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GLOSSARY 

AdaBoost - Adaptive Boosting. 

AUC - Area Under Curve. 

BiGRU - Bidirectional Gated Recurrent Units. 

BiLSTM - Bidirectional Long Short-term Memory. 

CCF – Credit Card Fraud. 

CIS - Computational Intelligence Society. 

CNN - Convolutional Neural Network. 

CRISP-DM - Cross-Industry Standard Process for Data Mining. 

DRF - Distributed Random Forest. 

FNN - Feedforward Neural Networks. 

GAN - Generative Adversarial Network. 

GBDT - Gradient Boosting Decision Tree. 

GPU - Graphics Processing Unit. 

IEEE - Institute of Electrical and Electronics Engineers. 

ML - Machine Learning. 

PR - Precision Recall. 

RAM - Random Access Memory. 

ROC - Receiver Operating Characteristic. 

RUS - Random Undersampling.  

SMOTE - Synthetic Minority Oversampling Technique. 

XGBoost - eXtreme Gradient Boosting. 
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ABSTRACT 

Credit card fraud detection is a key application of machine learning, but real-world 

fraud datasets are often highly imbalanced, with only a very small number of fraudulent 

transactions. The objective of this study is to explore how class imbalance affects model 

performance in fraud detection and to evaluate whether resampling strategies improve 

results. This paper investigates the impact of class imbalance on model performance and 

evaluates the effectiveness of several resampling techniques in improving prediction 

results. The XGBoost algorithm is used as a baseline classifier and trained on the original 

imbalanced data and data processed with various sampling strategies. Results show that 

XGBoost performs well even on the original imbalanced dataset after adjusting the class 

weights (scale_pos_weight). While SMOTE and SMOTETomek slightly improve 

precision, they reduce recall; NearMiss achieves the highest recall but has very low 

precision. This suggests that there may be a trade-off between identifying fraud and 

avoiding false positives. 

This study emphasizes the importance of selecting a sampling strategy that considers 

not only technical performance but also business objectives. In many real-world 

applications, algorithm-level tuning methods may be simpler and more efficient than 

data-level resampling. The paper discusses the limitations of the algorithm and future 

work directions, including interpretability, data leakage risks, and the potential of 

threshold tuning or online learning strategies. 

 

 

KEYWORDS: Financial Fraud Detection; Machine Learning; XGBoost; Resampling. 

 

 

JEL CODES: C45; C52; G21; G32. 



 

iv 

 

TABLE OF CONTENTS 

Erratum ........................................................................................................................ i 

Glossary ...................................................................................................................... ii 

Abstract ...................................................................................................................... iii 

Table of Contents....................................................................................................... iv 

Table of Figures ......................................................................................................... vi 

Acknowledgments .................................................................................................... vii 

1. Introduction ............................................................................................................. 1 

2. Literature Review .................................................................................................... 4 

2.1 Class Imbalance in Fraud Detection .................................................................. 4 

2.2 Resampling Techniques ..................................................................................... 5 

2.3 Machine Learning Algorithms........................................................................... 7 

3. Methodology .......................................................................................................... 11 

3.1 Dataset and Tools ............................................................................................ 11 

3.2 Model Description ........................................................................................... 13 

3.3 Evaluation Metrics ........................................................................................... 15 

3.4 Experimental Procedure .................................................................................. 17 

3.4.1 Preliminary Analysis ........................................................................ 18 

3.4.2 Feature Engineering .......................................................................... 22 

3.4.3 Model Training and Evaluation ........................................................ 23 

4. Results ................................................................................................................... 25 

5. Discussion .............................................................................................................. 34 

5.1 Comparison with Previous Studies .................................................................. 34 

5.2 Business Considerations .................................................................................. 35 

6. Conclusions ........................................................................................................... 37 



 

v 

 

References ................................................................................................................. 39 



 

vi 

 

TABLE OF FIGURES 

FIGURE 1  – Data Imbalance Count. ........................................................................... 19 

FIGURE 2  – Distribution of Transaction Amount. ..................................................... 19 

FIGURE 3  - Distribution of Log-Transformed Transaction Amount. ........................ 20 

FIGURE 4  - Fraud Rate Over Time ............................................................................ 20 

FIGURE 5  - Top 10 email domains with the highest fraud rates................................ 21 

FIGURE 6  - Correlation Heatmap .............................................................................. 21 

FIGURE 7  - Accuracy Comparison ............................................................................ 26 

FIGURE 8  - Precision Comparison............................................................................. 27 

FIGURE 9  - Recall Comparison ................................................................................. 27 

FIGURE 10  - F1 Comparison ..................................................................................... 28 

FIGURE 11  - AUC Comparison ................................................................................. 28 

FIGURE 12  - ROC Curve Comparison ...................................................................... 29 

FIGURE 13  - PR Curve Comparison .......................................................................... 29 

FIGURE 14  - Accuracy Comparison On Subset......................................................... 30 

FIGURE 15  - Precision Comparison On Subset ......................................................... 31 

FIGURE 16  - Recall Comparison On Subset .............................................................. 31 

FIGURE 17  - F1 Comparison On Subset .................................................................... 32 

FIGURE 18  - AUC Comparison On Subset ............................................................... 32 

FIGURE 19  - ROC Comparison On Subset ................................................................ 33 

FIGURE 20  - PR Comparison On Subset ................................................................... 33 

 



 

vii 

 

ACKNOWLEDGMENTS 

First, I would like to thank Professor Carlos J. Costa for his patient guidance and 

constant encouragement. The thesis guidance across multiple time zones has given me a 

deeper understanding of a professional professor and scholar. Our discussions on the 

content of the thesis have also given me a lot of inspiration. 

At the same time, I would like to thank my sister Lin ZHU, her concern helped me 

get through the weeks of insomnia. 



 1 

1. INTRODUCTION 

Information technology is developing rapidly day by day, which has revolutionized 

the financial industry, and is leading to an obvious shift from cash-based transactions to 

digital payment, including online banking, mobile payments, and credit card transactions. 

But meanwhile, there are also challenges born with the revolution. Credit Card Fraud 

(CCF) has emerged as one of the most important issues for banks, payment processors, 

and e-commerce platforms worldwide. It results in billions of dollars in annual loss 

(Tiwari et al., 2021). But for the safety of their customers' funds and their own good 

reputation, financial institutions will obviously not sit idly by. They also use the advanced 

achievements of information technology to arm themselves. In order to detect which 

credit card transactions are fraudulent transactions, they have developed automatic fraud 

detection systems. The common ones are Machine Learning (ML) models (Alarfaj et al., 

2022). But building  models, making it work well in reality, and being able to accurately 

identify fraudulent transactions is not as simple as just described. 

One of the main challenges in credit card fraud detection is the class imbalance 

problem (Kalid et al., 2024, p. 23641). Class imbalance refers to the situation where the 

number of training examples for different classes in a classification task varies greatly. In 

most real-world transaction datasets, the number of legitimate transactions far exceeds 

the number of fraudulent transactions. This imbalance poses a serious problem for 

traditional machine learning classifiers, as classifiers tend to optimize overall accuracy 

by favoring the majority class. This often leads to learning biases that make the model 

poorly generalize to minority class patterns. And performance metrics can also be 

misleading when accuracy is the primary evaluation criterion. Because the proportion of 

fraudulent transactions is very small, a model may achieve a seemingly high accuracy 

simply by predicting all transactions as non-fraudulent transactions. However, this 

completely fails to detect real fraud cases, which seriously undermines the model's utility 

in real-world applications. Because in real-world applications, the model needs to identify 

a small number of fraudulent activities that cause financial losses and damage the 

company's reputation. 

To address this, researchers have proposed various resampling techniques to balance 

the class distribution before model training (Mohammed et al., 2020). However, there 
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remains limited consensus on which sampling strategies work best under different 

conditions.  

This study aims to investigate how resampling techniques affect the performance of 

machine learning models for credit card fraud detection. Specifically, the objectives are: 

1. To investigate the impact of class imbalance on the performance of financial fraud 

detection using XGBoost model. 

2. To compare the performance of various resampling strategies, including 

undersampling (such as NearMiss), oversampling (such as SMOTE), and hybrid sampling 

(such as SMOTETomek). 

3. To analyze the practical implications of resampling in real-world financial systems. 

In this article, a machine learning-based fraud transaction detection system has been 

deployed on the IEEE-CIS Fraud Detection dataset, which is an imbalanced transaction 

dataset provided by Kaggle, to study how resampling techniques will affect the 

performance of machine learning models and the applicability of various sampling 

techniques in reality. 

This study uses a systematic experimental approach to evaluate the impact of various 

resampling techniques on the fraud detection performance of the XGBoost model. First, 

the IEEE-CIS Fraud Detection dataset is divided into a training set and a test set. Then, 

the following steps are conducted: 

1. Baseline model: The training set is initially used without any resampling, and the 

baseline XGBoost model is trained directly on the imbalanced data. 

2. Resampling techniques: Four common resampling methods are applied to the 

training set to tackle the class imbalance problem of the dataset: 

- The undersampling method NearMiss 

- The undersampling method RUS 

- The oversampling method SMOTE 

- The hybrid method combining SMOTE and Tomek Links, SMOTETomek 
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3. Model training and evaluation: An XGBoost model is trained for each resampled 

version of the training data, resulting in a total of five models (including the baseline 

model). 

4. Performance comparison: All models are evaluated on the same test set, and five 

key performance indicators are used: Accuracy, Precision, Recall, F1 score, and AUC. In 

addition, ROC and precision-recall (PR) curves are plotted for intuitive comparison. 

This approach enables a comprehensive evaluation of how different resampling 

strategies affect model performance in the imbalanced fraud detection task. The full 

source code used in this study is available at Li Zhu (2025). 

The rest of this paper is organized as follows: Section 2 will review the research 

background and explain the related works in detail. The proposed model, resampling 

techniques, and methodology will be elaborated on in Section 3. Section 4 is used to 

present the data results of the study. The discussion of the data results is placed in Section 

5. Section 6 is the final conclusion of this paper. 
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2. LITERATURE REVIEW 

2.1 Class Imbalance in Fraud Detection 

CCF occurs when a credit card or account details are used by someone other than the 

cardholder to conduct an illegal transaction. Criminals often use this method to trick the 

cardholder into paying money into a bank account they control or to obtain goods and 

services (Bin Sulaiman et al., 2022). Typically, stolen, lost or counterfeit credit cards can 

lead to this fraud. With the increase in online shopping, card-not-present fraud is 

becoming more and more common (Tiwari et al., 2021). 

Given the number of credit card transactions that occur every minute around the world, 

it is obviously impossible to rely on a manual review of the legality of each transaction. 

Therefore, the credit card fraud transaction detection system is used to automatically filter 

out those abnormal transactions. However, in actual transactions, the vast majority of 

transactions are legal, and fraudulent behavior is only a minor anomaly. Fraudsters will 

use various means to deliberately disguise themselves as normal users to avoid being 

identified by the detection system. The monitoring or detection systems of banks and 

trading platforms will promptly identify and block the fraudsters' means. As a result, the 

battle between fraud and anti-fraud has evolved into an endless marathon. 

ML models are widely used on this battlefield (Tiwari et al., 2021). Financial 

institutions use them to learn, identify, and label fraudulent transactions. Faced with the 

ever-changing fraud methods, fraud transaction detection systems are also constantly 

evolving and fighting against them. Many scholars and experts have conducted relevant 

research on this topic.  

Kalid et al. (2024) selected and studied 87 papers written in English and published 

from 2016 to 2023 that used public credit card fraud datasets to conduct academic 

research on credit card fraud transaction detection. They found that the problem of class 

distribution imbalance is one of the two main problems of the dataset, and all the research 

articles they screened have attempted to solve this problem. Because conventional 

machine learning models tend to be more biased towards the majority class, they cannot 

effectively detect the critical minority class that accounts for a small proportion (such as 

credit card fraud transactions that are small in proportion but highly harmful). In their 
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study, they found that the three most commonly used technologies to solve this problem 

are deep learning and neural networks, ensemble learning, and sampling methods. 

 

2.2 Resampling Techniques 

Using resampling techniques to modify the data distribution in the training dataset is 

one of the common methods to solve the class imbalance problem (Muaz et al., 2020). 

Resampling methods can be roughly divided into three categories: undersampling, 

oversampling, and hybrid sampling (Khushi et al., 2021). Undersampling aims to reduce 

the size of the majority class to match the minority class. This can improve balance but 

may lose important information. On the other hand, oversampling increases the number 

of minority class samples by copying existing instances or generating synthetic instances, 

but there is also a potential risk of overfitting. Hybrid sampling is a combination of 

undersampling and oversampling, which can avoid the defects of undersampling or 

oversampling to a certain extent and obtain a more ideal data structure. 

NearMiss is a class of undersampling methods that aims to balance the class 

distribution by selectively removing majority class samples based on their distance from 

minority class samples. Specifically, NearMiss retains the majority class samples that are 

closest to the minority class, allowing the model to focus on more ambiguous or difficult 

areas of the decision boundary. There are multiple variants of NearMiss (e.g., NearMiss-

1, NearMiss-2), each of which using a different strategy to determine which majority class 

instances to keep (Mqadi et al., 2021). This approach helps improve recall but may lose 

valuable information in the majority class. 

The random undersampling (RUS) technique randomly removes samples from the 

majority class to balance the entire dataset, which is simple and fast (Prusa et al., 2015). 

However, this method is completely random, so it does not take into account the data 

distribution of the dataset itself, so characteristic samples may be discarded when 

removing samples, resulting in potential information loss (Hasanin & Khoshgoftaar, 

2018). To solve this problem, I applied Tomek Links after RUS to further clean up the 

boundaries between classes. Tomek Links exist between two samples that are adjacent to 

each other and belong to different classes. Removing such links helps reduce overlapping 
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and ambiguous samples, thereby improving the classifier's performance (Mittal et al., 

2025). 

Synthetic Minority Oversampling Technique (SMOTE) is an oversampling technique 

that synthetically generates new instances of the minority class by interpolating between 

existing minority class samples and their nearest neighbors. Instead of simply duplicating 

existing observations, SMOTE identifies k nearest neighbors for each minority class 

instance in the feature space. For each new synthetic sample, the algorithm randomly 

selects one or more of these nearest neighbors and generates a new data point along the 

line segment connecting the original instance and the selected nearest neighbor, which is 

scaled with a random value between 0 and 1. The core assumption behind SMOTE is that 

similar instances (i.e., instances that are close to each other in feature space) belong to the 

same class and have similar properties (Chawla et al., 2002). Therefore, SMOTE provides 

a more diverse and generalized set of training samples by interpolating in feature space 

instead of duplicating data in data space. This generally improves the performance of 

classifiers on imbalanced datasets (Almazroi & Ayub, 2023). However, a key limitation 

of SMOTE is that synthetic instances may not always reflect the true underlying data 

distribution. Since it assumes a linear relationship between neighboring samples, it may 

introduce ambiguous or noisy data points, especially in areas where classes overlap or 

feature distributions are highly nonlinear. This can sometimes increase the risk of 

overfitting or reducing precision, thereby degrading the performance of the model 

(Tarawneh et al., 2022). 

SMOTETomek is a hybrid sampling technique that combines the advantages of 

SMOTE (oversampling) and Tomek Links (undersampling) to improve the diversity of 

minority class samples and the quality of class boundaries (Wang et al., 2019). After 

applying SMOTE to generate synthetic minority class instances, the Tomek Links 

algorithm is used to further optimize the dataset to identify and remove boundary 

instances that may introduce noise or class overlap. As mentioned earlier, a Tomek Link 

exists between a pair of samples from different classes that are adjacent to each other. 

Such sample pairs are considered ambiguous and are usually located near the decision 

boundary. In SMOTETomek, the majority class instances in each Tomek Link are 

removed to clean up the boundaries and reduce class ambiguity (Shabrina Assyifa & 

Luthfiarta, 2024). On the one hand, SMOTETomek improves recall by adding synthetic 
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minority class samples, and on the other hand, it also improves precision and 

generalization by removing majority class samples that may be noisy or overlapping. As 

a result, SMOTETomek generally achieves a better balance between sensitivity (recall) 

and specificity (precision), making it particularly effective for real-world fraud detection, 

medical diagnostics, or any field where both types of errors (false positives and false 

negatives) carry significant costs. 

 

2.3 Machine Learning Algorithms 

The problem of data class imbalance has long attracted the attention of researchers. A 

wide range of ML algorithms has been applied. 

Many scholars have tried to use different classifiers with resampling methods to 

explore ways to solve the problem of data imbalance. For example, Ghosh et al. (2024) 

revealed the similarities and differences between deep neural networks and traditional 

machine learning models under class imbalance through systematic literature review and 

empirical experiments, and pointed out the limitations of existing solutions. Through 

literature review, they confirmed that although deep learning has stronger feature learning 

capabilities, class imbalance still causes the model to be biased towards the majority class. 

However, current measures seem to have defects, such as: traditional interpolation 

methods are difficult to apply to image data, and resampling methods are usually only 

applied at the small batch level, which will affect the efficiency of model training.  

 Muaz et al. (2020) pointed out that the cost of misclassification is significantly 

asymmetric: misclassifying normal transactions as fraud (false positive) will cause 

management costs to the company, while missing fraudulent transactions (false negative) 

will lead to direct financial losses. Therefore, this study emphasizes that recall should be 

used as a core indicator to maximize the recognition rate of fraudulent transactions (true 

positive rate). To address the problem of class imbalance, the author systematically 

compared the combined effects of four sampling strategies and four classifiers. 

Experiments show that SMOTE oversampling performs best; the Distributed Random 

Forest (DRF) classifier achieves the highest recall rate (0.81) and precision rate (0.86) on 

the SMOTE dataset, proving that synthesizing minority class samples can effectively 

improve the model's capture of fraud patterns. 
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Meng et al. (2020) studied the performance of the XGBoost algorithm on the original 

dataset, undersampled dataset, and SMOTE dataset based on the real online transaction 

data of an Internet financial institution. The credit fraud samples in the original dataset 

only accounted for 0.172% of all samples. After oversampling using the SMOTE 

algorithm, the XGBoost classifier achieved convincing results of 0.9 recall and 0.98 AUC. 

They believe that SMOTE balances the original dataset and improves the stability and 

generalization ability of the classifier. 

In order to solve the problem of class imbalance, Cheah et al. (2023) innovatively 

introduced two hybrid technology solutions, SMOTE+GAN and GANified-SMOTE. 

They used FNN, CNN and FNN+CNN as classifiers. The research results highlight the 

powerful performance of GANified-SMOTE, a hybrid sampling technology, especially 

when combined with the proposed FNN+CNN classifier, which is particularly 

outstanding in improving the F1 score of fraud data. The high F1 score indicates that this 

method is able to identify a large number of fraudulent transactions and reduce the 

misclassification of legitimate transactions. In addition, this study also emphasizes the  

importance of the classifier hyperparameter settings. Reasonable settings will have a 

positive impact on classification performance. Singh et al. (2022) used several resampling 

methods and different classifiers and compared multiple performance indicators obtained 

after model training, such as accuracy, recall, K-fold cross validation, AUC-ROC curve, 

and execution time. They found that for ensemble classification models such as AdaBoost, 

XGBoost, and Random Forest, the method of oversampling followed by undersampling 

performed well. Rubaidi et al. (2022) applied and experimented with two undersampling 

techniques, Random Undersampling and NearMiss, and three oversampling techniques, 

Random Oversampling, SMOTE, and BorderLine SMOTE, and used different evaluation 

metrics to evaluate the classifiers. They concluded that the Random Forest model with 

Random Oversampling achieved an accuracy of 99.3%. This is because the Random 

Forest classifier categorizes samples based on the majority vote of multiple decision trees. 

They also observed that oversampling achieved better results than undersampling for 

different classifiers. Mittal et al. (2025) also applied SMOTE and Tomek Link for 

resampling in their study on the impact of imbalanced datasets on classification machine 

learning models. Experimental data showed that the performance of some classifiers was 

indeed improved. 
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But not everyone thinks that resampling techniques are the only effective method, and 

they use different methods to improve the performance of models. The research of Zhang 

et al. (2020) shows that feature engineering and visualization also have a positive effect 

on improving model performance. Dedy Trisanto et al. (2021) proposed an improved 

Focal Loss method that does not require traditional data preprocessing steps such as 

sampling or outlier detection. This method is based on weighted binary cross-entropy and 

introduces an imbalance parameter to adjust the loss function to increase the model's 

attention to minority classes in the data set, achieving excellent performance of 0.88 

precision and 0.87 recall. 

Ileberi et al. (2021) implemented several machine learning algorithms for credit card 

fraud detection and paired them with AdaBoost technology to improve the performance 

of classifiers. Experimental results show that the use of the AdaBoost algorithm has a 

positive impact on some machine learning methods, with a test accuracy of more than 

99%. Tarawneh et al. (2022) criticized the direction of using oversampling methods to 

solve class imbalance problems in sensitive fields. They believe that current oversampling 

methods are misleading. Their verification on real-world datasets shows that current 

common oversampling methods generate wrong samples, which are likely to cause 

prediction errors, making them unreliable in practical applications. Synthesized samples 

may not accurately represent minority groups, leading to potential failures in practice. 

Therefore, they recommend avoiding the use of oversampling techniques in sensitive 

applications such as security and healthcare. 

 Through research, Carvalho et al. (2025) believe that no resampling method can 

guarantee excellent performance in all application scenarios. Balancing the classes in a 

dataset does not inherently mitigate all biases in the data. When choosing a resampling 

method, one should always consider not only the specific application and user preferences 

but also the data characteristics of different categories in the dataset. Brandt & Lanzén 

(2020) also found that as the degree of class imbalance changes, no resampling technique 

always plays a positive role in contributing to performance improvement. Resampling 

techniques can sometimes improve the overall performance of the model, but sometimes 

give results similar to the unprocessed data model, or even reduce performance. de la 

Bourdonnaye & Daniel (2022) believes that resampling methods that can complete 

processing in a reasonable time are more worthy of consideration, so they also take 
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computing time into consideration. Based on this criterion, they use selected resampling 

methods on large-scale data sets to compare the impact of resampling on the performance 

of different models. The results show that resampling technology does not show higher 

efficiency and performance.
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3. METHODOLOGY 

This study adopts the CRISP-DM (Cross-Industry Standard Process for Data Mining) 

framework to guide the experimental workflow. The CRISP-DM process provides a 

systematic approach to building data mining projects, including stages such as problem 

understanding, data preparation, modeling, evaluation, and result interpretation (Costa,  

& Aparicio, 2020, Costa & Aparicio, 2021). 

With this framework, this study aims to investigate how class imbalance impacts the 

performance of machine learning models in credit card fraud detection, utilizing the 

XGBoost algorithm. The IEEE-CIS fraud detection dataset is characterized by an 

imbalance between fraudulent and legitimate transactions, and the dataset is employed to 

replicate real-world scenarios. 

Six experiments are conducted: one with the original dataset and four with different 

resampling techniques — NearMiss, RUS combined with Tomek Links, SMOTE, and 

SMOTETomek. The sixth is an additional experiment using SMOTE on a small sample 

set. Each model is evaluated on a consistent test set using multiple performance metrics, 

including accuracy, precision, recall, F1, AUC, and diagnostic visualization tools such as 

ROC curves and PR curves. 

This methodology is closely aligned with the research objectives: assessing the impact 

of class imbalance, evaluating common resampling techniques, and explaining their 

practical implications for real-world financial systems. 

 

3.1 Dataset and Tools 

The dataset used in the experiments in this article is the IEEE-CIS Fraud Detection 

dataset. The IEEE-CIS Fraud Detection dataset was provided by Vesta in 2019 for 

Kaggle's "IEEE-CIS Fraud Detection" competition (IEEE Computational Intelligence 

Society, 2019), which aims to use machine learning models to identify fraudulent online 

transactions in consumer transaction data. The dataset comes from e-commerce 

transaction records collected by Vesta in the real world, containing more than 590,000 

transaction records, of which about 3.5% are marked as fraudulent transactions, 

highlighting the serious class imbalance inherent in real-world fraud detection scenarios.  
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The dataset is mainly divided into two parts: 

-Transaction data: contains details such as transaction amount, product code, payment 

card information, and anonymous features marked as V1 to V339 for privacy protection 

purposes. 

-Identity data: contains information related to device type, browser details, and other 

user-specific attributes. 

The two datasets are linked by a common identifier "TransactionID" and can be 

combined for comprehensive analysis. 

The main goal of using this dataset is to develop machine learning models that can 

predict the possibility of transaction fraud. Given the complexity of this dataset (including 

high dimensionality and class imbalance), it is an excellent benchmark for testing various 

sampling techniques and classification algorithms, and is widely used by researchers and 

machine learning enthusiasts. 

This paper will use this classic, class-imbalanced, real-world fraud transaction dataset 

to study how various sampling techniques affect the accuracy and usability of machine 

learning models for abnormal transaction detection. 

Since this dataset is a competition dataset, there are no fraud labels in the official test 

set, so it is impossible to test the performance of the model training. Therefore, the 

training set on the official website is used as the original dataset to ensure that the 

performance of the model has intuitive data charts for comparison. In the following text, 

this dataset will be divided into training set and test set in a ratio of 8 to 2. 

All experiments in this study were conducted using Kaggle Notebooks, a cloud-based 

Jupyter Notebook environment widely used in data science and machine learning 

research. The platform provides pre-installed libraries and efficient GPU acceleration, 

enabling rapid training and evaluation of models on large-scale datasets. At the same 

time, since the IEEE-CIS Fraud Detection dataset is a competition dataset of Kaggle, it 

does not need to be downloaded and can be directly imported. 

The hardware and system specifications are as follows: 

- GPU accelerator: NVIDIA Tesla P100 
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- RAM: 30 GB RAM 

- Storage space: 57.6 GB available disk space 

- Python version: Python 3.10 

In order to solve the class imbalance problem, the imbalanced learning library 

(version 0.10.1) was installed in the Notebook environment using the "!pip install 

irrebalanced-learn==0.10.1" command. 

The library provides a variety of resampling techniques, such as NearMiss, RUS, 

Tomek Links, SMOTE, and SMOTETomek, which are essential for the comparative 

analysis in this study. The resampling techniques used are described in detail later. 

The full set of tools and libraries used in the experimental process include: 

- XGBoost: for building and training gradient-boosting classification models 

- imbalanced-learn: for applying various resampling techniques to imbalanced 

datasets 

- Scikit-learn: for model evaluation and metric calculation (e.g., precision, recall, F1, 

AUC) 

- Pandas and NumPy: for data manipulation and preprocessing 

- Matplotlib and Seaborn: for visualizing evaluation metrics, such as ROC curves, PR 

curves, and bar charts 

 

3.2 Model Description 

eXtreme Gradient Boosting (XGBoost) is an ensemble learning algorithm based on 

the idea of Gradient Boosting Decision Tree (GBDT), proposed by Chen & Guestrin in 

2016. It has become one of the most widely used algorithms in machine learning 

competitions and practical applications (such as fraud detection, recommendation 

systems, and search ranking). 

The GBDT algorithm is an ensemble learning method that combines multiple weak 

learners (usually shallow decision trees) in a sequential manner. Each new decision tree 
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is trained to minimize the error caused by the previous tree ensemble and uses gradient 

descent on the loss function. 

Compared with traditional GBDT, XGBoost contains the following key 

improvements: 

- Regularization: XGBoost adds L1 and L2 regularization terms in the objective 

function, which helps prevent overfitting and improves model generalization ability. 

- Tree pruning and parallelization: Although the tree is still built sequentially, 

XGBoost performs optimized parallel calculations during the node-splitting process of 

each tree, which significantly improves efficiency. 

- Column subsampling: Similar to random forest, XGBoost randomly extracts a subset 

of features when building trees, which reduces overfitting and speeds up computation. 

- Missing value handling: XGBoost automatically learns the best direction for missing 

values, making it robust to incomplete data. 

- Shrinkage and learning rate: A shrinkage factor is applied after adding each tree to 

slow down the learning process and improve performance (Chen & Guestrin, 2016). 

Considering the large number of missing values in the selected dataset, and XGBoost 

has advantages in both prediction accuracy and computational efficiency, I chose it as the 

model for the experiments in this paper. 

The following hyperparameters were set in the XGBoost model in this article: 

- n_estimators=500: This is the number of decision trees in the ensemble. Generally, 

more trees give better results, but are slower to compute. 

- max_depth=9: This is the maximum depth of each tree. Deeper trees can capture 

more complex patterns, but increase the risk of overfitting. 

- subsample=0.9: This is the proportion of training instances used in each boosting 

round. Using only 90% of the instances can prevent overfitting. 

- colsample_bytree=0.9: This is the proportion of features used when building each 

tree. Each tree randomly uses 90% of the feature columns to avoid over-reliance on 

certain features, which also helps reduce overfitting. 

- missing=-999: All missing values are filled with -999 to avoid errors. 
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- device='cuda': This means that the model is trained on the GPU provided by the 

kaggle notebook, which can speed up training. 

- reg_alpha=0.1 and reg_lambda=1: These are L1 and L2 regularization terms, which 

are used to control model complexity and prevent overfitting. 

- eval_metric='auc': The model is evaluated based on the AUC of the ROC curve, 

which is suitable for imbalanced classification problems. 

- scale_pos_weight=19: (Only for the original imbalanced dataset) Balance the 

positive and negative classes by increasing the weight of the minority class. 

 

3.3 Evaluation Metrics 

This part will introduce the metrics used to measure the effectiveness of the fraud 

detection model. 

The first is accuracy, which refers to the proportion of samples predicted correctly by 

the model to the total number of samples, and the mathematical formula is: 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑇𝑃 + 𝑇𝑁

𝑇𝑃 + 𝑇𝑁 + 𝐹𝑃 + 𝐹𝑁
 

TP is a true positive example (predicted as fraud, and it is fraud), TN is a true negative 

example (predicted as non-fraud, and it is non-fraud), FP is a false positive example 

(predicted as fraud, and it is non-fraud), and FN is a false negative example (predicted as 

non-fraud, and it is fraud). This metric is very intuitive, but in severely unbalanced data, 

accuracy is easy to mislead. For example, 99% of transactions are normal. Even if the 

model predicts all transactions as "non-fraud", accuracy can be as high as 99%, but the 

model is actually completely ineffective. 

The second is precision, which is the proportion of all transactions predicted as 

"fraud" that are actually fraud. The formula is: 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑃
 

It is usually used to measure the probability of false positives. The higher the 

precision, the fewer normal users are hurt by mistake and the less impact on user 

experience. It is especially suitable for scenarios where the cost of false positives is high, 
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such as when a user's transaction is locked or the account is frozen because it is misjudged 

as a fraudulent transaction. 

The third is recall, which refers to the proportion of all real fraudulent transactions 

that are correctly identified by the model. The formula is: 

𝑅𝑒𝑐𝑎𝑙𝑙 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
 

It is generally used to measure the false negative rate. The higher the recall, the 

stronger the model's ability to identify fraudulent transactions. This is very critical in 

fraud detection, because missing real fraud may cause financial losses. 

The fourth is F1-score, which is the harmonic mean of precision and recall and is a 

comprehensive balance indicator of the two. The formula is: 

𝐹1 = 2 ∗
𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 ∗ 𝑅𝑒𝑐𝑎𝑙𝑙

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑅𝑒𝑐𝑎𝑙𝑙
 

When it is necessary to strike a balance between avoiding false positives and catching 

as many frauds as possible, the F1-score is a key indicator. In model evaluation, the F1-

score is a common comprehensive indicator for imbalanced data sets. 

The fifth is the Receiver Operating Characteristic (ROC) Curve, which is a curve 

drawn with the false positive rate (FPR) as the horizontal axis and the true positive rate 

(TPR, i.e. recall) as the vertical axis. The calculation formula is: TPR = TP / (TP + FN), 

FPR = FP / (FP + TN). In fraud detection, it is used to observe the performance of the 

model at different thresholds. Generally, the closer the curve is to the upper left corner, 

the better the model performs. 

The sixth is the Area Under Curve (AUC), which is the area under the ROC curve and 

measures the model's ability to distinguish between positive and negative classes. Its 

value range is between 0.5 and 1, where 0.5 means that the model is no different from 

random guessing and 1 represents perfect prediction. In other words, the closer the AUC 

is to 1, the more capable the model is at distinguishing fraud from non-fraud. When the 

samples are imbalanced, AUC is a more reliable overall performance indicator than 

accuracy. 



   

 

 
17 

 

The last is the Precision-Recall(PR) Curve, which is a curve drawn with the model's 

recall as the horizontal axis and precision as the vertical axis. The PR curve can directly 

reflect the model's true ability to detect fraud. By comparing the PR curves of multiple 

models, researchers can determine which model can recall more fraud while maintaining 

high precision. 

 

3.4 Experimental Procedure 

The experiment follows a structured data preprocessing, model training, and 

performance evaluation pipeline. The specific steps are as follows: 

Step 1: Dataset Import and Preliminary Analysis 

After importing the data, a preliminary analysis was performed to check the 

distribution of the target variable. 

Step 2: Feature Engineering and Data Preparation 

After loading the data, multiple feature engineering techniques were applied. Non-

numeric columns were encoded using label encoding to make the dataset suitable for 

XGBoost. The dataset was then split into training and test sets. 

Step 3: Baseline Model Training without Resampling 

As a baseline, we trained the training set without any resampling techniques. An 

XGBoost classifier was trained on this imbalanced dataset and the scale_pos_weight 

parameter was used to handle the class imbalance. The model was then evaluated on the 

test set. 

Step 4: Model Training with Four Resampling Techniques 

To address the class imbalance issue, we apply three resampling techniques to the 

training set: 

- NearMiss 

- RUS with Tomek Links 

- SMOTE 
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For each resampled dataset, we train and evaluate a separate XGBoost model (with 

the same hyperparameters but without scale_pos_weight) and evaluate it on the same test 

set. This allows for a direct comparison of model performance under different resampling 

strategies. 

Step 5: Fair Comparison of SMOTETomek and SMOTE Results 

Due to the large size of the original dataset (~590,000 rows), applying SMOTETomek 

to the full dataset causes the Kaggle Notebook environment to crash. To mitigate this 

issue, a subset of 120,000 samples was randomly extracted from the dataset for 

SMOTETomek-based training and testing. The same 120,000 sample subset was then 

used to train and test the SMOTE-based model. The XGBoost classifier settings used in 

this step are the same as those in step 4, to compare the impact of SMOTETomek and 

SMOTE on the performance of the classifier on a small sample subset. 

Step 6: Performance evaluation and metric comparison 

Use common classification metrics (accuracy, precision, recall, F1 score, and AUC) 

to evaluate model performance in all five experimental settings. The results are visualized 

using bar charts and ROC/PR curves for direct comparison. 

 

3.4.1 Preliminary Analysis 

After loading and merging the dataset, we first observe the ratio of positive and 

negative samples and the missing values. From Figure 1, we can see that fraudulent 

transactions account for about 3.5% of the dataset. The dataset has 590,540 rows and 433 

columns, of which 414 columns have missing values. 

 



   

 

 
19 

 

 

FIGURE 1 – Data Imbalance Count. 

Next, let's look at the distribution histogram of TransactionAmt, with the horizontal 

axis being the transaction amount and the vertical axis being the frequency. As can be 

seen from Figure 2, the distribution of TransactionAmt is highly right-skewed, indicating 

that most transaction amounts are relatively small, while a small number of high-value 

transactions extend to the tail. This imbalance may cause the model to underestimate 

high-value fraudulent transactions, so we use a logarithmic transformation to reduce the 

impact of extreme values and normalize the distribution. The results after logarithmic 

transformation are shown in Figure 3. 

 

FIGURE 2 – Distribution of Transaction Amount. 
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FIGURE 3 - Distribution of Log-Transformed Transaction Amount. 

 

 

FIGURE 4 - Fraud Rate Over Time 

 

Figure 4 is a graph of fraud rates over time. As can be seen in the figure, the fraud 

rates fluctuate over time, with increased fraud activity on certain dates. This suggests that 

the incidence of fraud is not evenly distributed over time, which may indicate the presence 

of coordinated attack cycles or time patterns. 
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FIGURE 5 - Top 10 email domains with the highest fraud rates 

 

Figure 5 is a bar graph of the relationship between email domain names and fraud 

rates, listing the top 10 email domains with the highest fraud rates. 

 

FIGURE 6 - Correlation Heatmap 
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Figure 6 shows a heatmap of the correlation between some numerical features and 

fraud. The correlation between these features and the target label "isFraud" is minimal, 

indicating that a few features alone are not strong predictors of fraudulent activity. This 

highlights the need for more sophisticated feature engineering and model-based 

approaches. 

 

3.4.2 Feature Engineering 

To improve model performance and provide more signals for fraud detection,  several 

feature engineering techniques were applied before model training. 

First, the dataset was divided into two subsets, X and Y. X contains all transaction 

features, and Y only contains information on whether it is fraudulent. All feature 

engineering techniques were performed on the subset X. 

Second, TransactionAmt was log-transformed to reduce right skewness and stabilize 

variance. In addition, a missing value count feature (null value) was created for each row 

to capture potential information in the sparse pattern of the data. 

Next, frequency encoding was applied to high-cardinality categorical variables such 

as card1, card2, addr1, addr2, P_emaildomain, ProductCD, card4, card6, and 

DeviceType. These frequency-based features provide contextual information about how 

common each value is in the dataset. 

Aggregate features (including mean and standard deviation) were also created using 

TransactionAmt grouped by card1 and addr1 to capture user-level transaction patterns. 

Several time-based features are derived from TransactionDT, such as transaction 

hour, date, weekday, hour interval, and whether the transaction occurred on the weekend. 

These features help identify behavioral or temporal patterns associated with fraud. 

The email domain field is simplified to general categories (e.g., Gmail, Yahoo, 

Hotmail) and then label encoded. In addition, the DeviceInfo field is parsed to extract 

device brand information, and a binary variable is_mobile is created based on 

DeviceType. 
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Finally, combined categorical features (e.g., card1_card4 and addr1_email) are 

constructed and frequency encoded to capture potential interactions between user 

identifiers and email addresses. 

These feature engineering steps aim to enrich the dataset by deriving variables to 

enhance the model's ability to detect fraudulent transactions while maintaining reasonable 

computational efficiency. 

Since XGBoost requires all features to be numeric, all remaining non-numeric 

categorical columns after feature engineering are encoded using LabelEncoder. This 

ensures compatibility with the model while not affecting previously encoded numeric or 

aggregate features. The dataset is then split into training and test sets in a ratio of 8 to 2. 

To speed up computation, cupy is used to convert the test set to a GPU-accelerated format. 

This completes the data preparation. 

It should be emphasized here that the core of this study is to compare the impact of 

different sampling methods on XGBoost performance rather than pursuing absolute 

performance indicators. Feature engineering is done before the training and test set splits, 

although it may introduce slight information leakage, but mainly to ensure a consistent 

benchmark for all sampling methods. 

In future work, this could be improved by engineering features only on the training 

data and then applying them to the test set to strictly avoid leakage. 

 

3.4.3 Model Training and Evaluation 

As a baseline, the XGBoost model was first trained on the original imbalanced dataset 

without applying any resampling techniques. The "scale_pos_weight" parameter was 

adjusted to address class imbalance, and the test set was used to evaluate performance. 

The results serve as a reference point for evaluating the effectiveness of various 

resampling methods. 

To evaluate the impact of resampling, then the training set were modified  using the 

following techniques: NearMiss, RUS + Tomek Links, SMOTE, and SMOTETomek. 
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After resampling, we used each modified training set to train a new XGBoost model 

with the same hyperparameters (without "scale_pos_weight" due to adjusted class 

balance). We then evaluated the trained models on the test set. 

Due to the high computational cost and memory footprint of SMOTETomek on the 

full dataset (over 590,000 records), we applied this hybrid approach to a randomly 

selected subset of 120,000 samples. To ensure comparability, SMOTE was also applied 

to the same subset of 120,000 samples. This controlled experiment allowed us to directly 

compare SMOTE and SMOTETomek under equivalent conditions. 

For each model, we calculated the following evaluation metrics on the test set: 

accuracy, precision, recall, F1 score, and AUC. 

All results are stored and visualized using the following formats: 

- Bar charts are used to compare each metrics under different sampling strategies. 

- ROC curves are used to compare the true positive rate and false positive rate. 

- PR curves are used to evaluate the performance of detecting rare fraud cases. 

  



   

 

 
25 

 

4. RESULTS 

Based on the XGBoost model, the experimental data obtained without sampling and 

using resampling technology are summarized in Table 1. 

TABLE I 

PERFORMANCE COMPARISON 

 Accuracy Precision Recall F1 AUC 

No Sampling 0.97828258 0.65396700 0.80571013 0.7219512 0.97235173 

NearMiss 0.59647949 0.07562107 0.93830147 0.1399621 0.84081919 

RUS+tomek 0.92783723 0.30752367 0.84853617 0.4514385 0.95526443 

SMOTE 0.98281234 0.93218249 0.54875393 0.6908315 0.95838725 

SMOTETomek 

(120000 

samples) 
0.98017069 0.90174966 0.48632954 0.6318767 0.94173635 

 

The model trained on the original imbalanced dataset achieved high AUC (0.972) and 

accuracy (0.978), indicating good overall discrimination capability. However, the 

precision (0.653) is relatively low, reflecting a high false positive rate. The recall (0.805) 

suggests that a significant portion of the minority class was still correctly identified 

despite the imbalance. 

NearMiss produced the highest recall (0.938), meaning it was able to detect nearly all 

fraudulent transactions. However, this came at the cost of an extremely low precision 

(0.075) and F1 score (0.139), indicating that the majority of the positive predictions were 

incorrect. Additionally, the overall accuracy dropped dramatically to 0.596. This suggests 

that the aggressive undersampling severely disrupted the original data distribution, 

leading to poor model generalization. 

The Random Undersampling with Tomek Links method showed more balanced 

results. Precision (0.307) and recall (0.848) were both moderate, with an AUC of 0.955. 

This method retained more data structure than NearMiss, reducing noise while removing 

ambiguous instances. As a result, it offered a good trade-off between performance metrics. 
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SMOTE achieved the highest precision (0.98), meaning the model was very 

conservative in labeling fraudulent transactions and rarely misclassified normal ones. 

However, the recall dropped to 0.548, indicating that many actual fraud cases were missed. 

This trade-off suggests that while SMOTE is effective at generating synthetic minority 

samples, it may cause the model to under-identify rare events in order to avoid false 

positives. 

The comparison of the measurement results of each model is shown in Figures 7 to 

13. 

 

FIGURE 7 - Accuracy Comparison 
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FIGURE 8 - Precision Comparison 

 

 

FIGURE 9 - Recall Comparison 
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FIGURE 10 - F1 Comparison 

 

 

FIGURE 11 - AUC Comparison 
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FIGURE 12 - ROC Curve Comparison 

 

 

FIGURE 13 - PR Curve Comparison 
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As mentioned in Step 5 above, since SMOTETomek resamples on a small subset, its 

results are compared with SMOTE, which resamples on the same small subset. The 

comparison results are shown in Table 2 and Figures 14 to 20. Compared to SMOTE 

alone, SMOTETomek achieved a slightly better F1 score (0.632 vs 0.629) and AUC 

(0.942 vs 0.940), with marginal improvements in recall (0.486 vs 0.484) and precision 

(0.902 vs 0.900). This indicates a more balanced classifier that retains the precision 

strength of SMOTE while improving on its recall weakness by removing ambiguous 

examples from the majority class. 

TABLE II 

PERFORMANCE COMPARISON ON A SUBSET  

 Accuracy Precision Recall F1 AUC 

SMOTE 0.98006062 0.90009000 0.48390999 0.62942564 0.94048453 

SMOTETomek 0.98017069 0.90174966 0.48632954 0.63187676 0.94173635 

 

 

FIGURE 14 - Accuracy Comparison On Subset 
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FIGURE 15 - Precision Comparison On Subset 

 

 

FIGURE 16 - Recall Comparison On Subset 
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FIGURE 17 - F1 Comparison On Subset 

 

 

FIGURE 18 - AUC Comparison On Subset 
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FIGURE 19 - ROC Comparison On Subset 

 

 

FIGURE 20 - PR Comparison On Subset 
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5. DISCUSSION 

This study aims to evaluate the effectiveness of different sampling techniques in 

dealing with class imbalance in fraud detection on the IEEE-CIS Fraud Detection dataset. 

The results show that the built-in scale_pos_weight parameter of XGBoost has shown 

strong performance, achieving the highest AUC (0.972) and a good balance between 

recall (0.806) and precision (0.654) for the model trained on the original (imbalanced) 

dataset. This suggests that algorithm-level adjustments may be effective enough for 

moderately imbalanced datasets and more effective than external resampling. 

Among the resampling techniques, SMOTE and SMOTETomek achieved high 

precision (above 0.90), indicating that they are able to reduce false positives. However, 

this comes at the expense of a decrease in recall. In fraud detection, failing to capture 

actual fraudulent transactions usually results in greater financial losses than mislabeling 

legitimate transactions. Therefore, this trade-off may not be in line with actual business 

needs, especially in high-risk financial environments. 

On the other hand, NearMiss achieved the highest recall (93.8%), meaning that it 

captured almost all fraud cases. However, its precision plummets to 7.5%, meaning that 

more than 90% of the flagged transactions are false positives. Such a model is not 

practical for real-time systems as it would impose a huge burden on human investigators 

and interfere with legitimate user activities. This again proves that aggressive 

undersampling, while improving recall, is not suitable for production environments where 

both accuracy and user experience are critical. 

RUS + Tomek offers a more balanced compromise, improving recall (0.848) while 

maintaining reasonable precision (0.307). This suggests that intelligently removing noise 

or borderline samples can lead to competitive performance. However, it is still lower than 

the AUC achieved by the original model, which further supports the use of XGBoost's 

native class weighting feature. 

 

5.1 Comparison with Previous Studies 

To validate the results of this study, we compared the experimental results with those 

of previous researchers using the same IEEE-CIS Fraud Detection dataset. 
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A study by Nguyen et al. (2022) adopted SMOTE for oversampling and used 

CatBoost as the classifier. Their best performance was 0.9864 accuracy and 0.974 AUC. 

In comparison, our native XGBoost model achieved an accuracy of 0.978 and an AUC of 

0.972. Although their model achieved marginally better scores, it required additional 

preprocessing via SMOTE and leveraged a more complex boosting framework that 

integrates categorical encoding internally. 

A recent study by Najadat et al. (2020) adopted a deep neural architecture combining 

BiLSTM and BiGRU with max pooling layers. Impressive results were achieved on the 

same IEEE-CIS dataset with an AUC of 0.9137 and a recall of 0.9459 using random 

oversampling techniques. These results demonstrate the potential of complex neural 

network architectures in capturing temporal and sequential patterns in transaction data 

and improving fraud detection performance, especially in detecting more fraud cases. 

Compared with the above studies that pursue extreme model performance, our 

XGBoost-based approach emphasizes model simplicity, faster training speed, and 

practical deployment capabilities, which is of practical value for the extensive comparison 

of different sampling strategies. At the same time, high AUC (0.972) and balanced recall 

(0.804) can be achieved without complex model structures. 

 

5.2 Business Considerations 

In real-world fraud detection, several key trade-offs must be considered. For example, 

in large-scale transaction screening, a model with high recall, like NearMiss, may be 

acceptable to ensure that no fraudulent transactions are missed. However, for real-time 

systems where user experience and system latency are critical, models with high accuracy 

and low false positive rates, such as native XGBoost models, are more appropriate. 

Importantly, modern fraud detection systems operate under strict latency constraints 

and must be frequently retrained to accommodate concept drift (Dal Pozzolo et al., 2018). 

This makes fast, incremental training methods a more desirable choice. Sampling 

methods such as SMOTE or SMOTETomek, while effective offline, often incur 

significant computational overhead and are difficult to update easily in real-time 

processes. 
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Deep learning models such as BiLSTM-BiGRU require a lot of computing resources, 

longer training time, and are generally more difficult to interpret, which may pose a 

challenge for real-time deployment in high-throughput financial systems. In addition, 

compared with decision tree-based algorithms such as XGBoost, such models are less 

transparent. Transparency is also an important consideration in regulated industries such 

as finance. 

Recent studies (Leevy et al., 2023) have shown that threshold optimization alone can 

outperform resampling in many cases. In practice, financial institutions often prefer 

model calibration, cost-sensitive learning, and threshold tuning over resampling, 

especially in production environments where interpretability, retraining speed, and real-

time deployment are critical. 
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6. CONCLUSIONS 

Based on the IEEE-CIS Fraud Detection dataset, this study explores the effectiveness 

of various resampling strategies in addressing the class imbalance problem in financial 

fraud detection. Based on the XGBoost algorithm as the base classifier, the study 

evaluates the performance of the original model and four resampling methods (NearMiss, 

RUS with Tomek Links, SMOTE, and SMOTETomek). The study uses a series of 

evaluation metrics - accuracy, precision, recall, F1 score, AUC, ROC curve, and PR curve 

- to fully evaluate the advantages and disadvantages of each method. 

The results show that the original imbalanced dataset achieves the highest AUC 

(0.971) and high recall (0.804) when used with XGBoost's native scale_pos_weight 

parameter, indicating that algorithm-level adjustments can be very effective. SMOTE and 

SMOTETomek improve precision but reduce recall, indicating that this conservative 

prediction method may miss actual fraud cases. Although NearMiss achieves the highest 

recall, its precision and overall accuracy are too low to be practical for real-world 

applications. 

These trade-offs are critical from a business perspective. In high-volume, real-time 

fraud detection systems, models must strike a balance between capturing fraudulent 

transactions (recall) and avoiding unnecessary noise (precision). The results show that 

resampling methods are not always superior to class weighting, especially in production 

environments where time is limited and retraining the model is required. 

In summary, while resampling remains a valuable technique in imbalanced learning, 

practical deployment in financial fraud detection requires careful consideration of 

operational costs, model complexity, and business constraints. The native functionality 

of algorithms like XGBoost may already provide sufficient performance for many 

practical scenarios. 

This study has several limitations. First, feature engineering is applied to the entire 

dataset before it is split into training and test sets, which may introduce data leakage and 

optimism bias. Second, due to hardware limitations, SMOTETomek was evaluated only 

on a reduced sample of 120k observations, which may not reflect its full potential on the 

entire dataset. Third, the fraud rate of the dataset used was 3.5%, which is imbalanced but 
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not extreme. Results may differ for datasets with more severe imbalances (e.g., fraud rates 

< 1%). 

In addition, models built using synthetic samples SMOTE, may face interpretability 

challenges because synthetic features may not correspond to real transactions. This may 

limit their practical deployment in systems that require interpretability and traceability, 

especially under regulatory scrutiny. 

Future work could explore approaches such as cost-sensitive learning or online 

boosting, as well as threshold optimization as an alternative to resampling to handle more 

imbalanced datasets, etc.
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