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ABSTRACT, KEYWORDS, AND JEL CODES

This dissertation presents a valuation framework for over-the-counter derivatives that
integrates bilateral counterparty credit risk and funding costs by extending the classical
Black-Scholes model through a replication-based Partial Differential Equation approach.
The model captures the cost of funding required to support a self-financing hedging strat-
egy and introduces the default risk of both counterparties by incorporating positions in
each party’s own bonds within the replication portfolio. To implement the framework, a
Hull-White one-factor short-rate model is used to simulate yield curves and perform the
numerical evaluation of an Interest Rate Swap under different scenarios. The analysis
considers multiple close-out conventions and funding scenarios, including those in which
the derivative cannot be posted as collateral. Ultimately, it is discussed how this approach
could be extended to incorporate climate-related risks, such as carbon pricing, by aligning

the derivative valuation process with the Carbon Equivalence Principle, which supports

a broader, |[Environmental, Social and Governance (ESG)laligned view of derivative risk

management.
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ACRONYMS

C'Oe Carbon Dioxide Equivalent Emission Adjustment.
ATM At-the-money.

CEP Carbon Equivalence Principle.
CSA Credit Support Annex.

CVA Credit Valuation Adjustment.

ECB European Central Bank.
EE Expected Exposure.
ESG Environmental, Social and Governance.

EURIBOR Euro Interbank Offered Rate.

FNZ Financial Net-Zero.

FVA Funding Valuation Adjustment.

IRS Interest Rate Swap.

ISDA International Swaps and Derivatives Association.

NET Negative Emissions Technology.
NGFS Network for Greening the Financial System.

NPV Net Present Value.

OIS Overnight Index Swap.

OTC Over-the-counter.

P&L Profit and Loss.

PDE Partial Differential Equation.
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SDE Stochastic Differential Equation.
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1 INTRODUCTION

Banks engaged in derivative transactions are exposed to the risk of incurring mark-
to-market losses due to the deterioration of their counterparties’ creditworthiness. Con-
versely, counterparties may incur losses if the seller defaults, while the derivative’s mark-

to-market value is positive from their perspective.

Before the 2008 Global Financial Crisis, most financial institutions priced derivatives
under risk-free discounting assumptions, often neglecting counterparty and funding risks.

At that time, credit risk mitigation was primarily based on collateral agreements and net-

ting mechanisms outlined in the [International Swaps and Derivatives Association (ISDA)|

2002 Master Agreement. Although exchange-traded derivatives benefit from centralized
clearing and standardized collateral requirements, these cannot be applied to
[counter (OTC)|products.

Following the collapse of major institutions, notably Lehman Brothers, many finan-
cial entities incurred substantial losses due to counterparty exposure, particularly in [OTC|
derivatives. In addition, the crisis led to increased borrowing costs and severe liquidity
shortages, thereby heightening the cost of capital required to maintain derivative posi-

tions.

Basel III formalized a comprehensive regulatory framework mandating that banks
incorporate capital requirements to mitigate both counterparty and funding risks. Over the
years, numerous academic studies have developed methodologies for valuing derivatives

while explicitly accounting for these risks.

This dissertation presents a framework for deriving a |[Partial Differential Equation|

[PDE)] and closed-form formulas as an extension to the Black-Scholes model, incorpo-
rating funding costs in scenarios where the derivative can or cannot be posted as col-
lateral and bilateral counterparty risk is present. We introduce a self-financing portfolio
replication strategy and then generalize the classical Black-Scholes[PDE]|by incorporating
jump-to-default terms and funding spread dynamics, following the approach of |Burgard
& Kjaer| (2011).

We analyze two distinct scenarios: one in which the mark-to-market value of the
derivative at default reflects the total risky value, and another in which it corresponds to
the riskless value. The latter is the predominant approach in the existing literature. It
aligns with contracts under [SDA] 2002 Master Agreements, wherein a dealer pool deter-
mines the mark-to-market value independently of knowing which party is the defaulting

one. Consequently, this leads to pricing based on the riskless value.



Under the first scenario, we derive a generally non-linear PDE| However, under spe-
cific payoff conditions, the non-linear terms vanish, resulting in a linear[PDE] The Feynman-
Kac representation is then applied to express the solution, enabling the decomposition of
the risky derivative into three components: a risk-free component, a funding adjustment,

and a credit valuation adjustment.

A core component of the replication strategy is the hedging strategy in the self-
financing portfolio, which establishes the foundation of our framework. We ensure that
the derivative price adequately incorporates the costs associated with all considered risk
factors. This hedging strategy is crucial for risk management, as it allows financial insti-
tutions to assess and mitigate risk factors within their derivative portfolios. A key strategy,
as outlined in Burgard & Kjaer (2011), involves the seller (re)purchasing its own bonds to
hedge its credit risk while attempting to achieve delta neutrality. This replication strategy
ensures that the seller’s funding costs for purchasing its own bonds are covered through
the cash account.

Under the setting described above, we aim to present the numerical value adjustments

for a plain vanilla [Interest Rate Swap (IRS)[ using the Hull-White model as the Interest

Rate model to generate yield curves under various scenarios, including stressed ones, via
a Monte Carlo simulation. For the Hull-White calibration, we employed a Co-terminal

method and utilized Bloomberg’s implied volatility data for European Swaptions.

The dissertation is structured as follows. In Chapter 2, we introduce the valuation
methodology, outlining the mathematical foundations, the structure of the cash account,
and the derivation of the pricing[PDE] which incorporates both funding costs and bilateral
credit risk. Chapters 3 and 4 introduce the framework, with each chapter focusing
on a different close-out convention. Chapter 5 presents the Hull-White model, followed
by Chapter 6, which details its numerical implementation, market calibration, and the
generation of simulated yield curve scenarios. Chapter 7 focuses on the computation
of credit and funding valuation adjustments, outlining the methodology and presenting
results based on the setup. By combining the theoretical strength of [PDE] - based
replication with the practical flexibility of simulation-based exposure modeling, this work
provides a robust and computationally tractable solution to the problem of
[ustment (XVA)|estimation.




2 PDE DERIVATION - FUNDING COSTS AND BILATERAL COUNTERPARTY RISK

In this chapter, we derive the risky to consider bilateral and funding costs using
an extended version of the standard Black-Scholes model, aiming for delta neutrality of
the portfolio through the use of each seller’s own bonds and the counterparty’s bonds via
the repurchase agreement strategy. We participate as the seller of the derivative, named
bank B, and we will consider two approaches to the mark-to-market value upon default.
The first will consider the mark-to-market value as the risky price, and the second, as the
most common one, will consider it to be the risk-free value. For the first case, the pricing
[PDE]is non-linear. We will impose certain conditions on the payoff to make the resulting
linear, and then use the Feynman-Kac formulas.

2.1 Preliminaries

We begin by clarifying the use of the term mark-to-market value at default throughout
this paper. It refers specifically to the close-out value of the derivative, i.e, the value of
the derivative used to determine the settlement amount when one of the parties defaults.
In other words, it is the amount the surviving party can claim. As such, when collateral
is involved — whether it is cash, high-quality securities, or other eligible collateral —
there is already credit protection against credit risk, which helps reduce losses in the
event of default. These collateral mechanisms are commonly enforced in centrally cleared
exchanges, where margin calls are frequent and tightly regulated. For [OTC] derivative

transactions, there is a non-mandatory agreement on post-collateral, also part of ISDA,

[Credit Support Annex (CSA), which allows parties to discuss specifications and tailor

terms for the transaction, thereby ensuring credit protection. However, many bilateral
trades remain uncollateralized in practice. To reflect real-world trading, we will

distinguish between two situations:

* When collateral is posted, we assume the bank can fund its position at the risk-free

rate, with no additional funding spread.

* When collateral is not posted, we introduce a funding spread sy, defined as rp —

r, to account for the cost the bank incurs above the risk-free rate.

Why do we assume the bank can fund itself at the risk-free rate when collateral is
posted? This goes to the heart of the [Funding Valuation Adjustment (FVA)| debate.

Taking the point of view of the bank’s trading desk. The bank’s funding desk charges

the trading desk according to the bank’s actual cost of funding. Let us break this down.



As stated by John Hull and Alan White (Hull & White (2014)), if the bank funds itself at
the [Overnight Index Swap (OIS)|as a proxy for a risk-free funding rate, then the posted

collateral will earn interest at the same rate, resulting in no funding costs. However,
when the trade is not collateralized or one of the parties funds itself at an [OIS|on the US
Federal Reserve Bank with a spread (e.g OIS + 50 bps), an adjustment must be made, as
it involves a real cash flow. The question arises about what the "fair" discount rate should
be used in valuation. If funding costs are not factored in, the trading desk may incur a
loss. Following the 2008 Cerisis, this accountability became critical. In many cases, banks
could no longer assume they could fund at the risk-free rate, and ignoring these costs

often resulted in losses.

Returning to credit risk, for contracts following [SDA| agreements, the value of the
derivative upon default is determined by a dealer pool, with no mention of the defaulting
counterparty. As such, one would expect that the mark-to-market value at close-out would
be the riskless value of the derivative. Nevertheless, some models use the risky value
instead. This choice leads to fundamental differences in the structure of the resulting[PDE]
in the construction of the replication portfolio, and in the interpretation of the resulting

valuation adjustments.

1. When the mark-to-market value at default is taken to be the risky value of the deriva-

tive, V.
2. When the mark-to-market value at default is taken to be the counterparty-riskless

value, V.

In what follows, we derive the pricing [PDE| under both conventions and show how
each one impacts the final value of the derivative. This sets the foundation for the simulation-

based valuation techniques presented in later chapters.

2.2 Model Setup

Let V denote the risky value of a derivative contract on asset S, between seller B
and counterparty C'. The underlying asset S' is assumed to be independent of the default
events of both B and C, and it evolves according to a Markov process with generator 4;.

Let V' be the derivative contract under the assumption that neither B nor C defaults.

The bonds Pp and P each pay 1 at maturity 7' if no default has occurred, and 0

otherwise. We also consider the jump-to-default extension to B and C default state.



Let us now introduce the following portfolio assets and the respective dynamics:

r : risk-free rate
rp : yield on recovery-less bond of seller B
rc : yield on recovery-less bond of counterparty C'
Pr, : default risk-free zero coupon bond
Ppg : default risky, zero-recovery, zero-coupon bond of party B
P¢ : default risky, zero-recovery, zero-coupon bond of party C

S : spot asset with no default risk

( dPg(1)

Pap) O
Zli;(%) = rp(t)dt — dJ5(1) (1)
! CC(S? — ro(t)dt — dJo(t)

\ CZSS_SS) = p(t)dt + o (t)dW (1)

where W (t) is a standard Brownian motion, r(t) > 0, rg(t) > 0, rc(t) > 0, u(t) >0
are deterministic functions of ¢, dJp and d.J- are point processes that jump from O to 1 in

the case of the respective parties’ default.

The convention used in the payout scenario involves the seller receiving cash or an

asset from the counterparty if H(S) > 0.

Let’s suppose that B and C enter into a derivative contract on the spot asset S with
payoff H(S) at maturity 7.

The risky value of the derivative from the seller’s perspective at time ¢ is denoted by

V(t, S, Jg, Jo), while V(t, S) represents the corresponding risk-free value.

As stated before, when B or C defaults, the mark-to-market value of the derivative
relies on the close-out or claim on the position. Under the [SDA] 2002 Agreement, the
mark-to-market value, M (t, S), can follow one of the following scenarios, from the view

of the surviving party:

1. The recovery value of the positive mark-to-market value of the derivative just prior
to default.



2. The full mark-to-market amount is owed to the defaulting party when the mark-to-

market value is negative.

As is standard under the 2002 Master Agreement, the close-out amount is
typically taken to be close to the counterparty-riskless value, even though it is unclear

whether funding costs should be included in the close-out amount. As such, we consider
V(t,S)=M(t,S).

Alternatively, under different modeling frameworks, the close-out value may be rep-
resented as V(t, S,0,0) = M(t,S), where V(t, S,0,0) denotes the risky value of the

derivative at time ¢, before any default has occurred.

Let Rp € [0,1] and R¢ € [0, 1] denote the recovery-rates, supposed deterministic, of

the derivative positions of parties B and C, respectively.

Let us consider the following boundary conditions based on the arguments above.

V(t, S,1,0) = M*T(t,S) + RgM~(t,S) (Seller defaults first)
R 2)
V(t,5,0,1) = ReM™(t,S) + M~ (t,S) (Counterparty defaults first)

where M+ = max (M, 0)1] and M~ = min(M, 0}

Considering the standard Black-Scholes framework, the hedge of the derivative is

achieved through a self-financing portfolio that covers all the underlying risk factors.

The seller sets up a portfolio IT consisting of §(#) units of the underlying asset S, ap(t)
units of the bond Pp, a¢(t) units of the bond P, and 3(t) units of cash. The portfolio is
structured such that its value hedges out the value of the derivative contract to the seller
at time £, i.e., V(t) + II(t) = 0. Thus,

=V(t) =11(t) = 0(t)S(t) + ap(t)Pp(t) + ac(t)Pe(t) + B(t) 3)

As mentioned earlier, to hedge against counterparty default, we will employ a strategy

that involves incorporating bonds from both parties, B and C.

Let us first consider the case where V(t) > ( from the seller’s perspective. If the
counterparty defaults on its obligations to 5, the seller is exposed to a loss. To hedge
against this loss, the seller enters into a short position in the counterparty’s bond P, i.e.,
ac(t) < 0. It is assumed the seller can borrow Pp via a repurchase agreement at a repo

rate close to the risk-free rate. If counterparty C' defaults, the price of P drops, allowing

"M+ denotes the positive part of M.
2M~ denotes the negative part of M.



the seller to repurchase the bond at a lower price to close the repo transaction. The cash
generated from the initial sale is lent out at the risk-free rate r, while the bond P pays
a yield ro. The spread s = r¢c — r can therefore be interpreted as an effective credit
spread of the counterparty. If Po has zero recovery, this spread approximates the default
intensity, i.e., the hazard rate \¢. If instead the bond has recovery R, the spread is given
by:

sc=rc—1r=A(1— R¢),

Conversely, if V(t) < 0, the seller would gain from its own default, owing money
to the counterparty. To hedge against this gain, the seller buys its own bond Pg, i.e.,
ap(t) > 0. If party B defaults, the market value of its own bond declines, generating a

loss in the replicating portfolio that offsets the gain from the derivative position.

The positions ap(t) and a¢(t) are updated dynamically over time, depending on the
sign and magnitude of V(t) This ensures that the replication strategy remains self-
financing and neutralizes both market and credit risk exposures. Any excess cash gen-
erated in the replication process, after the purchase of Pg, is assumed to be invested at the

risk-free rate r, thereby not introducing any additional credit risk to the hedging portfolio.

The self-financing condition implies:

—dV (t) = 8(t)dS(t) + ap(t)dPs(t) + ac(t)dPo(t) + dB(t). )

The cash account (3(t) is composed of three components:
dB(t) = dBs(t) + dBp(t) + dBo(t),

each with its own economic interpretation:

* Equity position (dividend and financing costs):

dBs(t) = 0(t)(vs(t) — qs(t))S(t)dt,

where v5(t) is the dividend yield and gs(¢) depends on the repo rate of the under-
lying asset S(t) and r(t).

* Funding account (cost of borrowing or surplus investment after own bond pur-

chasing):

dBp(t) = r(t)(=V(t) — ag(t)Ps(t))dt + sp(t)(=V (t) — ap(t)Pg(t))dt,



with the funding spread defined as

— Collateralized: rg(t) = r(t), assuming no haircut on the collateral

— Unsecured: rr(t) = r(t) + (1 — Rp)Ap

* Repo cost for counterparty bond:
dBo(t) = —ac(t)r(t) Po(t)dt
The full cash account dynamics are given by:

dp(t) = 6(1)(vs(t) — gs(1))S(t)dt
+ [P0V (8) = an(®)Ps(t) + sp(t)(=V () — ap(t)Pa(t)) "] dt
— ac(t)r(t)Po(t)dt. (%)

This formulation ensures that:

* The cash account grows passively from returns on invested assets.
* All costs of maintaining hedge positions are properly accounted for.

* Funding costs appear explicitly through sp.

From (@), it yields

—dV =6dS + ap dPs + ac dPe + dB(t) (6)
=0dS + CMBPB(T’B dt — dJB) + Oécpc(Tc dt — djc)

+r (—V — CKBPB> dt + sp (—V - OéBPB) dt

- OécT’PC dt — 5((]5 - 75)5@) dt (7)
={- rV + sp(=V — apPg)” + (s — ¢5)0S

+ (rg —r)agPp + (rc — r)aCPC}dt

—OKBPBCZJB—O[c'PchC‘F(SdS (8)

On the other hand, by It6’s Lemma for jump diffusions (for more detail please see
Cont & Tankov|(2003)) with the assumption that a simultaneous jump is a zero probability
event, the derivative value moves by:

N ~ N 1 N N N
dV = 0o,Vdt + 0sVdS + 502528§~th + AVpdJp + AVedJe )



where:

AV =V(t,5,1,0) — V(t,S,0,0)
AVe =V(t,5,0,1) — V(t,S,0,0)

(10)
(1)

These parameters can be computed from the boundary condition (2)). Replacing dv

in () by () shows that we can eliminate all risks in the portfolio by choosing 0, a, and

Q¢ as:
5= -5V
AV
ap = PB
V —(M*+ RgM~)
— o
AVe
o = PC
V — (M~ 4+ RcM™)
— B

Hence, the dynamics of the cash account can be expressed as:
dBp(t) = [ —r(t)ReM~ —rp(t)M*]dt
where:

* —RpM~ : cash deposited at risk-free rate ()

e —M™ : cash borrowed at funding rate rp(t)
Let us now introduce the parabolic differential operator A;:

AV & 20252331/ + (gs — 05)SAsV

The derivative value V satisfies the @

OV + AV —rV =sp(V + AVp)T — AgAVz — A\cAVL,

V(T,S) = H(S)

(12)

(13)

(14)

(15)

(16)

7)

(18)

(19)



where A\ g = rg —rand \c = r¢ —7"E|

Inserting equations (10) and (1)), with boundary condition (2), we derive the follow-
ing refined PDE:

~

OV + AV =1V = Mg+ o)V + sy Mt = A\g(RgM™ + M*) — A\e(Re M+ + M™)
V(T,S) = H(S)

(20)
where (V + AVg)" = (M* + RgM~)* = M ™.

On the other hand, the risk-free value V (¢,.5) satisfies the standard Black-Scholes

8tV+AtV—7’V:O

V(T,8) = H(S)

21

Defining the effective default spreads as: A\g = rg —r and Mo = rg — r, the
differences between (20) and (21)) can be inferred:

« First term: (A3 + \¢)V, represents the additional return required by the seller on
the risky asset V to compensate the risk that the contract might suddenly terminate

due to either the seller’s own default or counterparty’s default.

* Second term: spM T, captures the incremental cost of funding arising from neg-
ative balances in the cash account under the hedging strategy, i.e., when the bank

must borrow money to replicate the position.

 Third term: \g(RgM~ + M), represents the adjustment to the growth rate to
account for the effect of the seller’s own default.

* Fourth term: \o(RcM™ + M), represents the adjustment to the growth rate to

account for the effect of the counterparty’s default.

The first, third, and fourth terms are associated with counterparty credit risk, whereas

the second term reflects the funding cost.

Based on this interpretation, the corresponding to an extinguisher trade—a con-
tract in which it is contractually agreed that no party receives any payoff in the event of
default—is derived by omitting the third and fourth terms from (20).

3Let us recall that Pg and P, are assumed to be recovery-less bonds.

10



In the subsequent sections, we will examine the PDE (20) under the following four

scenarios:

~

1. M(t,S)=V(t,5,0,0) and rp

Il
<

~

2. M(t,S)=V(t,5,0,0)and rp =1+ sp
3. M(t,S)=V(t,S)and rp =71

4. M(t,S)=V(t,S)andrp =71+ sp
3 USING V AS THE MARK-TO-MARKET VALUE AT DEFAULT

Let us focus on the case where the close-out payment at default is based on the risky
value of the derivative. That is, we assume the mark-to-market value satisfies: M (¢, S) =
V(t, S) in the boundary conditions (Z). This assumption simplifies the analysis. If the
defaulting party is the in-the-money with respect to the derivative, no profit and loss arises.

On the other hand, if the surviving party is in-the-money, its loss is given by (1 — R)V.

From [PDE] (20)), we derive:

(22)

OV + AV —rV = (1= Rp)AgV ™+ (1 — Ro)AV T + sV
V(T,S) = H(S),

where V' = max(V, O)El and V= = min(V, O

The above PDE can be further examined in two particular subcases:

1. sz = 0, which corresponds to 7 = r, i.e., when the derivative can be used as

collateral.

2. sp = (1— Rp)Ap, where the derivative cannot be posted as collateral, and the bank

must fund its position at its own funding rate.

Moreover, the hedge ratios can be obtained as follows:

1— Rp)V~

ap = -L=FIV 23
1— Ro)V*

e (4

4V + denotes the positive part of V.
SV~ denotes the negative part of V.
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As such, ap > 0 and a¢ < 0, the replication strategy ensures that sufficient cash is
generated, (=V"), so the seller can purchase back its own bonds. To the cash generated
(V) (1 — Rp) can be allocated to repurchasing the seller’s own bonds while Rp is
invested at the risk-free rate. This is equivalent to investing the total amount (=V7) into

purchasing back a seller bond, B*, with recovery-rate Rp.

In|Credit Valuation Adjustment (CVA)|literature, it is common to express the decom-

position of the risky value V as the sum of the risk-free value V and an adjustment term
U.
V=V+U (25)

Inserting the decomposition into the (22) and recalling that V' satisfies the PDE
(21)), we obtain:

{@U+AWFWU:UfJ@MﬂV+UY+UfJ%MdV+Uﬁ+sﬂV+UV

U(T,S) =0
(26)

Applying the Feynman-Kac representation formula (for detail please see Karatzas &
Shreve| (1998)) to [PDE]| (26) under the assumption of deterministic rates, it yields the

following non-linear integral equation:

Ut,s)y=-—01- RB)/t Ag(u) D, (t, u)E, [(V(u,S(u)) + U(u, S(u)))_} du
—(1- Rc)/t Ac(u) Dy (t, w)Ey [(V(u, S(w)) + Ulu, S(w)))*] du (27

— /t sp(w) Dy (¢, u)Ey [(V(u, S(w) + Ulu, S(u))) "] du

This formulation enables the computation of U once V' is known, either by solving
the or using the integral equation.

Before delving into particular funding spread assumptions, it is helpful to analyze
simple illustrative case studies in which 1% corresponds to a defaultable bond issued by B
and C, either with or without recovery. These examples provide intuition and serve as a

consistency check for the general framework.

3.1 Case Study: Seller sells Pg to the Counterparty C

We consider, in this first case, that a risky, recovery-less bond is sold by the seller B

to the counterparty C'. Therefore, we consider V=V = —Pg and Rp = 0. Since we

12



consider deterministic rates and credit spreads, we do not encounter any risk referencing
any market factors, and as such, the term A,V vanishes and the@ (22)) reduces to:

OV = (r+Xg)V =rgV

V(T,S) =—1

(28)

As a result, we obtain the solution:
R T
V(t) = —exp (—/ TB(s)ds) , (29)
t

which is expected for V- =—Pg.
If instead the bond has recovery Rp, the PDE] (22) becomes:

8tV = [7‘ + )\B<1 — RB>] V

V(T,S)=—1

(30)

with solution:
Vt) = — exp (_ /tT r(s) + (1 — Rp)Ap(s)] ds> (31)

As expected, the adjusted drift matches the unsecured funding rate, rp = 7 + (1 —
Rp)Ap, representing the cost incurred by the seller on negative cash balances when the

derivative cannot be posted as collateral.

3.2 Case Study: Seller Purchases Pc from Counterparty C

In this case, we will assume V = V* = Py, with R¢: = 0. The (22) becomes:

{ OV = (re+ )V = (rp+ (re —r))V )

V(T) =1

If the derivative (i.e. the loan asset) can be used as collateral by the seller to fund
its short cash position within the replication portfolio strategy, and, neglecting haircuts,

e =T.

Hence,
oV =rcV (33)

13



therefore,

T
V(t) = —exp (—/ rcds) (34)
¢

as would be expected for V= Pe. For a bond with recovery R¢, we obtain:

A

T
Vo =ew (= [ 1)+ (1= Roro(s)]ds) (35)
t
as also expected.
3.3 Casel: M:VandsF:TF—r:O

Let us now focus on a more general framework. When the risky value of the derivative

is the mark-to-market value, and it can be posted as collateral, then the PDE|(22)) becomes:

OV + AV —rV =1 —=Rp)AsV™ + (1 = Re)AcVT

V(T,S) = H(S5)

(36)

This is a non-linear PDE that must be solved numerically unless it can be assumed
that V/ < OorV > 0.

Let us first assume that V < 0, corresponding to the seller writing an option to the
counterparty. Under the assumption that all rates are deterministic, the [PDE| becomes

linear and admits the Feynman-Kac representation of 1% given by:

V(t,S) = Ei [Drp—rpng (t, T)H (ST)] (37)

where Dy (t;T) = exp (— ftT k(s) ds> is the discount factor over [, T'] given the rate
k.
Alternatively, V =V + Ugﬁ, where V solves the risk—free given by 1)), the adjust-

ment term becomes:

T
U()(t, S) = —V<t, S)/ (1 - RB)/\B(U)D(lfRB))\B (t,u) du (38)
t

Symmetrically, when V > 0, i.e, the seller bought an option from the counterparty,

the adjustment term yields:

T
U(t, S) = —V(t, 5) / (1 - Re)o(u)Da—rope (s u) du (39)
t

SWe consider U, as U under the case where there is no funding spread, i.e, rp =1
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In conclusion, when 1% < 0, Uy depends entirely on the credit of the seller on the other

hand, when V > 0, Uy depends only on the credit of the counterparty.

34 Case2: M =V and sp =1+ (1 - Rp)Ap

We will now consider that the derivative cannot be posted as collateral, the bank funds
itself at a spread of sp = (1 — Rp)\p. Therefore, the PDE| (22) becomes:

. (40)

OV + AV —rV =(1—Rp)A\gV ™ +[(1 = Rg)Ag+ (1 — Ro)A] VT
V(T,S) = H(S)

The equation is also non-linear. If we assume V < 0and employ the decomposition
V=V+ Uy, we find the same case defined in (38)) (where s = 0), and consequently
U = U,. When 1% > (, the value of the derivative is given by:

V(t7 S) = E [‘DT+(1—RB)>\B+(1—RC)>\C (t7 T)H(ST)} (41)
Aligning with the same decomposition V =V 4 U we show,

U(t,S) = —V(t,9) / ' J(u) Dy (t, u) du 42)

where k =7+ (1 — Rg)A\g + (1 — Rco)Ac.
4 USING V(t,S) AS MARK-TO-MARKET VALUE AT DEFAULT

We now consider the case where the mark-to-market value at default is taken to be
the risk-free value V' (¢, S) of the derivative. We take M (¢, S) = V (¢, S) in the boundary

conditions (2), the general PDE] (20) is given by:

_(RB)\B -+ )\C)Vi — ()\B + Rc)\c)vJr + SF‘/Jr
H(S)

A

OV +AV —(r+ g+ )V
V(T,S)

(43)
where V+ = max(V,0Y} and V= = min(V, 0)f}

This is a linear@with V' acting as a known source term. Writing V =V +U,the

7V+ denotes the positive part of V.
81~ denotes the negative part of V.
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hedge ratios become:

N
oy Ut OBV )
Pg
U+(1—Re)V+
ap = LHU =RV (45)
Pc

By comparing equations (23)) and (#4), we observe that in the latter case, a default
event results in a sudden cash flow equal to U. This jump must be accounted for within

the replication strategy to ensure accurate hedging.

Inserting V =V + U, we obtain a linear@fer U:

U+ AU — (r+ A+ Ao)U =(1—Rp)A\gV ™~ + (1 — Re)AcVT + spV T 46)
U(T,S)=0
Using the Feynman-Kac representation, we derive:
T
UtS) = — (1— Ryp) / A(W) Dy e (£ )Es [V (u, S(w))] du
t
T
~(1- Re) / A () Dy rgore () Es [V (u, S(u))] du
t
T
— / sE(U) Dyiapine (6 w)Ey [V (u, S(w))] du 47)
t

The adjustment U can be computed by solving the[PDE| 6) or evaluating the integrals

above.

When the derivative can be posted as collateral, i.e, sp = 0, the last term in |15£E|
(@6) drops out. This reduces to the standard bilateral [CVA| form widely known in the
literature (e.g. \Gregory| (2009)). The bilateral benefit does not stem from own default but
from the ability to use the cash generated by the hedging strategy to buy back the bank’s

own bonds, earning an excess return of (1 — Rg)Ap.

However, in practice, the derivative usually cannot be used as collateral. In this case,
the full adjustment U must be computed. When the funding spread corresponds to

the same as the unsecured bond B with recovery-rate R, i.e., sp = (1 — Rp)\p, the first
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and third terms in (7)) can be merged:

U(t,sS)=—-(1- RB)/ AB(W)Dyirpirg (twE [V (u, S(u))] du
! (48)

— (1= Re) [ Acu)Dyasgpine (B [V (0, S0)] du

We considered the valuation of derivatives under bilateral counterparty risk and fund-
ing costs using an extended version of the Black-Scholes model. The approach is based
on dynamic replication strategies, where the derivative is hedged using a self-financing
portfolio that may include the underlying asset, cash, and defaultable bonds issued by
both the bank (B, the seller) and its counterparty (C'). The model accounts for the pos-
sibility of default from either party and incorporates the reality that unsecured funding

often carries a spread over the risk-free rate.

Two different close-out conventions for the mark-to-market value at default were stud-
ied:

Risky close-out: where the value at default is the risky value of the derivative itself.
This choice is internally consistent with the replication strategy, and the resulting pric-
ing equation is a non-linear [PDE] that captures both funding costs and default losses. In

this setting, the derivative’s value evolves continuously up to default, and no artificial

valuation jumps occur at the default time.

Risk-free close-out: where the close-out value is the counterparty-riskless value V.
This is commonly assumed in legal agreements, such as the [SDA| Master Agreement
2002, and leads to a linear [PDE] for the credit valuation adjustment and funding costs.

Throughout the analysis, special attention was paid to the economic interpretation of
each term in the PDEs. These include components representing:

» compensation for the risk of contract termination due to default;
* funding costs for uncollateralized exposures;

* adjustments reflecting the impact of the seller’s own credit risk;

lustrative examples were used to verify the model’s consistency, showing how sim-
plified bond payoffs lead to known pricing expressions, such as the value of a zero-coupon
risky bond.

This framework forms the basis for the numerical experiments presented in Chapter 7,

where we calibrate the model and quantify the impact of bilateral credit risk and funding
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costs on derivative pricing.

5 AFFINE INTEREST RATE MODEL: HULL-WHITE MODEL

Affine models such as the one-factor Hull-White model are widely used in interest rate
modeling due to their analytical tractability and flexibility. A key feature of these models
is that zero-coupon bond prices depend exponentially on the short rate, which allows for
closed-form solutions and efficient calibration to market data. The Hull-White framework
extends the Vasicek model by allowing time-dependent parameters. It provides analytical
pricing formulas for a variety of interest rate derivatives, including caplets, swaptions,

and bond options.

In this section, we outline the pricing methodology for caplets and swaptions under the
Hull-White model, leveraging its affine term structure. The model enables the derivation
of closed-form expressions for options on zero-coupon bonds, which can be utilized to
price caplets and swaptions via decomposition techniques. However, since the Hull-White
model is not a direct model of the swap rate — and the swap rate itself is not log-normally
distributed — it is common in the literature to approximate the swap rate as the ratio of
zero-coupon bonds, which can then be assumed to be log-normal. This enables pricing

swaptions using the Black model, which requires a log-normal assumption for volatility.

Prior to the Global Financial Crisis, the Black model remained ubiquitous largely
because prevailing market conditions ensured strictly positive interest rates. However,
the emergence of negative interest rates in the post-2008 period, particularly in European

markets, has made the Bachelier model increasingly relevant.

Although the literature on the Bachelier model remains sparse, we present a hybrid
approach to address this gap. We present the swaption pricing framework under the Black

model, but implement the Bachelier model in our numerical implementation.

The present chapter draws on the work of (Gurrier1 et al.| (2009) as its main support.

5.1 The Hull-White Short Rate Mode!l

The Hull-White model assumes that under the risk-neutral measure, denoted as Q, the

short rate r(t) evolves according to the [Stochastic Differential Equation (SDE);

dr(t) = [0(t) — a(t)r(t)]dt + o(t)dW (1), 49)
where:

* a(t) is the time-dependent mean reversion speed.

18



* o(t) is the time-dependent volatility.
» W(t) is a standard Brownian motion under the risk-neutral measure, Q.

* 4(t) is the time-dependent drift function, which ensures the model fits the initial

term structure of the discount curve.

The short rate process r(¢) under the Hull-White model has the following conditional

expectation and conditional variance:

Elr(t) | 2] = 1) + a(0) - as) (50)
Var[r(t) | Fs] = Vi.(s,t) (51

where F is the filtration generated by (t) up to time s:

B —ew ([ "ol ).

alt) = f(O,t)+ﬁt) /0 E(w) 0*(w) B(u, ) du,

v,«(s,t)_EZL(t)/s F2(w) 0(u) du.

The derivation of E(t), a(t), and V,(s,t) can be found in detail in Appendix A of
Gurrieri et al.| (2009)).

This model is part of the family of affine term structure models, meaning that zero-

coupon bond prices have an exponential affine form.

5.2 Zero-Coupon Bond Pricing

Under the Hull-White model, the price at time ¢ of a zero-coupon bond maturing at
time 7' is given by:
P(t,T) = A(t,T)e B&TIr®), (52)

where (from Brigo & Mercurio (2006)):

BTy =17 " e:(T_t),
A(t,T) = I;((% ? exp (B(t,T) £(0,t) — Z—au — 6—2“<T—t>)B(t,T)2) ,

and f(0, ) is the instantaneous forward rate at time .
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Introducing the log-normal [SDE of the zero-coupon bond ratio:

dP(t,T)
—— 2 —p(t)dt — o(t)B(t, T)dW (¢ 53
Pz = (0 0B T () (53)
To compute closed-form expressions for derivative pricing, we are particularly inter-
ested in the ratio of two bond prices with fixing and payment times T and Tp (t < T <

Tp), whose dynamics under the 7Tp-forward measure is:

‘ (ggz gi;) - ig: ;i; o(t) (B(t, Tp) — B(t, Tp)) dW ™ (t) (54)

with integrated variance:

V,(t, Tr, Tp) = / (u, Tp) — B(u, Tr))* du (55)

=V, (t,TF) - B(Tp, Tp)? (56)

5.3 Caplet Pricing via Zero-Coupon Bond Options

Let us introduce a caplet as an option on a short-term interest rate, where the payoff
depends on whether the underlying rate exceeds a predetermined strike. Let /' denote the

strike, T’ the fixing date, and 7’» the payment date of the caplet. The payoff of the caplet

can be rewritten as a scaled [Zero - coupon Bond Put Option (ZBP)| where the volatility is

derived from the variance of the bond price ratio. Under the Black model, the price of a

caplet is given by:

Caplet(K, Ty, Tp) = (1 + K6) ZBP(Tp, Tp, 1) (57)
where 9 is the accrual fraction between T and T'p, and the is priced via:

ZBP(Tr,Tp, X) = X P(0,Tp) N(dy) — P(0,Tp) N(d-) (58)

with

ds =

P(O,TF)X
ln( P(0,T5) ) N

1 V,(0, TR, Tp), 59
‘/;)(O,TF’TP) ) p( F P) ( )

where N is the standard Normal cumulative function and X the strike price of the zero-

coupon bond put option.
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5.4  Swaption Pricing via Jamshidian Decomposition

Let us now introduce a swaption as an option that grants the holder the right, but not
the obligation, to enter into an interest rate swap at a future date and pre-agreed swap
terms. Considering a payer swaption maturing at 7, swap tenor 7’» and swap cash-flows
at {T;}7_,,with T,, = Tp. Introducing Jamshidian’s decomposition (for more details,
please see Jamshidian| (1989)), the payer swaption is represented as a sum of zero-coupon

bond options:

Swaption(K, Ty, Tp) = Y _ ¢; ZBP(Ty, T;, X;) (60)

=1

with the cash flow weights c; given by:

C,L:K(Sl fOl'Zzl,,Tl—l (61)
cn=1+K"0, (62)

and X representing the strike of the zero-coupon bond put options, defined by:

Xi = exp (A(To, T;) — B(To, Ti) ) (63)

The rate 7* solves the equation:
> ciexp (A(Ty, Th) — B(Ty, Ti)r*) = 1 (64)
i=1

5.5 Swaption Implied Volatility via Bond Price Ratio

To establish a more direct link between market-implied volatility and model param-
eters for calibration purposes, an approximation framework is introduced. The key idea
arises from the fact that the Hull-White model is not inherently a swap rate model and, the
swap rate itself is not log-normally distributed, as stated earlier. However, the framework
leverages the property that the ratio of zero-coupon bond prices follows a log-normal dis-
tribution, which enables the approximation of swap rate dynamics through the bond price

ratio.

Let S(t, Ty, T,) denote the forward swap rate observed at time ¢ for the swap starting

at Tj and maturing on 7;,. The swap rate is defined by:

P(t, Ty) — P(t,T,)

S(t,To,Tn) = Z:‘:l 51 P(t,ﬂ)

(65)

21



The true swap rate, under the annuity measure A, is log-normally distributed and it is

~ ~ P(Oa Tﬂ) P(t’ TO)
S(t, Ty, T,) =~ S 6, P(0,T)) (P(t,Tn) - 1) 0

given by:

By applying Itd’s Lemma to the approximation S (t,Ty,T,), switching from the 7T, -

forward measure to the annuity measure .4 and replacing S (t,Ty,T,) and 5((:;2)) by their
initial values (¢t = 0), the swaption variance can be approximated as follows:
P(0,Tp) ?
Vewap(To, T5) ~ Vp(0,To, Ty, 67
(10, ) <P(O,T0)—P(0,Tn)) »(0, 10, T2 .

where V,,(0, Tp, T,) is the variance of the log-normal bond price ratio given by (56)).

This approximation serves as a practical calibration tool used in industry and is im-

plemented in pricing libraries, such as QuantLib.

The above dynamics rely on log-normal dynamics and employ the Black formula for
pricing. However, in current market environments, particularly in negative interest rate
regimes, the log-normal assumption is no longer suitable. Instead, the normal Bachelier

model should be adopted, assuming the bond ratio follows a normal distribution.

In the next section, we use the Quant Lib implementation, which supports the Bache-
lier (normal) model via g1 .Normal volatility specification, thus matching market con-
ventions for Euro swaption markets. Nevertheless, the log-normal variance formula-
tion remains essential for understanding the theoretical linkage to classical affine term-
structure models. As stated in[Schachermayer & Teichmann|(2008)), when pricing [At-the
options, the models produce very close prices and volatilities for ov/T <

1, which typically holds in real-life applications.
6 HULL-WHITE ONE-FACTOR MODEL CALIBRATION AND INTERPRETATION

6.1 Calibration / Implementation Framework Using QuantLib

The calibration of the Hull-White one-factor model was conducted using 228 European-
style vanilla interest rate swaptions with normal implied volatilities obtained from Bloomberg
(2025) as of 28-Feb-2025. The swaptions are priced [ATM] using the Bachelier (normal)
model. The [Euro Interbank Offered Rate (EURIBOR)-6M index was used as the floating

leg benchmark, while discounting was performed using the overnight indexed swap [OIS]

curve.
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TABLE I: SWAPTION VOLATILITY CALIBRATION SUMMARY

Swaption Tenor Market Implied Volatility Model Implied Volatility Relative Error (%)

IM/5Y 0.00698 0.00742 6.35
3M/5Y 0.00701 0.00730 4.16
oM/4Y 0.00747 0.00755 1.18
1Y/4Y 0.00748 0.00740 -1.08
2Y/3Y 0.00771 0.00739 -4.14
3Y/2Y 0.00778 0.00744 -4.39
4Y/1Y 0.00779 0.00754 -3.15

Note: Market source data from |Bloomberg| (2025) as of 28-Feb-2025. Model calibrated using
QuantLib with 5Y co-terminal swaptions. Parameters: a = 0.017344, o = 0.01075.

The initial yield curve used in this study was derived from the zero-coupon spot yield
curve of AAA-rated euro area government bonds, published as of 28-Feb-2025 by |[Euro-
pean Central Bank (2025ﬂ These spot rates were transformed into discount factors using

the standard continuous compounding formula:
P(t,T) = exp (=r(t,T) - (T — 1)) (68)

In line with the pricing framework developed by Burgard & Kjaer (2011), where the in-
terest rate, r, is interpreted as a general risk-free rate, we adopt a single-curve setup. Both
discounting and pricing curves are performed using the European Central Bank] (2025)
AAA-rated government bond yield curve. This curve is widely regarded as a reasonable

proxy for the euro area’s risk-free discounting rate.

To preserve internal consistency and avoid distortions at the short end of the curve,
we replaced the simulated short rate at t = 0 with the observed EURIBOR}6M (2.389%)
fixing as of 26-Feb-2025, from |[EU| (2025)), since this date corresponds to the fixing used
for the first valuation of the swap on 28-Feb-2025.

The calibration was implemented in Python using the QuantLib library. Our ap-

proach is closely aligned with the theoretical structure outlined in |Gurrieri et al. (2009ﬂ

First, we constructed the initial term structure using QuantLib’s DiscountCurve
class, enabling extrapolation for long-dated maturities. We then load swaption volatilities
from Bloomberg (2025) and filter for Co-terminal swaptions - those whose underlying
swaps all end on the same maturity date, regardless of their option expiry. This reduces

the dimensionality of the calibration problem, thereby limiting the risk of overfitting.

Each selected swaption was mapped to a Swapt ionHelper object using the Normal

The first point on the curve corresponds to the forward rate starting on 28-May-2025.
10See Sections 2.1 and 2.2 of |Gurrieri et al.| (2009).
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volatility type. For pricing, we use the JamshidianSwaptionEngine, which de-
composes the swaption into a portfolio of bond options. Calibration was performed using
the Levenberg-Marquardt algorithm, as also mentioned in (Gurrier: et al. (2009), which
minimizes the relative price error between the model and market prices. The parameters

calibrated are the mean reversion speed, a, and the volatility o.

Similarly to Gurrier1 et al.| (2009), three calibration strategies were employed:

* Constant mean reversion and constant volatility
» Constant mean reversion and time-dependent volatility

* Time-dependent mean reversion and volatility

To control model complexity and mitigate overfitting, we calibrate the Hull-White
model using a set of 7 Co-terminal swaptions that all terminate within a 5-year maturity.
This approach is grounded in both theoretical rigor and practical relevance. In particular,
Puetter & Renzitti (2020) emphasize that:

“For a single swap portfolio, Co-terminal swaptions matching the swap’s maturity and
struck at the swap’s fixed rate are the ideal choice, providing smile and maturity aware
xVAs.”.

Since our target portfolio comprises swaps maturing in 5 years, selecting swaptions
that also expire at this horizon ensures consistency in modeling the relevant exposure
dynamics. Furthermore, this calibration setup enhances the model stability. When cal-
ibrating to longer-dated instruments, such as 10- or 20-year swaptions, mean reversion
parameters tend to become unreasonably low, lacking meaningful economic interpreta-
tion, as it would imply that the yield curve assumes random walk behavior, which is

unacceptable under the Eurozone economic outlook.

Allowing time-dependent parameters offers flexibility, but increases the number of
degrees of freedom, introducing the risk of overfitting. By selecting a constant mean re-
version and time-dependent volatility, the model maintains a balance between tractability
and empirical fit. Co-terminal swaption selection further reduces parameter noise and

improves numerical stability.

We compared the three calibration strategies by plotting model-implied volatilities

against observed market volatilities and evaluating the[Root Mean Squared Error (RMSE)L

Although the full-time-dependent parameters provided the lowest RMSE] the marginal
improvement did not justify the added complexity. Therefore, the model with constant

mean reversion and time-dependent volatility was selected for final implementation.
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6.2 Economic Interpretation of Calibrated Parameters

The Hull-White model was ultimately calibrated with the following parameters:

e Mean reversion: a = 0.17344

* Volatility: 0 = 0.01075

The mean reversion parameter a measures how quickly the short rate returns to its

long-term mean. Although the value of @ = 0.17344 indicates relatively fast mean rever-

sion, it is consistent with the Eurozone’s monetary policy, where the |[European Central]
actively intervenes to anchor short-term interest rates.

The volatility parameter o reflects the magnitude of fluctuations in the short rate. The

average value of o = 0.01075 (1.075%) aligns with historical volatility levels observed in

relatively stable macroeconomic outlooks.

These parameters yield a calibration RMSE| of approximately 3.9%, indicating a good
match between model-implied and market swaption volatilities, particularly given the

Hull-White model’s parsimony and analytical tractability.

This alignment is visually confirmed in the figure below, where model-implied volatil-

ities exhibit minimal deviation from observed market quotes.

0.0078 1 @  Model Implied Volatilities ° °
® Market Implied Volatilities
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0.0075
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0.0070

0 1 2 3 4 5 6
Swaption Index

FIGURE 1: Model implied volatilities vs Observed market implied volatilities for each swaption using
Co-terminal 5Y setting.

It is essential to note that the Hull-White model ensures an exact fit to the initial term
structure of bond prices. This is achieved via internal calibration of the drift adjustment

function within the QuantLib framework.
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To validate this setting, we simulated 10,000 Monte Carlo paths of the short rate using
the calibrated parameters. We computed the average bond prices across these scenarios for
each tenor of the yield curve. The resulting curve of simulated bond prices closely aligns
with the market-observed zero-coupon bond prices, with deviations not exceeding 0.5%
across all maturities, confirming the model’s consistency with the affine term structure of

the initial yield curve.

1.00 A —— Simulated bond prices
\ ——~- Discount factors
0.98
0.96
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T

FIGURE 2: Estimated bond prices using Hull-White model by Monte Carlo simulation vs Observed Bond
Prices as of 28-02-2025.

The Hull-White one-factor model was selected for its analytical tractability, closed-
form solutions for bond and swaption pricing, and its ability to fit the initial yield curve
exactly. However, the constant-parameter specification adopted in this work also comes
with known limitations. It is often argued that the Hull-White model cannot accurately
fit the full swaption volatility matrix, and that introducing time-dependent parameters
may lead to numerical instability. However, |Gurrier: et al.| (2009) show that choosing a
time-dependent version of the model parameters can achieve both robust fit and numerical
stability. While that approach offers greater flexibility, it introduces additional complex-
ity. In this work, we adopt a more parsimonious specification with constant parameters,
which allows for stable calibration and a reasonable when fitting swaption
volatilities. A stability analysis of the time-dependent case is beyond the scope of this

thesis.

26



7 NUMERICAL ESTIMATION OF BILATERAL COUNTERPARTY RISK AND FUNDING
CoOsSTS

Following the calibration of the Hull-White model with constant volatility and a con-
stant mean-reversion parameter (0 = 0.01075 and = a = 0.17344), we proceeded to a
simulation-based estimation of bilateral counterparty risk and funding costs adjustment.
This numerical implementation aligns with the theoretical framework introduced in Chap-
ters 2,3, and 4. The evolution of interest rates is captured using Monte Carlo simulations
(10,000 paths) of the Hull-White process. These simulations enabled us to generate future
yield curve scenarios for swap pricing, allowing for the assessment of expected exposures

under various credit and funding conditions, including stressed market environments.

Our goal is to present numerical results in the following four scenarios:

~

IM:V, SF:O
2. M:V, SF:(l—RB))\B
3. M=V, sp=0

4M:Vv, SF:(l—RB))\B

We presented a coherent pricing framework for interest rate derivatives that incor-
porates bilateral counterparty credit risk and funding costs, providing a comprehensive
approach to pricing these financial instruments. Starting from the partial differential equa-
tion replication methodology proposed by Burgard & Kjaer (2011), we extended the tradi-
tional risk-neutral valuation approach to reflect the cost of funding hedging strategies and
the credit risk of both counterparties. The model was implemented using the Hull-White
one-factor short-rate model, calibrated to market-implied volatilities from Bloomberg
(2025), which enabled the simulation of realistic yield curves and the computation of

valuation adjustments under various risk scenarios.

One of the key advantages of the [Burgard & Kjaer (2011) framework is its ability
to consistently treat funding and credit risks, as the value adjustments are derived en-
dogenously within a unified replication-based structure. Rather than applying separate
valuation adjustments, the framework models funding costs as they naturally arise from
hedging, specifically through the dynamic rebalancing of positions in the seller’s and
counterparty’s bonds. This avoids the conceptual and practical issue of double-counting,
a concern prominently raised by Hull & White| (2014), who argue that funding costs and
own-credit adjustments must be clearly distinguished to prevent overstating derivative

values.
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Before delving into the specifics of the modeled swap, let us introduce an interest
rate swap as a bilateral contract in which two parties agree to exchange cash flows based
on interest payments over a specified period, based on a notional principal amount. We
considered a plain vanilla swap from the perspective of the seller (bank B), who acts as
the fixed-leg payer and the floating-leg receiver. The swap has a notional of 100M EUR,
starting on 28-Fev-2025 and maturing on 28-Fev-2030 (5 years). Two different rates were
considered for the fixed-rate: 2.1% (representing a market-aligned scenario, traded at par)

and 2.5% (used as an implementation setup to enforce positive exposures over time). The
floating leg is indexed to EURIBOR}6M, with semi-annual payments.

For each case, we computed the [Expected Exposure (EE)| from B’s point of view for

each time step, by evaluating the simulated mean [Net Present Value (NPV)| of the swap

across the 10,000 Monte Carlo scenarios. The same approach was applied to the simulated
short rates to obtain the mean forward rate curve, which is then used to construct the
discount factors for each of the four cases listed above. The discount rates together with
the hazard rates, \p and \¢, are used in Riemann sum approximations of the integrals

that arise from the Feynman-Kac representation of the valuation adjustments.

Recovery-rates were assumed to be 40% for both parties. The hazard rate Ao of the
counterparty was set at 0%, 2.5%, and 5%, while the hazard rate \p of the bank varies
between 0% and 5%.

The associated with Case 1 and 2 are non-linear unless the sign of the risky
value V' is known and constant throughout the life of the derivative. In Burgard & Kjaer
(2011)) original application to European options, V > 0 holds due to the unilateral nature
of the payoff, allowing for a linear and then a closed-form solution given by (39)
and (@2)), respectively. This assumption does not extend to interest rate swaps, where the

sign of 1% may vary over time.

To address this issue without solving the full non-linear PDE}—which would be nu-
merically demanding, for example, by requiring piecewise[PDE]solutions—we constructed
an alternative swap with a fixed-leg rate of 2.5%, ensuring that the default-free value V' (¢)
remains positive for all ¢ € [0,7]. Under this setup, we verified numerically that the
adjusted value V (¢) = V (¢)+ U(t) remains non-negative for all ¢ € [0, T across the sim-
ulated paths. This setup preserves consistency with the assumptions required to linearize
the [PDE] enabling us to compute value adjustments as proposed. As such, for the swap

with a fixed-leg rate of 2.1%, we present results only for Cases 3 and 4.

The exposure profiles V' (¢) are estimated as the mean across simulated NPV and are
used directly in the numerical approximation of the integrals using Riemann sums. This

ensures that the numerical implementation is aligned with the Feynman-Kac representa-
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tion and the theoretical results.

In our analysis, we considered two interest rate swaps. The first swap, with a fixed
rate of 2.5%, is not traded at par, which means that its |NLV| at inception is not zero. This
implies that the swap is traded at a premium. The choice of this fixed rate is primarily
motivated by implementation purposes, as explained previously. To model a more market-
aligned scenario, we calibrated a second swap using the par rate implied by the modeled
yield curve. By discounting the expected floating cash flows to the present, we estimated
a par fixed rate of approximately 2.1% (2.056412%).

For the 2.1% fixed-rate swap, value adjustments changes are expressed as a percentage
of the mean over the swap’s lifetime. Conversely, for the 2.5% fixed-rate swap, we

express the value adjustments as a percentage of the [NPV]at inception.

The results are presented for both swap configurations (2.1% and 2.5% fixed-leg rates)
under hazard rates for counterparty C' (0%, 2.5%, and 5%).

Seller Hazard Rate vs CVA (Conterparty Hazard Rate=0.0%, Swap Fixed Leg Rate=2.1%)

0.0% - S seees. Case-3
R — Case 4

=5.0% -

—10.0% -

CVA Change (%)

—15.0%

—20.0% -

0.0% 1.0% 2.0% 3.0% 4.0% 5.0%
Hazard Rate - B (%)

FIGURE 3: Value adjustments changes vs Seller B hazard Rate for swap fixed-leg rate at 2.1% and
Counterparty C hazard rate set to 0%. Case 3: M =V, sp=0;Cased: M =V, sp=(1—Rp)\p.
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Seller Hazard Rate vs CVA (Conterparty Hazard Rate=2.5%, Swap Fixed Leg Rate=2.1%)

5.0%

0.0% -

=5.0%

CVA Change (%)

—10.0% -

—15.0% -

0.0% 1.0% 2.0% 3.0% 4.0% 5.0%
Hazard Rate - B (%)

FIGURE 4: Value adjustments changes vs Seller B hazard Rate for swap fixed-leg rate at 2.1% and
Counterparty C hazard rate setto 2.5%. Case 3: M =V, sp=0;Cased: M =V, sp=(1—Rp)\p.

Seller Hazard Rate vs CVA (Conterparty Hazard Rate=5.0%, Swap Fixed Leg Rate=2.1%)

10.0% -

7.5%

5.0%

2.5%

0.0%

CVA Change (%)

=2.5% A

=5.0% -

-7.5%

0.0% 1.0% 2.0% 3.0% 4.0% 5.0%
Hazard Rate - B (%)

FIGURE 5: Value adjustments changes vs Seller B hazard Rate for swap fixed-leg rate at 2.1% and
Counterparty C hazard rate set to 5%. Case 3: M =V, sp=0;Cased: M =V, sp=(1— Rp)\p.
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Seller Hazard Rate vs CVA (Conterparty Hazard Rate=0.0%, Swap Fixed Leg Rate=2.5%)

0.0%

-1.0%

-2.0% 4

-3.0%

=4.0% -

CVA Change (%)

=5.0%

—6.0%

=7.0% 1

0.0% 1.0% 2.0% 3.0% 4.0% 5.0%
Hazard Rate - B (%)

FIGURE 6: Value adjustments changes vs Seller B hazard Rate for swap fixed-leg rate at 2.5% and

Counterparty C hazard rate set to 0%. Case 1: M =V, sp=0;Case2: M =V, sp=(1—Rgp)Ap;
Case3: M =V, sp=0;Cased: M =V, sp=(1—Rp)\p

Seller Hazard Rate vs CVA (Conterparty Hazard Rate=2.5%, Swap Fixed Leg Rate=2.5%)
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FIGURE 7: Value adjustments changes vs Seller B hazard Rate for swap fixed-leg rate at 2.5% and

Counterparty C hazard rate set to 2.5%. Case 1: M = V, sp =0;Case2: M = V, sr = (1—Rp)Ap;
Case3: M =V, sp=0;Cased: M=V, sp=(1—Rp)\p.
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Seller Hazard Rate vs CVA (Conterparty Hazard Rate=5.0%, Swap Fixed Leg Rate=2.5%)

—6.0%

=7.0% 1
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—11.0%

-12.0% -
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FIGURE 8: Value adjustments changes vs Seller B hazard Rate for swap fixed-leg rate at 2.5% and

Counterparty C hazard rate set to 5%. Case 1: M =V, sp=0;Case2: M =V, sp=(1—Rp)A\p;
Case3: M =V, sp=0;Cased: M=V, sp=(1—Rp)\p.

& CONCLUSION AND FUTURE DEVELOPMENTS

Hull & White (2014) emphasize that funding costs represent a real economic expense

for the derivatives desk — a cost that must be funded and is reflected in the bank’s eco-

nomic |Profit and Loss (P&L), Conversely, the reduction in liabilities due to the seller’s

own potential default is not a realized economic benefit, but rather an accounting adjust-
ment. In their view, including both effects without care may lead to inflated or misleading
derivative valuations. As a result, many practitioners adopt a pragmatic approach: they

include funding costs but exclude own-credit benefits from pricing.

By contrast, the replication strategy of |[Burgard & Kjaer (2011) offers a structurally
cleaner solution. Funding costs are embedded directly in the pricing[PDE] by adjusting the
risky bond positions dynamically to mimic the underlying derivative’s cashflows and ac-
count for the risky bond prices. Because both elements are derived endogenously within a
single self-financing portfolio, their contributions are automatically aligned and do not re-
quire arbitrary separation. This internal consistency is a significant theoretical advantage,

especially when pricing uncollateralized derivatives.

Our numerical results are consistent with these theoretical distinctions. For the 2.1%
fixed-rate swap, which has a negative mean we analyze the behavior of the total
valuation adjustment under varying levels of the seller’s hazard rate. When the hazard
rate of bank B is 0, the seller is only exposed to counterparty credit risk, and the value
adjustment is negative to the bank. As the hazard rate of the seller increases, the ad-
justment becomes increasingly positive. This reflects a reduction in the present value of

expected liabilities due to the bank’s own credit risk. Although the adjustment becomes
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more positive with increasing default risk, this should not be interpreted as an economic
gain. Instead, it represents a reduction in expected obligations, consistent with Hull &
White (2014)’s view that such effects are accounting adjustments rather than realizable
profits. Furthermore, when funding costs are introduced (as in Case 4), they partially off-
set the upward adjustment due to own-credit risk. This effect reduces the steepness of the

adjustment curve, highlighting the cost of financing the derivative position.

Seller Hazard Rate vs CVA (Conterparty Hazard Rate=2.5%, Swap Fixed Leg Rate=2.1%)

- Case3
5.0% — Case 4

0.0% -
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CVA Change (%)
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—15.0% -

0.0% 1.0% 2.0% 3.0% 4.0% 5.0%
Hazard Rate - B (%)

FIGURE 9: Value adjustments changes vs Seller B hazard Rate for swap fixed-leg rate at 2.1% and
Counterparty C' hazard rate set to 2.5%. Case 4 englobes funding costs, whereas Case 3 depends only on
the credit risk.

For the 2.5% fixed-rate swap, which maintains a positive throughout its lifetime,
the seller is only exposed to counterparty and funding risks. In this setting, the incorpo-
ration of funding costs leads to a significant increase in the total valuation adjustment,

highlighting the sensitivity of uncollateralized positions to funding spreads.

Seller Hazard Rate vs CVA (Conterparty Hazard Rate=2.5%, Swap Fixed Leg Rate=2.5%)
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FIGURE 10: Value adjustments changes vs Seller B hazard Rate for swap fixed-leg rate at 2.5% and

Counterparty C' hazard rate set to 2.5%. Case 2 and Case 4 englobe funding costs, whereas Case 1 and
Case 3 depend only on the credit risk.
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Across both results for each swap, we found that using the risk-free close-out value
V instead of the risky value V had a negligible effect on the final valuation, supporting
industry practice and aligning with[I[SDA]|protocols that favor risk-free settlement conven-

tions.

In summary, this work contributes to a consistent, theoretically grounded, and prac-
tically relevant approach to pricing counterparty and funding risks. By embedding both
effects within a replication-based [PDE| framework, the approach avoids double-counting,
respects economic reality, and maintains mathematical tractability. It bridges the practical
caution of [Hull & White (2014} with the structural completeness of the Burgard & Kjaer
(2011) approach.

Although the proposed framework captures key features of counterparty and funding
risk, it relies on the risk-neutral measure (Q and includes certain simplifying assump-
tions. In particular, recovery rates and hazard rates are modeled as deterministic and
independent of market dynamics. Future work could extend the framework to incorpo-
rate stochastic credit intensities, collateral haircuts, and joint exposure—default modeling,

thereby better reflecting real-world complexity.
8.1 Directions for Further Research

As environmental concerns grow and climate regulations become more stringent,
carbon-related costs—such as carbon taxes, emissions trading schemes, and regulatory
penalties—are no longer distant policy risks. They are becoming real, measurable fi-
nancial risks that directly affect the valuation of projects and financial instruments. As
climate regulations tighten and carbon prices rise, financial products that fail to account
for their environmental impact risk becoming stranded, meaning they may struggle to at-
tract investment, repay debt, or deliver expected returns due to increased climate-related

costs and restrictions.

To address this emerging challenge, recent literature has proposed new frameworks

for incorporating environmental risks into financial valuation. A notable recent develop-

ment is the |[Carbon Equivalence Principle (CEP), proposed by Kenyon et al. (2022). The

proposes that every financial product—whether a loan, derivative, or bond—should
disclose its "carbon-equivalent" exposure: the emissions it causes or enables. This is for-
malized in a secondary carbon term sheet, which operates in parallel to the traditional
financial one. By placing carbon flows on equal footing with cash flows, the [CEP|enables
carbon risk to be monitored, managed, and priced alongside conventional metrics, such
as [CVAland [EVAL

An essential extension of this principle is the concept of |[Financial Net-Zero (FNZ)
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Unlike traditional carbon net-zero goals that focus solely on reducing physical emissions,

[FNZ] aims to neutralize the financial cost of those emissions, such as carbon taxes, penal-

ties, or the cost of offsetting. Achieving[FNZ may involve the use of [Negative Emissions|

(Iechnology (NET)s, which are techniques designed to remove carbon dioxide from the

atmosphere actively, as well as restructuring financial transactions or leveraging carbon
credits. Much like hedging interest rate or credit exposures, seeks to hedge the cost
of carbon across a product’s life.

To make this idea more concrete, consider a plain vanilla [[RS]| between a bank and a
counterparty in the fossil fuel sector. The swap itself does not emit carbon, but it facilitates
emissions by helping finance a carbon-intensive project. Under the [CEP} this swap would

carry a carbon term sheet disclosing its share of the emissions generated by the project.

Based on carbon price projections—such as those published by the [Network for Greening]

[the Financial System (NGES)—the expected carbon liability over the swap’s life could

be priced using a|Carbon Dioxide Equivalent Emission Adjustment (C'Oe)|just as we do

with or For example, suppose the supports a €100 million oil project
expected to emit 500,000 tonnes of carbon dioxide. The swap’s share of those emissions

can be estimated, priced using[NGFS|carbon price scenarios, discounted, and added to the
valuation model. This enables market participants to assess the financial viability of the
deal under different climate policy paths, such as a Net Zero 2050 scenario or a Delayed

Transition.

Looking forward, a natural extension of this thesis would be to incorporate [CO¢ into

the framework presented here.

The tools developed in this thesis for[CVA]and funding costs provide a foundation for
building more comprehensive models. As the integration of carbon costs into financial

valuation is not just a theoretical possibility, it is quickly becoming a practical necessity.
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