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ABSTRACT, KEYWORDS AND JEL CODES 

The Portuguese electricity market, integrated within the MIBEL, exhibits high 

volatility and structural complexity, primarily driven by the growing share of intermittent 

renewable energy, unpredictable demand patterns, and meteorological variability. These 

factors pose significant challenges for SMEs, which often lack the analytical tools 

required to anticipate price fluctuations and manage energy costs effectively. 

This dissertation proposes a machine learning-based forecasting model tailored to predict 

hourly electricity prices over a seven-day horizon. The model is specifically designed to 

support industrial SMEs in improving energy planning and mitigating exposure to price 

risk. A comprehensive dataset was constructed, comprising hourly observations from 

March 2020 to March 2025 and incorporating 37 variables across five key dimensions: 

energy production, consumption, market prices, cross-border exchanges, and weather 

conditions. 

The methodological framework combines robust preprocessing techniques, including 

outlier mitigation, robust normalization, and one-hot encoding, with advanced learning 

algorithms. LightGBM was selected for its predictive performance and scalability. 

Hyperparameter tuning was conducted using Bayesian optimization via Optuna. 

The final model achieved a MAE below 6 €/MWh, in line with industry standards for 

short-term forecasting. Results underscore the relevance of meteorological factors and 

cross-border dynamics in shaping market behaviour. 

This study contributes a practical and interpretable tool that enhances SMEs’ decision-

making capacity, while also demonstrating the effectiveness of machine learning methods 

in navigating the complexities of modern electricity markets. 
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JEL CODES: C53; Q41; Q47; C52; L94; M21.



 

iv 

 

TABLE OF CONTENTS 

Glossary ...................................................................................................................... ii 

Abstract, Keywords and JEL Codes .......................................................................... iii 

Table of Contents ....................................................................................................... iv 

Table of Figures ......................................................................................................... vi 

List Of Tables ........................................................................................................... vii 

Acknowledgments ................................................................................................... viii 

1. Introduction............................................................................................................. 1 

2. Literature review ..................................................................................................... 3 

2.1 The Portuguese Electricity Sector .................................................................... 3 

2.1.1 – Price Formation Mechanism and Structural Volatility ............................... 3 

2.1.2 Challenges in Electricity Price Forecasting ................................................... 4 

2.1.3 The importance of Hourly Forecasting for Market Participants .................... 6 

2.2 Comparison Between Traditional Models and Machine Learning Approaches6 

2.2.1 Limitations of classical statistical models ................................................. 6 

2.2.2 Advantages of Machine Learning Approaches.......................................... 7 

2.2.3 LightGBM as an Effective Intermediate Solution ..................................... 9 

2.2.4 Limitations and Challenges of Machine Learning Approaches .............. 10 

3.Pre-processing and Exploratory Analysis Methodology ....................................... 11 

3.1 Data acquisition .............................................................................................. 11 

3.2 Exploratory Data Analysis .............................................................................. 13 

3.3 Data Pre-processing ........................................................................................ 15 

4. Testing and validation of predictive models ......................................................... 17 

4.1 Benchmarking Models with Default Parameters ............................................ 17 

4.2 Model Optimization with Optuna and Evaluation by Cross-Validation ........ 19 



 

v 

 

4.3 Reducing Predictive Error and Controlling Overfitting ................................. 20 

4.4 Final Model: Exclusion of Exogenous Shocks and Temporal Enrichment .... 22 

5. Conclusion ............................................................................................................ 24 

References................................................................................................................. 28 

Appendices ............................................................................................................... 30 

 



 

vi 

 

TABLE OF FIGURES 

Figure 1-Pearson Correlation Matrix between the main explanatory variables ....... 14 

Figure 2-Model forecast for best week ..................................................................... 25 

Figure 3-Model forecast for worst week .................................................................. 25 

Figure 4 - Boxplot of Electricity Imports from Portugal to Spain ............................ 30 

Figure 5-Boxplot of Precipitation (mm) – Peso da Régua ....................................... 30 

Figure 6-Boxplot of Actual Consumption in Hydro Pumped Storage (MW) .......... 31 

Figure 7-Histogram of Precipitation (mm) – Peso da Régua ................................... 31 

Figure 8-Histogram of Electricity Exports from Spain to Portugal .......................... 32 

Figure 9-Histogram of Electricity Imports from Portugal to Spain .......................... 32 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

vii 

 

LIST OF TABLES  

 

Table I-Forecasting performance of tree-based models with standard hyperparameters

 ........................................................................................................................................ 18 

Table II-Forecasting performance after hyperparameter optimization whit optuna . 19 

Table III-Final forecasting performance after overfitting mitigation ....................... 22 

Table IV- List of numerical Variables used on original dataset ............................... 33 

Table V-List of categorical Variables used on original dataset ................................ 34 



 

viii 

 

ACKNOWLEDGMENTS 

 

I would like to express my deepest gratitude to my entire family and friends for their 

unwavering support, constant encouragement, and unconditional belief in me throughout 

this journey. Their presence, both in moments of triumph and difficulty, has been essential 

to my personal and academic growth. 

A heartfelt thank you also goes to everyone who accompanied me during this process, 

whether through guidance, shared experiences, or simple words of motivation. Each 

contribution, however small it may seem, played a fundamental role in the completion of 

this work. 

I extend my sincere appreciation to Vannaci Prime for the trust placed in me and for the 

opportunity to develop this project during my internship. The support provided by the 

company, along with the autonomy and resources made available, were crucial in 

enabling me to pursue a project of real impact and academic value. I am particularly 

grateful for the professional environment that stimulated critical thinking and allowed 

me to apply and deepen the knowledge acquired throughout the master’s program. 

I am especially thankful to Professor João Bastos for his availability, dedication, and 

willingness to assist throughout this process. His guidance and readiness to help were 

essential for the successful development of this work. 

Finally, I thank my academic supervisors, professors, and the ISEG community for their 

valuable insights and guidance, which helped shape the direction and quality of this 

research. 

 

To all of you, thank you.



1 

 

1 

1. INTRODUCTION 

This report, developed as part of the completion of the Master’s Degree in Mathematical 

Finance at ISEG, results from a four-month internship at Vannaci Prime, within the 

Finance Department. During this period, an extensive project was conducted focusing 

specifically on forecasting electricity prices in the Portuguese market. The project was 

strategically oriented towards addressing the critical needs of Small and Medium-Sized 

Enterprises operating within the industrial sector, where electricity costs constitute a 

substantial and often volatile component of overall operational expenses. 

In recent years, the Portuguese electricity market, an integral component of the MIBEL, 

has increasingly gained attention due to its inherent complexity and significant volatility. 

Several factors contribute to this unpredictability, chief among them being the variability 

of renewable energy production, fluctuations in energy demand, and the highly variable 

nature of meteorological conditions. The prevalence and increasing penetration of 

renewable energy sources, such as wind and solar, whose outputs are intrinsically 

intermittent and weather-dependent, have significantly altered market dynamics. These 

renewable sources, despite their environmental benefits, pose substantial forecasting 

challenges, as their production levels are subject to rapid and unpredictable variations. 

Consequently, electricity prices have become more sensitive and prone to sudden 

fluctuations, creating significant risks for energy-dependent industrial SMEs. 

A key characteristic of electricity as a commodity is its inability to be stored efficiently 

at scale. This limitation necessitates a real-time balancing of supply and demand, 

exacerbating market volatility. Short-term imbalances, even minor ones, can result in 

significant price spikes, which further complicate the already challenging environment 

faced by market participants. SMEs, with limited resources and expertise in advanced 

energy management practices, often find themselves particularly vulnerable to these 

unpredictable price shifts, which can adversely affect their cost management strategies 

and profitability. 

Recognizing these challenges, the internship aimed to develop a robust yet user-friendly 

forecasting tool explicitly tailored to the needs of industrial SMEs. The primary goal was 

to enable these enterprises to make informed decisions regarding their energy 

consumption, ultimately leading to more efficient cost management and enhanced 
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competitiveness. To ensure practical relevance and utility, the forecasting model was 

designed to achieve a MAE of less than 6 €/MWh for hourly electricity price predictions 

over a seven-day forecasting horizon. This benchmark was carefully selected to reflect 

the industry standard for predictive accuracy, ensuring the model's relevance and usability 

in practical, real-world scenarios. 

To realize this objective, a comprehensive and extensive database was compiled, 

encompassing hourly data across a five-year period from March 20, 2020, to March 20, 

2025. This dataset consisted of 37 variables that represent diverse and critical aspects of 

the electricity market. These variables included detailed data on energy production 

segmented by source (renewable and conventional), consumption patterns, real-time and 

historical meteorological conditions, market prices, and cross-border energy exchanges 

between Portugal and Spain. The richness and granularity of this dataset provided a robust 

foundation for developing highly accurate and reliable forecasting models. 

The methodological approach employed in this project was centered around advanced 

machine learning techniques. These methods have increasingly proven their efficacy in 

capturing complex, non-linear relationships within large and multivariate datasets. In 

particular, the models developed leveraged algorithms such as LightGBM, known for its 

efficiency and predictive accuracy, and various neural network architectures, renowned 

for their capability to model intricate temporal dependencies. During the modeling phase, 

significant emphasis was placed on carefully fine-tuning and optimizing these models. 

This included rigorous hyperparameter optimization and validation processes, leveraging 

techniques such as cross-validation and Bayesian optimization. The objective was to 

strike a balance between high predictive accuracy and simplicity, ensuring that the final 

solution would be accessible and comprehensible even to users without specialized 

technical backgrounds. 

An essential component of this project was also the extensive preprocessing of data, 

which is critical for the performance of any ML-based forecasting solution. Various 

preprocessing steps were applied, including robust normalization (Robust Scaler) of 

numerical variables to mitigate the impact of outliers and encoding categorical variables, 

such as wind direction, using techniques like One-Hot Encoding. These preprocessing 
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measures ensured that the underlying data was well-suited to the modeling tasks, thereby 

enhancing model stability and performance. 

Structurally, this report follows a logical and coherent sequence designed to facilitate a 

clear and thorough understanding of the research conducted. Initially, the paper 

contextualizes the research problem and delineates its practical importance, particularly 

highlighting the specific challenges faced by SMEs in managing energy costs within a 

volatile market. Subsequently, a comprehensive review of existing literature is presented, 

establishing a theoretical foundation for electricity price forecasting, with a particular 

emphasis on machine learning applications and methodologies. Following this theoretical 

underpinning, the methodological approach is detailed, clearly outlining data collection, 

preprocessing strategies, and the specific modeling techniques employed. The subsequent 

section focuses on the empirical results obtained, providing a detailed assessment of the 

forecasting model's performance against established benchmarks and objectives. Critical 

insights and performance metrics are discussed, offering a clear evaluation of the tool’s 

predictive efficacy. Finally, the report concludes with a synthesis of the key findings, 

acknowledges the inherent limitations of the study, and proposes potential avenues for 

future research. This conclusion underscores the project's value and utility, emphasizing 

its potential impact on improving energy management practices within industrial SMEs, 

ultimately enhancing their competitiveness and operational efficiency in the increasingly 

dynamic energy market. 

 

2. LITERATURE REVIEW 

2.1 The Portuguese Electricity Sector 

2.1.1 – Price Formation Mechanism and Structural Volatility 

 

The Portuguese electricity sector is integrated into the Iberian Electricity Market, a 

supranational market that brings together the electricity systems of Portugal and Spain, 

promoting efficiency and competitiveness through the free formation of electricity prices. 

MIBEL was formally established with the objective of harmonizing the operational rules 

of the energy markets of the Iberian Peninsula, enhancing liquidity, transparency, and 
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security of supply, factors considered essential for the creation of a unified European 

energy market. 

The Portuguese System Price formation in MIBEL is based on the marginal pricing 

principle, according to which the price of electricity in each hourly period is determined 

by the cost of the last unit of energy required to meet demand. This mechanism, applied 

in both the day-ahead and intraday markets, aims to ensure economic efficiency by 

encouraging producers to offer energy at the lowest possible marginal cost. However, this 

methodology exhibits high sensitivity to short-term volatility, the intermittency of 

renewable energy production, and exogenous factors such as weather conditions and the 

availability of energy resources. These elements introduce additional complexity to the 

price formation process, making the market more unstable and subject to abrupt 

fluctuations. 

The Portuguese electricity market is segmented into different trading mechanisms, which 

primarily differ in terms of the time horizon of the transactions conducted. The day-ahead 

market constitutes the main pricing mechanism, where market participants submit their 

purchase and sale offers for electricity for the following day. Reference prices are 

determined through auctions based on the marginal pricing methodology, ensuring 

efficient price formation based on supply and demand dynamics. Additionally, the 

intraday market allows participants to adjust their positions closer to the time of energy 

delivery, enabling the correction of deviations from initial forecasts and reflecting 

unexpected changes in production or consumption conditions. This market contributes to 

greater operational flexibility and efficiency within the electricity system. 

 

2.1.2 Challenges in Electricity Price Forecasting 

 

A study by Weron (2014) emphasizes that electricity price forecasting remains highly 

challenging under volatile market regimes, particularly during structural breaks caused 

by regulatory shifts or energy crises. The authors show that even advanced multivariate 

modeling frameworks, which typically outperform simpler models under stable 

conditions, can struggle to maintain accuracy and generalization when confronted with 

sudden regime changes, highlighting the inherent fragility of forecasting systems in such 
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scenarios. Forecasting electricity prices is widely recognized as one of the most complex 

challenges in liberalized markets due to the high levels of volatility and the frequent 

occurrence of price spikes, which are abrupt and extreme variations over short time 

intervals. These price spikes are often the result of sudden imbalances between supply 

and demand and remain particularly difficult to anticipate with precision. Their 

occurrence is closely linked to structural factors, notably the intermittence of renewable 

energy sources particularly wind and solar whose generation capacity is highly dependent 

on meteorological variables marked by substantial uncertainty and low predictability. As 

highlighted by Zamudio Lopez, Zareipour, and Quashie (2024), such volatility is often 

exacerbated by forecasting errors in intermittent generation and abrupt shifts in electricity 

consumption, reinforcing the intrinsic challenges in predicting these events accurately. 

Other factors include changes in electricity demand, limitations in electricity storage 

capacity that require almost instantaneous adjustments between supply and demand, thus 

exacerbating price volatility, restrictions in cross-border interconnection capacity, which 

limit the system's flexibility in responding to supply or demand shocks and many others. 

In addition to these structural factors, electricity price forecasting faces the added 

complexity of incorporating exogenous high-impact events, often related to geopolitical 

and macroeconomic dynamics, whose anticipation and statistical modelling are extremely 

challenging. A paradigmatic example is the 2022 energy crisis, triggered by the invasion 

of Ukraine and the subsequent restrictions on natural gas supplies to Europe. This context 

led to an increase in energy prices, with direct impacts on the Iberian market, where 

electricity prices reached historic highs, exceeding 500 €/MWh at certain times. This 

episode highlights the limitations of both traditional models and more advanced machine 

learning and deep learning models, which, despite their effectiveness in identifying 

complex historical patterns, exhibit weaknesses in forecasting structural disruptions and 

unexpected external shocks. This limitation is corroborated by Ghelasi and Ziel (2024), 

who demonstrated that even econometric models enriched with fundamental market 

information strove to anticipate the magnitude and persistence of the price arises observed 

during this crisis. Their findings further emphasize that, while such models perform well 

under normal conditions, their predictive capacity deteriorates significantly in the 

presence of unprecedented geopolitical shocks. Notably, they also report similar 

difficulties in capturing market behavior during earlier periods of extreme volatility, such 
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as the 2021 emerges in European gas prices, reinforcing the notion that external and 

structural disruptions remain a major forecasting challenge for state-of-the-art models. 

 

2.1.3 The importance of Hourly Forecasting for Market Participants 

 

In a context marked by high volatility and structural uncertainty, hourly electricity price 

forecasting plays a strategic role for market participants. The ability to anticipate price 

fluctuations enables the formulation of more efficient buying and selling strategies, risk 

mitigation, and more rational management of operational costs. 

As pointed out by Conejo et al. (2005), hourly price forecasts are especially valuable for 

large consumers and industrial participants, who rely on precise cost anticipation for 

operational and hedging strategies. From a theoretical perspective, forecasting electricity 

prices is hindered by the high complexity of the market, which is characterized by strong 

non-linearities, multivariate interdependencies among economic, meteorological, and 

technical factors, and the presence of heteroscedasticity, where the variability of prices 

depends on their own levels. 

Additionally, the increasing penetration of intermittent renewable energy sources, 

combined with the lack of economically viable large-scale storage solutions, exacerbates 

market price instability. This reality creates a highly uncertain environment in which 

traditional predictive models are often inadequate to capture the underlying complexities. 

 

2.2 Comparison Between Traditional Models and Machine Learning Approaches 

2.2.1 Limitations of classical statistical models 

 

Classical statistical models such as ARIMA, SARIMA and GARCH have long been 

applied to univariate time-series forecasting, including in the energy sector. However, 

their practical use in electricity markets is limited by underlying assumptions that rarely 

hold in this context. These models generally posit that the future value of the variable 

depends on past observations through structures such as 
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(1)                𝑦𝑡 = 𝑐 + ∑ 𝜙𝑖 𝑦{𝑡−𝑖} +  ∑ 𝜃𝑗𝜀{𝑡−𝑗} + 𝜀𝑡

{𝑞}

{𝑗=1}

{𝑝}

{𝑖=1}

 

where 𝜀𝑡 ∼ 𝒩( 0, 𝜎2) and 𝜙𝑖 , 𝜃𝑗 ∈ 𝑅, and typically require the series to be stationary with 

constant mean and variance. Yet electricity prices are strongly influenced by sudden 

exogenous shocks—such as the 2022 energy crisis or unexpected grid outages—as well 

as by abrupt spikes, multiple seasonalities, and stochastic volatility. Moreover, their 

dynamics depend heavily on external drivers including meteorological conditions, 

consumption patterns, and regulatory interventions, which univariate frameworks cannot 

directly accommodate. Even models designed to capture time-varying volatility, such as 

GARCH, specify a conditional variance following 

(2)                 𝜎𝑡
2 = 𝛼0 + ∑ 𝛼𝑖𝜀{𝑡−𝑖}

2 + ∑ 𝛽𝑗𝜎{𝑡−𝑗}
2

{𝑞}

{𝑗=1}

 

{𝑝}

{𝑖=1}

 

and face difficulties when confronted with the structural breaks, large jumps, and 

multivariate interactions common in electricity markets. Consequently, while these 

approaches can serve as useful baselines, they are generally inadequate to fully describe 

the complexity and rapidly changing dynamics observed in liberalized power markets 

(Weron, 2014). 

 

2.2.2 Advantages of Machine Learning Approaches 

 

According to Taieb and Hyndman (2021), the growing emphasis on explainable machine 

learning models in energy systems has led to the increasing adoption of interpretable 

algorithms such as tree-based methods over deep learning architectures, particularly in 

industrial and regulatory contexts.  

This represent a substantial evolution in relation to traditional statistical models, as they 

allow classic assumptions to be relaxed and complex, non-linear relationships to be 

modelled. Instead of starting from a pre-defined functional form, ML models learn 

directly from the data, automatically adjusting to the structure of the observed 

information. 
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ML models deal with functional relationships of the type: 

(3)            𝑦̂𝑡 = 𝑓(𝑋𝑡; 𝜃) 

where 𝑓 is a non-parametric function learnt from the data, 𝑋𝑡 ∈  𝑅𝑑 represents a vector 

of explanatory variables (internal and exogenous), and 𝜃 are the parameters (or weights) 

to be optimized based on an error criterion such as MAE or MSE. 

Among the most relevant machine learning approaches for time series forecasting, tree-

based models such as Gradient Boosting Machines are especially effective due to their 

capacity to model complex, high-order interactions without requiring these relationships 

to be explicitly defined. These models are well suited to heterogeneous datasets, as they 

accommodate exogenous variables with varying frequencies and scales, including 

meteorological indicators, market prices, and operational metrics. In addition, deep 

learning architectures such as Recurrent Neural Networks and Long Short-Term Memory 

networks offer powerful mechanisms for capturing temporal dependencies and dynamic 

structures within sequential data. A key advantage of both approaches lies in their ability 

to adapt to evolving data patterns by retraining with updated observations, thereby 

enhancing their responsiveness to structural changes in highly volatile environments such 

as electricity markets.  

The robustness of machine learning models is highly dependent on the ability to prevent 

overfitting, which compromises the generalizability of the model to unseen data. Several 

regularization and optimization techniques are commonly employed to address this issue. 

One widely used approach is L1/L2 regularization, which penalizes the complexity of the 

model by minimizing the loss function: 

(4)             ℒ(𝜃) = ∑ ₜ (𝑦ₜ −  ŷₜ)2 + 𝜆‖𝜃‖ₚ 

Where the value of 𝑝 determines the type of regularization applied, such that when 𝑝 = 1 

the formulation corresponds to the LASSO, while p = 2 leads to Ridge regression. 

Cross-validation is another essential method, whereby the dataset is divided into multiple 

folds to evaluate the model’s ability to generalize beyond the training data. In addition, 

early stopping is often applied during training to halt the learning process when the 

validation error begins to increase, thereby mitigating overfitting. Finally, the selection 

of hyperparameters can be automated through Bayesian optimization techniques, such as 
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those implemented with Optuna, which efficiently search the hyperparameter space based 

on empirical performance during model validation 

Scalability is one of the main advantages of machine learning models such as LightGBM, 

which are designed to operate efficiently in environments with high dimensionality and 

data volume. These algorithms allow for reduced training times even in databases with 

millions of observations, using optimized discretized histogram structures to reduce 

computational complexity while performing automatic variable selection based on 

metrics such as information gain. In the field of electricity price forecasting, these 

capabilities prove particularly suitable, given the multivariate and heterogeneous nature 

of the data involved including meteorological, operational and market variables as well 

as the presence of seasonal patterns, non-linear relationships and non-stationary behavior. 

The high predictive accuracy that these approaches make possible is essential to support 

decision-making processes related to risk management, production planning and the 

formulation of energy procurement strategies by the sector’s agents. This perspective is 

strongly supported by Rubattu, Maroni, and Corani (2023), who demonstrate the 

effectiveness of LightGBM in electricity load and peak forecasting tasks, highlighting its 

robustness in handling high-dimensional inputs, fast training capabilities, and suitability 

for multivariate time series with complex temporal dependencies, such as those found in 

the energy sector. These insights naturally lead to a more focused discussion on the 

algorithm itself, its core mechanisms, and the reasons why it emerges as an effective and 

pragmatic choice in the context of electricity price forecasting.  

 

 

2.2.3 LightGBM as an Effective Intermediate Solution 

 

Among the various machine learning algorithms, the LightGBM has stood out as an 

efficient and robust solution for forecasting tasks in environments with high 

dimensionality and temporal granularity, such as the electricity market. Developed by 

Microsoft, this model is based on decision trees and uses a leaf-wise growth strategy, as 

well as the use of discretized histograms for computational optimization. These features 
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give it high training speed, even on datasets with millions of observations, and efficient 

use of memory. 

Empirical comparisons such as those by Deng et al. (2023) show that LightGBM 

consistently offers an excellent balance between accuracy, interpretability, and 

computational efficiency in electricity price forecasting, making it a strong candidate for 

industrial deployment. LightGBM has shown superior performance compared to linear 

models and conventional tree-based algorithms such as Random Forest (Breiman, 2001), 

particularly in metrics such as mean absolute error and root mean square error. In addition 

to its predictive power, it allows the importance of variables to be quantified, which is an 

asset from an interpretative point of view, as it makes it easier to identify the factors with 

the greatest influence on price behavior. In addition, it is more computationally efficient 

than deep neural networks in situations where computational resources are limited or data 

volumes are high, without significantly compromising forecast accuracy. Another 

relevant aspect is its adaptability to sparse and heterogeneous data, such as that which 

characterizes the electricity sector, where meteorological, operational and market 

variables coexist. This versatility makes LightGBM particularly suitable for applications 

that require a compromise between performance, interpretability and computational 

feasibility, and it is therefore widely adopted in industrial and institutional settings.  

 

2.2.4 Limitations and Challenges of Machine Learning Approaches 

 

Despite the obvious advantages associated with approaches based on machine learning 

and deep learning, it is necessary to recognize the limitations inherent in these 

methodologies. As highlighted by Lago et al. (2021), machine learning models for 

electricity price forecasting are particularly sensitive to input data quality and outlier 

handling, which significantly influence model robustness and error variance under stress 

scenarios. The selection and fine-tuning of hyperparameters is another critical point, 

requiring rigorous validation methodologies and often the use of intensive computational 

optimization techniques. 

One of the most recurrent criticisms relates to the low interpretability of the models, 

which are often classified as black boxes. This opacity can be an obstacle to their 
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acceptance by decision-makers and stakeholders in contexts where transparency in 

decision-making is essential, such as in the regulation of the electricity sector or in risk 

management in corporate environments.  

In addition, these models do not explicitly incorporate structural knowledge about the 

underlying system, relying exclusively on statistical inference from historical data. In 

scenarios of marked structural change such as those that occur as a result of energy crises, 

regulatory changes or disruptive technological transformations this limitation can 

compromise the ability to generalize and therefore the reliability of forecasts (Nowotarski 

& Weron, 2018) . 

 

 

 

 

 

3.PRE-PROCESSING AND EXPLORATORY ANALYSIS METHODOLOGY 

 

 

3.1 Data acquisition  

 

The construction of a robust and predictive dataset is a cornerstone of any data-driven 

modelling process. In this dissertation, the initial dataset was compiled by aggregating 

hourly observations from multiple data sources, covering the Portuguese electricity 

system from March 20, 2020, to March 20, 2025. The primary objective of this database 

is to support the development of accurate short-term electricity price forecasting models 

by ensuring the inclusion of exogenous variables with significant explanatory power over 

market dynamics. 

The dataset comprises 32 numerical features and 5 categorical features, which are detailed 

in the tables IV and V, distributed across five conceptual dimensions: temporal structure, 

generation mix, market prices, cross-border exchanges, and load variables. These 
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dimensions encapsulate both endogenous and exogenous determinants of electricity price 

formation in the MIBEL, with a particular focus on the Portuguese bidding zone. 

Each observation is timestamped at an hourly frequency, ensuring temporal alignment 

across all variables. The temporal component includes not only time indexes (hour, day, 

month, year) but also engineered features such as sine and cosine transformations to 

capture cyclic seasonality (e.g., daily and yearly periodicity), indicators for weekends and 

holidays. These sine and cosine transformations are specifically designed to encode the 

inherent cyclical structure of time-related patterns, enabling the model to recognize and 

learn from recurring seasonal behaviors without introducing artificial discontinuities. For 

instance, although hours 23 and 0 are consecutive in real time, treating them as raw 

numerical values would misleadingly imply a large gap. By projecting time variables onto 

a unit circle using sine and cosine functions, this discontinuity is eliminated, preserving 

both proximity and periodicity in the data representation. This approach is particularly 

effective in capturing daily and annual seasonality in electricity prices. To further reflect 

temporal structure, the dataset also includes categorical indicators for weekends and 

holidays, which help account for structural breaks in price trajectories driven by calendar-

related effects. These variables are essential to model periodic behaviors and anticipate 

structural breaks in price trajectories due to calendar effects. 

The generation mix component comprises actual aggregated production values, 

disaggregated by technology. This includes both renewable sources and conventional 

sources. The inclusion of these variables enables the model to capture the variability in 

supply conditions, especially considering the intermittency of renewables and their 

impact on the marginal price setting mechanism. 

In addition, market-related features include the system marginal price for both the 

Portuguese and Spanish zones, enabling the study of market coupling effects. The 

interconnection balance, represented by imports and exports between Iberian regions, 

serves as a proxy for regional supply-demand imbalances and transmission constraints. 

Finally, the load variables represent the actual electricity consumption and forecasted 

demand levels, providing insights into consumption patterns and load forecasting errors, 

which are crucial in explaining short-term price volatility. 
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The next sections describe the steps taken to preprocess this dataset, addressing issues 

such as missing data, outliers, multicollinearity, and the scaling and encoding procedures 

applied to numerical and categorical variables, respectively. These transformations are 

critical to ensure the stability and generalizability of machine learning models trained on 

this dataset. 

 

 

 

3.2 Exploratory Data Analysis  

 

Before proceeding to the model-building stage, a comprehensive Exploratory Data 

Analysis was conducted in order to characterise the statistical properties of the dataset, 

understand variable behaviour, identify outliers, and assess potential multicollinearity and 

feature redundancy. This phase plays a crucial role in guiding the selection and 

transformation of variables for predictive modelling. 

The univariate analysis began with the visual inspection of boxplots for all continuous 

variables, which revealed a non-negligible presence of outliers, particularly in features 

related to energy generation and meteorological factors. Noteworthy examples include 

precipitation in Peso da Régua (19.5% outliers), exports from Portugal to Spain (18.9%), 

and hydroelectric consumption in pumped-storage units (10.4%). Other variables, such 

as solar radiation, solar generation, and Iberian marginal prices, exhibited moderate levels 

of extreme values ranging from 5% to 10%. This empirical evidence underscored the need 

for robust pre-processing techniques to mitigate their influence on downstream models. 

Histogram analysis confirmed that most variables significantly deviate from the normal 

distribution, exhibiting skewness, long tails and multimodal behaviour. These 

characteristics are particularly pronounced in solar radiation, precipitation and export 

flows, which justifies the adoption of non-parametric methods and robust scaling 

techniques, discussed in the following section. 

To investigate the presence of linear dependencies among the features, a Pearson 

correlation analysis was performed. The resulting correlation matrix, shown in Figure 3.1, 
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reveals high pairwise correlations within thematic groups, especially between 

temperature readings across cities, between load forecasts and actual load, and among 

cross-border energy flow variables. 

 

 

 

Figure 1-Pearson Correlation Matrix between the main explanatory variables 

The visualisation provided by this matrix served as a critical decision-making tool in the 

feature selection process. Variables exhibiting high collinearity were removed to reduce 

redundancy and mitigate the risk of overfitting. For example, temperature series for Évora 

and Porto, as well as the aggregated average temperature, were excluded in favour of the 

Lisbon temperature, which retained strong explanatory power with lower redundancy. 

In the domain of load variables, the Day-ahead Total Load Forecast was excluded due to 

its near-perfect correlation with the Actual Total Load, which is preferred as it reflects 
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realised demand rather than anticipated values. Similarly, the marginal price in the 

Spanish market, although intuitively relevant, was discarded to avoid potential data 

leakage, as it may contain information temporally aligned with the Portuguese marginal 

price, our model’s target variable. 

 

Redundant variables in the category of energy trade and commercial flows, such as daily 

traded energy volumes, total purchases and sales and exports from Spain to Portugal, were 

also removed. These variables either overlapped informationally with others or measured 

the same underlying dynamic from different angles. 

Lastly, the weekend indicator was omitted given its informational redundancy with the 

day-of-week variable, which is more granular and flexible for modelling weekly 

seasonality. The dimensionality reduction and feature filtering procedures carried out in 

this section ensured the parsimony and stability of the dataset while preserving relevant 

explanatory information for the subsequent modelling stage. 

 

3.3 Data Pre-processing 

 

Following the selection of the most relevant variables, the dataset underwent a rigorous 

pre-processing stage to ensure its structural adequacy for the application of machine 

learning algorithms. This phase was essential for eliminating sources of distortion, 

standardizing variable formats, and optimizing the model's ability to learn from historical 

patterns. 

A primary focus of this stage was the normalization of numerical variables, which aimed 

to mitigate the influence of scale disparities and the presence of extreme values (outliers). 

As revealed in the exploratory analysis, several numerical features exhibited high 

skewness and a significant proportion of outliers. Consequently, the Robust Scaler was 

adopted as the normalization method of choice: 

  (5)             𝑥𝑡𝑠𝑐𝑎𝑙𝑒𝑑 =
𝑥 − Median(𝑥)

IQR(𝑥)
                   (6)         IQR(𝑥) = 𝑄3(𝑥) − 𝑄1(𝑥) 
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Unlike conventional transformations such as the StandardScaler, which standardizes data 

by centering it around the mean and scaling it by the standard deviation, and tends to 

perform optimally when the data distribution is approximately symmetric or Gaussian, or 

the MinMaxScaler, which rescales features to a fixed range (typically [0, 1]), compressing 

variance in the presence of outliers, the Robust Scaler operates based on the median and 

the interquartile range (IQR). 

This makes the Robust Scaler less sensitive to skewness and outliers, preserving the 

internal structure of the data in the presence of heavy tails or extreme values.All numerical 

features, with the exception of the target variable, were standardized using the Robust 

Scaler. The target variable, representing the marginal price of the Portuguese electricity 

system, was deliberately maintained in its original scale to preserve its economic 

interpretability. This decision ensures that the model's output remains directly comparable 

to real-world price values, facilitating interpretation and communication with non-

technical stakeholders. 

In addition to the normalization of continuous variables, categorical variable encoding 

was performed. In particular, the wind direction variable, originally recorded as a nominal 

feature with labels such as N, NE, SW, etc., required transformation to be usable in 

numerical modelling frameworks. Given the lack of ordinal relationship among these 

categories, the One-Hot Encoding technique was employed. This approach created a set 

of binary indicator variables, each corresponding to a specific wind direction, and marked 

their presence or absence for each hourly observation. 

This encoding method preserves the nominal nature of the variable and avoids the 

introduction of artificial numerical relationships that would result from inappropriate 

ordinal encoding. Furthermore, One-Hot Encoding is highly compatible with tree-based 

models such as LightGBM, as it allows the algorithm to assess the importance of each 

category independently, thereby enhancing interpretability and model performance. 

Overall, the pre-processing pipeline implemented in this stage established a clean, 

structured, and standardized dataset, ready to be ingested by machine learning models 

with minimal risk of bias or instability. This ensured a strong foundation for the 

subsequent modelling and evaluation phases. 
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4. TESTING AND VALIDATION OF PREDICTIVE MODELS 

 

4.1 Benchmarking Models with Default Parameters 

 

In order to establish a rigorous comparative basis for evaluating the predictive 

performance of the models, an initial empirical analysis was carried out with different 

machine learning algorithms, using only their default settings and a fixed number of 

estimators (100 trees or iterations, depending on the model structure). The main aim of 

this phase was to quickly gauge the relative performance of each approach without 

carrying out any kind of hyperparameter optimization, thus acting as an initial filter for 

selecting the models to be explored further in the following phases of the work. 

The data set was divided up over time to realistically simulate the real-time forecasting 

process. Data from March 2020 to December 2023 was used to train the models, while 

the year 2024 was reserved for model validation and the year 2025 was used entirely for 

out-of-sample evaluation (test set). This separation guarantees not only the integrity of 

the training process, but also a robust assessment of the algorithms' ability to generalize 

in future periods. 

As an initial reference, a naïve model (Naïve Forecasting) was implemented which 

assumes that the marginal hourly price of electricity is h is equal to the value observed at 

the same time in the previous week:  

(5)         𝑦̂ℎ = 𝑦ℎ−168 

This extremely simple approach, based solely on weekly seasonality, reflects a valid 

baseline for electricity markets, where patterns of hourly and weekly repetition are 

evident. This model showed a mean absolute error of around 23 €/MWh, which served as 

a lower benchmark for comparison with the more sophisticated models. 

The next phase consisted of applying six models based on decision trees, namely a single 

Decision Tree, Random Forest, Extra Trees, LightGBM and XGBoost, all trained with 

100 estimators and without tuning the respective hyperparameters. It should be noted that, 
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in this exploratory stage, the performance analysis was exclusively guided by the mean 

absolute error criterion, without explicit consideration of complexity metrics, 

regularization or signs of overfitting. The aim was therefore to identify the algorithms 

with the greatest predictive capacity under standard conditions, before implementing 

optimization strategies. The models were evaluated on the three subsets of data defined - 

training, validation and testing - and the results obtained are summarized in table   I. 

TABLE I-FORECASTING PERFORMANCE OF TREE-BASED MODELS WITH STANDARD 

HYPERPARAMETERS 

 

 

 

 

 

 

 

 

 

The results show that the Extra Trees model had the best overall performance, with the 

lowest mean absolute error in all the data subsets, especially the test set. Gradient boosting 

models, such as LightGBM and XGBoost, followed closely, with slightly higher errors 

than Extra Trees but outperforming the Random Forest model.  

This benchmarking phase made it possible to identify the algorithms with the greatest 

potential for generalization and predictive capacity in non-optimized conditions, 

justifying the selection of the Extra Trees, LightGBM and XGBoost models for 

subsequent calibration, optimization of hyperparameters and evaluation in more 

demanding contexts, including periods of stress or market transition. 

 

 

MODEL MAE (€/MWH) 

DECISION TREE 14.39 

RANDOM FOREST 9.66 

EXTRA TREES 9.14 

LIGHTGBM 9.38 

XGBOOST 9.43 
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4.2 Model Optimization with Optuna and Evaluation by Cross-Validation 

 

After identifying the three models with the best predictive performance in standard 

configurations namely Extra Trees, XGBoost and LightGBM. A second experimental 

phase was carried out with the aim of reducing the mean absolute error (MAE) through 

hyperparameter optimization and cross-validation techniques. The main purpose of this 

stage was to systematically explore the space of possible configurations for each 

algorithm, seeking to maximize its generalization capacity. 

Optimization was carried out using the Optuna library, which implements an approach 

based on Bayesian optimization, using sequential sampling and learning based on the 

history of previous evaluations. To ensure a robust evaluation and reduce the statistical 

variance of the results, a cross-validation strategy with k = 5 folds was adopted in all 

tuning processes. 

The results obtained are shown in table  II. It can be seen that the Extra Trees model, after 

optimization, achieved an MAE of only 8.85 €/MWh in the test set, while XGBoost and 

LightGBM achieved 8.18 €/MWh and 8.12 €/MWh respectively. However, it should be 

noted that the average errors in the training sets were substantially lower, with values 

such as 0.0000191 in the case of Extra Trees, which is indicative of an overfitting 

problem. 

TABLE II-FORECASTING PERFORMANCE AFTER HYPERPARAMETER OPTIMIZATION WHIT 

OPTUNA 

MODEL MAE TRAIN (€/MWH) MAE VAL (€/MWH) MAE TEST (€/MWH) 

EXTRA TREES 0.0000191 9.09 8.85 

XGBOOST 1.57 8.38 8.18 

LIGHTGBM 2.12 8.33 8.12 
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The discrepancy between performance in the training and validation/test sets, particularly 

in the Extra Trees model, raises concerns about the generalization capacity of the 

optimized models. This phenomenon can be attributed to the high number of trees and 

the depth allowed during optimization, which leads the models to overfit the training data, 

capturing noise instead of relevant structural patterns. 

Despite this, the overall results represent a significant improvement over the models in 

standard configuration, with reductions of more than €1/MWh in the test errors for the 

optimized models. This phase confirms the usefulness of hyperparameter calibration in 

improving predictive performance, while highlighting the need for more rigorous 

regularization and validation mechanisms, especially in highly complex stochastic 

environments such as electricity markets. 

The following section provides a more detailed analysis of the predictive behavior of 

these models in critical and regular periods, as well as assessing the stability of the 

forecasts over the hourly horizon. 

 

4.3 Reducing Predictive Error and Controlling Overfitting 

 

Following the optimization stage using the Optuna algorithm, although there was a 

significant reduction in the mean absolute error in out-of-sample data, the results showed 

clear signs of overfitting, particularly in the performance of the Extra Trees model, whose 

error in the training set was close to zero. This asymmetry prompted the development of 

a new methodological stage focused on mitigating overfitting and improving the 

generalization of the models by incorporating new explanatory variables with a temporal 

structure and removing redundant variables. 

The first intervention consisted of introducing lags for the dependent variable, i.e. creating 

lag variables for the marginal price of electricity in Portugal. Lags 1, 3, 5, 7, 12 and 24 

were considered in order to capture the temporal autocorrelation underlying the behavior 

of the time series. This approach aims to allow the models to learn dynamic relationships 

between the current value and recent history, which is essential in a market with high 

weekly regularity and short-term dependency. 
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At the same time, the composition of the set of variables was reassessed, based on an 

analysis of the relative importance assigned by a simple decision tree model. This analysis 

revealed the systematic irrelevance of the variables associated with wind direction, 

previously coded using one-hot encoding, whose marginal contribution to explaining the 

dependent variable was negligible. It was therefore decided to exclude them, promoting 

model parsimony and reducing the risk of introducing statistical noise. 

As an additional boost to predictive capacity, variables with a rolling window structure 

were introduced, calculated from the moving averages of the marginal price and the 

standard deviations of the total load observed, considering windows of 24, 72 and 168 

hours. This component aimed to provide the model with recent statistical memory, which 

is essential for capturing local fluctuation patterns, trend smoothing and episodes of 

instability. 

Given that the models continued to be excessively sensitive to extreme values, a process 

of truncating the target variable (clipping) was adopted, limiting its values to the interval 

defined by the 5th and 95th percentiles of the empirical distribution. The main aim of this 

measure was to reduce the disproportionate impact of atypical observations on the loss 

function used during training, without compromising the structure of the sample. 

The last intervention consisted of generating interaction variables between seasonal 

components (derived from trigonometric functions applied to the calendar) and critical 

energy variables. The aim was to capture multiplicative effects between the annual cycle 

and variables such as solar radiation or energy traded on the Iberian market, allowing the 

model to adjust the sensitivity of certain predictors to the temporal context in which they 

are inserted. 

The sequential application of these transformations was reflected in a substantial 

improvement in performance indicators. As can be seen in tabel III, the LightGBM model 

now has an MAE of less than 6.40 €/MWh in the test set, making it the most effective of 

the models evaluated. XGBoost also showed consistent behavior, with an error of less 

than 8 €/MWh, while Extra Trees maintained values of more than 9 €/MWh, still 

reflecting some degree of overadjustment. 
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TABLE III-FINAL FORECASTING PERFORMANCE AFTER OVERFITTING MITIGATION  

MODEL MAE TRAIN(€/MWH) MAE VAL(€/MWH) MAE TEST(€/MWH) 

EXTRA TREES 1.80 9.79 9.97 

LIGHTGBM 3.96 6.12 6.39 

XGBOOST 3.12 7.75 7.81 

 

The methodological evolution adopted in this chapter leads us to conclude that the 

combination of time lags, rolling variables, clipping of the dependent variable and 

seasonal interactions contributes decisively to the robustness of electricity marginal price 

forecasting models, mitigating over-adjustment and promoting predictive stability over 

time. 

 

4.4 Final Model: Exclusion of Exogenous Shocks and Temporal Enrichment 

 

Considering the limitations identified in the predictive capacity in periods strongly 

influenced by extraordinary external factors not explicitly captured by the original set of 

explanatory variables, it was decided to restrict the time period of analysis to cover only 

the years 2023, 2024 and 2025. This restriction aims to minimize the distorting impact of 

external events such as the COVID-19 pandemic in 2020, which led to a drastic reduction 

in energy demand and, consequently, marginal prices. In addition, the subsequent energy 

crisis, triggered in 2021 and exacerbated in 2022 by geopolitical instability stemming 

from the war in Ukraine, caused a sharp and abnormal increase in prices, not reflected in 

the conventional variables. The exclusion of these years thus allows for a more robust and 

representative modeling of the structural and seasonal patterns of the market in more 

stable periods. 

Given its proven effectiveness, the analysis focused exclusively on the LightGBM model. 

At this stage, several additional explanatory variables were incorporated into the model, 

with the explicit aim of improving predictive capacity by enriching the temporal structure 

and interaction between critical market variables. 
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Initially, the target variable, corresponding to the hourly marginal price of the Portuguese 

system with a time lag of 168 hours (one week), ensuring a forecast aligned with the 

required time horizon. At the same time, auxiliary variables were added with additional 

short-term lags (167 and 166 hours earlier), allowing the model to capture immediate 

sequential changes in the marginal price and recent trends. 

In order to incorporate explicit seasonality into the model, cyclically based time variables 

were created using trigonometric sine and cosine functions applied to the months and 

days. These cyclical transformations allow for a continuous and adequate representation 

of the monthly and daily periodicity, avoiding distortions introduced by discrete 

categorical variables. 

Next, several interaction variables were implemented through the cross-product between 

these cyclical components and key temporally shifted variables (168 hours), such as solar 

radiation, energy traded on the Iberian market and total observed load, to capture temporal 

effects conditioned by key energy variables. 

To better capture short-term local dynamics, moving statistics (average, minimum, 

maximum and standard deviation) were calculated over 24-hour windows, both for the 

dependent variable and for time-shifted solar radiation. In addition, a relative 

normalization of solar radiation was introduced through its ratio to the recent maximum 

value in a 24-hour window, allowing the model to interpret relative variations in solar 

production. 

In order to enhance the robustness of the model and mitigate the risk of overfitting, an 

early stopping mechanism was incorporated during the training process. This technique 

monitors the performance on a validation set and halts training if no improvement in the 

validation loss is observed over a predefined number of iterations. In this study, a patience 

value of 50 rounds was adopted, not arbitrary, but based on preliminary experiments 

which indicated that this threshold provided a balanced trade-off between training 

duration and generalization performance. By preventing unnecessary training beyond the 

point of diminishing returns, early stopping contributions to the selection of a model 

configuration that generalizes more effectively to unseen data. 

Derived variables were also calculated, such as trends and recent absolute and percentage 

variations in the marginal price and total load, and quadratic terms and interactions 
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between these variables were created to explicitly capture complex non-linear 

relationships. 

Finally, using rigorous temporal validation - in which the model was trained exclusively 

with data from the year 2023, validated with data from 2024 and tested with data from 

2025 - the predictive performance resulting from these extensive modifications was 

gauged. The results obtained show a substantial improvement in the out-of-sample 

prediction capacity, with the LightGBM model achieving a mean absolute error of 4.52 

€/MWh in the training set, 5.54 €/MWh in the validation set and 5.29 €/MWh in the test 

set. 

Given the initial objective, which stipulated a maximum MAE limit of 6 €/MWh in the 

test set, these final results show that the modifications and optimizations applied to the 

LightGBM model fully met the operational requirements, thus establishing this model as 

the final solution recommended for practical application in the business context. 

 

5. CONCLUSION  

 

The analysis of the results obtained for the hourly forecast of marginal electricity prices 

in the Portuguese market revealed a consistent and robust performance of the final model 

developed, fully in line with the initial objectives proposed in this study. The evaluation 

was structured around the Mean Absolute Error indicator, specifically aimed at providing 

a clear and easily interpretable metric for the quality of the forecasts made by the model. 

For a detailed analysis, two representative weeks of performance were identified: the 

“best week”, corresponding to the period in which the model showed the lowest mean 

absolute error, and the “worst week”, reflecting the period with the highest mean absolute 

error, albeit low in absolute terms. This selection provided a comprehensive view of the 

model's predictive capacity in different contexts and market conditions. 
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Figure 2- Forecast vs actual prices for the best-performing week 

 

Figure 3- Forecast vs actual prices for the most challenging week 

 

In the “best week”, the model achieved a remarkable MAE of just 4.86 €/MWh, indicating 

high accuracy in predicting marginal prices. The visual analysis of the forecasting results 

presented in Figure 1 illustrates a notable alignment between actual and predicted 

electricity prices. While such alignment may superficially resemble patterns achievable 

by simpler seasonal models, the examined model distinguishes itself through its capacity 

to accurately anticipate sudden price spikes, abrupt declines, and irregular fluctuations 

inherent in electricity markets. Importantly, the model does not solely reproduce cyclical 

patterns but effectively captures nuanced variations triggered by rapid changes in 

demand, renewable energy supply fluctuations, and meteorological influences. These 

characteristics demonstrate the model’s robustness and practical utility, suggesting its 

applicability for strategic decision-making and risk management in contexts characterized 

by inherent price volatility and uncertainty. 

In the “most challenging week”, despite being identified as the one with the lowest 

relative performance, the MAE remained extremely competitive, reaching 5.26 €/MWh, 
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as shown in Figure 2. This particular week is characterized by greater volatility and some 

irregularities in the usual market patterns. However, it is noteworthy that, even in these 

challenging conditions, the model managed to preserve significant accuracy. When 

examining the actual and forecast price curves graphically, it can be seen that the model 

has maintained considerable consistency, with occasional divergences being limited to 

brief periods, typically associated with external events or unexpected spikes in the market. 

This consistency of performance, even in periods considered more difficult, reinforces 

the robustness of the model, which is especially relevant for its practical application in 

business contexts where minimizing forecast error can directly translate into substantial 

financial benefits for small and medium-sized industrial companies, the target audience 

for this solution. 

The use of the LightGBM model, optimized using advanced hyperparameter optimization 

techniques (using Optuna), proved to be a highly effective methodological decision. This 

model demonstrated an exceptional ability to deal with the high dimensionality and 

heterogeneity of the data set employed, which included meteorological variables, energy 

production by various sources, international interconnections, seasonal patterns and 

historical consumption. The success of this model can be attributed to its ability to 

automatically identify complex and non-linear relationships between these variables, 

allowing for a more refined forecast adjusted to real market conditions. 

The pre-processing approach adopted, which involved robust normalization of numerical 

variables (Robust Scaler) and effective coding of categorical variables (One-Hot 

Encoding), also played a key role in the performance achieved. This methodology ensured 

adequate data preparation, reducing the impact of outliers and preserving the essential 

structural properties of the original data. 

It is important to note that the development of the model considered the need for 

transparency and interpretability, critical aspects in industrial and regulatory applications. 

Although the traditional advantages of machine learning models are often accompanied 

by limitations in terms of interpretability, the use of decision tree-based methods, such as 

LightGBM, partially mitigates this challenge. By analyzing the importance of variables, 

obtained directly from the hierarchical structure of the trees, it is possible to identify 

which features are most decisive for price forecasting. This process provides clear 
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visibility into the variables that most influence electricity price fluctuations, thus allowing 

for a better understanding of the critical factors underlying the dynamics of the energy 

market. In addition, the results presented here highlight the model's ability to generalize 

to different market conditions, while remaining robust to cyclical variations. This quality 

is particularly crucial in electricity markets characterized by high volatility, which often 

face significant exogenous shocks, such as regulatory changes or unexpected energy 

crises. 

 Finally, certain limitations have been identified that present opportunities for future 

improvements. For instance, the integration of hybrid models that combine machine 

learning approaches with econometric techniques or forecasting methods based on 

recurrent neural networks could be explored to achieve incremental enhancements in 

predictive performance. Moreover, extending the temporal window of the dataset, as well 

as incorporating advanced probabilistic forecasting techniques—such as conformal 

prediction or dynamic confidence intervals could represent significant methodological 

advancements in future studies. 

It can thus be concluded that the model proposed in this master’s thesis successfully met 

the initially defined objectives, offering a robust and reliable predictive solution capable 

of delivering tangible benefits for the energy management of Portuguese industrial SMEs. 

This contributes to more informed, optimized, and economically advantageous decision-

making within the energy market. 
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APPENDICES 

 

 

Figure 4 - Boxplot of Electricity Imports from Portugal to Spain 

 

Figure 5-Boxplot of Precipitation (mm) – Peso da Régua 
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Figure 6-Boxplot of Actual Consumption in Hydro Pumped Storage (MW) 

 

 

Figure 7-Histogram of Precipitation (mm) – Peso da Régua 
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Figure 8-Histogram of Electricity Exports from Spain to Portugal               

 

 

Figure 9-Histogram of Electricity Imports from Portugal to Spain 
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TABLE IV- LIST OF NUMERICAL VARIABLES USED ON ORIGINAL 

DATASET 

NUMERICAL VARIABLES  

SOLAR GENERATION [MW] - DAY AHEAD (PORTUGAL) 

WIND ONSHORE GENERATION [MW] - DAY AHEAD (PORTUGAL) 

BIOMASS - ACTUAL AGGREGATED [MW] 

FOSSIL GAS - ACTUAL AGGREGATED [MW] 

FOSSIL HARD COAL - ACTUAL AGGREGATED [MW] 

HYDRO PUMPED STORAGE - ACTUAL AGGREGATED [MW] 

HYDRO PUMPED STORAGE - ACTUAL CONSUMPTION [MW] 

HYDRO RUN-OF-RIVER AND POUNDAGE - ACTUAL AGGREGATED [MW] 

HYDRO WATER RESERVOIR - ACTUAL AGGREGATED [MW] 

OTHER SOURCES - ACTUAL AGGREGATED [MW] 

SOLAR - ACTUAL AGGREGATED [MW] 

WIND ONSHORE - ACTUAL AGGREGATED [MW] 

TOTAL LOAD FORECAST [MW] - DAY AHEAD (PORTUGAL) 

ACTUAL TOTAL LOAD [MW] 

WIND SPEED (KM/H) 

WIND DIRECTION (°) 

SOLAR RADIATION (W/M²) 

PRECIPITATION (MM) - PESO DA RÉGUA 

LISBON TEMPERATURE (°C) 

PORTO TEMPERATURE (°C) 

ÉVORA TEMPERATURE (°C) 

AVERAGE TEMPERATURE (°C) - LISBON, PORTO, ÉVORA 

MARGINAL PRICES - SPANISH SYSTEM 

MARGINAL PRICES - PORTUGUESE SYSTEM 

ENERGY TRADED - DAY-AHEAD MARKET 
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TOTAL MATCHED ENERGY PURCHASED - SPANISH SYSTEM 

TOTAL MATCHED ENERGY SOLD - SPANISH SYSTEM 

TOTAL MATCHED ENERGY PURCHASED - PORTUGUESE SYSTEM 

TOTAL MATCHED ENERGY SOLD - PORTUGUESE SYSTEM 

IMPORTS FROM PORTUGAL TO SPAIN 

EXPORTS FROM SPAIN TO PORTUGAL 

IBERIAN MARKET ENERGY (INCLUDING BILATERAL TRADES) 

 

 

TABLE V-LIST OF CATEGORICAL VARIABLES USED ON ORIGINAL DATASET 

CATEGORICAL VARIABLES  

HOUR 

DIRECTION OF THE WIND  

DAY OF THE WEEK  

WEEKDAY OR WEEKEND  

HOLIDAY INDICATOR  
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