the data is selected, the next stage involves 

the modelling of the data, referred to as Modelling. This phase involves selecting the 

algorithms that will be employed to reach the stated objective and determining how the data 

will be utilised within the models. These choices can be assessed through various criteria.  

 

Following the Modelling phase, it is essential to evaluate the results obtained through a fifth 

phase known as Evaluation. For this aim, a set of evaluation techniques and performance 

metrics were chosen.  

 

To ensure that the results uncovered in an analysis are generalizable to an independent, unseen 

dataset, cross-validation is used (Larose, 2015). The most common techniques are twofold 

cross-validation and k-fold validation. In K-fold cross-validation, the data is split into 𝑘 equally 

sized subsets, or folds. In each iteration, onefold is used as the test set, the remaining folds are 

used to train the model, and evaluated in the test set. This process is repeated 𝑘 times, with 

each fold serving once as the test set. The model’s overall performance is then estimated by 

averaging the evaluation results from all 𝑘 iterations. (Kubben et al., 2019) ( Figure 4) 

 

 
Figure 4: K-Fold Cross Validation  

Once the cross-validation procedure is defined, several error-based metrics were used to 

quantify the difference between predicted and actual values. In the context of this study, both 

regression and classification models were evaluated using appropriate metrics. 

For regression tasks, which aim to predict the swimmer’s velocity, the following metrics were 

applied: 

- The Mean Absolute Error (MAE) is the mean of the absolute values of individual 

prediction errors across all observations (Tatachar, 2021). It can be represented by the 

following formula: 
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𝑀𝐴𝐸 =
1

𝑛
∑|𝑌𝑖−𝑌̂𝑖|,

𝑛

𝑖=1

 

where  𝑛 represents the number of observations and 𝑌𝑖−𝑌̂𝑖 represents the absolute errors. 

 

- Mean Squared Error (MSE) also measures the average magnitude of the errors, brut 

unlike MAE, it squares the individual differences, penalising larger errors more heavily 

(Tatachar, 2021): 

𝑀𝑆𝐸 =
1

𝑛
∑(𝑌𝑖−𝑌̂𝑖)

2
.

𝑛

𝑖=1

 

 

- The Root Mean Squared Error (RMSE) is the square root of MSE, and provides an 

interpretable error value in the same units as the target (Tatachar, 2021). It is given the 

following formula:  

𝑅𝑀𝑆𝐸 =  √
1

𝑛
∑(𝑌𝑖−𝑌̂𝑖)

2
𝑛

𝑖=1

. 

 

- 𝑹𝟐 or Coefficient of Determination represents the explained variance of the dependent 

variables by the independent variables (Tatachar, 2021). It can be represented by the 

following formula: 

𝑅2 =
∑ (𝑌𝑖−𝑌̂𝑖)

2𝑛
𝑖=1

∑ 𝜀2𝑛
𝑖=1

. 

 

In contrast, for classification models, used initially in the attempted prediction of pacing 

strategy, the following metrics were applied to evaluate the performance: 

- Accuracy measures the proportion of correct predictions made by the model out of all 

of the predictions (Grandini et al., 2020). It can be calculated in the following way:  

 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =  
(𝑇𝑃 + 𝑇𝑁)

(𝑇𝑃 + 𝑇𝑁 + 𝐹𝑃 + 𝐹𝑁)
, 

 

where, a True Positive (TP) occurs when a positive observation is correctly classified 

as positive by the model. A False Positive (FP) refers to a negative observation that is 

incorrectly classified as positive. A True Negative (TN) occurs when a negative 

observation is correctly classified as negative. A False Negative (FN) happens when a 

positive observation is incorrectly classified as negative by the model  (Grandini et al., 

2020). 

 

- Precision measures the proportion of true positive observations among the observations 

that were predicted as positive by the models (Grandini et al., 2020). Can be calculated 

by the following formula:  

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑃

(𝑇𝑃 + 𝐹𝑃)
. 
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- Recall measures the proportion of positive observations that were correctly predicted 

by the model out of all the actual positive observations and can be calculated by the 

following formula:  

 

𝑅𝑒𝑐𝑎𝑙𝑙 =
𝑇𝑃

(𝑇𝑃 + 𝐹𝑁)
. 

 

- The Macro F1-Score is a metric used to evaluate the performance of multi-call 

classification models and combines precision and recall (Grandini et al., 2020). It is 

calculated by the formula:  

 

𝐹1 − 𝑆𝑐𝑜𝑟𝑒 = 2 ∗  (
𝑀𝑎𝑐𝑟𝑜 𝐴𝑣𝑒𝑟𝑎𝑔𝑒 𝑃𝑟𝑒𝑐𝑠𝑖𝑜𝑛 ∗ 𝑀𝑎𝑐𝑟𝑜 𝐴𝑣𝑒𝑟𝑎𝑔𝑒 𝑅𝑒𝑐𝑎𝑙𝑙

𝑀𝑎𝑐𝑟𝑜 𝐴𝑣𝑒𝑟𝑎𝑔𝑒 𝑃𝑟𝑒𝑐𝑠𝑖𝑜𝑛−1 ∗ 𝑀𝑎𝑐𝑟𝑜 𝐴𝑣𝑒𝑟𝑎𝑔𝑒 𝑅𝑒𝑐𝑎𝑙𝑙−1
), 

  

where Macro Average Precision and Recall are the arithmetic mean of the metric for a 

single class, where 𝑘 is a class generic:  

 

𝑀𝑎𝑐𝑟𝑜 𝐴𝑣𝑒𝑟𝑎𝑔𝑒 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =  
∑ 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛𝑘

𝐾
𝑘=1

𝐾
, 

𝑀𝑎𝑐𝑟𝑜 𝐴𝑣𝑒𝑟𝑎𝑔𝑒 𝑅𝑒𝑐𝑎𝑙𝑙 =  
∑ 𝑅𝑒𝑐𝑎𝑙𝑙𝑘

𝐾
𝑘=1

𝐾
. 

 

Beyond standard performance evaluation, a set of statistical tests were applied to validate the 

assumptions of the models. These tests were used depending on the nature of the data and the 

modelling objective, whether classification or regression. 

 

When building a regression model, one of the important assumptions is that the residuals (or 

errors) are independent from one observation to the next. If this assumption is violated, 

meaning the residuals are correlated, it may indicate that the model hasn’t fully captured the 

structure of the data. This can affect the accuracy of the model’s predictions and the reliability 

of any conclusions drawn. To assess whether this assumption holds, the Durbin-Watson test 

was applied, which is specifically designed to detect autocorrelation in the residuals. This test 

is especially useful when working with sequential or time-related data, where values close 

together may be more similar than expected (Hyndman & Athanasopoulos, 2018). Using the 

Durbin–Watson test helps ensure that the model is well specified and that the residuals behave 

as expected, random, uncorrelated, and centred around zero. If significant autocorrelation were 

found, it would suggest the presence of missing variables or underlying patterns not accounted 

for by the model. 

 

In addition, an Analysis of Variance (ANOVA) was conducted to determine whether 

significant differences existed between the means of various groups. This technique is a 

parametric statistical model used to compare the means of three or more independent groups, 

with the aim of identifying whether at least one of the group mean significantly differs from 

the others. The core principle of ANOVA lies in decomposing the total variance observed in the 

data into two components: between-group variance and within-group variance (also known as 

residual variance) (Afonso & Nunes, 2019). The test statistic follows the F-distribution and is 

calculated as: 

𝐹 =
𝑀𝑇𝑆

𝑀𝑆𝐸
, 
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Where 𝑀𝑇𝑆 =  
𝑆𝑆𝐵

𝐾−1
, 𝑀𝑆𝐸 =  

𝑆𝑆𝐸

𝑛−𝐾
 . Here, 𝑆𝑆𝐵 = ∑ 𝑛𝑖(𝑋̅𝐼 − 𝑋̿)2𝐾

𝑖=1  represents the between-

groups sum of squares, and 𝑆𝑆𝐸 = ∑ ∑ (𝑋𝑖𝑗 − 𝑋̿)2𝑛𝑖
𝑗=1

𝐾
𝑖=1 , denotes the within-group (or 

residual) sum of squares. 𝐾 is the number of groups, and 𝑛 is the total number of observations. 

 

The null hypothesis (H0) states that all group means are equal. Rejecting the null hypothesis in 

the ANOVA F-test only indicates that at least one group mean differs from the others, it does 

not specify which means are significantly different. To determine which specific pairs of group 

means differ, a post hoc test is required (Afonso & Nunes, 2019). 

 

The Chi-Square test is a non-parametric statistical test used to determine if categorical 

variables are independent of each other. It compares the observed frequencies (𝑂𝑖) of each 

category combination to the expected frequencies (𝐸𝑖) under the assumption that the variables 

are independent (Afonso & Nunes, 2019). The test statistic is calculated as:  

 

𝜒2 = ∑
(𝑂𝑖 − 𝐸𝑖)

2

𝐸𝑖
,

𝐾

𝑖=1

 

 

where 𝐾 is the number of classes. The null hypothesis (H0) assumes that two variables are 

independent. It is rejected if the test statistic exceeds the critical value for a given significance 

level 𝛼, normally 𝛼 = 0.05. (Afonso & Nunes, 2019) 

 

The final phase is Deployment, in which the created model is put into action as a software or a 

concluding report, along with its maintenance.  
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4 Results 
 

4.1 Classification of Pacing Strategies 
 

The initial approach to this study began with a classification objective, where the goal was to 

predict each athlete’s pacing strategy based on race characteristics. For analysing the 800m, 

the data was grouped by athlete, event, and race type. The variables chosen were Entry Time, 

Reaction, Start Speed, Middle Speed, End Speed, CV (%), Final Sprint, Final Rank, Age, Sex, 

Type, and Country. 

 

The first step was using FAMD, a dimensionality reduction technique appropriate for datasets 

containing both numerical and categorical variables. The analysis of the screen plot pointed to 

the retention of two components, revealing that the first two components explained 

approximately 31% of the total variance, suggesting moderate structure but limited 

dimensionality capture (Annex 1). 

 

Following this, agglomerative hierarchical clustering was applied to the two-dimensional 

component space using Ward’s method and Euclidean distance. Although the scree plot 

initially suggested a solution of five clusters, this configuration did not yield clearly separable 

groups (Annex 2). A three-cluster solution was ultimately chosen, as it provided better 

separation and interpretability of pacing patterns. These clusters were manually interpreted 

based on speed profiles and labelled as follows: 

 

- Cluster 1: Slower U-Shaped; 

- Cluster 2: Faster U-Shaped; 

- Cluster 3: Positive Split (with slight drop at the end). 

 

After clustering, the clusters were treated as pseudo-labels for classification purposes, 

transforming the unsupervised problem into a supervised classification task. This allowed 

exploration of which swimmer features were most influential in predicting pacing strategy. To 

identify the most relevant predictors for pacing strategy classification, a combination of filter, 

embedded, and wrapper methods was employed. Categorical variables were evaluated using 

the Chi-square test, while numerical features were first filtered based on variance thresholds, 

then assessed through decision tree–based feature importance, and finally refined using 

Recursive Feature Elimination (RFE). This multi-step selection process resulted in a final 

feature set comprising: Start Speed, Middle Speed, End Speed, Final Sprint, Final Rank, CV 

(%), Lane, Type and Sex. 

 

Four supervised learning models were trained: DT, RF, SVM, and MLP. Hyperparameters were 

tuned via GridSearchCV, and DTs were constrained to a maximum depth of 2 to avoid 

overfitting. The best models were compared, and the RF showed the best validation 

performance 

 

As seen in Annex 3 and Annex 4 the RF model demonstrated the strongest overall performance. 

It achieved the highest validation accuracy and F1-score, indicating a strong ability to 

generalise and identify patterns in swimmer pacing profiles based on the selected features. The 

MLP also performed well, achieving consistent validation results. However, its perfect fit on 

the training data suggests a greater risk of overfitting, which is common when working with 

small datasets and highly flexible models. The SVM offered solid and stable performance, 
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although it lagged slightly behind Random Forest in terms of predictive strength, particularly 

on more complex or less frequent patterns. The DT model, while interpretable and 

straightforward, exhibited the weakest validation metrics, along with the largest gap between 

training and validation scores, highlighting limitations in generalisation when applied to new 

data. 

 

4.2 Pacing Strategy Characterisation 
 

Due to the poor quality of the FADM results and to better characterise pacing strategies, a 

second unsupervised approach was adopted using Gower distance-based agglomerative 

hierarchical clustering. 

 

Since the sample size is small, the dataset contains mixed data, and there is no predefined 

number of clusters, the most appropriate method is agglomerative hierarchical clustering. 

Moreover, as performance times may include extreme cases or outliers (e.g., standout 

performances), hierarchical methods are particularly suited for detecting such atypical patterns. 

The Gower distance was used to compute dissimilarity, as it is specifically designed to handle 

mixed data types. Average linkage was selected for the clustering process, balancing the 

distances within and between clusters to ensure interpretability and robustness. 

 

For the 800m events, the scree plot (Annex 5), based on the elbow method, suggested an 

optimal number of three clusters. On the other hand, the silhouette score peaks at two clusters 

(Annex 6), but the score for the three clusters is still quite high. Choosing three clusters 

provides a good balance between model interpretability and capturing meaningful subgroup 

variation.  

 

 
Figure 5: Average pacing profiles across race segments for each cluster in the 800m events  

 

When analysing the pacing profiles (Figure 5), Cluster 1 and Cluster 2 followed a U-shaped 

strategy, characterised by faster starting and finishing segments with relatively slower middle 

segments. However, Cluster 2 consisted of faster athletes overall, while Cluster 1 showed 

similar pacing dynamics but at a slightly slower pace. Cluster 3, containing only a single 

athlete, followed a positive split strategy, progressively slowing down throughout the race.  

 

To better understand the in-depth key differences, a cluster-wise comparison revealed that 

Cluster 1 included athletes with mid-range entry times, consistent pacing (low CV%), and a 



Pacing Strategies in 800m and 1500m Freestyle:  

A Data-Driven Analysis from the 2024 Olympic Games 

 

Joana Afonso Pinto 19 

higher proportion of female swimmers. While Cluster 2 was composed mostly of male athletes, 

with slightly higher CV%, suggesting more variation in pacing, but still relatively steady 

execution. And Cluster 3 (single athlete) had the slowest final result and erratic pacing and thus 

is interpreted as an atypical case  (Annex 7 -  Annex 12). 

 

Now, looking into the 1500m events, two clusters emerged from the hierarchical clustering. 

Both demonstrated a U-shaped pacing strategy, but the main distinguishing factor was speed 

Cluster 1 was composed of faster swimmers compared to Cluster 2 (Figure 6). 

 

 
Figure 6: Average pacing profiles across race segments for each cluster in the 1500m events  

 

Upon further analysis, Cluster 1 consisted predominantly of male athletes with faster entry 

times and slightly greater pacing variability and Cluster 2 included mostly female athletes, had 

slower entry times, but more consistent pacing, as reflected in lower CV%. (Annex 15, Annex 

16, Annex 17, Annex 18, Annex 19 and Annex 20) 

 

To formally assess whether the clusters differed significantly in terms of performance or 

demographic variables, ANOVA tests (for continuous variables) and chi-squared tests (for 

categorical variables) were conducted. The summary of results is presented in Table 3. 

  



Pacing Strategies in 800m and 1500m Freestyle:  

A Data-Driven Analysis from the 2024 Olympic Games 

 

Joana Afonso Pinto 20 

 
Table 3: ANOVA and Chi-square statistical comparison of clusters for 800m and 1500m races 

Variable Test Type 800m Results 1500m Results 

Final Rank ANOVA 
𝐹 = 1.246  

 𝑝 = 0.2950 

𝐹 = 0.170  
 𝑝 = 0.6814 

CV (%) ANOVA 
𝐹 = 5.070  

 𝑝 = 0.0092 

𝐹 = 0.655  
 𝑝 = 0.4219 

Entry Time ANOVA 
𝐹 = 171.103  
 𝑝 = 0.0000 

𝐹 = 480.954  
 𝑝 = 0.0000 

Reaction Time ANOVA 
𝐹 = 2.829  

 𝑝 = 0.0670 

𝐹 = 1.246   
𝑝 = 0.2936 

Race Type Chi-squared 
𝜒2 = 16.107  
 𝑝 = 0.0409 

𝜒2 = 7.472  
𝑝 = 0.1129 

Sex Chi-squared 
𝜒2 = 63.000  
 𝑝 = 0.0000 

𝜒2 = 48.234  
 𝑝 = 0.0000 

Country Chi-squared 
𝜒2 = 44.479  
𝑝 = 0.8189 

𝜒2 = 24.303  
 𝑝 = 0.3316 

 

The statistical analysis came to confirm the prior conclusions about the cluster differences it 

revealed that, independent of the cluster, it did not significantly explain athletes’ final rankings 

in either the 800m or 1500m events, suggesting that while pacing strategies may influence race 

dynamics, they do not directly determine performance outcomes. In the 800m, there were 

significant differences between clusters in pacing variability (CV%), entry time, and race type, 

indicating a more tactically diverse race structure. In contrast, the 1500m showed fewer 

between-cluster differences, with only entry time emerging as a significant factor, suggesting 

a more uniform strategic approach in longer-distance events. Entry time (seed time) was the 

most consistent differentiator across both events, implying that pre-race expectations and 

physiological capacity may shape pacing behaviours. Additionally, sex was strongly associated 

with cluster membership in both races, reflecting gender-based differences in pacing profiles. 

Reaction time showed no significant differences across clusters, and nationality was not 

associated with the pacing cluster in either event. These results highlight that clustering 

primarily reflects different pacing strategies and demographic traits rather than determining 

competitive success. 

 

4.3 Key Determinants of Velocity 
 

Another major objective of this study was to identify which features most strongly influence 

swimming speed during the 800m and 1500m Olympic events. To explore this, a series of new 

performance-derived variables were computed: Speed, Previous Speed, Previous Split, 

Acceleration, and Meters to Finish. These were designed to reflect both performance status and 

race progression. 

 

As a first step, Spearman correlation analysis (Annex 21) was applied to detect potential 

multicollinearity among the candidate variables. For both race distances, variables that were 

highly correlated were filtered to avoid redundancy and overfitting. Only one variable from 
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each highly correlated pair was retained to ensure the robustness of the subsequent model. The 

final set of predictors selected to explain velocity included: Acceleration, Entry Time, CV (%), 

Distance, Age, Reaction Time, Rank, Sex, and Type. 

 

For this part of the study, a Random Forest Regressor was employed. RF is a robust, non-

parametric ensemble learning method known for its ability to handle non-linear relationships, 

account for feature interactions, and tolerate noisy or unbalanced data without requiring strict 

distributional assumptions. It also provides feature importance rankings, making it particularly 

well-suited for exploratory modelling in complex datasets such as this. 

 

The RF was applied to both the 800m and 1500m datasets to evaluate the relative importance 

of the selected predictors. In both cases, the model identified Sex, Acceleration, and Distance 

as the most impactful features in predicting instantaneous swimming velocity. (Annex 22 and  

Annex 23). This consistent result across both distance points to a shared set of determinants 

governing in-race speed: physiological attributes (reflected by sex and acceleration) and 

positional context within the race (distance to finish). 

 

4.4 Predictive Modelling of Velocity  
 

Based on the Random Forest feature importance results, variables with importance below 0.01 

were considered negligible and thus excluded from the final model. This means the features 

selected were Sex, Acceleration Distance and Entry Time.  

 

First it was done the estimation of the OLS models, for both events. 

 

 
Figure 7: OLS - 800m 
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Figure 8: OLS - 1500m 

 

For the estimations of the remaining algorithms, GridsearchCV was used, using scikit-learns 

module (Albon, 2018).  The results from this optimal search can be observed in Annex 24 and 

Annex 25. To ensure the robustness and generalizability of the models, a cross-validation 

approach was employed. Specifically, k-fold cross-validation (with k = 5) was used during 

hyperparameter tuning to evaluate model performance across different data partitions. This 

helped mitigate overfitting and provided more stable estimates of model accuracy and 

predictive power, particularly important given the relatively small sample size of the dataset 

(Reyaz et al., 2022). 

 

To identify the model with the best predictive power, the tables bellow summarize the 

evaluation metrics of each model for each race.  

 
Table 4: Evaluation Metrics of the algorithms - 800m races 

Algorithm MAE MSE RMSE 𝑅2 

OLS 0.032 0.002 0.046 0.709 

Randon Forest 0.010 0.000 0.015 0.968 

MLP 0.025 0.001 0.035 0.819 

AdaBoost 0.019 0.001 0.027 0.898 

Gradient Boosting 0.009 0.000 0.014 0.972 

 
Table 5: Evaluation Metrics of the algorithms - 1500m races 

Algorithm MAE MSE RMSE 𝑅2 

OLS 0.024 0.001 0.035 0.786 

Randon Forest 0.008 0.000 0.012 0.976 

MLP 0.015 0.000 0.021 0.925 

AdaBoost 0.015 0.000 0.020 0.929 

Gradient Boosting 0.009 0.000 0.012 0.974 
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Observing Table 4Table 5, indicate that Gradient Boosting consistently shows the highest 

predictive performance across both the 800m and 1500m races. It yields the lowest error 

metrics (MAE, MSE, RMSE) and the highest R² values, indicating strong model fit and minimal 

deviation between predicted and actual values. Random Forest also performs very well, closely 

following Gradient Boosting in all metrics, and can be considered a reliable alternative. 

 

In contrast, MLP displays signs of overfitting and poor generalisation, with notably higher 

errors and a lower R² value, indicating that it may not be well-suited for this specific dataset, 

probably due to its size. OLS, while conceptually simple and widely used, yields the weakest 

performance, with the lowest R² value of 0.709 for the 800m and 0.786 for the 1500m events, 

indicating that it fails to capture much of the variance in the target variable.  

 

These results highlight the superiority of ensemble learning approaches, particularly Gradient 

Boosting, for modelling velocity based on athlete and race characteristics in middle-distance 

events. 

 

The results of the Durbin-Watson and the mean of the residual, to assess the quality of the 

models, are represented in in Table 6 andTable 7. 

 
Table 6: Precision Metrics of the algorithms - 800m races 

Algorithm Durbin-Watson Test Mean of Residuals 

OLS 0.682 -0.000000 

Randon Forest 1.969 0.00060 

MLP 1.504 0.00395 

AdaBoost 1.310 -0.00224 

Gradient Boosting 2.000 0.00001 

 
Table 7: Precision Metrics of the algorithms - 1500m races 

Algorithm Durbin-Watson Test Mean of Residuals 

OLS 0.739 -0.000000 

Randon Forest 1.941 0.00015 

MLP 1.603 0.00000 

AdaBoost 1.150 -0.000178 

Gradient Boosting 1.987 0.00004 

 

Table 6 and Table 7 show that the mean residuals for all models are very close to zero, 

indicating that the models are generally unbiased in their predictions; no model under- or over-

predicted the target values. This is a good indicator of good accuracy in terms of central 

tendency. 

 

The Durbin-Watson test was applied to assess the presence of autocorrelation in the residuals. 

Values close to two indicate the absence of autocorrelation, which is the desired outcome in 

predictive modelling. In both races, Durbin-Watson statistics are similar, reflecting that the 

models produce highly consistent predictions across both datasets. This consistence reinforces 

the reliability of the results. Among the models, Gradient Boosting and RF achieved the best 

Durbin-Watson values, suggesting that their residuals behave like noise, uncorrelated and 

random, further confirming the model’s robustness. 
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Finally, figures Figure 9 and Figure 10 illustrate the predicted values generated by the best-

performing model, Gradient Boosting, alongside the actual speed data throughout the race in 

the test dataset. 

 

 
Figure 9: Predicted vs. real data of velocity across splits in the test phase for 800m events  

 

 

 
Figure 10: Predicted vs. real data of velocity across splits in the test phase for 1500m events  
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5 Discussion 
 

The findings were pretty consistent with what was seen in other studies about pacing strategies 

in competitive swimming, especially regarding the U-shaped pacing common in long-distance 

events. In both the 800m and 1500m races, most swimmers followed this U-shaped profile, 

which aligns well with research from Morais (2023) and McGibbon (2018). These studies 

highlighted how elite swimmers often start and finish strong while pacing themselves more 

conservatively in the middle of the race to manage their energy. 

 

In the 800m race, three different pacing profiles were spotted. Two of them followed the U-

shaped path but varied in overall speed, showing a clear distinction between faster and slower 

swimmers. The third profile displayed a positive split, meaning there was a gradual decrease 

in speed throughout the race. Interestingly, demographic trends were observed: male swimmers 

tended to show more variability in their pacing, while female swimmers maintained greater 

consistency. This observation is in line with Moser (2021), who noted physiological and 

strategic differences between the sexes when it comes to race execution. 

 

When looking at the 1500m, the pacing variability among athletes was less pronounced. 

Although U-shaped strategies remained prevalent, the primary distinction between the two 

groups lays in the overall speed, separation faster from slower swimmers. This relative 

consistency in pacing likely reflects the more significant aerobic demands of longer races, 

emphasising the need for careful energy management, which is in line with previous research. 

 

Interestingly, even though there were clear pacing strategies, they didn't strongly correlate with 

final race rankings. This suggests that how a swimmer paces themselves isn't the sole factor in 

determining their success. Lara & Del Coso (2024) reflected this notion, stating that pacing is 

more about an athlete's physiological profile and race plan than their actual competitive 

placement. 

 

In terms of what drives performance, factors like Sex, Acceleration, and Distance were 

influential across both race distances. These insights emphasise the significance of 

physiological traits, like power output and fatigue resistance, as well as race dynamics, in 

controlling speed in real-time. Entry time also played a significant role, suggesting that what 

swimmers achieved before the race can impact their pacing strategies during it. 

 

On the predictive side, the Gradient Boosting model performed exceptionally well in terms of 

accuracy for swimmer velocity, with RF also showing strong results. Both outperformed 

standard methods like OLS and MLP, proving better at capturing the complex patterns and 

interactions in our mixed datasets. Plus, the best models showed no signs of autocorrelation in 

their residuals and had near-zero means, indicating their predictions are reliable. This 

reinforces the idea that ensemble models are excellent tools for understanding the intricacies 

of athletic pacing. 

  



Pacing Strategies in 800m and 1500m Freestyle:  

A Data-Driven Analysis from the 2024 Olympic Games 

 

Joana Afonso Pinto 26 

6 Conclusion and Future Works  
 

This study investigated the pacing behaviour of elite swimmers in the 800m and 1500m 

freestyle events at the 2024 Olympic Games through a data-driven approach. By applying 

machine learning techniques, both unsupervised (hierarchical clustering) and supervised 

(Gradient Boosting, Random Forests, SVM, and MLP), it was possible to explore velocity 

patterns across race segments and identify the features most influential in predicting these 

patterns. 

 

The results confirmed the presence of commonly observed pacing strategies, such as the U-

shaped pattern, and highlighted important individual characteristics associated with in-race 

speed variation. While the pacing strategy itself was not explicitly predicted, the study 

demonstrated that certain features, such as Sex, Event Distance, Acceleration, and CV (%), play 

a key role in shaping velocity dynamics. Clustering revealed consistent groupings among 

swimmers, particularly differentiated by sex and entry time, without a direct link to final race 

ranking. 

 

Among the predictive models evaluated, Gradient Boosting emerged as the most accurate and 

robust, with low residual error and no signs of autocorrelation, as confirmed by residual 

analysis and the Durbin-Watson test. These results suggest that ensemble learning methods are 

highly effective in modelling complex athletic performance data and offer promising 

applications in sports analytics. 

 

In practical terms, several implications emerge for athletes and coaches. The predominance of 

U-shaped pacing strategies suggests that training should reinforce controlled starts and finishes, 

alongside a steady pace through the middle race segments. The significant role of acceleration, 

especially in the final splits, points to the value of training that targets closing speed and fatigue 

resistance. Furthermore, the association between lower CV% and higher pacing consistency 

supports the inclusion of pace stability drills in elite training. The results also indicate that 

performance dynamics differ by sex and entry time, suggesting that training and race strategy 

should be tailored to individual profiles rather than following a one-size-fits-all approach. 

 

Despite these contributions, the study has several limitations. The sample size was limited to a 

single competition, the 2024 Olympic Games, and certain relevant variables, such as training 

load, stroke efficiency, or physiological data, were not available. The pacing profiles were 

inferred from available velocity data, which, while useful, may not fully capture the complexity 

of race strategy. 

 

Future research could build on these findings by expanding the dataset to include multiple 

competitions, broader demographics, or longitudinal performance data. Additionally, 

incorporating real-time physiological variables, such as heart rate, oxygen uptake, or lactate 

levels, could enhance the predictive power of the models and enable more detailed profiling of 

energy management and fatigue. Another direction could involve the use of wearable sensor 

data and real-time tracking to develop adaptive pacing tools for coaching and feedback. 
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Annexes 
 
Annex 1: Screen plot  FADM for Classification - 800m events 

 
 
Annex 2: Screen plot for Agglomerative Hierarchical Clustering for Classification problem - 800m 

 
 
Annex 3: Model’s performance for Classification problem - 800m events 
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Annex 4: Evaluation metrics for the Classification problem - 800m events 

 
 
Annex 5: Screen plot for Agglomerative Hierarchical Clustering - 800m 
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Annex 6: Silhouette scores  - 800m 

 
Annex 7: Boxplot of Final rank by Cluster - 800m events 

 
Annex 8: Boxplot of CV (%) by Cluster - 800m events 
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Annex 9: Boxplot of Entry Time by Cluster - 800m events 

 
Annex 10: Boxplot of Reaction Time  by Cluster - 800m events 

 
Annex 11: Bar chart of Type of race distribution by Cluster - 800m events 
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Annex 12: Bar chart of Sex distribution by Cluster - 800m events 

 
Annex 13: Screen plot 1500m 

 
 
Annex 14: Silhouette scores  - 1500m events 
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Annex 15: Boxplot of Type of race by Cluster - 1500m events 
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Annex 16: Boxplot of CV (%) by Cluster - 1500m events 

 
Annex 17: Boxplot of Entry time by Cluster - 1500m events 

 
  

 
Annex 18: Boxplot of Reaction time by Cluster - 1500m events 

 
Annex 19: Bar chart of Type of race distribution by Cluster - 1500m events 
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Annex 20: Bar chart of Sex distribution by Cluster - 1500m events 
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Annex 21: Spearman Correlation Heatmap for all of the races 
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Annex 22: Feature Importance - 800m 

 
 

Annex 23: Feature Importance - 1500m 

 
 

 

 
Annex 24: Best hyperparameters for ML Models using GridSearchCV - 800m events 
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Annex 25: Best hyperparameters for ML Models using GridSearchCV - 1500m events 

 
 

 


