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GLOSSARY 

AESO - Alberta Energy System Operator 

AUC – Alberta Utilities Comission 

ANN - Artificial Neural Networks: A computational model inspired by the structure and 

functioning of the human brain, used in machine learning for pattern recognition and 

decision-making. 

BC – British Columbia 

CAAQS - Canadian Ambient Air Quality Standards  

DL - Deep Learning: A subset of machine learning that involves training artificial neural 

networks with multiple layers (deep neural networks) on extensive datasets to perform 

complex tasks, enabling hierarchical feature representation and abstraction. 

Extreme Fire Weather - Conditions conducive to the rapid spread and intensification of 

wildfires. Conditions include high temperatures, low humidity levels, strong winds, and dry 

vegetation, creating an elevated risk of wildfires igniting and spreading rapidly. 

Fire Regime – The patterns, frequency, and intensity of wildfires. 

Fire Season – The period during which environmental conditions, such as dryness and 

temperature, are conducive to the occurrence and spread of wildfires. In Alberta, the official 

fire season takes place from April 1st to Oct 31st. 

FWI – Fire Weather Index: A widely used system for assessing fire weather conditions, 

giving a numerical rating of fire danger. 

MSE - Mean Squared Error: A metric used to measure the average squared difference 

between predicted and actual values in regression analysis, indicating the model's accuracy. 

PM2.5 – Fine particulate matter, usually consisting of smoke or pollution, with a diameter of 

2.5 micrometers or smaller, measurements are expressed in micrograms per cubic meter 

(µg/m³) of air. 

POWER - National Aeronautics and Space Administration (NASA) Langley Research Center 

(LaRC) Prediction of Worldwide Energy Resource (POWER). Project funded through 

the NASA Earth Science/Applied Science Program.  
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PV – Photovoltaic: Relating to the conversion of light into electricity, commonly associated 

with solar power generation. 

R2 - The coefficient of determination, quantifies the proportion of the variance in the 

dependent variable that is predictable from the independent variables, indicating the model's 

goodness of fit. 

RFR – Random Forest Regression: An ensemble learning method that builds multiple 

decision trees and merges their predictions to improve accuracy and reduce overfitting. 

SAM – System Advisory Model: A software used for solar PV power generation simulation. 

Solar Irradiation (GHI) – Global Horizontal Irradiance:  The amount of solar radiation 

(sunlight) received per horizontal unit area over a specified period, typically expressed in 

units such as watts per square meter (kW/m²) 

Solar Resource Potential - The amount of solar energy that can be harnessed from sunlight. 

SVR – Support Vector Regression: A machine learning algorithm that utilizes support vector 

machines for regression tasks, seeking to find an optimal hyperplane that best fits the data 

points with a specified margin. 

XGB - XGBoost: A machine learning algorithm that uses an ensemble of decision trees to 

achieve high predictive accuracy and is widely used for regression and classification tasks.  
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ABSTRACT, KEYWORDS AND JEL CODES 

This study investigates the impact of wildfire smoke on solar photovoltaic (PV) power 

generation in Alberta, Canada, over a five-year period. As Alberta increasingly leverages its 

high solar potential to meet renewable energy demand, it is confronting the effects of climate 

change, particularly the escalating frequency and severity of wildfires and associated smoke 

emissions. Smoke has the potential to impede solar irradiation, thereby posing a significant 

challenge to solar energy production. Understanding the complex interaction between 

wildfire smoke and solar energy production is crucial for effective renewable energy planning 

and electricity grid management in the province. This study develops a Random Forest 

Regression model to forecast solar energy generation in Alberta. It incorporates PM2.5 

measurements as indicators of wildfire smoke, alongside environmental parameters with 

strong predictive potential such as Global Horizontal Irradiance, and simulated solar energy 

generation data from current and future grid-connected solar sites in the province. The model 

is later used to isolate for the impact of smoke on solar power generation within the province. 

It is important to note that this study encompasses completed, proposed, and under-

construction projects, as well as estimated financial data. Its aim is to assess the potential 

impact of smoke on Alberta's solar photovoltaic production potential, rather than provide a 

retrospective evaluation of historical events. Findings reveal an average 6.37% decrease in 

solar power production during periods of moderate to severe smoke, as compared to periods 

without smoke present, and that severe smoke levels are responsible for 76% of all losses. 

These results offer critical insights into the challenges and opportunities for renewable energy 

development in wildfire-prone regions and emphasize the need for proactive strategies to 

mitigate the impacts of extreme smoke concentrations on solar energy generation. 

JEL CODES: C63, N72, P18, Q42, Q47, Q54   
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1.  INTRODUCTION 

In Alberta, and across Western Canada, the escalating frequency and severity of wildfires, 

attributed to anthropogenic climate change, is evident (Alberta Environment and Parks, 2019; 

Hanes et al., 2019; X. Wang et al., 2017). The fire season, defined as “the annual period 

during which forest fires are likely to start, spread, and cause damage”, is extending in length 

(Natural Resources Canada, 2015). For instance, over a 43-year period from 1961 –2003, fire 

season in Alberta increased by a total of 51 days (Albert-Green et al., 2013). Fire weather, 

encompassing weather conditions favourable for wildfires and impacting fire behaviour, is 

also worsening in severity (Jain et al., 2017; Natural Resources Canada, 2015). By the end of 

this century, projections indicate that the area burned by wildfires globally is expected to 

roughly double (Flannigan et al., 2005). 

Air pollution from wildfires, in the form of smoke aerosols and fine particulate matter, is 

transported over vast distances to areas downwind of the wildfire. In some cases smoke 

plumes have been observed to circumnavigate the earth (Damoah et al., 2004; Sokolik et al., 

2019). Recent research suggests that the mass of aerosols and fine particulate matter released 

into the stratosphere from extreme fires in Western North America on a singular day in 2017 

was equal to that of a moderate volcanic eruption (Peterson et al., 2018). Direct yearly carbon 

emissions from wildfires in Canada were equivalent to 18% of the country’s annual carbon 

emissions from the energy sector from 1959 – 1999, with this figure projected to rise due to 

the observed escalation in fire severity in recent years (Amiro et al., 2001). 

Alberta, a province in Western Canada, is substantially affected by changes in the 

Western Canadian fire regime, referring to the patterns, frequency, and intensity of wildfires. 

For example, the 2016 Fort McMurray wildfire in Alberta was the most expensive Canadian 

disaster in modern history, costing $5.96 billion CAD in insured losses (Hanes et al., 2019; 

Insurance Bureau of Canada, 2023). Figure 1 illustrates that even during periods of reduced 

fire activity within the province, Alberta is susceptible to the transport of smoke from fires in 

the neighbouring province of British Columbia and the Western USA. Wildfire smoke, from 

both internal and external wildfires, has emerged as a crucial air quality issue in Alberta 

(Alberta Environment and Parks, 2019).  
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FIGURE 1 -  Transport of smoke from BC wildfires to Alberta 

      Source: Alberta Environment and Parks, 2019 

Amidst intensified wildfire events linked to climate change, a considerable global effort is 

underway to rapidly decarbonize and mitigate future climate disasters, including catastrophic 

wildfires. Decarbonization is primarily taking place through the adoption of renewable 

energy systems, harnessing energy from natural sources such as sunlight, wind, flowing 

water, biomass, waves, tides, and geothermal energy (Lai et al., 2020). Encouraging progress 

in the global transition is already apparent; in 2022 renewable energy contributed to 90% of 

the world’s growth in electricity generation (Chen et al., 2023). However, the transition in 

Alberta faces a challenging starting point. As of 2020, Alberta generated only 10% of its 

electricity from renewables, with the remaining 90% sourced from fossil fuels (Davis et al., 

2020). Despite Alberta representing less than 10% of Canada's electricity generation in 2021, 

it contributed nearly half of Canada’s electricity emissions (Noel & Jeyakumar, 2023). 

Nevertheless, Alberta is committed to the renewable energy transition, aiming for a 30% 

share of electricity generation from renewables by 2030, as stated in the Renewable Energy 

Act (Government of Alberta, 2020). The province’s shift to renewables is supported by 

increasing cost-effectiveness and rapid growth in renewable energy generation, Alberta 

accounted for 75% of Canada's utility-scale wind and solar growth in 2022 (Canadian 

Renewable Energy Association, 2022). Figure 2 highlights solar power generation growth in 

the province, while Figure 3 demonstrates Alberta’s high solar resource potential, 

representing the amount of energy that can be captured from sunlight in a given area. The 

future growth of solar energy generation in Alberta is dependent on its high solar resource 

potential. 
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FIGURE 2 - Installed generation capacity by technology in Alberta  

  Note: Sourced from Singh et al., 2023, Actual 2023 data not available at time of writing. 

 

FIGURE 3 – Solar resource potential of Canada & Alberta 

         Note: Sourced from Natural Resources Canada, 2016, Rylen Urban, 2018  

Wildfire smoke has the potential to adversely affect Alberta’s solar resource potential, 

and therefore, its ability to generate solar PV power - impacting one of the province’s 

primary paths to the decarbonization of its electricity grid. Fine particulate matter (PM2.5), 

composed of particles 2.5 micrometers or smaller, is the primary smoke by-product 

monitored in Alberta and is the largest contributor to poor air quality events in the province 

(Alberta Environment and Parks, 2019; H. Canada, 2021).   

PM2.5 from wildfire smoke can remain in the atmosphere for months, and has been 

known to diminish solar radiation, the key input in solar PV power production (Keelin et al., 

2021; Sokolik et al., 2019; United Nations Environment Programme, 2022). Heavy levels of 

smoke reduce the amount of solar irradiation that can reach solar PV panels by scattering and 
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absorbing sunlight (Li et al., 2017; Gilletly et al., 2023). In other geographic areas, wildfire 

smoke has been shown to reduce the amount of solar PV power produced. For example, in 

September 2020, during a period of severe wildfires, California solar power production was 

reduced 13.4% from the prior year due to smoke, despite an increase in total system capacity 

(California Independent System Operator, 2020). However, such an evaluation has never 

been carried out in Alberta, nor in Western Canada. 

1.1 Research Objectives 

The objective of this study is to investigate the potential impact of wildfire smoke on 

solar PV power generation in Alberta, Canada. Specifically, I seek to answer this question by 

examining smoke’s effects on power production and their financial implications. Given 

Alberta’s provincial commitment to increase renewable energy production to 30% of 

electricity generation, an assessment of potential barriers in achieving this goal is imperative 

(Government of Alberta, 2020). Considering Alberta’s high potential for other renewable 

sources, such as wind, if wildfire smoke is found to have a significant impact on solar power 

production, perhaps other renewable energy methods should be considered and prioritized 

(Davis et al., 2020).  

On August 3rd, 2023, the Government of Alberta announced a seven-month pause on 

approvals for renewable energy projects over 1 megawatt (MW), affecting 118 different 

projects, including 64 GW worth of solar projects (J. Wang & Noel, Will, 2023). This 

decision was controversial and was deemed by many to have been made for purely political 

reasons. Within this context it is interesting to understand if the government had any valid 

reasoning for pausing solar projects within the larger context of climate change and 

catastrophic wildfires. 

Additionally, models employed to forecast the supply and demand of power play a critical 

role in the management and optimization of electricity grids. While current models for 

forecasting solar PV power production typically incorporate weather and atmospheric 

conditions as inputs, they often overlook polluting aerosols such as PM2.5. The omission of 

these aerosols can create forecasting inaccuracies, potentially leading to significant 

consequences for electricity grid management (Lai et al., 2020). Understanding the effect that 

wildfire smoke has on the generation of PV solar power will lead to improvements in 

forecasting accuracy and a more efficient allocation of resources across the electricity grid. It 
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will also allow for a more accurate understanding of the long term viability of solar power 

production in certain geographic areas (Gómez-Amo et al., 2019). 

While the effects of wildfire smoke and atmospheric aerosols (dust, pollutants) on solar 

PV power production have been examined in areas such as Asia and the United States, it is 

important to examine their effects in varied climates where solar PV technology is 

experiencing large scale adoption, such as Alberta. In this study I will examine the effects of 

wildfire smoke on solar PV power production in Alberta. Following an analysis of the current 

research outlook, I will construct a model to predict solar power production in Alberta, 

specifically focusing on isolating the effects of smoke within the model, and its hypothetical 

financial consequences. To the best of my knowledge, this study is the first time the impacts 

of wildfire smoke on solar PV production have been investigated in Canada, and specifically 

in Alberta. 

2.  A REVIEW OF WILDFIRES  & SOLAR PV POWER PRODUCTION 

Rapidly changing fire regimes in Western North America are contributing to an increase 

in the amount of smoke present in Alberta during the fire season. Research indicates that fine 

particulate matter from wildfire smoke adversely affects solar PV power production across 

geographic boundaries, and that increases in smoke may potentially diminish the amount of 

solar PV power generated in the future. These reductions can potentially be estimated using 

machine learning. In the following sections, I review the current state of research on wildfire 

regime changes in Alberta including their atmospheric effects, the simulation of solar power 

generation, commonly used machine learning techniques for predicting solar PV production 

and quantification methods for calculating losses from particulate matter. 

2.1 Wildfire Regime Changes & Atmospheric Indicators 

The report "Spreading like Wildfire" from the United Nations Environment Programme 

emphasizes the global nature of increasing wildfire intensity and frequency (United Nations 

Environment Programme, 2022). The report recognizes that by the end of the century, the 

likelihood of catastrophic wildfire events will increase from a factor of 1.31 to 1.57 (United 

Nations Environment Programme, 2022). Complimenting this, Jain et al. (2009) conducted a 

comprehensive review of global fire indicators, with a specific focus on North America. 

Their analysis reveals an uptick in extreme fire weather conditions and the lengthening of fire 

seasons. Notably, they report a rise in the mean value of the 99th percentile of the Canadian 

Fire Weather Index (FWI) from 26.1 to 27 between 1979 and 2002 (Jain et al., 2017). 
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Additionally, their time series analysis indicates an average increase in the length of fire 

seasons across North America at a rate of 3.8 days per decade, increasing from a total of 

191.2 days in 1979 to 204.8 days in 2002 (Jain et al., 2017).  

Examining fire season further, Albert-Green et al., (2013) investigated the seasonality of 

lightning caused fires in Alberta and Ontario. In agreement with previous studies, they find a 

significant increase in fire season length. Over a 43-year period from 1961 –2003, fire season 

in Alberta increased by 51 days in total, adding 19 days at the beginning of the season, and 32 

at the end (Albert-Green et al., 2013). Hanes et al. (2019) also discuss fire season length in 

their analysis of fire regime changes in Canada from 1959-2015, finding that the fire season 

in 2015 began approximately one week earlier and ended one week later than in 1959 (Hanes 

et al., 2019). Together, these studies come to the undeniable conclusion that fire season in 

Alberta is both starting earlier and ending later. 

Hanes et al. (2019) discuss changes in several other indicators including characteristics of 

large fires and fire cause from 1959 – 2015 in Canada. Results demonstrate that the overall 

size of large fires increased: fire size at the 95th percentile was approximately 57% larger in 

2015 than in 1959. Human-caused fires over the time period declined, while an increase in 

fire starts was attributed to lightning strikes resulting from heightened severe weather events 

linked to climate change (Hanes et al., 2019). By the end of this century, climate scenario 

projections conducted by Flannigan et al. (2005) show a doubling of the area burned by 

wildfires. 

Expanding on the theme of climate change, Parisien et al. (2023) delve into the significant 

surge in climate climate-induced wildfires in British Columbia since the mid-2000s. Their 

study reveals the compound effects of climate-induced moisture changes and altered fuels, 

leading to more frequent and intense wildfire seasons in British Columbia. They establish that 

four of the most severe wildfire seasons of the last century occurred in the past 7 years: 2017, 

2018, 2021, and 2023 (Parisien et al., 2023). Two of these years, specifically 2018 and 2022, 

will be incorporated into my study. In addition, certain wildfires displayed extreme 

behaviours, including fire whirls resembling tornadoes, and the generation of lightning that 

sparked additional fires (Parisien et al., 2023). These occurrences are indicative of 

intensifying wildfire behavior under the influence of climate change. 

Parisien et al. (2023) further illustrate that uncontained wildfires in British Columbia can 

burn for months at a time, resulting in widespread smoke coverage over British Columbia, 
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and its eastward dispersion towards Alberta, Central Canada, and parts of the USA. Wildfire-

induced air pollution exacerbates climate change; in 2021, 76 billion tonnes of carbon 

emissions were directly attributable to wildfires (World Economic Forum, 2021). The 

significance of wildfire smoke’s impact on air quality is underscored by the Government of 

Canada (2023), which states: “smoke from wildfires is a major air pollutant for Canadians, 

especially those in Alberta and British Columbia, and is capable of traversing hundreds, or 

even thousands of kilometres from the wildfire source”.  

The increasing severity of wildfires, and their far-travelling smoke emissions pose a 

significant threat to solar production by reducing the amount of sunlight able to reach the 

ground, impeding solar PV power generation. An assessment of smoke levels in the 

atmosphere is usually conducted by using fine particulate matter (PM2.5) as an indicator. The 

United Nations Environment Programme Report, “Spreading like Wildfire”(2022), found 

PM2.5 to be the major measurable smoke by-product of concern. In Alberta, wildfires are the 

primary emission source of PM2.5, frequently escalating to hazardous levels during the fire 

season, and posing a severe threat to human health (Government of Alberta, 2023c). 

Aerosol Optical Depth (AOD) serves as a secondary indicator widely employed to track 

wildfire smoke. Sioris et al. (2017) analyzed AOD and PM2.5 concentrations across 

Canadian sites utilizing satellite measurements. They observed a strong correlation between 

AOD and PM2.5, particularly fine-grained AOD (Sioris et al., 2017). Both Sioris et al. (2017) 

and  Baibakov et al. (2021) agree on the classification of fine-grained aerosols as particulate 

matter emitted by wildfires. Baibakov et al. (2021) further investigated AOD values in Fort 

McMurray, located in Northern Alberta, and found mid/fine-visible AOD in the 440 nm 

(mid) to 550 nm (fine) wavelength range particularly sensitive to wildfire smoke. Significant 

increases were observed during wildfire events where “observed AOD values range from 0.1 

for rural sites with background aerosols to over 3 for aerosol plumes from intense forest fires, 

dust storms, or volcanic eruptions” (Baibakov et al., 2021). A notable monthly record of 

AOD in Alberta took place during the disastrous Fort McMurray fire of 2016, with the 

highest hourly and daily averages being 2.10 and 1.80  respectively (Baibakov et al., 2021). 

Also in the vicinity of Fort McMurray, Shinozuka and Redemann (2011) measured AOD499 

values that frequently exceeded 1 and at times reached 4, due to wildfire smoke. Similarly, 

Calinoiu et al. (2013) found that aerosols resulting from biomass burning usually result in 

high values of AOD greater than 0.6.  
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A departure from conventional indicators is presented in the work of Ali et al. (2023), 

who questioned the reliability of PM2.5 and AOD as indicators of wildfire smoke. In their 

analysis, they introduced a novel indexing parameter, ARI (Amount of Radiation Impacted), 

designed to measure the solar radiation affected by suspended particles in the sky. I will not 

follow this approach, and instead use the conventional indicators presented above. Although 

there is an established correlation between PM2.5 from forest smoke and fine-grained AOD 

(0.55nm), the field lacks consensus on the comprehensive atmospheric effects of wildfire 

smoke, particularly its interaction with solar radiation. The extent to which smoke absorbs or 

scatters solar radiation remains a subject of ongoing investigation, with Sokolik et al. (2019) 

finding smoke to both absorb or scatter solar radiation depending on the situation.  

In conclusion, the reviewed studies demonstrate a clear consensus regarding the 

lengthening of fire seasons and the correlation between a changing Canadian fire regime and 

climate change. Wildfire smoke resulting from increased fire occurrence has the potential to 

diminish solar power production by reducing sunlight, although the extent to wildfire 

smoke’s interaction with solar radiation is not yet fully understood. PM2.5 and AOD are 

established as reliable indicators of wildfire smoke and will be used in this study to quantify 

the levels of smoke in the atmosphere.  

2.3 Simulating Power Production for Research 

Simulating solar power involves modelling solar PV systems based on engineering 

principles to understand current, past, and future behaviour under different conditions, aiding 

in system design, research, financial analysis, and feasibility assessments. One publicly 

available simulation software, System Advisory Model (SAM), developed by the National 

Renewable Energy Laboratory was recommended to me by an industry expert (National 

Renewable Energy Laboratory, 2022). SAM is noted for its user-friendliness and accuracy, 

with a demonstrated accuracy rate within 4% of actual solar production levels, as shown by 

Gurupira & Rix (2017), comparable to other simulation methods. In this study, SAM will be 

employed to simulate historical solar power by incorporating historical environmental 

conditions and actual site specifications for solar PV generation sites in Alberta. While 

simulation can also be used for future predictions, its effectiveness may be limited by the 

extensive input data required, seen in Appendix Table III, which is frequently unavailable or 

challenging to obtain. Other methods, as elaborated below, are better tailored for predictive 

tasks. 
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2.4 Predicting Solar PV Power Production 

The growing integration of solar power into the energy mix has prompted the need for 

prediction models, often using machine learning, to accurately forecast future power 

generation. Predictive forecasts are essential for effective grid management, optimization, 

and scenarios where machine learning can effectively capture complex data patterns, such as 

understanding the influence of individual parameters on predictions. Predicting solar PV 

power using machine learning typically uses historical weather and solar irradiation data. 

This section will outline environmental parameters with predictive potential, followed by 

potential machine learning models, including Support Vector Regression (SVR), Random 

Forest (RFR), and Extreme Gradient Boosting (XGB). 

Meral & Dinçer (2011) examine factors influencing the operation and efficiency of solar 

PV power generation, including system technology, environmental parameters, and 

equipment selection. They identify sunlight, or solar irradiation (GHI), as the primary energy 

source for solar systems, noting temperature's significant influence on system efficiency and 

output (Meral & Dinçer, 2011). Mekhilef et al. (2012) reinforce the impact of temperature on 

solar PV power generation, emphasizing the significance of maintaining lower cell 

temperatures to enhance efficiency. Other atmospheric parameters, such as dust/particulate 

matter, humidity and wind speed were identified as key influencers of PV system 

performance by both Meral & Dinçer (2011) and Mekhilef et al. (2012). For instance, fine 

particulate matter, can accumulate on the surface of a PV module, obstructing sunlight 

access, and negatively impacting PV efficiency, with excessive dust deposition leading to 

solar cell quality deterioration; thus optimal performance is achieved by keeping the module 

dust-free (Mekhilef et al., 2012). Mekhilef et al. (2012) further observed that elevated 

humidity levels typically decrease solar PV panel performance. Higher wind speeds can be 

both beneficial and detrimental; while they reduce humidity, they also lead to more dust 

deposition (Mekhilef et al., 2012). In a further review of atmospheric conditions, Mellit et al. 

(2020) also note the dependence of solar PV power output on solar irradiance, air 

temperature, cloud variation, wind speed, and relative humidity. 

Transitioning to the examination of machine learning strategies for predicting solar PV 

power output, Chahboun and Maaroufi (2021) conducted a comparison of machine learning 

(ML) techniques for hourly predictions of solar PV power, including MLR (Multiple Linear 

Regression), SVR, and RFR. They found that RFR outperformed SVR and MLR, achieving 
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an R-squared (𝑅2) value of 96% in the testing phase (Chahboun & Maaroufi, 2021). The 

study emphasized the effectiveness of ensemble methods (such as RFR and XGB) in 

predicting solar PV output. Torres-Barrán et al. (2019) extended the analysis by incorporating 

Gradient Boosted Regression (GBR) and XGB alongside SVR, RF, and Multilayer 

Perceptrons (MLPs) in their comparison, with GBR and XGB tying for first place. In a 

further recommendation of ensemble methods, Das et al. (2018) conducted a review of PV 

power forecasting models and demonstrated that ensemble methods consistently 

outperformed classical regression techniques. The authors recommended SVM, regression 

trees, and random forests as go-to methods for solar power prediction due to their promising 

results and suggested caution in using Artificial Neural Networks (ANN) due to high time 

and data costs with potential for overfitting (Das et al., 2018). Additionally, in some cases, 

RFR has been shown to outperform ANN in predicting solar PV power output (Kim et al., 

2019). 

Kim et al. (2019) proposed a two-step approach connecting unannounced weather 

variables with announced weather forecasts for solar power generation prediction. Their 

study encompassed various ML algorithms with RFR emerging as the best-performing 

method with an 𝑅2 value of 70.5% in the test data (Kim et al., 2019). This study showcased 

the potential of ML algorithms for predicting solar PV power and emphasized the importance 

of considering weather information in solar power prediction. For example, most prediction 

methods in the reviewed research demonstrated greater effectiveness on sunny days, with 

forecasting accuracy diminishing on cloudy days (Mellit et al., 2020). Furthermore, Isaza et 

al. (2023) found that aerosol optical depth is a reliable predictor of hourly PV energy 

production, but only during clear sky conditions. Additionally, Rieger et al. (2017) examined 

the impact of Saharan mineral dust particles on the accuracy of solar production forecasts in 

Germany. Their study identified that including aerosol conditions as inputs into the solar PV 

forecast improved forecasting accuracy for 65% of stations. Although not commonly used in 

current models, incorporating aerosol conditions could enhance model performance (Isaza et 

al., 2023). 

Overall, the literature highlights the complex nature of factors influencing PV cell and 

system efficiency. Studies identified solar irradiance, temperature, windspeed, dust 

deposition, humidity, clouds, and aerosol conditions as key influencers on solar power 

production. While aerosol conditions (indicated with PM2.5 or AOD) are identified as 
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influencing solar PV power generation, they are often not included in prediction models. The 

literature demonstrates that their inclusion improves the accuracy of forecasts. In addition, 

recent research highlights the effectiveness of ML techniques, particularly RFR and XGB, in 

solar PV power prediction. These ensemble methods outperform classical regression 

techniques, and in some cases ANNs, and showcase versatility in addressing different 

predictive challenges (Kim et al., 2019). While SVR has demonstrated effectiveness in 

predicting solar PV output, several studies indicate that RFR outperforms SVR (Chahboun & 

Maaroufi, 2021; Kim et al., 2019). A majority of literature considers the results from RFR, 

SVM and XGB to be equivalent (Das et al., 2018; Torres-Barrán et al., 2019). In my study, I 

aim to integrate predictive variables noted in the literature and will assess RFR, XGB, and 

SVR as potential model candidates. 

2.5 Quantification Methods for Calculating PV Power Losses 

Existing research uses various methods to reach the consensus that wildfire smoke, and 

other polluting atmospheric particulate matter have a negative impact on solar production, 

although the extent to which, and the quantification methods used differ. Studies primarily 

take place in the Western USA, Asia, Spain, the Sahel zone, and Australia.  

In the Western USA, Gilletly et al. (2023) utilize satellite weather data, solar PV 

production data, and PM2.5 particulate matter data in training a RFR algorithm to predict 

solar PV production. After model training, they replaced observed PM2.5 with the non-

wildfire average in a new dataset and assessed the change in predicted production. Their 

study, conducted during the severe wildfire season of 2018, found that high levels of wildfire 

smoke decreased solar PV production by 8.3% on average (Gilletly et al., 2023). I will follow 

this methodology closely in my study on Alberta. Another study in California during 

September 2020 reported a 13.4% decrease in solar power generation compared to the 

previous year, despite an increase in grid capacity, attributable to smoke (California 

Independent System Operator, 2020). 

In China, Li et al. (2017) investigated the impact of pollutant particles on solar PV power 

generation using satellite AOD data and simulated solar production data. Their findings 

demonstrate that aerosols in the heavily polluted regions of northern and eastern China could 

reduce solar power production by up to 30% (Li et al., 2017). Bergin et al. (2017) also 

examined the effect of pollution on solar PV production, focusing on India and China, with a 

specific emphasis on the deposition of fine particulate matter onto solar panels. Reductions in 
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available solar energy (GHI) were noted to be 5-15%, with solar energy generation decreased 

by 17-25% (Bergin et al., 2017). In South Korea, Son et al. (2020) found that solar PV power 

generation diminished with deteriorating air quality, indicated by fine particulate matter 

(PM2.5). They examined cloudless days to isolate the impact of pollution, noting a reduction 

in power generation of up to 29% on heavily polluted days (Son et al., 2020). All three 

studies observed power reductions due to particulate pollution in Asia, and used either PM2.5 

or AOD as indicators of pollution, with Li et al. (2017) establishing a basis for using 

simulated solar power production data in research. While the techniques used by Bergin et al. 

(2017) are valid, I am unable to utilize particulate deposition data in my study due to data 

unavailability. Similarly, Son et al. (2020) pursued a different methodology to what I plan to 

implement in my study. 

In Spain, Gómez-Amo et al. (2019) utilized a natural experiment involving an extreme 

dust episode and a nearby wildfire to assess a solar PV power plant's performance in different 

conditions. Compared to two previous benchmark clear days, the plant experienced an 

average 20% loss in production, with AOD being a strong predictor of energy loss (Gómez-

Amo et al., 2019). The authors noted that current predictive models inadequately consider 

aerosols, which contributes to forecasting error (Gómez-Amo et al., 2019). In my study, I aim 

to build upon their research by integrating aerosol conditions into my model. In the African 

Sahel zone, spanning from the Atlantic to the Red Sea, Neher et al. (2017) simulated solar 

production on both clear sky and "aerosol loaded" days using a chained model approach. 

They observed an average 8% reduction in solar production on clear days and further 

established the utility of simulated production data in research (Neher et al., 2017).  

In Australia, Perry & Troccoli (2015) used a planned fire burn event on a clear sky day to 

study the impact of smoke on both PV production and solar radiation, compared to previous 

clear sky days and a clear sky model. Their findings revealed a 7% average reduction in solar 

power generation, with a peak reduction of 27% (Perry & Troccoli, 2015). Consistent with 

earlier research on atmospheric effects of smoke, they observed the most significant aerosol 

(AOD) impact on solar irradiation at the 400 to 500 nm level (Perry & Troccoli, 2015). Also 

in Australia, Isaza et al. (2023) examined the effects of PM2.5 and AOD from wildfire on 

cloudless days in 2019-2020, by segmenting the data into bins of polluted and non-polluted 

hours. They noted that PV energy production decreased by an average of 20% in polluted 

conditions compared to clear conditions, with hourly reductions in output up to 65% (Isaza et 
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al., 2023). Again, Isaza et al. (2023) provided a basis for using PM2.5 and AOD as an 

indicator of smoke for determining power losses.  

To conclude, all of the reviewed studies highlight the adverse effects of wildfire smoke 

on solar PV power production, with the results summarized in Appendix, Table I. Work by 

Bergin et al. (2017) presents further negative consequences from the deposition of fine 

particulate matter onto solar PV panels. However, due to limited data availability, this aspect 

cannot be incorporated into my research. I will adopt methodology from Gilletly et al. (2023), 

with Li et al. (2017) and Neher et al. (2017) providing a basis for using simulated solar 

production data in research. Collectively, the reviewed studies provide compelling evidence 

supporting the use of PM2.5 and/or AOD as indicators of wildfire smoke, which I aim to 

incorporate.  

3.  DATASETS & DATA PREPARATION 

3.1 Datasets 

In this chapter, I will elaborate on the datasets used in this study, their sources and the 

methodologies used for data preparation. It is worth noting that all datasets, except for the 

Innisfail production dataset, were acquired from publicly available resources. My study will 

span from 2018 to 2022, specifically chosen to encompass recent wildfire trends in Western 

Canada, including years marked by record breaking fire and smoke activity, such as 2018 or 

2021, and comparatively milder years like 2020 (Parisien et al., 2023). While incorporating 

data from 2023 would have provided valuable insights, given it was the worst fire season on 

record with highly elevated levels of smoke in the province, the data is not available at the 

time of writing (Z. Wang et al., 2023). Another rationale for selecting this timeframe is the 

implementation of province-wide standardized PM2.5 sensor measurements after 2017, as 

detailed in subsequent sections (Government of Alberta, 2023c). All data integration and 

preparation was completed using Python, and associated packages, including: Geopandas, 

Pandas, Plotly, Matplotlib, Numpy, Seaborn, Scikit-learn and XGBoost (Chen & Guestrin, 

2016; Harris, C.R. et al., 2020; John D. Hunter, 2007; Joris Van den Bossche, 2023; 

McKinney, 2010; Pedregosa et al., 2011; Plotly Technologies Inc., 2015; Waskom, 2021). 

3.1.1 Solar Site Selection & PM2.5 Datasets 

 In my study I use PM2.5, as a proxy for wildfire smoke, consistent with established 

research practices. PM2.5 is monitored by the Government of Alberta as part of the Canadian 

Ambient Air Quality Standards (CAAQS) (Government of Alberta, 2023c). Initial PM2.5 
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sampling site candidates were sourced from the Alberta Air Quality Data Warehouse (2023), 

with selection criteria requiring data availability for the entire study period. Solar site 

candidates were identified using the Alberta Major Projects database, which lists 

infrastructure projects with budgets exceeding $5 million, encompassing completed, 

proposed, or under-construction projects with their geographic coordinates (Government of 

Alberta, 2023b). At the time of download there were 42 PM2.5 station candidates and 77 

solar site candidates. All solar sites, regardless of status, were included in the analysis, except 

for one cancelled due to the moratorium and another lacking sufficient system design 

information (see following section). Including both current and future solar sites will help to 

provide a comprehensive understanding of smoke's broader implications on solar PV power 

production in the province, recognizing that a larger dataset provides more representative 

samples and improves the reliability of findings.  

To determine the inclusion of PM2.5 stations and solar PV sites in my study, I conducted 

a geographical cross-referencing of both datasets. Solar PV sites were included if they fell 

within a 50km radius of a PM2.5 sensor, while PM2.5 stations were selected if they were the 

closest to a solar station in the study. A 50km radius ensures reasonably accurate values at 

solar sites, and is consistent with the methodology employed in a similar study conducted by 

Gilletly et al., 2023. One PM2.5 station, Red Deer Riverside, was removed due to data 

quality issues and its proximity (9.4km) to another station, which could provide data for the 

same region. After completing the cross-referencing process, 22 solar sites and 10 PM2.5 

sampling stations were identified, with an average distance of 22.57km between paired sites. 

Unsurprisingly, selected solar sites are concentrated in Southern Alberta due to its high solar 

PV potential, with a gap in Southeastern Alberta where solar sites are not within close range 

of PM2.5 stations. Please refer to Figure 4 for a site map, and to Appendix Table II for a 

detailed description of solar sites and respective PM2.5 stations. 

Hourly PM2.5 data for selected stations was sourced from the Alberta Air Data 

Warehouse, for 2018-2022 (Government of Alberta, 2023a). Provincial measurement 

standards mandate that PM2.5 sampling methods should have an operational range of up to 

500 µg m-3, and that sensors must not be located near other pollution sources, such as busy 

roads (Government of Alberta, 2016). Various sampling methods are used based on site-

specific criteria such as maintenance requirements; samples obtained with each approved 
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method are deemed comparable by the province, and were standardized after 2017 

(Government of Alberta, 2017, 2023c). 

 

FIGURE 4 – Map of Solar and PM2.5 Stations 

3.1.2 Simulated Solar PV Production Data 

Due to historical production data being unavailable, I chose to simulate solar PV power 

production at all 22 sites. Simulation was conducted using the publicly available SAM 

software, specifically the PVWatts Model. Using simulated data provides several benefits. 

Primarily, it allows for a much more robust dataset, including sites that would not have data 

yet (those under construction or in the proposal phase). Secondly, this method requires much 

less data preparation, as real-world production data often includes site down-time and 

recording error. To simulate power generation using SAM, I required inputs of environmental 

(weather) parameters and system design data for each site, as detailed in Appendix Table III. 

Hourly environmental data to was obtained from the NASA Langley Research Center (LaRC) 

POWER project funded through the NASA Earth Science/Applied Science Program, using 

the POWER Project's Hourly 2.5.4 version on 2022/10/30. POWER offers satellite data 

tailored for the renewable energy sector, and was preformatted for SAM (NASA POWER, 

2021). The weather data corresponds to the location of each solar site based on the nearest 

satellite grid cell. Grid resolution is  1.0° latitude by 1.0° longitude for the radiation data sets 

and ½° latitude by ⅝° longitude for the meteorological data sets (NASA POWER, 2020).  
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SAM’s PVWatts model required additional system design input data such as module type 

to simulate actual production accurately; refer to Appendix Table III for a full description. 

Data for each site was retrieved and compiled from application information using the Alberta 

Utilities Commission (AUC) application portal. As mentioned previously, one site was 

excluded due to the absence of system design parameters as of Fall 2023. After collecting the 

environmental and system design inputs, hourly solar production in kW was generated. It is 

important to note that SAM doesn't produce output data for Feb 29 on leap years, which will 

be addressed in the following section. 

3.1.3 Final Dataset Aggregation 

To analyze the effect of smoke on solar power production using a predictive model, I 

needed historical weather data at each solar site, in addition to the PM2.5 and simulated 

production data. For the weather data, I used parameters based upon the reviewed literature, 

including GHI, humidity, windspeed, temperature and precipitation. Appendix Table IV can 

be referenced for a full description of each parameter. Again, the data was obtained from 

the POWER Project's Hourly 2.5.4 version dated 2022/11/28. After all datasets were 

available, I first combined the PM2.5 data and SAM simulated production data, ensuring each 

solar station production entry had a corresponding PM2.5 value. This involved retrieving the 

PM2.5 measurement from the closest station at the same timestamp. Following that, I 

integrated this dataset with the POWER satellite weather data, merging based on location and 

time stamp.  Before integration, the POWER weather data had to be converted to the 

appropriate time zone, and data on February 29 on leap years was excluded, as SAM does not 

provide corresponding values for this date. After aggregation the dataset had a total of 

963,600 rows, with data recorded at an hourly granularity. Figure 5 displays a flowchart 

showing data sources, parameters, usages, and the overall aggregation process. 

3.1.4 Other Data 

Actual Innisfail production data, obtained from Elemental Energy, the site’s owner, and 

operator, served to assess the accuracy of SAM's simulated solar power generation 

(Elemental Energy, 2024). This dataset consists of actual production values and GHI data for 

the Innisfail location, between July 2020 and Dec 2022.  

Lastly, I needed financial data to estimate the effects in financial terms. To assess the 

financial impact of solar PV power generation losses due to smoke, I obtained monthly 

average pool price data from AESO (Alberta Energy Systems Operator), representing the 



SAMANTHA TREACY                   THE IMPACT OF WILDFIRE SMOKE ON SOLAR PV POWER  

                                                                           PRODUCTION IN ALBERTA, CANADA 

 

 

17 

selling price of electricity per megawatt hour (AESO, 2018). The data was converted from 

$/MWh to cents/kWh to match the hourly format of the other datasets and was adjusted for 

inflation to Canadian dollars as of December 2022, using the National Power Selling Price 

Index from Statistics Canada (Statistics Canada, 2024). This data will be used to estimate 

monetary losses in this study. 

 

FIGURE 5 – Simplified flowchart of data sources & integration, excluding financial data 

3.2 Data Preparation 

In this section I will outline the steps for data cleaning and preparation of the aggregated 

dataset created in the previous section. This preparation is crucial for utilizing the data in a 

prediction model, where I will evaluate the influence of wildfire smoke on solar PV power 

production. 

3.2.1 PM2.5  

Beginning with the PM2.5 variable, I initially addressed duplicate and missing values. 

Some stations had multiple different PM2.5 values for a given hour, especially during periods 

of sampling method changes (assuming equivalence across all methods, as explained in the 

Data section). In these cases, the average was taken. Additionally, each PM2.5 station 

contained a small percentage of missing values, as seen in Figure 6, with Lethbridge having 

the highest number of missing values at 2.12%, which is equivalent to approximately two 

weeks’ worth of data. Valid PM2.5 values at each station exhibited synchronized movements 

over time: when one station displayed high values, nearby stations typically showed similar 

readings (Figure 7). Given this correlation, I chose to estimate missing values using a 

weighted average rather than removing them, filling missing points contextually. To calculate 

the weighted average, I used values from other stations that had valid data at the same time 
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stamp. The closest station was assigned the highest weight (0.5), with weights decreasing 

linearly to 0 as distance increased. 

 

FIGURE 6 - Missing Values at PM2.5 sampling stations 

 

FIGURE 7 -  Monthly average PM2.5 for each station in study 

After addressing duplicate and missing values in the PM2.5 data, I examined its 

distribution and identified some outliers. While the required operating range maximum for 

PM2.5 measurements is 500 µg m-3, there were several readings above this threshold in the 

dataset (Government of Alberta, 2016). These outliers all occurred on May 30, 2019, in 

Northern Alberta, when a severe wildfire event was taking place. Figure 8 shows imagery of 

the smoke levels at the time. Although these readings likely represent extreme PM2.5 levels, 

they fall outside the acceptable range, raising the possibility of measurement error. To 

address this, I replaced the outliers outside of the maximum range with the 99.99th percentile 

value of PM2.5 values for that location, preserving the high measurement while mitigating 

the risk of measurement error.  
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FIGURE 8 – Edmonton, May 30, 2019 

        Source: Ian Kucerak, 2019  

3.2.2 Global Horizontal Irradiance, Aerosol Optical Depth & Fire Season  

Next, I focused on cleaning and preparing the GHI and AOD columns. Since both 

variables are measured only in daytime hours, NASA POWER filled the unavailable night-

time values with -999, which is unsuitable for analysis. I replaced these values with 0. 

Additionally, after analyzing AOD, I observed data quality issues similar to Gilletly et al., 

(2023), who also used POWER data. As noted in academic literature, mid/fine grain AOD 

displays variability, ranging from under 0.1 for rural locations with minimal aerosols to over 

3 during intense wildfire aerosol plumes (Baibakov et al., 2021). Most studies do not find 

values above 4 (Shinozuka & Redemann, 2011).  Considering the research, I examined the 

AOD distribution in my dataset and observed 126 values exceeding 4, with 614 instances 

above 3. While these high values occurred during fire season, their frequency raised concerns 

about data quality. Furthermore, some values during peak fire season appeared unusually 

low, such as those in August 2018. Due to these inconsistencies, I removed AOD data from 

the dataset entirely. Lastly, to easily differentiate whether a point fell within fire season in 

visual analysis, I added a column with a categorical variable representing fire season, taking 

place April 1 – October 31 (Government of Alberta, 2024b). 

3.2.3 Simulated Solar PV Power Production Data 

Transitioning to the simulated solar PV power production data, an initial hurdle was to 

ensure comparability across the varied solar sites, with each featuring different equipment 

and production capacities. To achieve this, I applied the Min-Max normalization technique, 

following the methodology outlined by Gilletly et al. (2023) This process scales the values 

between 0 and 1 representing each site's production as a proportion of its maximum observed 

production during the analyzed period and creates a way to compare the production of 

different sites. The normalized power production will serve as the predicted variable by the 
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model. Next, I removed rows with non-zero GHI (sunlight) but no corresponding power 

generation, which could indicate potential anomalies in the simulation model. This led to the 

removal of 24,654 rows from the dataset, approximately 2.5% of the original. The final 

dataset has 938, 946 rows.  

4.  THE PREDICTIVE MODEL 

In this chapter I will highlight my process for selecting and developing a predictive 

machine learning model to forecast solar PV power production in Alberta and isolating the 

impact of smoke on the model’s predictions. I will use Python and previously listed packages, 

and the model will leverage the aggregated and prepared dataset detailed in the preceding 

sections. Six predictive parameters will be used in the model to predict normalized power - 

GHI, temperature, humidity, wind, PM25 and precipitation. These parameters are further 

detailed and noted in bold in Appendix, Table IV. 

4.1 Initial Model Selection  

A review of academic literature revealed various methodologies employed to predict solar 

PV power generation, including Support Vector Regression (SVR), Random Forest 

Regression (RFR), and XGBoost (XGB), Artificial Neural Networks (ANN) and Deep 

Learning (DL). In the literature RFR tends to outperform SVR, and in some cases, the 

performance of RFR, SVM, and XGBoost is deemed equivalent (Chahboun & Maaroufi, 

2021; Das et al., 2018; Kim et al., 2019; Torres-Barrán et al., 2019). ANN and DL models 

were excluded from my study due to interpretability concerns: despite their ability to handle 

labeled data and perform supervised learning tasks, these models are often considered "black 

box" systems, making it difficult to understand the reasoning behind their predictions. Since 

understanding the rationale behind predictions is crucial for my study, I removed these 

models. Furthermore, RFR has been shown to outperform ANN in some cases of predicting 

solar PV output (Kim et al., 2019).   

In initial model training, the first ~80% of the data, representing the first four years was 

designated as the training dataset, while the remaining 20%, corresponding to the last year 

(2022), served as the test dataset. This approach in splitting the data by years ensured a 

balanced representation in the training data, and prevented potential bias that could arise from 

only including a portion of the year in model training. The performance of the baseline 

model, and further iterations were evaluated using key metrics such as Mean Squared Error 
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(MSE) and 𝑅2 . These metrics provide a comprehensive understanding of the model's 

predictive accuracy and ability to capture variance in the data. 

To compare the remaining methods, I created baseline models for RFR, SVR and XGB. 

In this process, SVR proved impractical due to its slow training speed; in Scikit Learn SVR is 

only designed for datasets up to 10,000 rows, and my dataset is much larger (Pedregosa et al., 

2011). For this reason, SVR was eliminated from the algorithm selection process. When 

evaluating the baseline model scores for RFR and XGB, RFR performed slightly better, 

although the differences were negligible. Despite minor variations in model performance, I 

selected RFR for its established effectiveness and basis in academic research. 

4.2 Model Creation and Tuning 

After selecting RFR as the preferred approach, the next steps were to create the model, 

analyze its initial effectiveness, optimize hyperparameters, and perform group-based leave 

one out cross validation. Throughout this process I used the previously described train-test 

split and evaluation metrics. The baseline model scores are presented Appendix, Table V, 

offering a quantitative assessment of initial model performance. 

After creating the basic model, I utilized Randomized Search Cross-Validation 

(RandomizedSearchCV), an optimization method for hyperparameter selection, to explore 

model configuration settings. RandomizedSearchCV randomly samples from a defined search 

space, unlike exhaustive methods, reducing time and computational costs (Pedregosa et al., 

2011). I used search spaces established by Torres-Barrán et al. (2019) for similar 

hyperparameter optimization problems. The second-ranked model, which displayed 

comparable accuracy to the top-ranking model but trained significantly faster, was chosen for 

its optimal performance within a reasonable time frame. Refer to Appendix, Table V for 

further details. 

After optimizing hyperparameters, I assessed the model's ability to generalize on unseen 

location data using a site-level leave-one-group-out strategy, following methodology outlined 

by Gilletly et al. (2023). Instead of using a temporal train-test split, each iteration involved 

excluding one site as a test set, while training on the remaining sites. This technique evaluates 

the model's predictive accuracy for sites not encountered during the training process and 

gives a measure of how well the model will adapt to new sites. This process was repeated for 

all 22 sites, resulting in an average MSE of 0.005761 and an average 𝑅2  of 0.94173, 

indicating that the model generalized well to new location data. Notably, the model 
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performed worst at Chappice Lake and Barlow and best at Dunmore, as seen in Appendix, 

Table VI. Following this satisfactory performance analysis, I trained the model on all 

available data. 

In the final model, global horizontal irradiance is the most important feature, followed by 

temperature. The remaining features, as illustrated in Figure 9, demonstrate relatively lesser 

predictive value within the model. 

 

FIGURE 9 - Model feature importance 

4.3 Isolating Wildfire Smoke Impacts 

To analyze the impact of wildfire smoke using my model, I filtered the original dataset 

based on high observed PM2.5 values corresponding to the red and orange levels in the 

Canadian Ambient Air Quality Standards (Figure 10), and positive GHI values (theoretical 

production hours). Next, I predicted the amount of power produced for these smoky periods 

using my model. After initial prediction on the smoke dataset, I calculated the monthly mean 

for "clear" conditions (PM2.5 ≤ 10) and substituted high observed PM2.5 values in the smoke 

dataset with the monthly clear value. This process yielded a dataset with synthetic PM2.5 

values, effectively eliminating the presence of smoke. Lastly, predictions were made on the 

synthetic dataset, keeping all else constant, allowing for isolation of PM2.5’s effects on the 

model’s predicted power output. Figure 11 compares the appearance of actual and simulated 

PM2.5 values for Innisfail, an individual solar site. 
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FIGURE 10 - Canadian Ambient Air Quality Standards for PM2.5 

   Source: (Government of Alberta, 2024a) 

FIGURE 11 – Simulated and actual PM2.5 values at Innisfail, 2021 

4.4 Comparison with Innisfail Onsite Data  

I visually compared the simulated production and satellite GHI data, with onsite data 

sourced from Elemental Energy to assess the reliability of the data used in my study and its 

suitability for drawing generalized conclusions on the impact of wildfire smoke on solar PV 

production in Alberta.  

4.5 Financial Implications 

Additionally, I aim to explore not only the impact of wildfire smoke on solar PV power 

production but also its financial repercussions. In Alberta's deregulated electricity market, 

participants engage in buying and selling electricity, with the pool price representing the cost 

per megawatt hour paid to generators  (AESO, 2018). Not all power producers sell at the pool 

price, as some have confidential power purchase with private clients, but in this study, I will 

assume that all generators (solar PV producers) sell at the pool price to generate an estimate 

of solar PV power generation losses from wildfire smoke in financial terms. To estimate 

losses, hourly pool prices, adjusted for inflation, were multiplied by the predicted amount of 

power lost per hour, and summarized per period with all figures in Canadian dollars as of 

December 2022. 

5.  RESULTS & DISCUSSION 

In this section I will discuss the outcomes of my study, which includes several 

components. To begin I will conduct an exploratory analysis of the data. Secondly, I will 

investigate the feasibility of using simulated solar production data, contrasted with actual 

production data. Lastly, a detailed analysis of the impact of wildfire smoke on solar power 

production will be completed. 

5.1 Exploratory Analysis  
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I first aimed to understand relationships between variables by creating a correlation 

matrix, Figure 12, using Spearman’s correlation coefficient. My focus was primarily on 

examining relationships between the target variable and predictor variables. As expected, 

GHI and temperature both show a strong positive relationship with power_norm. Meanwhile, 

PM2.5 exhibits a weak negative relationship, indicating that solar power production 

decreases slightly responding to increases in PM2.5 levels. 

 

FIGURE 12 - Correlation matrix (Spearman’s correlation coefficient) 

Next, I observed the fluctuations of PM2.5 throughout the study duration. Figure 13 

depicts weekly average PM2.5 levels across stations throughout the study period. In this 

visual, spikes in PM2.5 levels during the fire season are evident, with the highest levels 

occurring in 2018, 2021, and some severe periods in 2019. Weekly average PM2.5 values in 

Alberta exceeded orange and red levels exclusively during the fire season, indicating, as 

expected, that the province’s most severe air pollution from PM2.5 originates from wildfire 

smoke. Although 2018 witnessed more pronounced spikes in PM2.5, 2021 exhibited longer 

durations of moderate smoke. 

An analysis of simulated solar generation data from SAM reveals that days characterized 

by elevated PM2.5 levels rarely reach the high end of the production spectrum, as illustrated 

in Figure 14. This indicates a negative correlation between high PM2.5 levels and reduced 

solar power production, as previously illustrated by the correlation matrix (Figure 12). Solar 

PV power generation exhibits a clear seasonal pattern, with higher output in the summer 

months, coinciding with the fire season. The alignment of smoke periods and peak production 

times presents potential challenges for solar power production.  
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FIGURE 13 - Weekly average of PM2.5 for all solar sites, by CAAQS 

 

FIGURE 14 – Daily sum of solar power generation for all sites, scaled by daily mean 

PM2.5 levels 

5.2 Comparison of Innisfail Simulated & Actual Production 

Utilizing actual Innisfail production data obtained from Elemental Energy enabled me to 

conduct comparisons between on-site data, and data used in my study for GHI and 

production. Notably, the trends observed in Figure 15, displaying monthly mean GHI from 

satellite (POWER) data and onsite data, closely mirrored each other, with the on-site values 

being slightly lower, displaying minimal differences. Discrepancies may result from the grid 

cell not precisely aligning with the location, resulting in slight measurement variations. 

Additionally, comparisons were made between monthly on-site production data and 

simulated production data from SAM, where there were greater variations, as illustrated in 

Figure 16. During the winter months, the simulated data displayed significant inaccuracies, 
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overestimating the power produced. This can perhaps be attributed to adverse weather 

conditions such as snow, affecting operational days onsite, compared to within the 

simulation. In contrast, the margin of error during the fire season was considerably smaller, 

although actual output was often underestimated. Overall, despite some inaccuracies in the 

production data, the narrow margin of error between actual and simulated power production 

during the critical period of interest for this study (fire season) suggests that the methods used 

in place of onsite data are sufficiently accurate for drawing conclusions. 

 

FIGURE 15 - Comparison of monthly mean Innisfail satellite & onsite GHI measurements  

 

FIGURE 16 – Comparison of monthly sum of  Innisfail simulated & onsite production  

5.3 Isolating Wildfire Impacts 

To isolate the impact of smoke on solar PV power production I compared the predictions 

from the smoke dataset, containing actual and simulated PM2.5 values during the fire season, 

keeping all else constant, as detailed in section 4.3. During hours characterized by moderate 

to extreme levels of smoke (PM2.5 ≥ 20) in Alberta, there was a mean reduction in power 

generation of 6.37% when wildfire smoke was present. The cumulative effect over the fire 

season of all 5 years, including non-smoky periods, resulted in an overall average reduction 

in power generation of 0.35%, equating to an estimated hypothetical monetary loss of 

approximately $3,380,965 (Appendix Table VII). These differences were found to be 

significant using a paired T-test at a 0.05 significance level.  
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2021 emerged as the year with the most significant losses in power production, both 

in terms of output and financial impact, despite having lower average PM2.5 levels than 

2018; reference Appendix Table VII. This suggests that other factors, such as the timing of 

smoke events could play a role in affecting solar PV production. For example, Figure 17 

shows that in 2021, periods of high smoke occurred during the longest days of the year when 

the most sunlight was available. Analyzing seasonal trends and variations in solar PV power 

production could provide further insights into the interaction between wildfire smoke and 

power reductions.  In terms of percentage losses, as expected, 2021 and 2018 had the highest 

reductions in power generation over the fire season. The highest monthly production loss due 

to smoke took place in August 2018 at 3.39%, seen in Appendix Figure 18. In financial terms 

the highest hypothetical monthly reduction was $1.1 million in July 2021 (Appendix, Figures 

24 & 25), differing from the highest production loss due to the fluctuating cost of power.  

 

Figure 17 - Yearly estimated monetary losses ($CAD) from smoke 

Figure 18 – Yearly PM2.5 fluctuations during fire season 

Next, I further examined production declines during periods of heavy smoke (PM2.5 > 

27), the results of which can be examined in Appendix Table VII. In compared periods, solar 

PV power production exhibited an average decrease of 6.9% in the presence of severe smoke, 

surpassing reductions observed during moderate smoke conditions (6.36%). This suggests a 

correlation between smoke severity and larger power production declines. Severe smoke 

periods accounted for most of the overall hypothetical financial losses and power reductions, 

approximately 76% for both ($2,575,691 in losses). Figure 19 displays a yearly figure of the 

proportional losses from severe and moderate periods of smoke. With consensus in the 

scientific community indicating a worsening Canadian fire regime, these power reductions 

are expected to escalate as severe smoke levels occur within the province more frequently. 
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FIGURE 19 - Yearly financial losses due to smoke, by PM2.5 severity 

Next, I investigated power loss by location, beginning with normalized power production, 

to isolate effects from the production capacity of the solar PV production site. Most sites saw 

comparable outcomes with those in Southern Alberta being more affected. This is evident in 

Figure 20, where southern solar sites generally have larger normalized production reductions 

and financial losses. Possible explanations include elevated levels of smoke present in 

Southern Alberta for the duration of the study, or the elevated solar PV potential of Southern 

Alberta providing stations with a higher possibility for production loss.  

When examining the context of financial losses, the largest production sites were 

obviously more affected, and had the highest monetary losses, as depicted in Figure 21. 

Georgetown emerged as the site with the most substantial power loss, both in financial terms 

and normalized power output. In July and August 2021, Figure 22 demonstrates that as 

PM2.5 levels spiked, power production dropped dramatically at the site, revealing the loss in 

power generation attributable to wildfire smoke. In contrast, when PM2.5 levels were low 

there were few losses. Georgetown is currently in the proposal stage. Given the observed 

effects, it may be wise to consider the potential impact of smoke on this plant.  

The cumulative effect of wildfire smoke on solar power generation in the fire season 

across all 5 years of the study, including non-smoky periods, resulted in sitewide losses 

ranging from 0.09% (Sollair) to 0.54% (Georgetown), as seen in Appendix, Figure 26. This is 

fairly comparable to the sitewide comparison of normalized losses in Figure 20 and 

demonstrates that all sites fall into a similar range in terms of overall losses.  
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FIGURE 20 – Differences in power production, sized by normalized losses, coloured by 

financial losses 

 

FIGURE 21 - Comparison of normalized and real losses ($) in solar power production 

from smoke by location 

 

FIGURE 22 - Reduction in power production (kW) and PM2.5 levels for Georgetown, 

July – August 2021 
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In fact, several stations that are highly susceptible to potential financial losses are 

presently in the proposal or under construction stages (Figure 23). This can be attributed to 

the ongoing installation of numerous large-scale solar projects in Alberta, as solar capacity 

continues to grow. Previously constructed projects tended to be smaller, often serving 

experimental purposes, so it stands to reason that proposed or under construction projects are 

more financially affected due to their larger size. Nonetheless, it is advisable for project 

evaluators to carefully consider the potential impact of smoke on proposed projects during 

their assessments. 

 

FIGURE 23 - Total financial loss in production attributable to smoke, by project stage 

The findings and discussions presented in this chapter shed light on how wildfire smoke 

affects solar power production in Alberta.  The comparative analysis at the Innisfail location 

reveals the viability of utilizing simulated solar and satellite data as effective substitutes for 

actual data. Notably, periods of wildfire smoke resulted in average power reductions of 

6.37% and total financial losses amount to approximately $3 million, with periods of heavy 

smoke accounting for 76% of all losses. In addition, periods of heavy smoke resulted in 

higher comparative losses at 6.9%. The most severe decreases occurred during the intense 

fire seasons of 2018 and 2021, where PM2.5 spikes from wildfire smoke were highly 

correlated with reductions in solar power generation. Furthermore, sites located in Southern 

Alberta experienced more substantial losses. Lastly, larger sites, including some that are still 

under construction, experienced more significant financial losses in this analysis scenario. 

These findings underscore the importance of accounting for the potential impacts of smoke 

on solar projects across Alberta. 

6.  CONCLUSIONS & RECOMMENDATIONS 

This research examines and quantifies the impact of wildfire smoke on solar PV power 

generation in Alberta, finding a reduction in solar power production during periods of 
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wildfire smoke, which is consistent with other findings seen in Appendix, Table I. However, 

the study is also subject to several limitations, described below. Given the consensus on the 

worsening fire regime in Alberta due to climate change, coupled with significant focus on 

integrating renewable energy to mitigate carbon emissions, it is important to consider these 

results, as they could potentially impact energy policy in the province moving forward. In the 

following sections, policy recommendations and areas for future research are also discussed. 

6.1 Limitations 

Given that this study encompasses completed, proposed and under-construction projects, 

its purpose lies in assessing the potential impact of smoke on Alberta's solar PV power 

potential, rather than providing an evaluation of actual historical events. If the study had 

exclusively considered completed projects over the period studied, the effects in terms of 

power production losses in MW and financial implications would likely be smaller, as many 

of the largest contributing projects are not complete. Nonetheless, considering the overall 

similarities among sites in terms of normalized and percentage-wise production loss, the 

losses would likely be similar when compared in unitless terms. Additionally, the use of 

satellite environmental data, offsite PM2.5 measurements, and simulated solar PV production 

data will also have an impact on the precision of the results. However, given the comparative 

analysis conducted between simulated and actual data for Innisfail, this is not a major 

concern. Additionally, this study does not consider the effects of particulate matter deposition 

onto solar panels, which have also been shown to contribute to significant reductions in 

production by Bergin et al. (2017). This may lead to an underestimation of the reductions in 

solar PV power generation attributed to wildfire smoke demonstrated in the study.  

Another limitation arises from data quality issues experienced with AOD; a commonly 

utilized indicator of wildfire smoke often paired with PM2.5. Despite AOD’s intended use in 

this study, it was omitted due to these data quality issues. This omission may have led to less 

accurate measurement of smoke in the atmosphere, although PM2.5 is still considered 

reliable on its own. Furthermore, relying on monthly pool price averages to estimate financial 

losses lacks precision, as certain solar PV producers negotiate special agreements for power 

sales at rates different from the pool price. Moreover, using a daytime average pool price for 

financial estimates would enhance accuracy, considering that solar PV power generation 

occurs exclusively during daylight hours. Unfortunately, such data was not available at the 

time of writing. 
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Despite these limitations, this study provides a functional estimate on the potential 

impacts of wildfire smoke on solar power generation in Alberta. While further refinement and 

exploration are needed to address identified constraints, the presented findings serve as a 

critical starting point to understand the interaction between wildfire smoke events and solar 

energy production in Alberta, as well as contribute to the overall body of knowledge on how 

wildfire smoke affects solar PV power generation. 

6.2 Recommendations & Potential for Future Research 

The finding that 2021 experienced the most significant losses despite having lower 

average PM2.5 levels compared to 2018 suggests that the timing of smoke events, along with 

seasonal and daily variations, influences reductions in solar PV power. This temporal 

variability should be considered in future assessments. The coinciding time of fire season and 

peak production periods also presents potential challenges for solar power production. 

Additionally, the complex relationships between smoke and other environmental factors, as 

observed in both the literature and this study, suggests that a deeper understanding of these 

dynamics could improve the ability to isolate the impact of smoke. Further research targeting 

these relationships, and their incorporation into similar analyses has the potential to enhance 

the ability to isolate the presence of smoke and predict its effects more accurately.  

Additionally, while most solar PV power stations experienced similar losses in terms of 

normalized solar PV power production, the heightened impact in Southern Alberta raises 

questions about regional sensitivity to smoke. Further investigation into atmospheric patterns 

and transport mechanisms in Alberta could help explain why certain areas are more 

susceptible to smoke-induced reductions in power production. The revelation that larger 

production sites, notably Georgetown, suffered the most substantial losses demonstrates the 

vulnerability of major solar PV producers to wildfire smoke. This highlights the importance 

of implementing measures to enhance the resilience of critical power production facilities, a 

role that many solar facilities are poised to fulfill in the future amid the growing adoption of 

renewable power generation.  

A substantial decline in solar PV power generation during severe smoke episodes, with 

severe smoke being the primary cause of most losses, suggests a progressively larger impact 

on power generation as smoke levels intensify and escalate. Policymakers and stakeholders 

should prioritize developing strategies to mitigate the effects of extremely high smoke 
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concentrations, and plan for them to happen more frequently in the future, given the 

worsening nature of the changing fire regime in Alberta. 

The study's findings on the reductions in solar PV power generation caused by wildfire 

smoke in Alberta over a five-year period emphasizes the long-term implications of smoke on 

renewable energy planning, and electricity generation. Integrated energy planning strategies 

are necessary to address potential disruptions from environmental factors, ensuring the 

resilience and sustainability of solar PV power generation and the Albertan electricity grid. 

While the study did not extensively explore the impact of the moratorium on solar power 

and its implications for the province, it is evident that despite the clear detrimental effects of 

wildfire smoke on solar power production, transitioning away from fossil fuel energy 

generation in Alberta remains imperative. Failure to do so would have more severe 

implications for the province and its future. Leveraging Alberta’s substantial solar resource 

potential is crucial to mitigate the adverse effects of climate change to the greatest extent 

possible.   
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APPENDIX 

TABLE I - Studies quantifying the reduction in solar production from particulate matter 

Study Authors Location Reduction in 

power 

Data 

Evaluating the impact of wildfire smoke on 

solar photovoltaic production 

(Gilletly et al., 2023) Western USA ~8.3% 53 sites, April 

2018 – April 

2019 

Smoke from California wildfires decreases solar 

generation in CAISO 

(California 

Independent System 

Operator, 2020) 

California  13.4% First two weeks 

of September 

2020  

Reduction of solar photovoltaic resources due 

to air pollution in China 

(Li et al., 2017 China Up to 30% 2003 - 2014 

Large Reductions in Solar Energy Production 

Due to Dust and Particulate Air Pollution 

(Bergin et al., 2017) China & India ∼17–25%  Samples in winter 

2016 

Empirical estimates of the radiative impact of 

an unusually extreme dust and wildfire episode 

on the performance of a photovoltaic plant in 

Western Mediterranean 

(Gómez-Amo et al., 

2019) 

Spain ~20%  26–28 and 29–30, 

June 2012 

The effect of particulate matter on solar 

photovoltaic power generation over the 

Republic of Korea 

(Son et al., 2020) South Korea Up to 29%  2015 - 2017 

Impact of atmospheric aerosols on photovoltaic 

energy production Scenario for the Sahel zone 

(Neher et al., 2017) Sahel Zone ~8% 69 days in 2006 

Impact of a fire burn on solar irradiance and PV 

power 

 

(Perry & Troccoli, 

2015) 

Australia  ~7%, up to 

27%   

4th March, 2014 

Air quality impacts on rooftop photovoltaic 

energy production during the 2019–2020 

Australian bushfires season 

(Isaza et al., 2023) Australia Up to 20% November 2019 – 

January 2020 

TABLE II-  Locations of PM2.5 stations and solar sites 

Solar Project Stage Closest PM2.5 Station 

Distance 

(km) 

Airport City Solar Proposed Edmonton McIntyre 23.30 

Aura Peace Butte Solar Proposed Medicine Hat-Crescent Heights 31.87 

Barlow Solar Project Completed Calgary Southeast 0.94 

Caroline Solar Project Proposed Caroline 16.93 

Chappice Lake Solar Storage Project Completed Medicine Hat-Crescent Heights 25.36 

Creekside Solar Project Proposed Genesee 25.75 

Deerfoot Solar Project 

Under 

Construction Calgary Southeast 1.77 

Dunmore Solar Project 

Under 

Construction Medicine Hat-Crescent Heights 17.14 

Georgetown Solar Project Proposed Calgary Southeast 43.37 

Innisfail Solar Project Completed Red Deer-Lancaster 25.93 

Kisikaw-pisim Completed Edmonton McIntyre 10.07 

Kneehill Solar Project Completed Airdrie 40.43 

Monarch Completed Lethbridge 18.86 

Moon Lake Solar Project Proposed Drayton Valley 22.52 

Saamis Solar Farm Proposed Medicine Hat-Crescent Heights 3.04 

Saamis Solar Farm 1 Proposed Medicine Hat-Crescent Heights 3.04 
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Saddlebrook Solar and Storage Project 

Under 

Construction Calgary Southeast 32.88 

Scotford Refinery Solar Farm 

Under 

Construction Redwater 16.45 

Sollair Solar Energy Project 

Under 

Construction Airdrie 12.90 

Strathmore Solar Farm Completed Calgary Southeast 42.77 

Suffield Solar Project Completed Medicine Hat-Crescent Heights 39.11 

Vulcan Solar Project Proposed Lethbridge 42.07 

TABLE III – System design and environmental inputs for SAM 

Variable name Decsription 

System nameplate capacity, kWdc The maximum rated electrical output capacity of the solar power system 

under standard test conditions, measured in kilowatts direct current (kWdc). 

Module type The categorization of solar panels into standard, premium, or thin-film 

modules, representing different technologies and efficiency levels. 

DC to AC ratio The ratio of the direct current (DC) power generated by the solar panels to 

the alternating current (AC) power delivered to the electrical grid. 

Inverter efficiency The efficiency of the inverter in converting DC power generated by the 

solar panels into usable AC power for the electrical grid. 

Array type The configuration of the solar panel array, including options such as fixed 

open rack, fixed roof mount, 1-axis tracking, 1-axis backtracking, and 2-

axis 

Tilt, degrees The angle at which the solar panels are tilted from the horizontal plane, 

measured in degrees, influencing exposure to sunlight and energy 

production. 

Azimuth, degrees The compass direction the solar panels face, measured in degrees, 

indicating the orientation of the panels towards the sun for optimal energy 

capture. 

Ground coverage ratio (GCR) The ratio of the total surface area covered by solar panels to the total 

ground area, influencing power density and land utilization. In some cases 

this information was not available, and a value of 0.3 is used, which is the 

default value in the software, and also that recommended by an industry 

expert. 

Bifaciality A binary variable indicating whether the solar panels are bifacial, capable 

of capturing sunlight from both the front and rear sides. Options include 

"Yes" or "No." 

List of environmental inputs for SAM: latitude, longitude, time zone, elevation, year, month, day, hour, global 

horizontal irradiance, beam normal irradiance, diffuse horizontal irradiance, ambient dry bulb temperature, wet bulb 

temperature, dew point temperature, wind speed, wind direction, relative humidity, atmospheric pressure, snow 

depth, ground reflectance(albedo), and aerosol optical depth. 

Source: (National Renewable Energy Laboratory, 2022) 

TABLE IV – Final dataset description 

Parameter Description Abbreviation Source  Use 

Time stamp Time  Time_stamp  Time of observation. 

Not used in model. 

Power Amount of power produced in kW power SAM To create power norm 

column. Not used in 

model. 
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Location Name of solar production site  location Alberta 

Major 

Projects 

Database 

To differentiate between 

locations. Not used in 

model. 

PM2.5 The amount of PM2.5 particulate matter in the 

air  

PM2.5 Alberta Air 

Quality 

Warehouse 

Model 

All Sky 

Surface 

Shortwave 

Downward 

Irradiance 

“The total solar irradiance incident (direct plus 

diffuse) on a horizontal plane at the surface of 

the earth under all sky conditions. An 

alternative term for the total solar irradiance is 

the "Global Horizontal Irradiance" or GHI.” 

GHI NASA 

POWER 

Model 

Specific 

Humidity at 

2M 

 “The ratio of the mass of water vapor to the 

total mass of air at 2 meters (kg water/kg total 

air).” 

humidity NASA 

POWER 

Model 

Wind Speed 

at 2 Metres 

“The average of wind speed at 2 meters above 

the surface of the earth.” 

WS2M NASA 

POWER 

Model 

Temperature 

at 2M 

“The average air (dry bulb) temperature at 2 

meters above the surface of the earth.” 

T2M NASA 

POWER 

Model 

Precipitation 

Corrected 

“The bias corrected average of total 

precipitation at the surface of the earth in water 

mass (includes water content in snow).” 

precip NASA 

POWER 

Model 

Fire Season Conditional column on if it was fire season Fire_season  To differentiate between 

values taking place in 

fire season and those 

not. Not used in model 

Normalized 

Power 

Production 

The amount of power generated at each station 

normalized between stations using Min-Max 

normalization 

power_norm SAM Model 

Note: All variable descriptions from NASA power sourced from NASA POWER (2020). 

TABLE V – Model training 

Model Base (default 

Scikit learn 

parameters) 

1st place 

random search 

2nd place 

random 

search 

3rd place 

random search 

n_estimators 100 1000 155 577 

min_samples_split 2 40 10 15 

Min_samples_leaf 2 12 8 4 

max_features 1.0 0.55 0.55 0.7 

max_depth None 50 60 100 

bootstrap True True True True 

random_state 28 28 28 28 

Mean test score (MSE), random 

search 

NA 0.038371 0.038441 0.038495 

On test data     

MSE 0.00660 0.00632 .00638 0.00641 

R2 0.93453 0.93735 0.93679 0.93642 

Approx. fit time 3.5 Min 15 Min 5 Min 11 Min 

 

TABLE VI –  Leave one out cross validation results 

 Worst performance Best performance 

Mean MSE:  

0.005761 

Max MSE: Chappice Lake 

0.011351 

Min MSE: Dunmore 

0.002441 

Mean R2:   

0.94173 

Min R2: Barlow 

0.89283 

Max R2: Dunmore 

0.97484 
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FIGURE 24 - Highest production losses due to wildfire smoke 

 

FIGURE 25 - Highest $ monthly losses from smoke  

 

FIGURE 26 – Cumulative sitewide losses from smoke over the 2018-2022 fire seasons 
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Table VII – Solar production losses in periods of moderate to severe smoke 

Year 2018 2019 2020 2021 2022 
Entire 

study 

Average PM2.5 in fire season 10.46 5.63 4.87 9.1 6.27 7.26 

Mean % production loss 

compared periods when 

(PM2.5 ≥ 20) 

5.70% 6.86% 3.43% 8.11% 4.42% 6.37% 

Mean % production loss when 

compared periods when 

PM2.5>27 

6.29% 5.79% 3.14% 8.42% 6.57% 6.9% 

Observations meeting criteria 

PM2.5≥20 
6457 1487 1223 6707 2305 18,179 

Observations meeting criteria 

PM2.5>27 
4718 4706 1125 915 590 12,053 

Mean reduction over entire fire 

season when PM2.5≥20 
0.56% 0.16% 0.06% 0.84% 0.16% 0.35%  

Total power loss in MW 

whenPM2.5≥20 
10,129 1727 637 15,315 1947 29,755 

Proportion of losses (MW) 

attributable to severe smoke 

when PM2.5>27 

 83.37%  75.5%  47.88% 72%   75.4% 76.79%  

Hypothetical $ losses when 

PM2.5≥20 
$847,139 $131,313 $26,469 $1,825,264 $550,781 $3,380,965 

Hypothetical $ losses 

attributable to severe smoke 

PM2.5>27 

$732,928 $101,916 $13,095 $1,307,751 $420,001 $2,575,691 

Proportion of hypothetical $ 

losses attributable to severe 

smoke 

86.52% 77.61% 49.48% 71.75% 76.26% 76.12% 
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