

MASTER IN

DATA ANALYTICS FOR BUSINESS

MASTER’S FINAL WORK

DISSERTATION

SUPERVISED CLUSTERING WITH SHAP VALUES

RODRIGO QUEIRÓS CONCEIÇÃO

MARCH - 2023

MASTER IN
DATA ANALYTICS FOR BUSINESS

MASTER’S FINAL WORK
DISSERTATION

SUPERVISED CLUSTERING WITH SHAP VALUES

RODRIGO QUEIRÓS CONCEIÇÃO

ADVISOR:

JOÃO AFONSO BASTOS

MARCH - 2023

1

 Abstract

In the last years, data has grown at a fast rate. Not only growing in size, data is also

becoming far more complex then what it used to be. As companies are shifting to data-driven

environments, this complexity dificults the analysis and extraction of value from the data. As a

result traditional methods are becoming obsolete as their performance is decreasing and

machine learning and deep learning models are becoming more complex so the desirable

accuracy scores can be achieved.

 This work proposes an approach that is capable of recognizing complex relationships

and identifies groups that are not visible at first glance while providing a full interpretability of

the methods used. It combines a black-box model with SHAP values to generate clusters from

the explanations that were previously unknown. The clusters obtained are a combination of

multiple local explanations that SHAP values offer and are easily interpretable since the

feature values correspond to the feature importance assigned by the model.

 To implement this approach, a dataset containing the properties of benign and

malware samples, designed for malware detection tasks, was used. It is shown that by

combining SHAP values with XGBoost it is possible to generate new clusters, that were

previously hidden and unobtainable with traditional approaches. This clusters are highly

interpretable as they derive from SHAP values and have the support of a supervised

environment.

KEYWORDS: SHAP values; Black-Box models; Interpretability; Supervised Clustering, XGBoost

2

Table of contents

Abstract 1

Table of contents 2

List of figures 3

List of tables 4

Acknowledgements 5

1 Introduction 6

2 Literature Review 7

2.1 Machine learning in Cybersecurity -- 7

2.2 Clustering in cybersecurity --- 8

2.3 SHAP Values in Cybersecurity --- 8

3 Methodology 9

3.1 Pre-Processing techniques --- 9

3.2 Cluster techniques --- 14

3.3 Choosing the cluster algorithm --- 15

3.4 Cluster Analysis --- 16

4 Data 16

4.1 CIC-MalMem-2022 -- 16

5 Results 20

5.1 SHAP Values- Classification model -- 20

5.2 Applying Cluster algorithms --- 26

5.3 Cluster Analysis --- 28

6 Conclusion 33

References 34

3

List of figures

Figure 3.1: Scheme of the methodology’s processes.. 9

Figure 4.2: Samples distribution among the Benign and malware classes 17

Figure 4.3: Malware samples distribution among the different categories and families 17

Figure 4.4: Descriptive statistics of the features eliminates ... 18

Figure 4.5: Correlation matrix between the features ... 18

Figure 4.6: Samples values for the final feature set .. 19

Figure 5.7: Confusion Matrix for the XGBoost model implemented ... 20

Figure 5.8: SHAP global feature importance of the XGboost model for the diferent categories 21

Figure 5.9: Beeswarm plots for the 3 malware categories, Ransomware, Spyware and Trojan
from top to bottom ... 22

Figure 5.10 : Beeswarm plots for the Benign samples .. 23

Figure 5.11: UMAP 2D visualisation for both the original data and the SHAP values data 23

Figure 5.12: UMAP 2D visualization for the malware SHAP values .. 24

Figure 5.13: Ransomware category and its family’s visualisation... 25

Figure 5.14: Spyware category and its family’s visualisation .. 25

Figure 5.15: Spyware category and its family’s visualisation .. 25

Figure 5.16: BIC criteria to select the number of EM clusters .. 26

Figure 5.17: DBSCAN clusters .. 27

Figure 5.18: EM clusters .. 27

Figure 5.19: Cluster composition according to the different malware categories 29

Figure 5.20: Mean SHAP value of each future for the different Ransomware clusters 30

Figure 5.21: Mean SHAP value of each future for the different Spyware clusters 31

Figure 5.22: Mean SHAP value of each future for the different Trojan clusters 32

file:///C:/Users/rodri/OneDrive/Desktop/Thesis.docx%23_Toc129464702
file:///C:/Users/rodri/OneDrive/Desktop/Thesis.docx%23_Toc129464703
file:///C:/Users/rodri/OneDrive/Desktop/Thesis.docx%23_Toc129464704
file:///C:/Users/rodri/OneDrive/Desktop/Thesis.docx%23_Toc129464705
file:///C:/Users/rodri/OneDrive/Desktop/Thesis.docx%23_Toc129464706
file:///C:/Users/rodri/OneDrive/Desktop/Thesis.docx%23_Toc129464708
file:///C:/Users/rodri/OneDrive/Desktop/Thesis.docx%23_Toc129464709
file:///C:/Users/rodri/OneDrive/Desktop/Thesis.docx%23_Toc129464710
file:///C:/Users/rodri/OneDrive/Desktop/Thesis.docx%23_Toc129464710
file:///C:/Users/rodri/OneDrive/Desktop/Thesis.docx%23_Toc129464711
file:///C:/Users/rodri/OneDrive/Desktop/Thesis.docx%23_Toc129464712
file:///C:/Users/rodri/OneDrive/Desktop/Thesis.docx%23_Toc129464713
file:///C:/Users/rodri/OneDrive/Desktop/Thesis.docx%23_Toc129464714
file:///C:/Users/rodri/OneDrive/Desktop/Thesis.docx%23_Toc129464715
file:///C:/Users/rodri/OneDrive/Desktop/Thesis.docx%23_Toc129464716
file:///C:/Users/rodri/OneDrive/Desktop/Thesis.docx%23_Toc129464717
file:///C:/Users/rodri/OneDrive/Desktop/Thesis.docx%23_Toc129464718
file:///C:/Users/rodri/OneDrive/Desktop/Thesis.docx%23_Toc129464719
file:///C:/Users/rodri/OneDrive/Desktop/Thesis.docx%23_Toc129464720
file:///C:/Users/rodri/OneDrive/Desktop/Thesis.docx%23_Toc129464721
file:///C:/Users/rodri/OneDrive/Desktop/Thesis.docx%23_Toc129464722
file:///C:/Users/rodri/OneDrive/Desktop/Thesis.docx%23_Toc129464723

4

List of tables

Table 3.1: XGBoost hyperparameters ... 12

Table 3.2: UMAP hyperparameters ... 13

Table 3.3: K-Means pseudocode ... 14

Table 3.4: DBSCAN pseudocode .. 15

Table 5.5: XGBoost hyperparameters optimized with grid search and the selected values 20

5

Acknowledgements

I would like to thank my parents for always believing in me and for their indispensable support

through my academic path.

I would also like to thank my professor and advisor João Bastos for his steady willingness to help

and guide me through this project.

Final thanks to my friends from the masters’ for making this challenge more enjoyable and for

always sharing their opinions and help.

6

1 Introduction

 The cybersecurity industry is growing at a fast pace and as companies grow and open

themselves to the IoT and cloud environments, they also create a window for cyberattacks,

which are getting more frequent and sophisticated. One particular concern is the rising of

malware attacks that spread and causes harm and losses to new companies every day. As a

response to these attacks, cybersecurity strategies pass by techniques and tools such as

antivirus, firewalls, detection systems and one method that has been rising, machine learning.

Machine learning allows the companies to detect and eliminate threats, providing a more

accurate and real-time analysis, resulting in a powerful and essential tool in the cybersecurity

industry. In this fast-moving environment it is essential to keep the models up to date to

efficiently fight the online threats as they are always changing and exploring new gaps. This can

prove to be quite challenging and some models end up failing or becoming too complex to use.

For instance, clustering is a very well-known unsupervised machine learning technique that has

been used for a long time, through different algorithms, it allocates data points that are

somehow similar to each other into distinct groups. However, grouping malware data into

meaningful clusters can sometimes be quite challenging, from selecting the most suitable

algorithm to the ongoing increase of the data’s complexity itself, the clusters found may not

produce the best results. On the other hand, when dealing with detection problems with

supervised learning approaches, models can become very complex and, therefore, hard to

interpret. They also do not account for the differences among the samples of the same classes,

neglecting the existence of subgroups among those classes. Finding these groups can reveal to

be even more tricky as the classification models do not consider them directly and labelling the

samples correctly, prior to the application of a model, is very costly to achieve.

This thesis explores a different approach, Supervised Clustering with SHAP values (Aidan

Cooper et al., 2021), it consists of guiding the cluster algorithms (unsupervised) with the help of

classification models (supervised) to overcome the problems previously identified. To be able to

do this it uses an explainable artificial intelligence (XAI) tool, Shapley Additive exPlanations

(SHAP), as a pre-processing step. SHAP values (Lundberg and Lee, 2017) are an adaptation of the

Shapley values (Shapley, 1953) to the machine learning framework, instead of having games and

players, it is focused on models and features. It explains the output of a machine learning model

by calculating the importance of the features locally and globally, contributing to the

interpretability and transparency of black-box models. SHAP values can be thought as a second

way for when the characteristics of the data itself are not enough, it can complement the

clustering and classification models analysis by giving a different insight of the data, especially

on the local level. The conjunction of this approaches generates new clusters that can be easily

interpretable and allow transparent analysis. Instead of finding clusters based on the raw

characteristics of the data itself, this method consists of finding clusters based on how a

classification model attributes data points to a class, more precisely, it creates clusters around

data points where the features share the same importance in a certain classification model.

The objective of this study is to compare the clusters produced by this approach against

the traditional methods, using a malware dataset, and show how this methodology not only

performs better at producing clusters but also has a strong interpretability to support the

analysis and use of classification models.

Rodrigo Queirós Conceição Supervised clustering with SHAP values

7

The development of the work is divided into the following sections; the next section

consists of a literature review regarding the problems identified and techniques addressed. The

third section presents the methodology of the approach taken, explaining all the processes used

and how the results are going to be accessed. Section 4 explains the data that was used for the

work, followed by section 5, where the results obtained will be covered and analysed. The last

session will consist of the conclusions and discussion of the project.

2 Literature Review

2.1 Machine learning in Cybersecurity

The idea of implementing machine learning to the cybersecurity industry goes back to

the 1980s where intrusion detection systems (IDS) (D. E. Denning, 1987) based on anomaly

detection are implemented. DARPA researchers also created benchmarks datasets to train

machine learning methods (Lippmann et al., 1999). However, these applications were still very

primitive, the biggest problems faced had to do with the low accuracy on the detection rates,

resulting in a large rate of false alarms and failing to detect new attacks. The training data was

hard to obtain and its quality was not the best. With the lack of resources such as computational

power, available data and efficient techniques, this field only started to see some progress again

with the introduction of big data.

Big Data leveraged the use of Artificial Intelligence and machine learning for

cybersecurity. With the companies becoming data-driven and the processes automatized, the

risk of cyber attacks increased with millions of malware attacks every day, but the

implementation of more sophisticated and accurate models was also made possible. Fraley and

Cannady(2017) explain how Big Data is affecting the business with threats every hour and how

the analysts cannot deal with all the problems in feasible time. They proceed to explain how

machine learning can leverage the cybersecurity industry from the possible tasks and datasets

to the model development and evaluation. Since then, researchers took focus on this topic, with

special attention in the last years, and have been improving and discovering effective

techniques. From the implementation of simple supervised methods like Support Vector

Machine (SVM) and decision trees to complex neural networks, Yang et al. (2018) summarize

the methods used through the years as well as the public datasets that were made available to

train the models.

Regarding the current state and challenges of machine learning, three main problems

are identified by Gibert et al. (2020). The first problem, concept drift, takes in consideration the

fast pace of this industry and how malware evolves over time. The models need to have in

consideration that the historical data is different from the future data and the relations keep

changing. The second problem is about the adversarial learning and how reverse machine

learning can be used to fool the detection models by alternating the feature space in the

malwares favour, making it seem like a benign sample. The last problem relies on the

interpretability of the models. With the use of black box models being more common and

essential in the detection of malware, analysts can have a hard time understanding the model’s

decision. This compromises the black-box models utility because despite proving to be efficient

in detecting, analysts cannot properly explain the model decision. This may lead to analysts

Rodrigo Queirós Conceição Supervised clustering with SHAP values

8

preferring simpler models, they might have lower accuracy rates but it allows the analysts to

have full control on the model decisions.

2.2 Clustering in cybersecurity

Cluster algorithms are usually implemented in the process of intrusion detection

systems, and its application are mainly focused on two areas. The first area has a greater

search and is related with the implementation of clusters as a pre-processing step, the data is

divided according to the cluster algorithm and then the models are applied separately to each

cluster. Khorolska et al. (2022) explain how the evolution and increase complexity of AI

technology has lead cluster algorithms to help in the decision making. Furthermore, Rathore et

al. (2021) show how combining the cluster algorithms with other machine learning and deep

learning models improves the classification tasks. The other use case has to do with the

identification of clusters that can represent the different malwares and create distinct groups.

Generally, the works on this topic show that finding meaningful clusters is often a challenge as

the malware data is too complex and the results end up not being good enough to be used

compared to other techniques. Renato and Carlos (2021) show the problems of finding

meaningful clusters in malware data and explains that the patterns of this type of data makes

it hard for distance-based cluster algorithms to divide the data properly. Other problem is the

fact that the data normalisation breaks the relevancy of the features, which brings a negative

effect as features have different importance. To solve this problem, they implement a method

that calculates the degree of relevance of the features, which in some way is similar to the

SHAP values, and show that the clusters perform better. In Basole and Stamp, (2021) while

trying to find a relation between malware categories and their families they notice that while

some clusters capture distinct malware families, others could not capture information due to

the complex relationship. Nevertheless, they found out that some families within the same

category are more similar to each other while others are completely different.

2.3 SHAP Values in Cybersecurity

Interpretability and XAI are two very sensitive topics that have gained importance over

the last years across a wide range of industries. The use of black-box models is becoming

necessary for machine learning and deep learning models to be efficient, however, it comes with

a cost of human interpretation. Cybersecurity industry is no exception and, as Charmet et al.

(2022) mention, XAI brings multiple advantages that are indispensable to analysts in the

cybersecurity industry, it supports the complex model’s decisions and can be used for different

applications. One new XAI tool that has raised some attention is the SHAP values. SHAP values

are being used to improve intrusion detection systems and other tasks that involve machine

learning and deep learning models by combining local and global explanations to interpret the

different complex models used.

Researchers are using new frameworks for IDS that include SHAP values to explain the

predictions of different classifiers and how they differ (Wang et al., 2020) and (Alenezi and

Ludwig, 2021). With SHAP values, analysts can have a better understanding of what features are

having more impact on the decision, both at the global model view and sample view, guiding

them on the alerts and the model overall behaviour for future improvements and modifications.

Rodrigo Queirós Conceição Supervised clustering with SHAP values

9

Figure 3.1: Scheme of the methodology’s processes

This work focuses on a framework that tries to take the most of the feature’s importance

values of SHAP’s local importance, which is not taken in consideration on other works. By

exploring the potential of finding unknown groups of samples with different behaviours with

cluster analysis, it provides a global view of that cluster that is unique in the model. This can help

analysts identifying subgroups of samples across the same malware categories whose behaviour

is distinct.

3 Methodology

The supervised clustering with SHAP values approach requires pre-processing

procedures so that the clustering algorithms can be applied efficiently. In this section, it is

carefully explained the multiple steps of the approach, the pre-processing techniques and how

the results are measured, all detailed in the order which they were implemented as it can be

seen in the Figure 3.1. This approach is similar to the traditional clustering approaches with the

exception that it includes a new pre-processing step using the SHAP values to generate a new

dataset. It also has a different cluster analysis and evaluation as the true label values are known.

3.1 Pre-Processing techniques

 There are multiple types of pre-processing techniques that can be considered before

applying a machine learning algorithm, however, their implementation often depends on the

characteristics of the data and the current problem. In this section, the main pre-processing

steps that are indispensable to this work are carefully explained, from their advantages to the

reasons that they were chosen.

3.1.1 Feature Selection

The quantity of features varies according to the domains and models analysed, often

datasets come with a reasonable large number of features, including features that are

considered noise. As these features end up being irrelevant to the machine learning models,

feature selection focus on only retaining the relevant features to be used by the models.

Among the feature selection techniques, the Pearson correlation coefficient was

chosen. It measures the strength of the linear relationship between the features assigning a

Rodrigo Queirós Conceição Supervised clustering with SHAP values

10

(3.1)

correlation value to each pair of features. A threshold value is selected, eliminating all the

features with an absolute correlation above the threshold settled.

𝑅𝑥𝑖𝑦𝑘
=

∑ (𝑥𝑖𝑧 − 𝑥𝑖̅). (𝑦𝑘𝑧 − 𝑦𝑘̅̅ ̅)𝑛
𝑧=1

√∑ (𝑥𝑖𝑧 − 𝑥𝑖̅)
2𝑛

𝑧=1 . √∑ (𝑦𝑘𝑧 − 𝑦𝑘̅̅ ̅)2𝑛
𝑧=1

,

where 𝛼 is the number of features of the correspondent dataset, 𝑛 is the number of samples of

the dataset, 𝑥𝑖 /𝑦𝑘 are the feature 𝑖 and the feature 𝑘 respectively, 𝑥𝑖𝑧 correspond to the

sample 𝑧 of the feature 𝑥𝑖 and the same reasoning is applied for 𝑦𝑘𝑧. 𝑥̅𝑖/𝑦𝑘̅̅ ̅ corresponds to the

sample mean for the respective feature. 𝑅𝑥𝑖𝑦𝑘
 is the correlation between each feature pair

𝑥𝑖 /𝑦𝑘 and can take a value between -1 and 1, where the larger the absolute value is, the

stronger is the relation between the two features.

The Pearson correlation coefficient was selected since it is an efficient technique to

eliminate features that do not give any new contribution to the models and it aligns with the

SHAP values methodology, that will be explained further bellow in this section, as they cannot

deal perfectly with correlated features. Python has a built-in function that makes the Pearson

correlation formula easy to apply.

3.1.2 SHAP Values

For each feature, SHAP values measure the contribution to the model output by doing a

weighted summation average of all possible features subsets and calculating the marginal

contribution of that feature to the model. The SHAP values is a local method, which means that

for every row/instance in the dataset, it calculates the SHAP values for the feature 𝑖 , given a

model 𝑓 and a vector 𝑥 of features to be explained;

∅𝑖(𝑓, 𝑥) = ∑
|𝑆|! (𝑁 − |𝑆| − 1)!

𝑁!
(𝑓𝑥(𝑆 ∪ {𝑖}) − 𝑓𝑥(𝑆)

𝑆⊆𝑁\{𝑖}

),

where 𝑆 is a subset of the features used in the model and 𝑁 the total set of the features in 𝑥,

having 𝑆 ⊆ 𝑁\{𝑖} as all the possible subsets excluding the feature 𝑖, 𝑓𝑥(𝑆 ∪ {𝑖}) and 𝑓𝑥(𝑆)

corresponds to the predictions of the model 𝑓𝑥, given a set of features 𝑆, with and without the

feature 𝑖, respectively, marginalized over the feature that is not included in that set 𝑆.

 SHAP values can also serve as a global method, calculating the feature importance for

each feature in the model by doing an absolute average of the Shapley values:

𝐼𝑗 =
1

𝑛
∑ |∅𝑗

(𝑧)
| ,

𝑛

𝑧=1

where 𝑗 represents each feature and 𝑧 each observation.

SHAP values are model agnostic, supporting any machine learning model, however they

have some problems. The first problem is the most relevant, the fact that it requires a big

computational complexity, 2𝑛 − 1 steps (exponential growth), where n is the number of

features used to calculate the Shapley values, this will consume a lot of time as the rows and

(3.2)

(3.3)

Rodrigo Queirós Conceição Supervised clustering with SHAP values

11

features of the datasets increase. To address this problem, explainers were implemented to be

more time efficient, in particular, the TreeExplainer (Ludenberg et al., 2020).

The TreeExplainer method is a tree-based model exclusively that allows the calculation

of Shapley values in polynomial time, it does not require a background dataset to sample from

and calculates the exact Shapley values. It does so by only computing the values for the relevant

nodes of the given instance of a tree. The second problem is related to the correlation between

features, as the features are correlated and pass the same information to the model’s output,

when calculating SHAP values, the difficulty of assigning the correct feature importance to each

feature is raised which might result on different solutions since the same feature importance is

split between the correlated features. This can lead to possible miss interpretation of the SHAP

values as the true feature importance is not explicit and different SHAP values can be obtained.

Implementing a pre-processing step that deals with correlated features attenuates the problem.

SHAP values act as a pre-processing step in the way that a new dataset is created where

the original data points are replaced with the corresponding SHAP values. The new dataset

maintains the same shape/structure of the original one (number of samples and features) and

the data points do not represent the original characteristics of the data, instead they represent

the contributions of the features of each sample given a model. Also, it is important to take in

consideration that the SHAP values act based on the model’s predicted value which can be

different from the true label if the sample was misclassified.

3.1.3 Classification Model

 SHAP values require a base model to infer on. Given SHAP’s characteristics and the

problem that this work addresses, any classification model can be used, however, due to the use

of TreeExplainer, it shrinks the classification models to tree-based only.

Taking in consideration the classification tree models available, the eXtreme Gradient

Boosting algorithm (XGBoost) was chosen as the input model. Since its introduction (Chen and

Guestrin, 2016), XGBoost has gained popularity against other classification models as it provides

greater efficiency and accuracy, proving to be one of the strongest supervised machine learning

models. XGBoost is a tree-based ensemble algorithm that uses a combination of gradient

descending with boosting, gradient boosting, by combining multiple small trees, also called weak

learners.

𝑦̂𝑖 = ∑ 𝑓𝑘(𝑥𝑖), 𝑓𝑘 ∈ 𝐹

𝐾

𝑘=1

,

the prediction of each tree is summed up and complemented by each other, where 𝐾 is

the number of trees, 𝑓𝑘 corresponds to a tree with its own structure and weights and 𝐹

corresponds to the set of possible classification trees. Using a gradient descent, a loss function

is calculated in each tree and the model trains on the residuals, giving more importance to

misclassified observations and, consequently, the next weak learners act on where the existing

trees are failing. The objective is to minimize the loss function to a point that it cannot decrease

anymore, meaning that no more trees are created and the algorithm stops. The objective

function can be written as,

(3.4)

Rodrigo Queirós Conceição Supervised clustering with SHAP values

12

(3.5) ℒ (𝑡) = ∑ 𝑙 (𝑦𝑖, 𝑦̂𝑖
(𝑡−1)

+ 𝑓𝑡(𝑥𝑖)) + Ω(𝑓𝑡),

𝑛

𝑖=1

where the first term is a loss function that depends on the trees created up to the iteration 𝑡, 𝑦𝑖

is the real label value from the dataset and 𝑦̂𝑖
(𝑡−1)

 is the value predicted from the previous trees

plus the prediction of the current tree 𝑓𝑡. The second term is a regularization parameter that

prevents the current tree from overfitting by penalizing the complexity. Combining all these

methods makes XGBoost a powerful tool, however, like any boosting algorithm it can overfit the

data quickly, resulting in adequate models.

 In this methodology, the goal is to analyse a dataset by fitting a model and deducing the

SHAP values from the model. In the process of fitting the appropriate weights and parameters

for the data, the model needs to be trained. To ensure that the models do not overfit, XGBoost

has a wide range of hyperparameters that regularize the model and make it more conservative

while maintaining its potential. Since the learning process for these parameters is not automatic,

the Grid search methodology is used to find the best values for the parameters. It combines a

set of possible values and creates multiple models with different sets. Through cross validation,

the values of the hyperparameters for the model that performed best are given as the optimal

solution. For this work, the following parameters were tunned: n_estimators, min_child_weight,

max_depth, learning_rate, gamma, early_stopping_rounds and colsample_bytree. Table 3.1

gives a brief description of how the hyperparameters affect the model.

Hyperparameter Definition

n_estimators Number of trees(estimators) built by the model. Has the value
grows, the complexity of the model increases.

min_child_weight Minimum sum of samples weight needed in a child to split.

Higher values reduce the overfitting by limiting the size of the

trees.

max_depth Determines the maximum depth that the trees can go to. The
more complex the trees are, more is the risk of overfit.

learning_rate Sets the weight at which the model updates in each interaction.
Large value leads to a faster convergence but less accurate
model.

gamma Determines the minimum loss reduction to split the tree.

Increasing the value of gamma helps controlling the overfit.

early_stopping_rounds Sets a number of rounds that the model is going to stop if no

improvement is detected, preventing excessive training time.

Colsample_bytree Determines the fraction of columns sampled for each tree.
Increasing the values improves the training process and
reducing the overfit

Table 3.1: XGBoost hyperparameters

3.1.4 Dimensionality Reduction

Rodrigo Queirós Conceição Supervised clustering with SHAP values

13

With big amounts of features to deal with, some machine learning algorithms struggle

in processing all the information properly, making it harder to find a solution in a feasible

amount of time (curse of dimensionality). On the other hand, it is hard for humans to interpret

graphs above 3 dimensions. To produce meaningful visualisations of data and for machine

learning algorithms to be efficient, it is necessary to reduce the dimension of the features to a

lower dimensional space that can be projected.

This technique plays an important role when it comes to clustering algorithms. First, it

allows the algorithm to overcome the curse of dimensionality. Second, it allows the visualization

of the data in two- or three-dimension graphs that humans can extract information off.

Essentially, the Dimensionality reduction algorithms fall in two categories; matrix

factorization or neighbour graphs. The first category tends to preserve more the global structure

of the data while the second category prioritizes the preservation of the local structure of the

data. Therefore, these algorithms play a trade-off of trying to keep the maximum structure of

the data while reducing its dimension.

Uniform Manifold Approximation and projection (UMAP) was the algorithm chosen for

this approach. This algorithm belongs to the neighbour graphs category and can separate

clusters on higher dimensions, reducing it to low dimensions while maintaining the local

structure of the data and preserving part of the global structure. Leland and John (2018), the

authors of UMAP, carefully explain all the mathematical assumptions and foundations behind it

but the main idea is that it constructs a high dimensional graph of the data with wedges and

weights that represent the likelihood of points being connected and then tries to replicate the

same structure but in a lower dimension level.

This approach holds some advantages against other widely used dimension reduction

algorithms, like Principal Component Analysis (PCA) and t-distributed stochastic neighbour

embedding (t-SNE). PCA sometimes is not able to reduce the data to a low dimension at the cost

of losing most of the data structure and it can only preserve the global structure of the data.

UMAP also tends to outperform t-distributed stochastic neighbour embedding (t-SNE) when it

comes to scalability, achieving results much faster, and on preserving the global structure of the

data, which is very important when it comes to inter-cluster analysis.

Like XGBoost, UMAP has two hyperparameters that have a significant impact on the

result, n_neighbors and min_dist. These parameters represent the trade-off that exists between

the global and local view, so the way to optimize these parameters depends on how we want to

visualize the data and based on trial error. Table 3.2 describes the hyperparameters.

Hyperparameter Definition

n_neighbors Sets the number of neighbours used in the construction of the

neighbourhood graph, high values result on preserving the global

view and higher computational costs.

min_dist Sets the minimum distance between points in the low dimension
defined, increasing the value leads to more separation at the cost
of loss of the local view.

Table 3.2: UMAP hyperparameters

Rodrigo Queirós Conceição Supervised clustering with SHAP values

14

3.2 Cluster techniques

 After applying all the pre-processing procedures, a cluster algorithm needs to be

selected. As it was mentioned before, cluster techniques can be used to serve multiple

purposes in machine learning. Along with this, there are several different clustering algorithms

that one can use, each producing their own clusters and results. Therefore, in this section, the

cluster algorithms that were tested are presented. The objective is to choose the algorithm

that can better fit the problem identified.

3.2.1 K-Means

 The k-means is a simple and widely used iterative algorithm. It groups the data, based

on its similarity, into a predefined number of clusters. These clusters initialize randomly but

are updated on each iteration, they start being built around their centroids, minimizing the

distance of the data points to that center until the clusters stabilize. The distance measure

used will depend on the type of the data used. The next table represents the pseudocode of

this iterative process.

Input:

 Data

 K number of clusters

Process:

 Randomly initialize k centroids

 Assign each data point to the closest centroid

 Update the centroid to the mean of data points to the cluster

Output:

 Final centroids and the assignment of each data point to the cluster

Table 3.3: K-Means pseudocode

Due to its simplicity, this algorithm is very efficient and most of the times can produce

meaningful clusters. On the other hand, it requires some prior knowledge of the data or the

resort of techniques (Ex: Elbow Method) to find the optimal amount of clusters. K-means is also

sensitive to noisy data, which can affect the clusters creation.

3.2.2 DBSCAN (Density-Based Spatial Clustering of Applications with Noise)

 DBSCAN is another cluster algorithm that groups the data based on its density. High-

density regions of data will be clustered together while low-density regions will be marked as

noise. It does not need to have a predefined number of clusters to act like K-means. DBSCAN

will define the clusters based on two parameters: Eps and MinPts. Eps consists of the maximum

Rodrigo Queirós Conceição Supervised clustering with SHAP values

15

distance between two data points so the data point can be considered on the same cluster and

MinPts is a minimum number of data points that a cluster needs to have. DBSCAN is also a

relatively efficient algorithm that overcomes two of the k-means problems. It does not require

the user to specify a number of clusters and is able to identify noise with ease. It can also capture

arbitrary shapes easily but it is very sensitive to the values of the parameters Eps and MinPts,

becoming a challenge to select the correct values. The following table displays the process:

Input:

 Data

 Eps

 MintPts

Process:

 If data point is not visited, mark it as visited

 If the point is a core point, initialize a new cluster

 add all the points within the Eps distance to the cluster
 repeat the process for all points in the cluster until no more points can be

added

 If the point is a border point, add it to the nearest cluster

Output:

 The assignment of each data point to the cluster

Table 3.4: DBSCAN pseudocode

3.2.3 Gaussian mixture model/ Expectation-Maximization

Gaussian Mixture Models (GMM) assume that the data is generated by different

gaussian distributions. Each cluster will have its own gaussian distribution with a mean and

covariance parameter. To find the optimal parameters, it will resort to an iterative process with

the Expectation Maximization (EM) algorithm until the convergence is met. This algorithm works

by applying two steps iteratively, first, it estimates the probability of a data point belonging to a

cluster through the empirical probability density function and, on the second step, it updates

the parameter of the gaussian distribution for the clusters according to the probabilities

observed on the first step. GMM can handle complex data with missing values at the cost of

computer complexity but, like K-means, it requires the user to specify a number of clusters a

priori.

3.3 Choosing the cluster algorithm

 When it comes to identifying which algorithm to choose, it is clear that there is not a

straightforward answer. As it was seen in this section, each algorithm has its own strengths and

weakness and its fitness will depend on the problem faced. Overall, there is not a best cluster

algorithm to choose, it will be necessary to consider the characteristics of the data, the problem

that is faced and to have the awareness of the capability of the different algorithms. Only by

Rodrigo Queirós Conceição Supervised clustering with SHAP values

16

trying the different algorithms and having in consideration the different assumptions it will be

able to select a proper cluster algorithm to work with.

3.4 Cluster Analysis

This cluster analysis differs from the traditional unsupervised methods since the true

labels are known. Instead of evaluating the clusters with methods that measure distances and

similarity (Within-Cluster sum of squares or Silhouette Score), the clusters are assessed based

on two steps. First, the classes off the samples that belongs to the clusters are taken in

consideration, identifying the different classes contained in the cluster. Having different classes

in the same cluster does not necessarily mean that the cluster is not viable. In SHAP values

perspective, it informs that, despite the samples belonging to different classes, they present the

same behaviour for the input model, being, therefore, grouped together. Secondly, it is used

one of the SHAP values properties to get the global view of the variables for each cluster. By

calculating the mean of the SHAP values variables for each cluster, it can be seen how the

different variables are affecting different clusters. Ideally the clusters identified will have

different SHAP values leading to samples with a different order of feature importance values.

This clusters will give extra information that the global view and local view of SHAP

values cannot give and will boost the decision making of analysts. From this point on, the

analysts can interpret the results with different perspectives, according to their objectives and

focus. The clusters can be filtered according to the different classes, being able to focus on only

one class or multiple classes at the same time. They can also focus on the samples that were

misclassified, viewing the clusters that contain them and to which samples the model is

associating them.

4 Data

4.1 CIC-MalMem-2022

To support this work, it was used a publicly available dataset, provided by the Canadian

Institute for Cybersecurity (CIC), the CIC-MalMem-2022 dataset. This dataset was developed by

Carrier et al. (2022) and serves as a benchmark model that tries to represent the real-world

situation incorporating malware and benign samples captured from a computer environment

and then transformed into variables to construct the dataset.

This dataset was created with the intuit of testing detection models through memory

analysis consisting of 58.596 samples evenly balanced between benign and malware instances

as it can be seen in Figure 4.2.

Rodrigo Queirós Conceição Supervised clustering with SHAP values

17

Figure 4.2: Samples distribution among the Benign and
malware classes

Figure 4.3: Malware samples distribution among the different categories and families

Inside the Malware class, the dataset contains three different malware categories,

Ransomware, Spyware and Trojan and each category contains five different families,

maintaining the balance between each category and family, like Figure 4.3 shows.

4.1.2 Variables

The dataset contains fifty-eight features extracted from memory dump files using an

open source tool. Three of them identify the class, category and family of the correspondent

sample, while the other features are split between features that focus on general characteristics

of memory and others that target specifically hidden malware. The features can be divided into

five categories, Malfind which focus on malware associated with trojan malware behaviour,

Ldrmodule looks for injected code, mostly related with spyware, Process View category looks

into the process lists of the system to find malicious processes, API hook looks to the API

(Application Programming Interface) calls and searches for modifications and the last category,

Handle, monitors the Handles of the computer system.

Rodrigo Queirós Conceição Supervised clustering with SHAP values

18

Figure 4.5: Correlation matrix between the features

Figure 4.4: Descriptive statistics of the features eliminates

4.1.3 Transformations

This section covers all the transformations done to the data to prepare it for the

implementation of XGBoost, SHAP values and Cluster algorithms. After looking at the descriptive

statistics of the data, three variables were eliminated as they only contained zeros and would

not pass information to the models as it can be seen in Figure 4.4.

The next step was to look at the correlation between the variables, in this dataset, as

we can see in Figure 4.5, correspondent with the dark green and dark red colours, there are

quite a few features that show high correlation in between them.

Rodrigo Queirós Conceição Supervised clustering with SHAP values

19

Since the SHAP values are very sensitive to the correlation between variables, a

threshold of 0.7 was selected. This will ensure that the SHAP values will keep their consistency

and produce trustworthy values.

 Figure 4.6: Samples values for the final feature set

Rodrigo Queirós Conceição Supervised clustering with SHAP values

20

Figure 5.7: Confusion Matrix for the XGBoost model implemented

 As a result, out of the fifty-two variables, thirty-eight were removed. The final
dataset consists of fourteen independent features and three target labels, Figure 4.6 shows the
behaviour of the different variables for each category. For the purpose of this work, the target
label considered by the models will be the category label while the other labels will serve to
complement the analysis.

5 Results

5.1 SHAP Values- Classification model

The first step to create the SHAP values dataframe is to define a model, since XGBoost

was the chosen model, we need to ensure that it performs well and does not overfit the data.

For this purpose, the hyperparameters were optimized according to the grid search technique

by obtaining the lowest log-loss score out-of-sample. Table 5.5 shows the values proposed and

selected for the hyperparameters.

Hyperparameter Value Proposed Value Selected

n_estimators [100,200,500] 500

min_child_weight [1,3,5,7] 1

max_depth [10,15,20,30,50] 10

learning_rate [0.05, 0.1, 0.15, 0.2, 0.25, 0.3] 0.15

gamma [0.0, 0.1, 0.2, 0.3, 0.4] 0.4

early_stopping_rounds [25,50,100] 100

Colsample_bytree [0.3, 0.4, 0.5, 0.6, 0.7] 0.7

Table 5.5: XGBoost hyperparameters optimized with grid search and the selected values

 The model obtained an accuracy of 94,11% with a validation score of 0.17801, as we
can see in the confusion matrix below it distinguished the benign from the malware samples
easily, only misclassifying two benign samples. However, when it comes to identify the
different malware categories, the model struggles to find the difference between some
samples, being this the main cause for the decreasing of the model accuracy. The following
confusion matrix displays the output of the model.

Rodrigo Queirós Conceição Supervised clustering with SHAP values

21

Figure 5.8: SHAP global feature importance of the XGBoost model for the diferent categories

5.1.1 Computing SHAP values

Once the model is prepared, the SHAP values are deducted. Given the use of the of the

TreeExplainer and the reduction of the feature space, the complexity and computational power

of this task is reduced to a computing time of 1 minute and 49 seconds. To have a general view

of the values obtained, Figure 5.8 shows the mean absolute SHAP values for each feature.

At a global view level, the features that have bigger impact to the model are the

svscan.nservices, pslist.avg_handler and dillist_ndills, on the other hand, callbacks.nanonymous,

psxview._not_in_eprocess_pool and callbacks.negeneric are the features with less relevant

impact. To complement this analysis, we also need to look at the local view, beeswarm plots

allow us to see how each sample, represented by a dot, is allocated across the features.

Looking at Figure 5.9 and 5.10, it is possible to identify that each sample has its unique

feature importance and behaviour. Furthermore, we can see that for each category, the order

of the most important features is different. It is also important to note that besides the

callbacks.ngeneric feature, which brings no importance to the model as the SHAP values are 0

for all the categories, the features with the lowest mean importance, are relevant for particular

samples meaning that they provide important information to the model decision.

Rodrigo Queirós Conceição Supervised clustering with SHAP values

22

Figure 5.9: Beeswarm plots for the 3 malware categories, Ransomware, Spyware
and Trojan from top to bottom

Rodrigo Queirós Conceição Supervised clustering with SHAP values

23

Figure 5.10 : Beeswarm plots for the Benign samples

Figure 5.11: UMAP 2D visualisation for both the original data and the SHAP values data

Although the beeswarm plots give us information about the local importance for the

samples, having many samples makes it hard to analyse them. To better understand the values

obtained, cluster algorithms can be put up to use to retrieve the maximum information from the

local importance.

5.1.2 Creating a new dataframe

To continue the SHAP values analysis, we need to transform the SHAP values in a new

dataset while maintaining the original structure. The SHAP and Pandas libraries makes it easy to

manipulate the results obtained and adding them to the dataframe. An advantage of this new

dataframe is the fact that all variables come in the same measure, feature importance, so we do

not need another step to standardize the data.

5.1.3 Reducing to two dimensions
To get a better interpretation of the values obtained for the cluster algorithms and

visualisation purposes, we use UMAP to reduce the feature space into 2 variables. In comparison

we can look at the differences of the original dataframe and the SHAP values dataframe. The

hyperparameters selected were 10 for n_neighbors and 0.1 for min_dist.

Rodrigo Queirós Conceição Supervised clustering with SHAP values

24

Figure 5.12: UMAP 2D visualization for the malware SHAP values

Looking at both graphs, the differences are clear. In Figure 5.11, left graph, it is hard to

extract useful information as the malware category samples tend to overlap and there is no clear

separation between benign and malware samples. On the other hand, the feature space on

Figure 5.11, right graph, is arranged according to the interpretation and classification of the

model (SHAP values). There is a clear boundary between benign and malware samples.

Other important aspect to note is that the malware samples got divided into subgroups,

noting a distinct behaviour between the different categories and among the categories

themselves. Furthermore, we can turn our focus into one particular category or class.

Analysing the malware samples has a greater importance in Cybersecurity and since

benign samples do not present significant groups, we can highlight the malware samples and

have a better view of the behaviour of the samples.

Figure 5.12 provides an amplified view of the malware samples. It is possible to see the

different groups that emerged with more ease. Both Ransomware and Trojan categories present

tight groups while Spyware groups tend to be more louse and disperse. It is also possible to see

that the misclassification samples create small groups around the corrected classified groups.

Although having missclafied samples might seem a bad indicator at first glance, if the model

used is trustworthy enough, this reveals very important information to analysts as they can not

only understand the features that lead to that choice but also understand to which samples the

model is associating them.

This view allows us to compare the position of the different malware categories but we

can also focus the analysis to each malware category and their respective families, taking the

maximum advantage of the known labels, Figures 5.13, 5.14 and 5.15 shows exactly that.

Rodrigo Queirós Conceição Supervised clustering with SHAP values

25

Figure 5.13: Ransomware category and its family’s visualisation

Figure 5.14: Spyware category and its family’s visualisation

Figure 5.15: Spyware category and its family’s visualisation

Rodrigo Queirós Conceição Supervised clustering with SHAP values

26

Figure 5.16: BIC criteria to select the number of EM clusters

We can have an exclusive view for each category and its families. It is possible to observe

that despite the model not receiving any information about the types of families within each

category, it still groups parts of them together. When looking at each category we also need to

have in consideration that some samples are misclassified and the model is seeing them as a

different category and as a result they end up becoming looser from the visual groups.

Having confirmed that there are distinct groups with their own properties we can

proceed with finding the cluster algorithm that better capture the groups visible on the 2D

graphs.

5.2 Applying Cluster algorithms

The previous visualisation graphs give us an idea of how the clusters should be formed.

Given the information acquired and the cluster algorithms that we have available it is

predictable that K-Means will not have a good performance compared to DBSCAN and EM

clustering. The reasoning behind this has to do with the fact that K-Means assumes equal

spherical clusters and in the 2D visualisations, multiple groups with different shapes and sizes

can be drawn. Besides it is likely that the algorithm would get stuck in local optimum as it is

sensitive to the cluster’s initialization.

DBSCAN and EM clustering identify arbitrary shapes with more ease, however both have

their downsides. While DBSCAN is highly sensitive to the hyperparameters, small changes in its

values will have great impact on the cluster’s creation, EM clustering requires more computer

power and suffers the same problems as K-Means as it can be negatively affected by the

initialization of the gaussian parameters. Only by applying both cluster algorithms and

comparing the output we will be able to determine which one to choose. EM clustering requires

the specification of the number of gaussian distributions (clusters), for this purpose the Bayesian

information criterion (BIC) was selected to find the optimal value.

According to BIC, Figure 5.16, the number of clusters that optimize the EM clustering

algorithm is 25 clusters. Lower BIC values could be achieved with the increase of the clusters

however it would lead to overfit and extra computational power, so the number of clusters

chosen to apply was 20.

Rodrigo Queirós Conceição Supervised clustering with SHAP values

27

Figure 5.17: DBSCAN clusters

Figure 5.18: EM clusters

Rodrigo Queirós Conceição Supervised clustering with SHAP values

28

DBSCAN algorithm, with the parameters 1 for eps and 300 for min_sample, identified 21

clusters, as we can see in Figure 5.17, the clusters obtained fit perfectly the groups identified

previously. It also tags samples that do not belong to a specific group into a noise cluster, which

can be useful for the analysis.

Regarding the EM clustering, the biggest challenge is to select an appropriate number

of clusters, with the help of BIC we can have an idea of the number to choose but it is only by

looking at the 2D visualisation that we can clarify the number to use. As we see in the Figure

5.18, the EM cluster produced results similar of DBSCAN.

Comparing the clusters algorithms, both capture distinct groups, constructing them in a

similar way to the ones visible in the 2D graph. While DBSCAN can identify a clear noise cluster,

EM is only capable of associating those samples to the closest cluster which can be useful for

interpretation but can also interfere with the cluster quality. The analysts are the ones that will

have to make the assumption of analysing the cluster or considering it a noise cluster, with the

respective care. Other problem has to do with the fact that while DBSCAN fits the number of

clusters automatically, EM clustering requires the prior knowledge of the users to input a specific

number of clusters which can reveal to be tricky for analysts to find an optimum. It is also visible

that DBSCAN clusters are more compressed to the samples that are close and EM clusters tend

to absorb samples that distance from the main group.

The visualization of the clusters suggest that EM is better to analyse anomalies and

misclassified samples while DBSCAN can better differentiate the behaviour among the malware

samples.

EM cluster 6 absorb all the samples belonging to the spyware groups while DBSCAN

divides it into two different clusters, 8 and 9. EM clusters 14 and 15 end up integrating samples

that are dispersed across the visualization and that association might disturb the analysis of the

feature importance. EM clusters 3 and 12 as associate other samples that are relatively close to

the main group, which can facilitate on understanding the behaviour of the outlier samples.

It is hard to choose which cluster is better or not, both can be applied to tackle different

problems, so ultimately, the choice of the algorithm cluster will depend on the analyst’s goal.

For the purpose of this work we are going to use DBSCAN to highlight the different clusters

across the categories.

5.3 Cluster Analysis

As it was mentioned previously, knowing the true labels and predicted labels of the data

and the model gives the analysts a unique and diverse way of analysing the clusters. For this

case we can start by analysing the clusters size and different categories that they include to have

an idea of how the samples are divided through the clusters. Then we can focus on the results

of Figure 5.17 and analyse the mean SHAP values of each cluster to find the differences of each

cluster for the malware class. This view can be drilled down to focus on the clusters for a

particular category or respective families of each category.

Rodrigo Queirós Conceição Supervised clustering with SHAP values

29

Figure 5.19: Cluster composition according to the different malware categories

Figure 5.19 allows us to see the composition of the clusters according to the predicted

categories. Clusters range in size from 360 samples to 1834 samples. Although presenting a

dominant category, clusters 2, 3 and 19 have two categories, which has to do with the fact that

the category in minority is misclassified. Cluster 14 is the smallest cluster and contains 2 different

categories that are not misclassified. Clusters from 0 to 4 and 18 mainly represent Ransomware

samples, 5 to 12 spyware samples and 13 to 19, Trojan samples.

The most important step of the cluster analysis it to understand the differences between

the clusters and if, in fact, they present different SHAP values and therefore, different feature

importance for the model.

To do this analysis we create a second mean global view for each cluster. This will allow

us to identify the behaviour of the samples of each cluster and identify the possible differences.

The next set of figures shows the different mean SHAP values for each cluster with the objective

of comparing them and analysing their differences.

Rodrigo Queirós Conceição Supervised clustering with SHAP values

30

Figure 5.20: Mean SHAP value of each future for the different Ransomware clusters

Focusing first on the clusters that contain the Ransomware samples, it is possible to see

that the order of the SHAP values slightly changes across the first four clusters.

Ldrmodules.not_in_load_avg was the feature with most impact for the clusters apart from

cluster 4 and 18. It was also the feature with the most differences between each cluster.

Pslist.avg_handlers, dlllist.ndlls and svcscan.nservices, were the following features that more

contributed to the model decision making. Cluster 18 stands out as a contrast to the other

ransomware clusters, it has a negative value for ldrmodules.not_in_load_avg which is the

complete opposite of the other clusters and it also has lower values for all the features that

stand out on the other clusters. The remaining ransomware clusters accumulate small

differences that can also be relevant to the analysis, for instance, cluster 4 and 1 have the biggest

values for psxview.not_in_pslist, cluster 0 has bigger values for malfind.commitCharge and

cluster 3 has the biggest values for pslist.avg_handlers.

Rodrigo Queirós Conceição Supervised clustering with SHAP values

31

Moving to the Spyware clusters, 5 to 12, we can see that unlike the Ransomware

clusters, the differences in these ones are more noticeable. Cluster 8 has the feature

ldrmodules.not_in_load_avg with the highest feature importance value across all clusters

achieving a value over 1.4 while the other clusters do not go beyond 0.5. Cluster 11 and 6 have

malfind.commitCharge has the highest feature importance, distancing themselves of the other

clusters by a large margin. The other spyware clusters present similar feature importance values.

They compensate the difference between the spyware clusters previously mentioned by

accumulating small differences on the remaining features. Svscan.nservices and

pslist.avg_handlers represent the higher feature importance for this group.

Figure 5.21: Mean SHAP value of each future for the different Spyware clusters

Rodrigo Queirós Conceição Supervised clustering with SHAP values

32

Figure 5.22: Mean SHAP value of each future for the different Trojan clusters

The last set of clusters, from 13 to 19, are composed by samples from the Trojan

category with the exception of cluster 18. Cluster 14, which is composed of trojan and spyware

samples, stands out for having the highest feature importance for ldrmodules.not_in_load_avg.

Cluster 16 has a higher value for both malfind.ninjections and malfind.commitCharge compared

to the other clusters. Cluster 13 and 15 are pretty much identical, the only exception has to do

with the feature ldrmodules.not_in_load_avg that stands out the most for cluster 15 and

pslist.avg_handlers that stands more for the cluster 13. Clusters 17 and 19 almost have a stair

shape, they focus on the same features but each has considerable differences that distincts

them.

Recalling the figures 5.9 and 5.10 we can see that this cluster analysis is extremely useful

to complement both global and local importance that the SHAP values offer. As it was seen, each

cluster has its unique properties that differ from the global view of the model. It was possible to

observe the different categories and their unique feature importance as well as it was possible

to identify the differences inside each category. This can help analysts understanding how

Rodrigo Queirós Conceição Supervised clustering with SHAP values

33

specific samples from the same category differ from each other and how the model is

interpreting those differences.

 Furthermore, the supervised environment gives room to maneuver according to the

target of the analysts, being able to change the analysis focus into a particular set of samples

and observing their clusters or creating new clusters just for that set. For instance, the analysis

can be focused on the misclassified samples and how they position themselves against the

correctly classified samples.

6 Conclusion

This work takes advantage of the local properties of SHAP values to search for different

patterns in samples that belong to the same class. Often researchers only use the local

properties to explore isolated cases and most of the times act based on the global feature

importance. As it was observed it could not be possible to find reliable clusters within the original

data as samples from the different categories and families were overlapping, however, the

clusters found using SHAP values are reliable and have different feature importance levels which

can complement and bring further interpretation to the model decision as well as helping

analysts with the decision-making process, especially on understanding patterns and

misclassifications of the model. This methodology can help on facing some current problems on

the cybersecurity industry related with the interpretability and adversarial learning of the

models. It can boost the interpretation of black-box models making them more desirable to use

as the analysis becomes more reliable and complete. This interpretability will also contribute to

the adversarial learning problem since it gives extra vision to the analysts as they are able to

have more control on the possible modified samples, allowing to know to which samples they

are grouped with.

Although SHAP values and supervised clustering can prove to be very helpful, they

present some relevant issues. They are highly reliable on the model deployed, so it is crucial to

assure that the model is well defined and it is maintained once in a time so the SHAP values

produced are trustworthy to analyse. For this work, the computation cost was optimized by

reducing the feature space and applying the TreeExplainer, however this is not always possible

to keep under control and the SHAP values might take a lot of resources to be computed,

especially if we are not dealing with tree models and have complex feature spaces,

compromising the analysis in feasible time.

Regarding further work opportunities, although this work focuses on a narrow scope, it

is possible to implement this idea on different problems of other industries, where samples from

the same classes might present different behaviours such as credit scoring and medicine field.

With the raising of Deep Learning models, which are more accurate but also harder to

implement and interpret, and the fact that SHAP Values can be used on these types of models

such as neural networks. It can be interesting to apply this methodology on Deep learning

models to understand if it can contribute to the model interpretability, taking in consideration

the extra computation power that it would require compared to other simpler models. Finally,

it would also be interesting to apply this methodology in time series data and study how the

model decision and interpretation was changing through the time.

Rodrigo Queirós Conceição Supervised clustering with SHAP values

34

References

Alenezi R, Ludwig SA (2021) Explainability of cybersecurity threats data using SHAP. In: 2021 IEEE
symposium series on computational intelligence (SSCI). IEEE, pp 01–10

Basole, S., Stamp, Mark, Cluster Analysis of Malware Family Relationships (2021)

arXiv:2103.05761

Charmet, F., Tanuwidjaja, H.C., Ayoubi, S. et al. Explainable artificial intelligence for
cybersecurity: a literature survey. Ann. Telecommun. 77, 789–812 (2022)

Cooper, A., Doyle, O., Bourke, A. (2021). Supervised Clustering for Subgroup Discovery: An
Application to COVID-19 Symptomatology. In: Machine Learning and Principles and Practice of
Knowledge Discovery in Databases. ECML PKDD 2021. Communications in Computer and
Information Science, vol 1525. Springer, Cham

D. E. Denning, “An Intrusion-Detection Model,” IEEE Transactions on Software Engineering, vol.
13, no. 2, pp. 222–232, 1987

Gibert, D., Mateu, C., Planes, J., “The rise of machine learning for detection and classification of

malware: Research developments, trends and challenges”, (2020) Journal of Network and

Computer Applications, 153, art. no. 102526

J. B. Fraley and J. Cannady, "The promise of machine learning in cybersecurity," SoutheastCon

2017, Concord, NC, USA, 2017, pp. 1-6

Khorolska, K., Lazorenko, V., Bebeshko, B., Desiatko, A., Kharchenko, O., Yaremych, V.(2022).

Usage of Clustering in Decision Support System. In: Raj, J.S, Palanisamy, R., Perikos, I., Shi, Y.

(eds) Intelligent Sustainable Systems. Lecture Notes in Networks and Systems, vol 213. Springer,

Singapore

Ludenberg, S. and Lee, S. (2017), ‘A Unified Approach to Interpreting Model Predictions’,

Advances in Neural Information Processing Systems, Volume 2017-December, Pages 4766 –

4775

Lundberg S., Erion G, Chen H, DeGrave A, Prutkin JM, Nair B, Katz R, Himmelfarb J, Bansal N, Lee

SI. From Local Explanations to Global Understanding with Explainable AI for Trees. Nat Mach

Intell. 2020 Jan;2(1):56-67

M. Wang, K. Zheng, Y. Yang and X. Wang, "An Explainable Machine Learning Framework for
Intrusion Detection Systems," in IEEE Access, vol. 8, pp. 73127-73141, 2020

Mclnnes, L, Healy, J, UMAP: Uniform Manifold Approximation and Projection for Dimension
Reduction, ArXiv e-prints 1802.03426, 2018

R. Lippmann, R. K. Cunningham, D. J. Fried, I. Graf, K. R. Kendall, S. E. Webster, and M. A. Zissman,
“Results of the 1998 DARPA Off-line Intrusion Detection Evaluation,” in Proc. Recent Advances
in Intrusion Detection, 1999

Rodrigo Queirós Conceição Supervised clustering with SHAP values

35

Rathore, H., Sahay, S.K., Thukral, S., Sewak, M. (2021). Detection of Malicious Android

Applications: Classical Machine Learning vs. Deep Neural Network Integrated with Clustering. In

Gao, H., J. Durán Barroso, R., Shanchen, P., Li, R. (eds) Broadband Communications, Networks

and Systems. BROADNETS 2020. Lecture notes of the Institute for Computer Sciences, Social and

Informatics and Telecommunications Engineering, vol 355. Springer, Cham

Renato Cordeiro de Amorim, Carlos David Lopez Ruiz, Identifying meaningful clusters in malware

data, Expert Systems with Applications, Volume 177, 2021, 114971, ISSN 0957-4174

Shapley, L. S., "17. A Value for n-Person Games". Contributions to the Theory of Games (AM-28),

Volume II, edited by Harold William Kuhn and Albert William Tucker, Princeton: Princeton

University Press, 1953, pp. 307-318

Tiani Chen and Carlos Guestrin. 2016. XGBoost: A Scalable Tree Boosting System. In Proceedings

of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data

Mining(KDD ’16). Association for Computing Machinery, New York, NY, USA, 785-794

Tristan Carrier, Princy Victor, Ali Tekeoglu, Arash Habibi Lashkari,” Detecting Obfuscated

Malware using Memory Feature Engineering”, The 8th International Conference on Information

Systems Security and Privacy (ICISSP), 2022

Y. Xin et al., "Machine Learning and Deep Learning Methods for Cybersecurity," in IEEE Access,

vol. 6, pp. 35365-35381, 2018, doi: 10.1109/ACCESS.2018.2836950

