
MASTER IN
DATA ANALYTICS FOR BUSINESS

MASTER’S FINAL WORK
INTERNSHIP REPORT

Towards MLOps in a Startup Company

Emil Henricsson Ene

March-2023

MASTER IN
DATA ANALYTICS FOR BUSINESS

MASTER’S FINAL WORK
INTERNSHIP REPORT

Towards MLOps in a Startup Company

Emil Henricsson Ene

SUPERVISORS:
JOÃO AFONSO BASTOS
VILLE ROTO

March-2023

Abstract

Companies which have developed around a product or service built on top of

one or several machine learning applications will reach a point where the complexity

of these applications become unfeasible to manage manually. To approach a more

mature level of their machine learning applications these companies must start im-

plementing MLOps in their operations as well as orchestration tooling for building

durable and scalable machine learning pipelines. This paper presents how a startup

company in the marketing- and market research sector has taken their first steps

towards machine learning maturity by implementing MLOps practices and orches-

tration with Apache Airflow.

Keywords— MLOps, Automation, Machine Learning Pipelines, Orchestration, Apache Airflow,

DAGs, Parallelization

Emil Henricsson Ene Towards MLOps in a Startup Company

Contents

1 Introduction 1
1.1 BrandDelta . 1

1.2 Internship . 1

1.3 Internal Data Workflow . 2

1.4 Maturing Machine Learning in BrandDelta . 3

2 MLOps 4
2.1 Machine Learning Pipelines . 5

2.2 Automation . 6

2.3 Parallel Computing . 6

3 Orchestrating Pipelines with Apache Airflow 7

4 Application of Model Optimization in Pipeline 10
4.1 Application . 10

4.2 Machine Learning Problem . 11

4.3 Gradient Descent for Optimal Parameters . 12

5 Results 14
5.1 Application Pipeline . 14

6 Conclusion 16

References 18

Emil Henricsson Ene Towards MLOps in a Startup Company

1 Introduction

Data is growing. By 2023 this is certainly not an original observation, as data and it´s impacts on

businesses has been acknowledged for many years already. Nonetheless, the global market for data

is still estimated to grow steadily in the coming years and is reported to reach a value of over $420

billion by 2027 (Boso et al. 2021). The effects of this increased market value has implications in

many aspects of our world, such as new academic programs focused on skills needed to leverage

this data, or companies which are founded solely on the plan of capitalizing on this data.

As a student enrolled in the Msc in Data Analaytics for Business at ISEG, I have had the

opportunity to internship at just such a data-centric company called BrandDelta. As many com-

panies which have founded their business models on leveraging data, BrandDelta is challenging

an old idea with a new data-based approach. By building a service that utilizes big data analytics,

BrandDelta has taken a disruptive position in the marketing- and market research sector.

While BrandDelta already had a running version of their service at the start of my internship,

my responsibilities has been centered around improving- and optimizing the data processing foun-

dations for this service. Specifically, BrandDelta wants to mature and automate their machine

learning applications to reduce technical debt and possible breakpoints in their IT-infrastructure.

This report will present the tools and processes used for approaching machine learning maturity at

BrandDelta.

1.1 BrandDelta

BrandDelta is a small startup originating in the UK, with an office in Porto, Portugal. Brand-

Delta offers market research and marketing analyzes for consumer-goods companies in various

industries such as foods and lifestyle. The work carried out by BrandDelta is typically done for

a specific brand in one or several markets, or for a group of brands of an umbrella organization.

The services provided by BrandDelta are focused on gathering and capturing consumers attitudes

towards the client’s brands, with the goal of generating new valuable insights for the client. These

clients can range from small domestic brands to large international organizations (BrandDelta).

1.2 Internship

During my time at BrandDelta I worked as a data engineer intern. Data engineering is not a tradi-

tional science, but the field has seen a strong growth in recent years as more and more companies

try to leverage data in their operations. Tasks and technologies related with this role can vary

greatly between different companies, or even between different data engineers. Generally speak-

ing, activities focus on creating infrastructure that allows for processing-, storing- and making data

available, such that it can be consumed easily by other users.

BrandDelta suggested that internship tasks would focus on the following list of areas they

wanted to improve:

• Create and maintain data pipelines.

1

Emil Henricsson Ene Towards MLOps in a Startup Company

• Understand internal data supply need and provide data accordingly.

• Develop quality control procedures.

• Optimize data management processes.

• Deploy current data and machine learning processes into cloud environment.

• Deploy and maintain machine learning models in production reliably and efficient.

The master’s in Data Analytics for Business prepared me well for this internship and the tasks it

entailed. Although I had to learn many new technologies and ways of working almost every day of

the internship, the master program prepared me with the foundations that enabled this continuous

learning and development.

One of my biggest tasks at BrandDelta has been the last bullet of the list above. I was given

the responsibility to lead the deployment of BrandDeltas current machine learning models to allow

them to operate in an automated and predictable manner. This reflects the maturity BrandDelta is

working towards, where improving the efficiency and reliability of their machine learning opera-

tions is key. This project will also be the focus of this internship report.

1.3 Internal Data Workflow

BrandDelta provides their clients with marketing insights through machine learning- and AI mod-

els, this means that the entire business relies heavily on data and data analysis. The structure of

the company can be organized into three different divisions.

The first layer is the data engineering division, whenever a new or existing client has requested

an analysis, the process starts with data engineering extracting the relevant data. Data comes from

multiple sources, such as web data available through scraping, data retrieved through APIs of

different vendors and data that has been provided by the client themselves. Once all relevant data

has been extracted, the data engineering team also transforms and aggregates the different raw

datasets into one or several processed datasets, ready to be consumed by the next layer.

The second layer is the data science division. For existing clients, this layer already contains

models that have been trained for their data, so for these clients pre-trained models only need be

run on the new data to produce the wanted outputs. For new clients however, models must be

configured to fit their specifics (language etc.), trained and evaluated before any outputs can be

analyzed. Once the relevant models have been successfully trained and utilized, the outputs of the

models are forwarded on to the third and final layer.

The final layer consists of the analysis division. This is where the model outputs get trans-

formed into actual insights that analysts can present and discuss with the clients to make strategic

decisions about their future operations. This final layer is much more dependent on a human touch

and business acumen than the two previous ones, therefore this layer is also the most difficult to

automate.

2

Emil Henricsson Ene Towards MLOps in a Startup Company

Figure 1: BrandDeltas data flow

The data engineering layer, the division I was assigned to during my internship, and the data

science layer contain many tasks that are easily automated. In a perfect world, we could use

software tools to completely automate these two divisions’ daily tasks so that these employees

could focus solely on building new and better services. However, that is not case in the real world

as software and workflows will need to be reconfigured or modified eventually. In this paper, we

will see how some of the daily data engineering- and data science tasks at BrandDelta can be

automated to save engineers and data scientists a lot of work and support quicker deliveries to the

client.

1.4 Maturing Machine Learning in BrandDelta

Machine Learning Operations, or MLOps, is a topic that describes the collection of technologies

and engineering practices used for building data science- and machine learning applications in a

scalable way. As stated by Kreuzberger et al. (2022), MLOps aims to find solutions to issues

arising once a machine learning system is taken into a production stage. A machine learning

system is often one part of a product with several functionalities, and this system must be fast and

robust enough to run in synchronization with the other functionalities of the product. Although

machine learning has revealed new opportunities for companies who can leverage it, many ML-

projects fail when brought into production, since companies have not yet created the required

infrastructure and workflows to facilitate these new complex systems. Therefore, MLOps has

been of increasing interest for companies in the last years. However, the field has yet to mature in

the scientific world, and there is no real consensus on what “best” MLOps consists of (Kreuzberger

et al 2022).

From an enterprise perspective, MLOps is the continuous assessment and effort to maximize

the ROI of your data science and machine learning investments. For a young company like Brand-

Delta, whose whole business-model depends on data, machine learning and data analysis, devel-

3

Emil Henricsson Ene Towards MLOps in a Startup Company

oping good MLOps practices at this time while the company is in a stage of growth can help

prevent future headaches and provide better services for all their clients. For the rest of this paper,

we will examine the latest research in MLOps, the underlying technologies that MLOps utilizes,

how a company like BrandDelta can implement these processes and finally we will simulate how

a classic machine learning problem can be automated using these processes.

2 MLOps

According to Antonini et al. (2022), research advancements in the field in the latest years has

presented MLOps as a seven-step looped framework, see Figure 2. We will present each step

briefly and see which steps are relevant for BrandDelta’s MLOps-maturity. We start in Plan, this

is where the data science team explores the data to see what possible insights could be derived

from one or several models. In the Create step, the data science team builds- and trains the

relevant models. In Verify, data scientists check model performance and assures that the final

proposed model behaves appropriately. At this stage in a large enterprise, an engineering team

usually takes responsibility for the following steps. In Package, engineers rebuild or adapt the

model to be compatible with the environment it will be deployed in. In Release and Configure

the engineering team makes sure that the model works correctly in the deployment environment

and configure eventual runtime parameters. Finally, in Monitor both engineering and data science

take responsibility, the former team monitors system performance while the latter team monitors

model performance.

Figure 2: MLOps as a seven-step framework

4

Emil Henricsson Ene Towards MLOps in a Startup Company

As BrandDelta has not matured to the stage of hiring machine learning engineers to package,

release and configure their models when they go into production, a lot of this work falls jointly on

the data science- and data engineering divisions. Moving forward, we will discuss how BrandDelta

can implement the MLOps framework. To implement a new framework like this, a company

will most likely undergo iterations of integrating parts of the framework, one step at a time. At

this time BrandDelta is specifically interested in creating good practices for the steps between

Creation/Verification and Monitoring, so this paper will focus on these steps and the technologies

needed for automating them.

2.1 Machine Learning Pipelines

One of the most fundamental constructions for controlling and automating large and complex

machine learning systems are pipelines. A machine learning pipeline, or ML-pipeline, is an end-

to-end infrastructure wherein a ML-model is deployed, maintained, and activated to produce some

outputs. As pointed out by Xin et al. (2021) the life-cycle of a ML-model is often perceived

in the simplified textbook case where data is used to train a model, validate it through some

performance metric and then used to create some predictions or other outputs. However, this

is an oversimplification of the complexity that ML-models create once they are deployed in a

real application. Data scientists and ML-engineers often perform extensive feature engineering on

data before it is passed to the predictive model, ML-pipelines also often consist of chained models,

where one or several individual models create features for the final predictive model.

Whether a ML-pipeline or another sort of data centric pipeline, we can think of these pipeline

objects in a visual way as graphs of nodes and edges. Specifically directed graphs, where data

is passed between nodes according to determined directions. At each node, some operation is

performed on the incoming data and the output is forwarded on to the next node, in the final node

the output is the model predictions (Xin et al. 2021). An example of this is showed in Figure 3.

This is the simple textbook example where the raw data is used to train models, validate them to

find the best performing one, and finally produce outputs with the final prediction model.

Figure 3: Textbook ML-pipeline example

The ML-pipeline is an essential concept for several steps in the MLOps framework. Mapping

out and building pipelines allows for automating both the Creation and Verification of a ML-

model, as new data comes in we can both retrain and re-validate the model on the new data by

5

Emil Henricsson Ene Towards MLOps in a Startup Company

simply activating the pipeline. Data scientists can also Monitor models by analyzing predictions

at the end of the pipeline, made with new incoming data.

2.2 Automation

Once we have a ML-pipeline conceptualized we can start building it, where each node is a separate

script or file performing some operation, as we saw above. Since we want this entire pipeline to run

when activated, meaning we want tasks to activate sequentially after one another, we have to set

the correct edges between the nodes. This is done by setting dependencies, where for example the

Train Models-node in Figure 3 is dependent on the Ingest Raw Data-node to finish successfully

before starting. This triggers the nodes sequentially and allows for automating the operations

contained in the pipeline.

Another important automation aspect for MLOps, as Garg et al. (2021) describes, is imple-

menting CI/CD-processes (Continuous Integration and Continuous Delivery) in these pipelines.

This allows the pipelines operators to be updated instantly if their functionalities have to be

changed. This is essential for keeping pipelines- and their operators up to date, and for not taking

applications offline each time some operator or dependency needs to be reconfigured. Implement-

ing CI/CD-processes is essential for the Package-, Release- and Configure steps of the MLOps

framework, and can greatly relive engineers’ workloads.

Automating pipelines with dependencies and CI/CD processes also allows for continuous re-

training of model parameters. This is an important benefit of pipeline automation as the input data

used for making real time predictions might change compared to the data that was used for training

the prediction model. This is known as data drift and can cause major performance degradation in

the models’ predictions (Garg, et al. 2021).

The final step of our MLOps-framework, Monitor, also benefits from being automated. Rukat

et al. (2019) states there are many methods for monitoring a deployed models’ predictions. Warn-

ings can be generated and sent to the data science team automatically each time some performance

threshold is not met. Another more proactive approach is to make some statistical tests of simi-

larity on one or several features of the ingested raw data compared to the old raw data used for

training. Again, if certain thresholds of similarity are not met, warnings should be sent automat-

ically to the data science team. Implementing such automated testing processes would further

improve the reliability of the machine learning system.

2.3 Parallel Computing

As we have mentioned above, the pipeline in Figure 3 is a simple example, pipelines tend to

grow much larger in an actual application. An important tool for efficiently operating increasingly

large pipelines and computational tasks is the ability to scale up your compute power. Bekkerman

et al. (2011) recounts how several technological advances have facilitated the efficient use of

increasingly large datasets for producing more accurate machine learning models. As datasets

6

Emil Henricsson Ene Towards MLOps in a Startup Company

grow so does the number of computations needed to train a model or to make predictions with that

dataset. Large enough datasets will eventually render a model unfeasible if these computations

become too time consuming.

One solution to this issue is parallelizing these computations, this means that repetitive com-

putations of the same sort are carried out in parallel. This works as long as each instance of the

computation is independent of the result of any other instance. If this requirement is met, we

can run such computations concurrently using independent computing units, these units are often

called nodes or workers and represent computing hardware such as CPUs or GPUs . In Figure

4 is is an example of how matrix multiplication can be executed with parallelization. Instead of

calculating the j ∗ n elements of the new resulting matrix sequentially in one computing unit,

we can instead scale up our computing power to j ∗ n workers who all calculate their element

concurrently.

Figure 4: Example of parallelized matrix multiplication

Utilizing parallelization can be applied to larger objects than specific computations as well,

such as parallelizing model training or even entire pipelines. A great opportunity to use parallelism

in machine learning is in parameter selection and model evaluation. Several different models can

be trained and evaluated using the same data, since no information needs to be carried between

models they can be trained and evaluated concurrently (Bekkerman et al. 2011). For BrandDelta,

especially the parallelization of parameter- and model selection will be of importance, as the ML-

pipeline in our application will utilize this for concurrent hyperparameter search.

3 Orchestrating Pipelines with Apache Airflow

To build and automate these pipelines discussed above, there are many separate parts that need

to be organized to run together. A technology used for achieving this, with a fitting name, is an

orchestrator. An orchestrator is, simply put, some software providing the underlying architecture

7

Emil Henricsson Ene Towards MLOps in a Startup Company

needed to connect and execute operations according to the dependencies between them, and in

so creates the graph-structured pipelines we presented earlier. There are many tools that achieve

this, such as Apache Airflow, KubeFlow, Prefect, and many more (Matskin et al. 2021). For

BrandDelta, it was decided to go with Apache Airflow, due to existing skills in this tool among the

team members.

Airflow, described by R. Mitchell et al. (2019) as a workflow management solution, is a

free- and open-source tool to build, order and schedule workflows. The workflow of interest for

us is the ML-pipeline, where each node in the graph is a computational operation on data, each

nodes’ operations are defined in python files, one file for each node. In Airflow these graphs are

specifically Directed Acyclic Graphs or DAGs, this ensures there is no possibility of a pipeline

infinitely looping over itself. Building these DAGs is done by setting dependencies between the

nodes´ operators, building the correct dependencies is also defined in a python file. From here on

out the abbreviation DAG will be used interchangeably with the word pipeline.

Figure 5: Simple ML-pipeline in DAG representation

The DAG illustrated above is another example of a simple ML-pipeline using a pre-trained

model. New data can be passed through a feature creation model and then continue to be used

by the pre-trained model, together with some other features of the raw data, to produce outputs.

Clearly, following the dependencies in the arrows connecting the nodes, there can be no cycles in

this DAG.

Airflow consists of many parts, and a detailed explanation of each one of them is beyond the

scope of this paper, but a brief introduction follows here. Airflow has its own meta-database, which

contains information on each DAG and its history. Airflow uses a web-hosted user interface where

engineers can execute and monitor DAG runs and see where a pipeline failed. There is at least

8

Emil Henricsson Ene Towards MLOps in a Startup Company

one worker, which is the compute power used to run the pipeline and its operations, computing

power can be increased by scaling up the number of workers. Finally, there is a scheduler and a

triggerer, which schedule operations in correct order and trigger them when their dependencies are

met. All of these different parts of Airflow are individual pieces of software which need to be built

and configured. These parts can be custom built but thankfully the Apache Airflow community

provides extensive support in setting up the initial Airflow instance.

One of the most common ways of setting up Airflow is with Docker containers. Docker

containers are a way of packaging software and all it’s configurations and dependencies in a way

that allows it to run on top of any base environment. Figure 6 below is provided by the official

Docker website, for our case each App running on top of Docker is instead replaced by each of

the Airflow pieces. This means that each piece of Airflow can be packaged in a container and

easily be shared between different users (Airflow). This is especially important for the Package-

and Release stages of maturing MLOps at BrandDelta, since we want different users to be able

to run our ML-pipelines without having to look for- and install hundreds of dependencies when

setting up Airflow in their machine.

Figure 6: The concept of Docker containers

9

Emil Henricsson Ene Towards MLOps in a Startup Company

4 Application of Model Optimization in Pipeline

BrandDelta uses lots of textual data as raw data, which means that many of the ml-pipelines

contain one or several models for Natural Language Processing (NLP), some of the NLP models

are used for transforming- or creating new features and some calculate the final metrics delivered

to clients as well. Training these models involves optimizing several parameters, which in turn is

done by separate optimization algorithms. One such optimization algorithm is gradient descent

and in the following section we will see an example of how gradient descent is used in an ML-

pipeline similar to the ones used in BrandDelta, and how BrandDelta can incorporate more mature

MLOps processes to further automate this pipeline and improve their machine learning services.

4.1 Application

As mentioned earlier, ML-pipelines tend to grow more complex in real world applications than

compared to the ones presented in academic textbooks. Below is a replicate of a part of the whole

pipeline used by the data science division at BrandDelta. The graph represents the first cleaning-

and feature creation tasks performed on a new incoming text-dataset. Each of the orange branches

extending from the central node in Figure 7 resembles a simple textbook ML-pipeline, some of

which the models need to be retrained with the new data. This makes the final insights metrics

dependent on hundreds of nodes. Several NLP models are used already in this part of the process

for creating features, and the outputted dataset is forwarded onto several succeeding models, the

whole pipeline ends with the calculations of the final insight metrics (not visualized here).

Figure 7: Subgraph of whole data science pipeline

BrandDelta calculates many indicators and measurements of customer satisfaction and brand

recognition for their clients. These metrics are calculated with custom models and their specifics

cannot be disclosed in this paper. Instead, for our application we will replicate one branch of

10

Emil Henricsson Ene Towards MLOps in a Startup Company

the pipeline with some standard models and see how this can be automated and improved with

better MLOps practices. The application will be that of opinion mining from text reviews, with

the objective of tagging reviews as positive or negative. This resembles some of the initial feature

generation tasks of the pipeline at BrandDelta.

4.2 Machine Learning Problem

The objective of our application is to train a model to perform sentiment analysis on text reviews

written by customers having tried a product or service. The sentiment scores will be used later as

features for training and making predictions with other models, in a larger imaginary pipeline. We

should think of our application pipeline as resembling the branch of Model 5 in Figure 7, meaning

that it is a model we expect to have to retrain regularly.

As described by Westerski (2017), sentiment analysis is the computational process of extract-

ing opinion from humanly written text, where the opinion is represented by a sentiment score. A

simple example is trying to find if the author of a text had a positive attitude towards the subject

or a negative one. Here, the sentiment would be a score with range of [-1, 1], where a score of 1

means that the text has a completely positive opinion about the subject, and a score of -1 means

a completely negative one. For any score in between, the sentiment analyzer has found a mixed

opinion. Sentiment analysis is a classic example of a supervised classification problem in machine

learning, where training data is passed as text, specifically reviews in our case. Each training re-

view has been labelled with a true sentiment score and the words in the review form the feature

vector. A classifier is trained on this data to adjust parameters and minimize some loss function,

once a well performing model is found it can be used to classify new reviews.

There are several algorithms that perform well at sentiment classification, Neethu er al. (2013)

explore a machine learning approach to sentiment classification of social media data, some of

their proposed classifiers include naïve bayes, support vector machines and ensemble models.

Exploring different classification models and motivating their applicability on customer reviews

data is outside the scope of this paper, we will instead say that we have knowledge that motivates

a linear support vector classifier (SVC) for our use case. The SVC makes predictions using a

two-parameter vector W of w1 and w2, and is trained by minimizing a cost function like equation

1.

L = argmin
W

n∑
i=1

max(0, 1− yi(W
T · xi)) (1)

This specific cost function is called Hinge Loss. As Lu and Jin (2017) demonstrates, Hinge

Loss can be optimized using stochastic gradient descent. Gradient descent is an iterative optimiza-

tion algorithm employed by many machine learning classification- and regression models. Before

we see the addition of the stochastic part of the algorithm, let us see how normal gradient descent

(GD) works and how it will be implemented in our pipeline.

11

Emil Henricsson Ene Towards MLOps in a Startup Company

4.3 Gradient Descent for Optimal Parameters

Let Figure 8 below represent the surface of our hinge loss function for w1 : −6, 6 and w2 : −6, 6.

With the value of the loss function on the L axis, we can see that this non-convex surface has a

global minimum and one or possibly two local minima. Gradient descent, as described by Ruder

(2017), approaches the W -vector of a minima of the loss function by updating the parameters of

W by the negative directional derivative of the loss function with respect to W , like equation 2.

Figure 8: Surface of cost function

Wj = Wj−1 − α∇Wj−1L(W) (2)

The updates of the parameters are made iteratively, each iteration j is referred to as an epoch.

The α is called the learning-rate, a hyperparameter which sets the magnitude of the updates of

the parameters in every iteration. The algorithm stops once a maximum number of epochs are

reached or when the difference of Wj and Wj−1 is sufficiently small. Looking again at Figure

8, the algorithm will follow the slopes of the surface until it hits a minimum, but this minimum

is not guaranteed to be the global minimum. In Figure 9 below, is illustrated a heatmap of the

cost function, here we can see more clearly that the global minimum exists somewhere around

W = [0, 3.5], this point is defined by the parameters that minimize the cost function, i.e. the

parameters that produce the best SVC.

12

Emil Henricsson Ene Towards MLOps in a Startup Company

Figure 9: Heatmap of cost function

Stochastic gradient descent (SGD) is a simple but effective tweak on the original algorithm.

In normal GD the whole training dataset is used in each epoch to update the parameters, stochastic

gradient descent instead uses only one random sample or mini batch of the training data in each

epoch. Stochastic gradient descent has been shown to converge to a minima much faster than

normal GD and this greatly reduces the time needed to train the SVC (Ruder, 2017). Training a

SVC by minimizing Hinge Loss with SGD is also a common practice utilized by standard ML-

software like Scikit-learn (Scikit-learn, 2011). Just like in equation 2, SGD still needs the two

hyperparameters number of epochs and the learning rate α.

There are two caveats we have to mention. The first is the issue of our gradient descent

algorithm not finding the global minimum but instead getting stuck in one of the local minima. The

second is how to choose the hyperparameters, learning rate and number of epochs, intelligently.

There are several techniques for both of these issues, like using momentum-based gradient descent

for not getting stuck in local minima, and using grid search for finding the best hyperparameters

(Ruder, 2017). As this paper is more concerned with how to build efficient automated pipelines,

we will use parallelized training of several models with different hyperparameters.

13

Emil Henricsson Ene Towards MLOps in a Startup Company

5 Results

To summarize our application, we want a SVC for classifying sentiments of text reviews, to find a

good classifier we will train the SVC using SGD. The SGD may not find the global minimum and

which minimum it will find will depend on what hyperparameters we choose. Utilizing parallel

computing as described in chapter 2.3, we will evaluate several SGDs with different hyperpa-

rameters and choose the W -vector of best performing one. The pipeline, which will be orches-

trated with Apache Airflow, should utilize the relevant MLOps practices to improve the robustness,

speed, and ease of use for the entire model-life-cycle.

5.1 Application Pipeline

The DAG in Figure 10 represents the DAG built to replace the branch of Model 5 in Figure 7. The

pipeline starts by ingesting the relevant data and splits the data into training- and tests sets, the

next nodes are the parallelized SGD optimizations of the hinge loss cost function, which are run

concurrently. Once all SGD nodes have run successfully, the final W -vectors-, hyperparameters-

and cost function values found by each instance are forwarded onto the next node. In this eval-

uation node, the final model chosen is the one which found the smallest value of the hinge loss

function. The final model is saved to a file-format that will be used in the production stage, where

it can be called to quickly make new predictions on incoming data when we don’t have to retrain

the SVC.

Figure 10: Application pipeline for producing SVC

The computing power needed to run the several SGD instances is provided by a cloud provider

from which BrandDelta buys several other services as well. Computing units can be scaled on

demand and the costs incurred by increasing the number of units will depend on the time each unit

is utilized, as visualized in Figure 11. This way BrandDelta does not need to invest in expensive

hardware, but can instead momentarily increase their cloud costs.

14

Emil Henricsson Ene Towards MLOps in a Startup Company

Figure 11: Scaling of C.U.s (compute units) across the pipeline

The operations performed in each node are built in individual python files. In a separate

python file, we build the actual DAG, meaning we import all node-files and set the dependencies

between them. When building the DAG we can also set a schedule for activating the pipeline.

This means that we can automatically retrain the SVC when we ingest new data and automatically

produce new outputs at regular time intervals. This is useful as we might know that new data

flows into the company on given dates. Also, if clients have requested continuous reporting, we

can automatically generate the results needed in the reports according to their requested schedule.

Using the Apache Airflow UI we can see runtime information about the pipeline and in the

case of failures the UI can also show us at what node the pipeline failed and where in the operators

python file the error occurred. In Figure 12 is the Airflow UI visualization of our deployed DAG.

For this specific example the third SGD instance has been designed to fail, if we click on this node

the Airflow UI will show us the log for this specific node and we can easily debug from the error

messages logged. In this small DAG it is still easy to search and debug without the help of the

UI. However, imagine once the pipeline grows into something more like Figure 7 or even more

complex, then this interactive UI becomes very helpful.

Figure 12: DAG as visualized by the Airflow UI

15

Emil Henricsson Ene Towards MLOps in a Startup Company

Since all nodes and the DAG itself are built in python files, we can easily collect these files

in a folder. The specific Docker containers needed to run Airflow for our purposes can also easily

be collected in another folder. We use a CI/CD tool to package and release our pipeline and

relevant docker containers in a way that makes it both easy to update, when node- functionalities

or required dependencies are changed, and allows different users to continuously have access to the

latest version of the pipeline. This further improves automation and consistency on an enterprise-

wide level since we can control which version users are running.

Finally, the SVC pipeline we have built in this chapter can now be added on to the larger

pipeline from Figure 7. In Figure 13 below, the branch that used to be Model 5 has now been

replaced by our SVC pipeline (the Ingest Data node has been removed as it is common for all

branches and clutters the visualization). This section has focused on how one of model-pipelines

should be changed, the same changes with relevant internal models will have to made in all orange

branches of Figure 13.

Figure 13: Adding our SVC pipeline to the larger pipeline

6 Conclusion

The purpose of this paper has been to explain how a small company like BrandDelta can implement

better MLOps practices for maturing and stabilizing their machine learning applications. This

processes of maturing and automating machine learning applications has also been my biggest

project and responsibility during my internship at BrandDelta.

The MLOps framework presented in this report, by Antonini et al. (2022), is just one way

of thinking of MLOps and is used as a structure to follow for thinking of how we can improve

current applications. For the application presented in this paper, the focus has been to improve

MLOps while at the same time automating as much of the ML-pipeline as possible, which also is

one of BrandDeltas key concerns at this time. The steps we have focused on automating are firstly

16

Emil Henricsson Ene Towards MLOps in a Startup Company

the Creation- and Verification steps, where we propose the parallel generation of several models

with different hyperparameters and automated evaluation. Secondly, we have also focused on the

Package-, Release- and Configure steps, where we propose that the pipeline for our application

be built with Apache Airflow which natively supports pipeline objects as DAGs. Airflow also

provides environment-independent set up through docker containers as well as runtime monitor-

ing through the Airflow UI. A CI/CD tool have also been connected to the pipeline to allow for

automatic updates of the pipelines’ operators whenever their functionalities are changed.

The structure of the final proposed pipeline allows BrandDelta to easily train and evaluate sev-

eral new models as they can scale the compute power needed in the pipeline. Once this proposed

structure has been implemented for all BrandDeltas ML-models, retraining of models will be as

easy as activating the pipeline, since this retrains the model with the new incoming raw data. The

next steps in BrandDeltas MLOps maturity should be to explore and implement automated testing

for data drift and model degradation.

17

Emil Henricsson Ene Towards MLOps in a Startup Company

References

Airflow.

https://airflow.apache.org/docs/apache-airflow/stable/howto/docker-compose/

index.html#running-airflow-in-docker

Antonini, Mattia & Miguel Pincheira & Massimo Vecchio & Fabio Antonelli. “Tiny-MLOps:

a framework for orchestrating ML applications at the far edge of IoT systems. 2022 IEEE Inter-

national Conference on Evolving and Adaptive Intelligent Systems (EAIS), 2022.

Bekkerman, Ron & Mikhail Bilenko & John Langford. Scaling up machine learning: Parallel

and distributed approaches. Cambridge University Press, 2011.

Boso, Nathanel & Magnus Hultman & Constantinos N. Leonidou & Oluwaseun E. Olabode. "Big

data analytics capability and market performance: The roles of disruptive business models and

competitive intensity." Journal of Business Research, 2022.

BrandDelta.

https://branddelta.com/

Garg, Satvik & Pradyumn Pundir & Geetanjal Rathee & P.K. Gupta & Somya Garg & Saransh

Ahlawat. “On Continuous Integration/Continuous Delivery for Automated Deployment of Ma-

chine Learning Models using MLOps”. 2021 IEEE Fourth International Conference on Artificial

Intelligence and Knowledge Engineering (AIKE), 2021.

Kreuzberger, Dominik & Niklas Kühl & Sebastian Hirschl. “Machine Learning Operations (MLOps):

Overview, Definition, and Architecture”. arkXiv:2205.02302. 2022.

Lu, Shuxia, & Zhao Jin. "Improved Stochastic gradient descent algorithm for SVM." Interna-

tional Journal of Recent Engineering Science (IJRES), 2017.

Matskin, Minhail & Shirin Tahmasebi & Amirhossein Layegh & Amir H. Payberah & Aleena

Thomas & Nikolay Nikolov & Dumitru Roman. "A survey of big data pipeline orchestration tools

from the perspective of the datacloud project". In Proc. 23rd Int. Conf. Data Analytics Manage-

ment Data Intensive Domains, 2021.

Neethu, M. S. & R. Rajasree, "Sentiment analysis in twitter using machine learning techniques".

Fourth International Conference on Computing, Communications and Networking Technologies

(ICCCNT), 2013.

18

https://airflow.apache.org/docs/apache-airflow/stable/howto/docker-compose/index.html#running-airflow-in-docker
https://airflow.apache.org/docs/apache-airflow/stable/howto/docker-compose/index.html#running-airflow-in-docker
https://branddelta.com/

Emil Henricsson Ene Towards MLOps in a Startup Company

R. Mitchell et al., "Exploration of Workflow Management Systems Emerging Features from Users

Perspectives". 2019 IEEE International Conference on Big Data (Big Data), 2019.

Ruder, Sebastian. “An overview of gradient descent optimization algorithms”. arkXiv:1609.04747

2017.

Rukat, Tammo & Dustin Lange & Sebastian Schelter & Felix Beissmann. "Towards automated

ml model monitoring: Measure, improve and quantify data quality." ML Ops workshop at MLSys,

2019.

Scikit-learn. “Scikit-learn: Machine Learning in Python”. Journal of Machine Learning Research,

2011. https://scikit-learn.org/stable/modules/sgd.html#sgd-mathematical-formulation

Westerski, Adam. "Sentiment Analysis: Introduction and the State of the Art overview". Uni-

versidad Politecnica de Madrid, 2007.

wXin, Doris & Hui Miao & Aditya Parameswaran & Neoklis Polyzotis. “Production Machine

Learning Pipelines: Empirical Analysis and Optimization Opportunities”. Proceedings of the

2021 International Conference on Management of Data, 2021.

19

https://scikit-learn.org/stable/modules/sgd.html#sgd-mathematical-formulation

	Introduction
	BrandDelta
	Internship
	Internal Data Workflow
	Maturing Machine Learning in BrandDelta

	MLOps
	Machine Learning Pipelines
	Automation
	Parallel Computing

	Orchestrating Pipelines with Apache Airflow
	Application of Model Optimization in Pipeline
	Application
	Machine Learning Problem
	Gradient Descent for Optimal Parameters

	Results
	Application Pipeline

	Conclusion
	References

