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Abstract

We investigate the impact of climate shocks on key macroeconomic variables, focusing on a Portuguese panel of

municipalities. We combine a local projection approach with big data. Utilizing quarterly data from 2007 to 2021,

we analyze how deviations from historical averages, and variability in weather variables - specifically temperature,

precipitation, and surface pressure affect inflation, unemployment, disposable income, and housing prices. The

results indicate that temperature shocks are associated with transient inflation spikes, whereas precipitation vari-

ability leads to more pronounced and immediate economic disruptions. Our findings suggest that localized climate

shocks pose substantial challenges to monetary policy, particularly within the constraints of the Eurozone’s central-

ized interest rate policy. The study highlights the necessity for integrating climate-related variables into the ECB’s

policy framework and adopting regional strategies to mitigate the economic consequences of climate variability. As

the first paper of its kind for Southern Europe, this research provides critical insights into the dynamic relationship

between climate shocks and economic stability in Portugal, offering a framework for future policy considerations.

Keywords: Panel VAR, Local Projections, Climate Change, Portuguese Municipalities

JEL: C33, C53, E31

Resumo

Esta dissertação investiga o impacto de choques climáticos em variáveis macroeconómicas chave, focando-se num

painel de munićıpios portugueses. Neste trabalho combina-se uma abordagem de projeções locais com big data.

Utilizando dados trimestrais de 2007 a 2021, analisa-se como é que desvios das médias históricas e variabilidade

nas variáveis meteorológicas - especificamente temperatura, precipitação e pressão à superf́ıcie - afetam a inflação,

o desemprego, o rendimento dispońıvel e o preço da habitação. Os resultados indicam que os choques de temper-

atura estão associados a picos transitórios de inflação, enquanto a variabilidade na precipitação leva a perturbações

económicas mais pronunciadas e imediatas. As conclusões sugerem que os choques climáticos localizados colocam

desafios importantes à poĺıtica monetária, particularmente dentro das restrições da poĺıtica de taxa de juro cen-

tralizada da Zona Euro. O estudo destaca a necessidade de integrar variáveis relacionadas com o clima no quadro

de poĺıticas do BCE e de adotar estratégias regionais para mitigar as consequências económicas da variabilidade

climática. Sendo o primeiro estudo deste género para o sul da Europa, esta investigação fornece resultados im-

portantes sobre a relação dinâmica entre choques climáticos e estabilidade económica em Portugal, oferecendo um

quadro para futuras considerações poĺıticas.

Palavras-chave: VAR em Painel, Projeções Locais, Alterações Climáticas, Munićıpios Portugueses

JEL: C33, C53, E31
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1. Introduction

Climate change, brought on by human activities, has led to significantly adverse impacts on both

natural and human systems globally, often exceeding their capacity to adapt (Pörtner et al., 2022).

This phenomenon, marked by the increased frequency and intensity of extreme weather events,

has manifested in various forms, including unprecedented wildfires, changing precipitation pat-

terns, and escalating sea levels, contributing to a landscape where both ecosystems and human

populations face heightened vulnerabilities. Particularly affected are those regions and communi-

ties at the intersection of socio-economic development challenges, unsustainable land and ocean use,

and systemic inequities, all of which exacerbate the susceptibility to climate-induced adversities

(Pörtner et al., 2022).

Europe has not been immune to these developments, as it is now projected to warm faster

than the global average (Bednar-Friedl et al., 2022). The continent has witnessed a series of

high-cost climate catastrophes, such as the 2017 wildfires that ravaged over a million hectares

across the European Union (EU), around half of which was located within Portugal, and the

July 2021 floods across Germany, Belgium, and the Netherlands, incurring economic damages

amounting to 44 billion euros (European Environment Agency, 2024). These incidents serve to

highlight the evolving nature of climate risks to macroeconomic stability, fiscal health, and financial

markets within the region. While Europe has, to date, averted a major sovereign financial crisis

directly attributed to climate-related events, the increasing economic losses from such extremes

pose substantial threats to public finances, the viability of insurance markets, and the broader

economy (European Environment Agency, 2024). This situation is further aggravated in Southern

Europe, where projections indicate a continuing rise in temperatures, amplifying critical risks

such as agricultural production losses, water scarcity, and the inadequacy of current adaptation

measures to mitigate these impending challenges (Bednar-Friedl et al., 2022).

Portugal is situated at the westernmost edge of the Iberian Peninsula, and includes the Atlantic

islands of the Azores and Madeira1. Its geographic and climatic profile places it in the hot-summer

Mediterranean climate zone, known for its susceptibility to climate-induced challenges such as

droughts and wildfires (Cerejeira et al., 2023). Despite Portugal’s small size, its mainland displays

a diverse climate, ranging from subtropical oceanic conditions in the north, marked by wet winters

and warm summers, to a more continental climate inland. A distinct climatic gradient also exists

from the wetter north to the drier south, and from the cooler, mountainous regions to the warmer

1A detailed exploration of Portugal’s climate and geography exceeds the scope of this study. Interested readers
may refer to Fragoso (2008) and de Lima et al. (2013)
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coastal areas, leading to a noted variability in local weather conditions across the country.

Moreover, the temporal standard deviation of the average annual temperature in Portugal is

notably higher than the global average (Antunes et al., 2022). Despite this, literature focusing on

the impacts of climate change on Portugal’s economy is sparse; though existing studies highlight

the tangible negative effects. Pintassilgo et al. (2016) predict a reduction in tourist arrivals between

2.5% and 5.2% due to rising temperatures, potentially reducing Portugal’s GDP between 0.19% and

0.40%. Cerejeira et al. (2023) document the immediate negative effects of wildfires on local tourism

and delayed spillover effects in adjacent areas. Furthermore, Füssel et al. (2017) reported that from

1980 to 2013, Portugal faced economic losses of 6.783 billion EUR due to climate-related hazards.

Finally, Vrontisi et al. (2022) investigate the impact of climate change on southern European

islands. They find Madeira to be part of the group of islands with higher impacts to the Blue

Economy sectors, and Azores to be part of the group with moderate impacts. Interestingly, they

observe positive GDP impacts in Azores under the RCP2.6 scenario2. The scarcity of existing

literature, combined with Portugal’s unique climatic challenges, emphasizes the importance of

further research into the climate-macroeconomy interface within this specific context.

Figure 1: Long Term Trend in Deviations from Historical Averages

Note: The historical baseline considered for the average is from 1940 - 1980. Observe the shifting
patterns, from a north-south divide to an east-west divide.

2The RCP 2.6 scenario refers to a Representative Concentration Pathway that aims to limit global warming
to below 2°C above pre-industrial levels by the end of the century, primarily through significant reductions in
greenhouse gas emissions.
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The primary objective of this study is to explore the impacts of weather shocks on Portugal’s

macroeconomy, emphasizing the direct consequences on variables crucial to individuals and house-

holds: unemployment rate, disposable income, inflation, and housing price index. Distinguished

from the long-term changes commonly associated with climate, short-run weather fluctuations are

examined for their immediate economic impacts. We prioritize the analysis of short-term responses

to recognize the immediate concern of households facing unexpected weather events, and their ef-

fects on employment, spending power, living costs, and housing stability. By centering on these

aspects, we seek to address a notable void in the current literature, which often bypasses the im-

mediate economic fallout of weather shocks on such indicators. Accordingly, the research questions

we set out to answer are as follows: 1) What is the extent to which weather shocks influence crucial

macroeconomic variables within Portugal? 2) What is the role of weather variability in shaping

these economic dynamics?

Our study leverages a panel vector autoregressive (PVAR) framework with exogenous regres-

sors (X) to analyze the interactions between weather variations and key macroeconomic indicators

within Portugal. We further utilise local projections for the construction of impulse response func-

tions to weather shocks. The study spans from 2007 to 2021, analysed at a quarterly frequency 3.

We consider four weather variables to represent the climate in Portugal, specifically, air tempera-

ture, soil temperature, precipitation, and surface pressure. Data for the aforementioned weather

variables is sourced from the ERA5 reanalysis dataset via the Copernicus Climate Data Store.

This study contributes to the literature on climate economics, focusing on the effects of weather

shocks on the Portuguese economy—a domain where empirical evidence remains sparse. First, by

examining the macroeconomic repercussions of weather variability and shocks with an emphasis

on Portugal, it fills a gap in the understanding of climate impacts, particularly contributing to the

literature on the Southern European economy. Second, our approach diverges from conventional

studies by dissecting the heterogeneous weather impacts at a municipal level, employing a panel

VAR analysis. Third, it extends the scope of analysis beyond the commonly examined tempera-

ture and precipitation variables to include soil temperature, air temperature, and surface pressure,

providing a holistic view of the climate’s influence on economic indicators. The findings of this

study are expected to inform policy formulation, offering insights into the short-term economic

adjustments needed by sudden climate-induced changes. It serves as a reference for similar re-

gional studies within Europe, advocating for localized climate impact assessments to tailor policy

interventions effectively. Moreover, by highlighting the importance of considering a wide range of

3The shorter time period is based on the availability of macroeconomic data at the municipal level, provided by
the Instituto Nacional de Estatistica (INE) and Confidencial Imobiliario.
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climate variables and their variability, we hope to encourage future studies into understanding the

comprehensive impact of weather shocks on the macroeconomy.

This dissertation is structured as follows: Section 2 reviews related literature, focusing on

panel VAR models, the economic impacts of temperature and precipitation, and the effect of

climate change on inflation. Section 3 outlines the model specification, providing a rationale for the

chosen methodology. Section 4 provides a description of the data and explicates the methodology

employed. Section 5 presents the empirical results. Section 6 discusses the implications of these

findings for policy formulation and adaptation strategies. The dissertation concludes with Section

7, summarizing the key insights and contributions. For further information on the methods, data,

and more, a comprehensive appendix is available at the end of the document (see Appendix A).
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2. Literature Review

The climate-economy literature has witnessed significant growth over the last decade. Studies

in this realm have focused on a range of outcomes, from economic growth to labor productivity;

however, the diversity of methods and geographic focus across studies has led to contrasting re-

sults, making it challenging to draw broad conclusions. To this extent, readers interested in the

development of the field are directed to survey reviews and meta-analyses that synthesize findings

across studies; we specifically highlight the seminal works of Dell et al. (2014) and Tol (2009, 2014,

2018, 2024), which offer an overview of the current state of knowledge on the economic impacts of

climate and weather variations.

VAR models serve as a key tool in climate econometrics research; as such, various models have

been applied across a range of studies. For instance, Uddin and Wadud (2014) utilize a VAR model

to probe CO2 emissions’ influence on GDP in countries within the South Asian Association for

Regional Cooperation (SAARC), paralleling Gallic and Vermandel (2020)’s investigation into New

Zealand’s economic sensitivity to weather shocks. Skrinjaric (2023) extends this to the Croatian

economy, examining extreme weather’s inflationary pressures through a VAR model. Ahmadi

et al. (2022) employ a Bayesian Structural Global VAR with Exogenous Regressors (BSGVAR-

X) model to discern the heterogeneous impacts on global economies, whereas Kim et al. (2022)

leverage a nonlinear VAR model to detail the multifaceted effects of severe weather conditions

on the US economy over six decades. Romero et al. (2023) utilize a Bayesian VAR-X model to

assess El Niño–Southern Oscillation (ENSO) related weather shocks in Colombia, focusing on the

agricultural sector and inflation. Lucidi et al. (2024) and Beirne et al. (2021) adopt a Bayesian

SVAR model and a SVAR model respectively, to analyze temperature shocks and disaster events’

effects on the euro area economies, emphasizing the necessity for the ECB to consider climate

shocks. Ciccarelli et al. (2023)’s application of a seasonal dependent BVAR further explores the

seasonal impact of temperature shocks on inflation within the euro area, highlighting significant

variations across countries and seasons.

In recent years, the adoption of panel VAR (PVAR) models has surged, attributed to their abil-

ity to combine the strengths of standard VAR models with panel data techniques, effectively ad-

dressing endogeneity issues and facilitating endogenous interactions among model variables (Habib,

2022)4. Mukherjee and Ouattara (2021) investigate temperature shocks’ influence on inflation in

a study spanning 1961–2014, highlighting long-lasting inflationary pressures across developed and

4See Canova and Ciccarelli (2013) for an overview of PVAR models used in macroeconomic and financial litera-
ture.
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developing countries. Alessandri and Mumtaz (2021) examine climate volatility’s effects on GDP

growth and volatility across 133 countries from 1960 to 2019, identifying the negative consequences

of temperature variability. Habib (2022) focuses on North African countries, revealing the dual

impact of climate variability on GDP reduction and the stabilizing role of remittances. Aslan et al.

(2024) analyze temperature anomalies’ impact on EU countries’ economic growth and technological

indicators, noting a particular increase in patent applications. Huber et al. (2023) use a Bayesian

PVAR to assess climate shocks on agricultural markets and macroeconomic indicators in high-

income economies, finding significant global reactions. Lastly, Ciccarelli and Marotta (2024) apply

a PVAR model to estimate climate change effects on the economy from 1990 to 2019, emphasizing

the effectiveness of counteracting climate risks in the medium term.

Furthermore, fixed effects panel regression has been widely employed to analyze the economic

impacts of climate variables, with studies by Kalkuhl and Wenz (2020) exploring temperature

and precipitation’s effects on global economic production, Kotz et al. (2023) on inflation, and Li

et al. (2023) on inflation across 26 countries. Additionally, Deryugina and Hsiang (2014) focus

on temperature variations and income in the U.S. Complementing these are broader inquiries

into temperature and economic growth (Burke et al., 2015; Dell et al., 2009; Diffenbaugh and

Burke, 2019), labor productivity (Deryugina and Hsiang, 2014), energy demand (Auffhammer and

Schlenker, 2014; Wenz et al., 2017) , and crop yields (Chen et al., 2016; Schlenker and Roberts,

2008), as detailed by Dell et al. (2014) and Kolstad and Moore (2020). This body of work,

controlling for time-invariant heterogeneity, sheds light on the economic ramifications of climate

change, predicting potentially higher losses than earlier models suggested.

Finally, recent literature employing local projections has provided insights into the impacts of

climate and financial shocks on economic variables. Local projections, initially proposed by Jorda

(2005), have gained popularity in the past decade as an alternative method to estimate impulse

response functions per Adämmer (2019). Natoli (2022) used such an approach to analyze the

effect of temperature surprise shocks on the U.S. economy, highlighting changes in consumption,

investment, and price variability, and noting central bank responses. ? explored the short-term

effects of financial crises on climate change resilience, showing a decrease in resilience, especially

in developing economies

Across numerous studies, the impact of temperature on the economy has been extensively doc-

umented, illustrating a complex array of effects across different regions and economic variables.

Kalkuhl and Wenz (2020) alongside Dell et al. (2012) , Burke et al. (2015), and Diffenbaugh and

Burke (2019), identify significant negative impacts of temperature on global economic production

and per-capita GDP, pointing to a persistent sensitivity of economies to temperature changes.
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Mukherjee and Ouattara (2021), Kotz et al. (2023, 2021), and Ciccarelli et al. (2023) extend this

narrative, revealing how temperature shocks precipitate significant inflationary pressures, affecting

both developed and developing nations, and suggest potential complications for maintaining infla-

tion and price stability over prolonged periods. Gallup et al. (1999) and Nordhaus (2006) point

to a significant reduction in economic growth in developing countries, further affirmed by Burke

et al. (2015); meanwhile, Jones and Olken (2010) and Lucidi et al. (2024) suggest that temperature

shocks affect exports and electricity prices differently across economies. Temperature’s economic

impacts are increasingly highlighted through the variability effects on GDP growth and volatility,

as shown by Alessandri and Mumtaz (2021) and the implications on sector-specific outputs like

agriculture, as indicated by Natoli (2022). This relationship between temperature and economic

outcomes further extends to consumption, investment, and labor productivity, with research in-

dicating that average summer temperature increases could significantly decelerate U.S. economic

growth (Colacito et al., 2019). Thus, the extant literature on the nexus between temperature and

economic outcomes collectively illustrates that both developed and developing countries face sub-

stantial economic risks from temperature fluctuations, with potential long-term macroeconomic

effects that could slow investment, impact labor productivity, and influence consumption growth.

While the impact of temperature on the economy has been extensively studied, the effects of

precipitation on economic outcomes, although significant, have received less attention. Investiga-

tions by Kalkuhl and Wenz (2020) and Kotz et al. (2022) into the relationship between precipitation

and global economic production reveal the sensitivity of economies to rainfall variations, alongside

temperature changes. Kotz et al. (2022) highlight that increased wet days and extreme rainfall

events lead to declines in economic growth rates, affecting high-income nations and sectors such

as services and manufacturing notably. Habib (2022) further explore climate volatility’s impact,

including precipitation, on GDP growth and stability, emphasizing that fluctuations in rainfall con-

tribute to unpredictable climate conditions, thereby reducing GDP growth and increasing GDP

volatility.

Further studies have extended the focus beyond temperature and precipitation to explore how

a variety of climate variables influence economic performance. The comprehensive analyses by Dell

et al. (2009, 2014) and Burke et al. (2015) illustrate the relationship between different weather out-

comes—including temperature variability and extreme weather events—and economic indicators

like productivity, output, and growth, uncovering the non-linear impacts of climate variables on

macroeconomic production. They forecast considerable welfare losses due to anticipated climate

changes. Skrinjaric (2023) investigates extreme weather effects on Croatia’s economy, identifying

significant inflationary pressures from droughts. Furthermore, evidence from Dell et al. (2012),
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Kalkuhl and Wenz (2020), and Pörtner et al. (2022) highlight the disproportionately severe eco-

nomic impacts on low-income countries and the poorest global regions. Dasgupta et al. (2021)

contribute to this narrative by demonstrating climate change’s adverse effects on labor productiv-

ity in tropical countries.

The literature investigating the relationship between climate variability and inflation remains

limited, with only a select few studies addressing the direct impact of climate-related variables

and natural disasters on inflation. Heinen et al. (2019) and Parker (2018) identify that floods,

hurricanes, and other natural disasters can lead to inflation, with impacts varying based on disaster

type and inflation measure composition. Similarly, case studies by Laframboise and Loko (2012)

and Abe et al. (2014) provide mixed evidence, suggesting that while some countries experience an

increase in inflation following disasters, others, like Japan after the 2011 earthquake, see minimal

inflationary effects. More recent analyses, such as those by Faccia et al. (2021), Mukherjee and

Ouattara (2021), and Ciccarelli et al. (2023), expand on these findings by examining the effects

of temperature changes and variability, revealing the varied impact of temperature on inflation,

with more pronounced effects in warmer regions during summer months and instances of increased

temperature variability contributing to inflation rises.

3. Panel VARX

3.1. Model Description

We employ a panel vector autoregressive (PVAR) framework with exogenous regressors (X) to

model the interactions between the weather and key macroeconomic variables for Portugal, an

extension of VAR models, which have become a foundational methodology in empirical macroeco-

nomic analysis since the pioneering work of Sims (1980). Our model includes weather variables as

exogenous factors, enabling us to treat shocks to these variables as external to the model and isolate

their impacts on macroeconomic outcomes. This strategy aligns with the practices in contempo-

rary research, acknowledging the long-run, slow-moving nature of anthropogenic climate effects

compared to the short- to medium-term horizons relevant to our study (Alessandri and Mumtaz,

2021; Ciccarelli and Marotta, 2024; Kim et al., 2022).

In our analysis we estimate a panel VARX with fixed effects using the R package panelvar

(Sigmund and Ferstl, 2021)5, i.e,

5See Appendix A.
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yi,t = µi +

p=4∑
l=1

Alyi,t−l +Bwi,t +

q=4∑
j=1

Cjwi,t−j + ϵi,t (1)

where yi,t is an m×1 vector of endogenous variables for the ith cross-sectional unit (municipality)

at time t, and µi is a vector that captures time invariant fixed effects. We let yi,t−l be an m× 1

vector of lagged endogenous variables, and Al the m ×m companion matrices for the coefficients

corresponding to the vector of lagged endogenous variables yi,t−l. wi,t is an n × 1 vector of n

strictly exogenous variables that are independent of ϵi,t and ϵi,t−s for s = 1, . . . , T . wi,t−j is a

n × 1 vector of lagged exogenous variables, and B and Cj the m × n companion matrices for the

coefficients associated with the weather variables.

Furthermore, we assume that the error terms ϵi,t are independently and identically distributed

(i.i.d.) for all i and t with E[ϵi,t] = 0 and V ar[ϵi,t] = Σϵ, where Σϵ is a positive semidefinite

matrix. The cross sectional units i and the time section t for our model are defined as follows:

i = 1, 2, ..., 278 (island municipalities are excluded), and t = 1, 2, ..., 60 (15 years of quarterly data).

The associated subscripts are accordingly: m = 4, n = 12, and p = q = 4, and we assume that the

parameters Al (m×m), B (m× n), and Cj (m× n) are homogeneous across all i. The vector of

variables are defined as follows:

yi,t =
[
hicp yoy pcti,t, ur L1i,t, disp inc conc l L1i,t, hpi l L1i,t

]⊺
,

wi,t =
[
wt2m hd

i,t , wtp hd
i,t , wt2m std

i,t , wtp std
i,t , wsp hd

i,t , wsp std
i,t , wstl2 hd

i,t , wstl2 std
i,t , wtp hd2

i,t , wtp hd3

i,t , wt2m hd2

i,t , wt2m hd3

i,t

]⊺
.

(2)

In our PVARXmodel, we specify the ordering of the variables based on their assumed exogeneity

and potential to influence each other within the same quarter. By positioning hicp yoy pct first,

we assume that inflation rates are the most exogenous variable, impacting all subsequent variables

— the unemployment rate (ur L1 ), household disposable income (disp inc conc l L1 ), and house

price index (hpi l L1 ) — without being contemporaneously affected by them. As such, fluctuations

in inflation could drive changes in the labor market, income levels, and housing markets, with each

subsequent variable influenced by those preceding it but not exerting instantaneous influence in

return.

The decision to focus on subnational, high-resolution data for Portugal is driven by the recog-

nition that national averages of climate variables can obscure significant regional variations and

localized impacts of climate change (Rodrigues et al., 2024). Analyzing data at a more granular

level enhances statistical power, and mitigates the dilution of climate and economic signals that

often accompanies spatial aggregation (Burke and Tanutama, 2019; Harari and Ferrara, 2018; Hu-

ber et al., 2023). This approach not only offers more nuanced insights into the aggregate effects of

extreme events but also supports the development of tailored adaptation policies informed by local

conditions and vulnerabilities (Skrinjaric, 2023; Vrontisi et al., 2022). The PVARX framework
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is particularly suited to our analysis due to its ability to integrate the benefits of VAR models

with the strengths of panel data techniques. It allows for the control of unobserved heterogeneity

across units, and the examination of dynamic responses via impulse response functions and vari-

ance decomposition, thereby enhancing the inference of causality in our findings (Habib, 2022).

Furthermore, the use of subnational data enables the inclusion of region-specific fixed effects,

which helps to avoid omitted variable bias—a common limitation in cross-sectional analyses of

the climate-economy relationship6. This methodology distinguishes between the short-term shocks

and long-term changes in climate conditions, acknowledging that while societies may adapt to

long-term trends, short-term shocks and extreme events present distinct challenges (Kalkuhl and

Wenz, 2020; Kotz et al., 2021).

3.2. Local Projections of Weather Shocks

We explore the impact of weather shocks on Portuguese macroeconomic variables through the use of

local projections (LP) to estimate the impulse response functions of macroeconomic variables under

consideration. Local projections eschew the extrapolation of parameters across distant horizons in

favor of sequentially estimating parameters at each desired point. This methodology boasts several

advantages over the structural vector autoregressive (SVAR) approach. Firstly, LPs are simpler

to estimate, relying on straightforward linear regressions. Secondly, they facilitate easier pointwise

or joint inference. Thirdly, impulse responses derived from LPs tend to be more robust against

misspecifications in (linear) VAR models (Adämmer, 2019; Jorda, 2005). Further, Plagborg-Møller

and Wolf (2021) demonstrated that when lag structures are unrestricted, LPs and VAR models

yield identical impulse responses, suggesting that empirical impulse responses from LPs and SVARs

align closely at short horizons but may diverge at longer ones. This versatility extends to panel data

analysis, allowing for nuanced examination of the effects of weather shocks on economic outcomes.

We implement this framework using the R package lpirfs adammer2019lpirfs, constructing linear

impulse responses for each endogenous variable to explore the effects of specified weather variable

shocks. The impulse response functions (IRFs) are developed using the entirety of the sample

set, with each IRF setup individually, focusing on the cumulative multipliers to assess the overall

impact 7. We adopt a fixed effects approach, to maintain fidelity to our panel VARX estimation.

To construct our IRF plots, we estimate a regression model for each response variable yri,t in yi,t,

similar to Jorda et al. (2015), where the general equation used for each regression is defined as

6We assumes that the regional characteristics controlled for by fixed effects are time invariant. If this assumption
is violated, the model may not fully account for all variations, potentially leaving residual biases unaddressed.

7Cumulative responses are estimated through yt+h − yt−1 where h = 0, ..., H − 1.
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follows:

yri,t+h = αh
i + wk

i,tβ
h +Xi,tΓ

h +

q=4∑
l=1

Si,t−lΦ
h
l + ϵi,t+h;h = 0, 1, ...,H − 1 (3)

where yri,t+h is the rth target of interest, the subscript i denotes the municipality, and αh
i denotes

the (cross-sectional) fixed effect for each municipality within our panel. Let wk
i,t denote the weather

variable representing the identified shock from the vector of weather variableswi,t we are interested

in. Then Xi,t is a vector that includes all the variables in our system (contemporaneous and

predetermined), both response and weather, observed at time t for municipality i except for the

rth target of interest (yr) and the weather variable wk. Furthermore, the vector Si,t−l contains

the lags of all the elements in Xi,t as well as the lags of the rth target of interest (yr) and the

weather variable wk. The model incorporates four lags of the regressors; confidence intervals are

set at 95%, analyzed over 12 horizons—equating to three years of quarterly data. The endogenous

variables are expressed in the same manner as they are in the panel VARX model.

4. Data

4.1. Economic Data

For our analysis, we utilize quarterly data spanning from 2007Q1 to 2021Q4, covering 278 mu-

nicipalities (concelhos) in mainland Portugal, excluding the island regions of Azores and Madeira.

This balanced panel features a block of four endogenous macroeconomic variables in vector yi,t:

Year-on-Year (YoY) inflation rate represented by the harmonized index of consumer prices (hicp)

(hicp yoy pct), house price index (hpi), disposable income of households (disp inc conc), and the

unemployment rate (ur) (see Figure 2). The house price index, disposable income, and unemploy-

ment rate are available at the subnational level for each municipality. For the hicp, we employ

national-level data for all municipalities, under the assumption of uniform economic conditions

across regions. Following Fomby et al. (2013), we apply a log transformation to the hpi and

disp inc conc.
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Figure 2: Plots of Macroeconomic Variables Considered

(a) hicp yoy pct (b) hpi

(c) disp inc conc (d) ur

Note: We display the smoothed conditional means for all variables except for the hicp yoy pct
to enable a more parsimonious representation of the trends present in the series. The highlighted
regions correspond to the following events: Great Recession (yellow), Sovereign Debt Crisis (blue)
and the Real Estate Boom (green).

4.2. Climate Data

Climate data is sourced from the ERA5 reanalysis, detailed by Hersbach et al. (2018, 2020), which

integrates model simulations with globally observed meteorological data into a singular dataset,

made available through the Copernicus Climate Change Service. This reanalysis data combines

information from various sources, such as ground stations and satellites with a climate model,

estimating weather variables across a detailed grid structure. It is provided at a high spatial

and temporal resolution, specifcally 0.25◦ × 0.25◦ grid intervals on an hourly basis, extending

back to the mid-20th century. To accurately aggregate climate data at the municipal level across
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Portugal, we employ a spatial aggregation method that calculates the area-weighted mean of the

ERA5 reanalysis grid cells overlapping, at least partially, with municipal boundaries. This process,

adhering to the methodology outlined by Kotz et al. (2021), involves using an algorithm to estimate

the proportion of each grid cell within the administrative boundaries, as obtained from the Agência

para a Modernização Administrativa, which enables a precise depiction of the climate experienced

by each municipality, facilitating a more accurate assessment of weather impacts on the local

economy (see Appendix A for more details).

Figure 3: Deviations of Weather Variables from Historical Averages, Aggregated at a
District Level

(a) t2m wtd hd (b) stl2 wtd hd

(c) tp 1000 wtd hd (d) sp wtd hd

Note: We display the smoothed conditional means for all variables to enable a more parsimonious
representation of the trends present in the series. Note the distinct rise in deviations for the air
and soil temperatures across all districts, representing a broader pattern of global warming.

Our study focuses on four primary climate variables: 2-metre temperature (t2m), total precipi-

tation (tp), surface pressure (sp), and soil temperature at level 2 (stl2 )(see Figure 3). This selection
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is guided by the necessity to examine the multifaceted impacts of climate change, as highlighted by

Auffhammer et al. (2013). We transform the total precipiation by multiplying it by a factor of 1000

to convert it from (m) to (mmday−1)8. We also transform the surface pressure by multiplying it by

a factor of 100 to convert it from Pa to hPa9. Our analysis incorporates both changes in weather

means and weather volatility as exogenous variables (wi,t), addressing the literature’s emphasis

on temperature changes and the economic implications of weather extremes. Following Moberg

et al. (2000), day-to-day variability for each weather variable is captured through the intra-monthly

standard deviation of daily values, averaged quarterly for similar periodicity as the macroeconomic

data as implemented by Kotz et al. (2021)10. Furthermore, to account for the presence of non-

linear dependencies, we include the squared and cubed transformations of the historical deviations

for the 2-metre temperature (t2m 2 wtd hd, t2m 3 wtd hd), and total precipitation (tp 2 wtd hd,

tp 3 wtd hd) as exogenous regressors.

5. Results

5.1. Unit Root

We begin with presenting the unit root test results to assess the stationarity of our balanced panel

dataset, addressing the necessity for unit root tests that account for cross-dependence among panel

units. Given the plausible influence of common factors on ur, hicp yoy pct, hpi, and disp inc conc

across different regions, we employ the tests outlined in Demetrescu et al. (2006) and Costantini

and Lupi (2013) 11. These tests are specifically chosen to mitigate the risk of over-rejection by the

Levin, Lin, and Chu (LLC) and Im, Pesaran, and Shin (IPS) tests due to cross-section dependence

(Kleiber and Lupi, 2011). We further we incorporate the Simes test for multiple hypothesis testing

at three significance levels, following the approach suggested by Hanck (2013) based on Simes

(1986) method. This test is particularly apt for our dataset as it remains robust under conditions

of positive dependency among test statistics, effectively testing the unit root null hypothesis across

the panel (Kleiber and Lupi, 2011).

The results indicate that hicp yoy pct is stationary at significance levels of 0.01, 0.05, and 0.10.

The ur displays non-stationarity in its series but is stationarity once differenced, across all tested

8We refer to the ERA5 data documentation herein: ”Most hydrological parameters are in units of ’m of water
per day’, so these should be multiplied by 1000 to convert to kgm−2 day−1 or mmday−1”

9We refer to the ERA5 data documentation herein: ”The units of this parameter are Pascals (Pa). Surface
pressure is often measured in hPa and sometimes is presented in the old units of millibars, mb (1 hPa = 1 mb=
100 Pa).”

10See Appendix A for a detailed overview.
11See Appendix A for further details.
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significance levels. The log of hpi (hpi l) is non-stationary, but is stationary upon differencing.

Similarly, the log of disp inc conc (disp inc conc l) is non-stationary, but is stationary once it

undergoes differencing at all levels of significance. These findings inform our subsequent analysis,

leading to the inclusion of hicp yoy pct in the panel VARX in an untransformed form, with the

remaining variables entering after appropriate transformations (see Table III).

Additionally, we examine the stability properties of our panel VARX. Lütkepohl (2005) and

Hamilton (1994) have demonstrated that a VAR is stable if the eigenvalues of the VAR reside within

the unit circle, implying moduli strictly less than one. As shown in Figure 4, all the eigenvalues

are indeed located within the unit circle, thus fulfilling the stability condition. This allows us to

proceed with the presentation of the model estimation results.

Figure 4: Stability of PVARX model

5.2. PVARX Results

The complete results from the PVARX fixed effects estimation are outlined in Table IV. The

variables placed in the first row horizontally are considered as the dependant variables, while

the regressors can be found in the first column vertically. The coefficients corresponding to each

regressor can be found in the rows of the table, with the standard errors provided in brackets, and

the associated significance indicated by the asterisk(s). We begin with presenting the results related

to the year-on-year inflation rate, covering the contemporaneous effects of weather variables first,

and following with the lagged effects. Temperature, both air (t2m) and soil (stl2 ), alongside total

precipitation (tp), emerge as significant drivers of inflation. Specifically, a one degree increase in

the deviation from the historical average for the 2-metre temperature leads to a 0.1014 percentage
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point increase in the year-on-year inflation observed, while a one standard deviation increase in the

variability of the soil temperature corresponds to a 0.5042 percentage point increase in the inflation

rate (with a p-value of < 0.001). Deviations from the historical average for the 2-metre temperature

further exhibit a non-linear relationship with inflation, with the squared term decreasing inflation

(-0.0342) and the cubed term increasing it (0.0018). However, the largest effects are observed for

the total precipitation; a one standard deviation increase in the variability of precipitation results

in a 2.6049 percentage point increase in the inflation rate. Thus, changes in rainfall patterns

lead to immediate inflationary pressure. This contrasts with the results that indicate increases

in deviations for the historical average for precipitation coincide with a decrease in the year-on-

year inflation. The results further demonstrate a [statistically] significant non-linear relationship

associated with precipitation and inflation. Finally, surface pressure displays an impact of 0.0003

for deviations from historical averages, and a nil coefficient for variability, suggesting a limited role

in driving inflationary outcomes in Portugal.

Lagged effects further articulate the temporal dimension of weather impacts. Deviations from

the historical average for the 2-metre temperature persistently affect inflation up to the fourth lag,

with a peak increase observed at the second lag (0.1910). Soil temperature’s lagged variability,

particularly at the first (0.6309) and third lags (0.8038), also amplify inflation, possibly indi-

cating a delayed response to temperature shifts. Conversely, the lagged variability in the 2-metre

temperature appears to decrease inflation at the first (-0.4661) and the fourth lags (-0.1744); ad-

ditionally, changes in the lagged deviations for the soil temperature minimally decrease the inflation

rate until the fourth lag. The effect that variability in precipitation has on inflation is corroborated

by the lagged analysis, wherein an increase in variability at the second lag increases inflation by

1.0535 percentage points, whereas the fourth lag reverses this trend, reducing inflation by -1.4899

percentage points. Interestingly, while the weather variables highlighted above are [statistically]

significant in influencing inflation, their impact on the unemployment rate, disposable income, and

housing price index is less pronounced. None of the climate variables considered appear to impact

the unemployment rate, suggesting that the channels of impact are more complex than the model

investigated herein depicts. Temperature further exhibits a varied relationship with disposable in-

come, an increase in the variability of the 2-metre temperature and the soil temperature at the first

lag corresponds to a 0.86% increase and a 1.92% decrease accordingly, while minimal increases

are observed with the lagged squared terms of precipitation deviations. Finally, no [significant]

impacts are observed on the housing price index for Portugal from changes in the climate variables

examined herein.

The findings of this section align with prior research, namely Burke et al. (2015), Kotz et al.

16



(2023), and Li et al. (2023), which document a nonlinear relationship between temperature and

inflation. Similarly, the observed inflationary pressures linked to temperature variability corrobo-

rate with the findings of Mukherjee and Ouattara (2021) and Ciccarelli et al. (2023). Furthermore,

we extend the work of Kotz et al. (2022) on the effects of rainfall on economic output, to cover

inflation, as well as put forth evidence to support a non-linear relationship between precipitation

and inflation.

5.3. Impulse Response Analysis

In this section, we present results for the impulse response functions generated from the local

projections, beginning with shocks in the deviations from the historical averages for each weather

variable considered, followed by the shocks in the variability of each weather variable. Impulse

response functions from one standard deviation shock are highlighted, where each period represents

one quarter of the year, and are displayed with the associated 95% confidence bands. Before

proceeding with the results, it is crucial to elucidate the distinction between the two types of shocks

analyzed and their implications, not just for the climate but for the economy as well. A shock in the

deviation from historical averages occurs when the observed value of a weather variable significantly

strays from its long-term historical norm. This type of shock signifies an anomalous weather event

relative to what has historically been expected, such as an unusually hot summer compared to the

average conditions over several decades. This directly impacts economic sectors such as agriculture,

energy, and consumer behaviors by altering the conditions they typically operate under, and reflect

the economy’s short-term capacity to adapt to sudden and unexpected changes in weather patterns.

On the other hand, a shock in the variability of weather variables indicates a change in the range of

fluctuations around the average weather conditions. This includes more frequent or intense swings

between extremes, such as periods of drought followed by heavy rainfall. Unlike the immediate

impact of deviations from historical averages, shocks in variability represent a broader systemic

challenge, highlighting the increased uncertainty that climate volatility introduces into economic

planning and decision-making processes.

5.3.1. Shocks in the Deviations From Historical Averages

For 2-metre temperatures, a shock in the deviations (t2m wtd hd) corresponds to initial increases

in the YoY-inflation, peaking at a 0.5377 percentage point increase in the fourth quarter before

gradually decreasing to 0.1404 percentage points by the twelfth quarter (see Figure 5). Similarly,

shocks in the deviations for total precipitation (tp 1000 wtd hd) show an increasing impact on
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inflation, starting with a 0.0341 percentage point increase in the first quarter and peaking at a

0.3549 percentage point increase by the sixth quarter, with effects stabilizing in the following

quarters. Shocks in soil temperature deviations (stl2 wtd hd) demonstrate a response mirroring

the pattern observed with 2-metre temperature deviations, indicating a pronounced but transient

effect on inflation. A 0.4817 percentage point increase is observed by the fourth quarter, with

a decline starting in the seventh quarter and slowing down at the end of the three year period

observed. In contrast, shocks in the surface pressure (sp wtd hd) exhibit a consistent, minimal

negative impact on inflation across all quarters.

(a) t2m wtd hd (b) tp 1000 wtd hd (c) stl2 wtd hd (d) sp wtd hd

Figure 5: Impulse Responses For Shocks in Deviations From Historical Averages - YoY
HICP

Examining the responses of the unemployment rate, shocks in the 2-metre temperature generally

exhibit a slight but consistently negative impact on the unemployment rate (see Figure 6). Shocks

in the total precipitation display variable impacts over quarters, with an increase in the twelfth

quarter. Soil temperature deviations follow a similar trend to air temperature, with a substantial

negative effect on the unemployment rate in the tenth quarter. Finally, surface pressure deviations

have a minimal and mostly negative influence across all periods. Notably, we observe a wider

confidence band on the impulse responses projected across all variables for the unemployment

rate.

(a) t2m wtd hd (b) tp 1000 wtd hd (c) stl2 wtd hd (d) sp wtd hd

Figure 6: Impulse Responses For Shocks in Deviations From Historical Averages - UR

Shocks in the 2-metre air temperature lead to a notable fluctuation in disposable income con-
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centration, with a peak increase of 0.13% by the tenth quarter (see Figure 7). Conversely, shocks

in total precipitation from historical averages precipitate a decrease in disposable income concen-

tration, with a maximum downturn of 0.12% by the fifth quarter. For the house price index, a

shock in the 2-metre air temperature from its historical average induces a peak increase of 0.42%

by the tenth quarter, while a similar shock in the total precipitation results in a peak reduction

of 0.35% by the second quarter (see Figure 8). Additionally, a one standard deviation increase in

the soil temperature manifests in a peak increase of 0.43% by the tenth quarter. Surface pressure

deviations continue to exert a minimal impact, indicating the predominant role of temperature

and precipitation variables in shaping economic outcomes related to disposable income and house

prices, although this effect is far less significant than observed in the impacts to the YoY inflation.

(a) t2m wtd hd (b) tp 1000 wtd hd (c) stl2 wtd hd (d) sp wtd hd

Figure 7: Impulse Responses For Shocks in Deviations From Historical Averages -
Disposable Income

(a) t2m wtd hd (b) tp 1000 wtd hd (c) stl2 wtd hd (d) sp wtd hd

Figure 8: Impulse Responses For Shocks in Deviations From Historical Averages - HPI

5.3.2. Shocks in the Variability Of Weather Values

Shocks in the variability reveal distinctly different effects to those observed from shocks in the

deviations from historical averages (see Figure 9). For a shock in the 2-meter temperature vari-

ability (t2m wtd std), an initial positive impact on inflation is observed, with a peak increase of

0.6015 percentage points in the fourth quarter, before witnessing a reversal to a negative impact,

culminating at -0.6837 percentage points by the twelfth quarter. The response displayed demon-
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strate a more pronounced and immediate effect compared to the gradual and less volatile response

observed with historical deviations, suggesting that the variability in temperature, reflecting sud-

den changes within a quarter, exerts a more direct influence on inflation, potentially due to the

immediate adjustments required in consumption and production patterns. Similarly, the variabil-

ity in total precipitation (tp 1000 wtd std) exerts an escalating effect on inflation, starting from

an increase of 1.3337 percentage points in the first quarter and peaking at 6.4097 percentage

points in the fifth quarter, before slightly receding. Such an impact of precipitation variability on

inflation is markedly stronger and more sustained than that of historical deviations, possibly due

to the heightened costs of adaptation to extreme weather conditions such as floods or droughts,

affecting both supply chains and consumer prices more acutely than longer-term historical trends.

(a) t2m wtd std (b) tp 1000 wtd std (c) stl2 wtd std (d) sp wtd std

Figure 9: Impulse Responses For Shocks in Variability- YoY HICP

A shock in the variability of soil temperature (stl2 wtd std) shows a peak positive effect on

inflation of 0.8534 percentage points in the sixth quarter, followed by a gradual decline, in contrast

to the relatively steady influence observed with historical deviations. Conversely, the variability

in surface pressure (sp wtd std) shows negligible effects on inflation, with the impacts remaining

close to zero throughout the quarters. This indicates that surface pressure variability has a minimal

direct influence on inflation within the observed period. Thus, variability shocks, capturing short-

term fluctuations, reveal immediate and often more volatile impacts on inflation, highlighting the

economic system’s sensitivity to sudden weather changes. In comparison, historical deviations

reflect the economy’s adaptation to long-term climate trends, with generally milder and more

predictable effects on inflation.
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(a) t2m wtd std (b) tp 1000 wtd std (c) stl2 wtd std (d) sp wtd std

Figure 10: Impulse Responses For Shocks in Variability - UR

For the unemployment rate, shocks to the variability of 2-meter air temperature initially lead

to a minor reduction, with a 0.0008 percentage point decrease in the first quarter (see Figure 10).

However, this is followed by a gradual stabilization and a slight positive shift in the unemployment

rate by the fourth quarter. For precipitation variability, the response of the unemployment rate

reveals a more volatile pattern, swinging from a modest initial increase of 0.0010 percentage

points in the first quarter to an increase of 0.0065 percentage points by the twelfth quarter. This

suggests that fluctuations in precipitation levels can induce more pronounced shifts in employment

conditions over time, possibly due to the varied impact on different sectors of the economy. The

variability in soil temperature and surface pressure, similarly, show an initial decrease in the

unemployment rate, followed by an oscillating trend that indicates a delayed response of the labor

market to these environmental variables. The observed dynamics illustrate that while immediate

effects might be minimal, the cumulative impact over quarters can lead to noticeable although less

significant changes in employment rates, when contrasted with the significance of the responses

observed for the inflation rate.

(a) t2m wtd std (b) tp 1000 wtd std (c) stl2 wtd std (d) sp wtd std

Figure 11: Impulse Responses For Shocks in Variability - Disposable Income

Initially, a one standard deviation shock in the variability of 2-meter air temperature leads to

a marginal increase in disposable income by approximately 0.06% in the first quarter (see Figure

11). This is followed by a fluctuation that culminates in a decrease of around 0.45% by the fourth

quarter that somewhat stabilizes towards the end of the observed period, showcasing the potential
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for short-term economic stress following temperature variability increases. Precipitation variability

introduces a more apparent dynamic, initially leading to a 0.10% decrease in disposable income

in the first quarter, with the effects intensifying to a reduction of approximately 2.83% by the

fourth quarter. Soil temperature variability’s shock displays a mixed effect on disposable income,

beginning with a slight improvement before witnessing a decline. In comparison, the responses

from shocks in historical deviations show a less pronounced and more stable impact on disposable

income, although both responses are equally insignificant with wider confidence bands present.

(a) t2m wtd std (b) tp 1000 wtd std (c) stl2 wtd std (d) sp wtd std

Figure 12: Impulse Responses For Shocks in Variability - HPI

Finally, for temperature variability, the immediate response indicates a slight decrease in house

price index by approximately 0.12% in the first quarter, which contrasts sharply with a subsequent

increase, peaking at about 0.46% in the second quarter (see Figure 12). The impact of precipitation

variability on house prices is markedly more severe, with an initial sharp decline of 3.38% in the

first quarter. This decline continues to be pronounced across the year, providing insights into the

sensitivity of housing prices to precipitation variability and the potential for significant market

disruptions. Soil temperature variability shows a mixed impact on HPI, with minor fluctuations

indicating the less apparent effect of soil temperature changes on housing prices compared to air

temperature and precipitation variability. Surface pressure variability has negligible effects on

house price index, with changes being minimal and indicating a lack of significant direct impact

on housing prices.

6. Implications For Portuguese Economic Policy

The results highlight distinct implications for Portuguese policy making due to weather shocks.

Specifically, historical deviations from average weather conditions primarily lead to transient effects

on key economic variables, whereas shocks due to variability invoke more immediate and severe

impacts. For example, a notable spike in inflation follows temperature shocks, which demonstrates
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an initial upsurge before gradually tapering off over subsequent quarters. Similarly, variability in

precipitation significantly escalates inflation rates, highlighting the acute sensitivity of Portugal’s

economy to sudden climatic fluctuations. This initial response to weather variability suggests a

critical need for dynamic and responsive economic policies to mitigate the immediate impacts of

such climatic anomalies on Portugal’s macroeconomic stability. Given the magnitude and signifi-

cance of the inflationary responses observed, we wish to primarily focus on the policy implications

arising from the management of inflation due to weather shocks in Portugal, in contrast to the

uncertainty and fluctuating nature of impacts on other economic variables.

Mukherjee and Ouattara (2021) provide an insight into on how central banks might respond to

temperature shocks, which is pertinent in understanding monetary policy implications in Portugal.

They demonstrate that temperature shocks typically generate sustained inflationary pressures, a

phenomenon observed in both developed and developing countries. As central banks globally

strive to maintain price stability and low inflation, essential for fostering high economic growth,

the persistence of inflationary pressures induced by temperature shocks poses significant challenges

to achieving these objectives.

As a guideline for setting interest rates based on economic conditions, consider the Taylor Rule,

it = πt + r∗t + απ(πt − π∗
t ) + αy(yt − ȳt) (4)

where it is the nominal interest rate, πt represents the current inflation rate, often gauged by the

GDP deflator or consumer price index, the variable r∗t denotes the assumed natural or equilibrium

interest rate, which reflects the rate at which the economy neither overheats nor underperforms

when inflation is stable. The coefficients απ and αy measure the responsiveness of the policy rate

to deviations in inflation (πt − π∗
t ) from the target inflation rate π∗

t , and the output gap (yt − ȳt),

respectively, where yt is the logarithm of actual GDP and ȳt is the logarithm of potential GDP.

Within this monetary policy framework, a central bank’s policy rate should adjust in response

to deviations in both inflation and output from their target levels. Specifically, the rule suggests

that the interest rate should increase when inflation is above its target or when GDP exceeds its

potential, and decrease in the opposite scenarios, a principle supported by several studies (Bullard

and Mitra, 2002; Gaĺı, 2015; Woodford, 2001). In the context of Portugal, where our findings

indicate marked inflation increases following precipitation and temperature shocks, ECB, along

with the Bank of Portugal, may need to consider altering interest rates to align with its inflation

targets. This adjustment process, however, is complicated by the persistent nature of climate-

induced inflation, which stands in contrast to other inflationary pressures, as it may necessitate
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Figure 13: Long Term Trend in Deviations from Historical Averages

Note: The historical baseline considered for the average is from 1940 - 1980.

prolonged periods of elevated interest rates. Persistently high interest rates can have wide-ranging

economic repercussions. They increase borrowing costs, potentially stifling investment and in-

creasing the debt burden for existing borrowers. Moreover, as interest rates rise, so might other

prices and wages, further stoking inflation in a feedback loop that complicates monetary policy

implementation. Additionally, higher interest rates may attract capital inflows, leading to currency

appreciation, which could impact export competitiveness (Mukherjee and Ouattara, 2021). An-

other significant challenge arises from the nature of temperature shocks as supply shocks. Unlike

demand shocks, supply shocks require central banks to navigate a delicate balance between curbing

inflation and supporting economic output (Mukherjee and Ouattara, 2021). Given the evidence

that temperature shocks tend to reduce output, the ECB faces the complex task of formulating

a response that mitigates inflation without exacerbating economic contraction (Mukherjee and

Ouattara, 2021).

Managing inflation in Portugal is made more challenging due to the ECB’s control over interest

rates for the Eurozone. This centralized control complicates the Bank of Portugal’s ability to

address inflation spikes directly influenced by localized climate shocks. Ciccarelli et al. (2023)

highlight the asymmetric impacts from climate shocks across the Eurozone, varying not only in

magnitude but also in their temporal occurrence. Such heterogeneity means that the timing and

intensity of inflationary pressures from climate shocks can differ significantly across member states,

making a tailored monetary response more difficult to coordinate within the constraints set by

overarching Eurozone policies. Furthermore, the regional disparities in climate impacts can be
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Figure 14: Long Term Trend in Precipitation Variability

observed within Portugal as well. Let us consider the yearly total precipitation Portugal receives,

comparing the data observed for 1990 and 2021. The data indicates that while the country has

experienced reduced rainfall compared to historical averages, the deviation from these averages

has lessened in recent years, especially in the north (see Figure 13). Yet, this apparent trend

toward normalization masks increasing variability, especially in northern and coastal urban areas

such as Lisbon and Porto, suggesting heightened unpredictability and extremes in weather patterns

(see Figure 14). Such regional variability poses significant risks to local economies where tourism

heavily influences economic activity and environmental sustainability, such as in the Algarve region

(OECD, 2022; Pörtner et al., 2022).

To effectively mitigate these risks, it is imperative to implement regional policy measures fo-

cused on enhancing resilience to climate extremes through sustainable planning and infrastructure

adaptation. This approach should include integrating climate risk assessments into investment

decisions and urban planning, especially in regions like the Algarve, where tourism’s impact on

sustainability has been critically assessed as non-sustainable (Pimentel de Oliveira and Pitarch-

Garrido, 2023). In response to the broader economic challenges posed by climate shocks, the study

advocates for the integration of climate-related variables into the ECB’s monetary policy frame-

work. By acknowledging weather shocks as persistent supply-side disturbances, more nuanced

monetary strategies can be devised. Following Mukherjee and Ouattara (2021), it is recommended

that central banks adopt green monetary policies, such as differentiated reserve requirements and

green quantitative easing, to promote environmentally sustainable practices within the financial

sector. Ultimately, these recommendations emphasize the necessity for central banks, including the
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ECB, to incorporate climate considerations into their policy frameworks to adeptly manage the

economic ramifications of climate variability. Proactive engagement in environmentally focused

monetary policy can enhance economic stability, maintain policy effectiveness, and uphold the

credibility of monetary authorities in an era of escalating climate challenges.

7. Conclusion

This study examines the immediate impacts of weather shocks on Portugal’s macroeconomy, focus-

ing on key variables that affect individual and household economics: unemployment rate, dispos-

able income, inflation, and housing price index. The study utilizes a panel vector autoregressive

(PVARX) framework and local projections to compute impulse response functions to explore how

these transient weather events influence employment, spending power, living costs, and housing

stability from 2007 to 2021, using quarterly data.

Our analysis identifies temperature (both air and soil) and total precipitation as key drivers

influencing inflation in Portugal. Specific findings reveal that deviations from historical averages in

2-meter air temperature and precipitation exhibit a non-linear relationship with inflation. Precip-

itation variability triggers immediate and significant inflationary pressures, highlighting its critical

role in short-term economic fluctuations. In contrast, surface pressure has a negligible influence on

inflationary trends, with coefficients indicating limited impact on the studied macroeconomic vari-

ables. While these climate variables significantly affect inflation, their influence on unemployment

rates, disposable income, and housing prices appears less pronounced, indicating that the channels

of impact might be more complex than those captured by our study.

Furthermore, we find that shocks in temperature and precipitation have persistent inflationary

impacts over the study period. Temperature shocks lead to an initial upsurge in inflation, which

peaks by the fourth quarter before gradually diminishing, while shocks from precipitation variability

generate sustained inflationary pressures that peak in the fifth quarter. This persistence suggests

that weather shocks have a lasting influence on inflation, rather than just immediate or transient

effects. Additionally, these climate shocks also affect other economic variables, though the effects

are less pronounced. Temperature fluctuations moderately influence disposable income and housing

prices, highlighting their broad but varying impact on the economy.

This study substantiates the findings from Mukherjee and Ouattara (2021), Kalkuhl and Wenz

(2020), and Kotz et al. (2022), highlighting the persistent and non-linear effects of temperature

and precipitation shocks on inflation and economic output. Furthermore, it aligns with the work of

Natoli (2022), who utilize local projections to elucidate the dynamic responses of the U.S. economy
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to unexpected temperature variations, and complements the broader insights from Burke et al.

(2015) and Diffenbaugh and Burke (2019) regarding the sensitivity of global economic production

to temperature changes.

Additionally, our findings validate the observations by Kotz et al. (2022) and others that in-

creased variability in rainfall negatively impacts economic growth, particularly in high-income

regions and key sectors like services and manufacturing. This aligns with the broader literature on

the economic consequences of climate variability, including the detailed analyses by Faccia et al.

(2021) and Ciccarelli et al. (2023), which discuss the significant impact of temperature variability

on inflation, especially in warmer regions during summer months.

It is important to note that our study encounters certain limitations. First, our use of quarterly

data, rather than monthly, potentially obscures finer temporal dynamics critical for assessing short-

term weather fluctuations. Moreover, the unavailability of inflation data at the municipal level

precludes a more detailed spatial analysis of price variations, while our timeframe, limited to 2007-

2021, may also omit relevant economic cycles and longer-term trends. Furthermore, we did not

consider the effects of non-Portuguese weather shocks or the potential spillover effects of weather

shocks within the Eurozone, nor did we account for the possible changing response to shocks

amid evolving climatic conditions or interactions with other economic shocks. The omission of

wind data, particularly relevant for Portugal, from the weather variables might have overlooked

the identification of other significant relationships. In recognizing these gaps, we suggest that

future research could address them by incorporating a more diverse set of data, and extending the

framework to enhance the robustness and applicability of the findings.
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A. Appendix

Literature Review Selection Criteria

To obtain a set of papers relevant for the literature review, we adopt the snowball approach put

forth by Wohlin (2014), illustrated in Figure 15. This iterative method begins with a core set of

research papers and expands by identifying additional relevant works cited within these papers,

thus effectively capturing a wide spectrum of related literature.

Figure 15: Snowball method as outlined in Wohlin (2014)

The initial set of papers was sourced from the EconPapers database using two distinct search

queries designed to encompass a broad range of topics within the scope of this study. The first

search term used was (portugal OR portuguese) AND (economy OR macroeconomy OR macroeconomic)

AND ("climate change" OR "climate shocks" OR ’weather shocks’). The second search term

was (panel var) OR (panel vector autoregressive) OR (panel vector autoregression) AND

municipalities AND climate. A guide to the papers is presented in Table I, along with the cli-

mate variables investigated and model used therein, as well a summary of the key results.

Methodology

Historical Deviation

In section 4.2, we construct a variable to capture deviations from historical weather patterns,

specifically focusing on the period from 1940 to 1980. This period serves as our historical baseline

against which current weather data are compared. Utilizing the ERA5 monthly averaged data on

single levels, which spans from 1940 to the present, we first calculate a historical average for each
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weather variable by averaging its values over the 1940-1980 period. Subsequently, for each month

in our dataset, we subtract this historical average from the observed value to obtain a monthly

deviation. These deviations are then averaged over each quarter to generate a quarterly average

deviation from the historical average for each weather variable. The mathematical expression for

calculating the quarterly average deviation from the historical average is given by:

ζt =
1

3

3∑
i=1

(ωi,t − λ) (5)

where ζt represents the deviation for the quarter t, while ωi,t refers to the value of the weather

variable for month i within the quarter t, and λ is the mean value of that variable over the baseline

period of 1940-1980. ζt is calculated for each point in the grid cell for which the ERA5 dataset is

recorded.

Quarterly Average Intra-Monthly Standard Deviation

In section 4.2, we utilize the variability within our weather data in conjunction with deviations

fromm historical averages. This is captured through the quarterly average intra-monthly standard

deviations. This metric serves as a proxy for the fluctuation within each month, reflecting short-

term variability in weather conditions. Utilizing the ERA5 reanalysis dataset, which provides

hourly weather data from 1940 to the present, we first consolidate this hourly data into daily

averages for each weather variable. Subsequently, we compute the standard deviation of these

daily averages for each month, yielding the intra-monthly standard deviation. The final step

involves averaging these monthly standard deviations over each quarter to derive the variable for

quarterly average intra-monthly standard deviation.

The mathematical representation of this process is given by:

ψt =
1

3

3∑
i=1

√√√√ 1

Ni − 1

Ni∑
j=1

(υij,t − ῡi,t)2 (6)

where ψt represents the quarterly average intra-monthly standard deviation, υij,t denotes the daily

average value of the weather variable on day j within month i of quarter t, ῡi,t is the average of

these daily values within the month i, and Ni represents the total number of days in month i.

Spatial Aggregation Technique

In section 4.2, we briefly touch on the spatial aggregation process used for the climate data process-

ing. To accurately attribute ERA5 climate data to specific municipalities, we initiated a spatial
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aggregation process that involves constructing polygons for each 0.25◦ × 0.25◦ ERA5 grid cell.

There are two generally methods used for the spatial weighting of climate data, one is by popula-

tion and the other is by area (Dell et al., 2014). Population based weighting is preferred for large

geographic areas, especially those large swathes of land where few people are present, such as the

United States of America. However, given the smaller geographic extent of Portugal, we opt for

an area-weighted procedure for climate data aggregation.

Figure 16

(a) ERA5 Spatial Resolution (b) Municipalities Overlaid with Intersecting Grids

Note: The points in red are the points in space at which the ERA5 data is recorded. The surround-
ing grids are the polygons we construct (left). The municipalities are overlaid with the intersecting
grids, leaving only those grids present within the boundary of Portugal (right).

For each grid cell, a polygon is created by identifying the geographic coordinates of its corners

based on the grid’s latitude and longitude resolution. This polygon effectively represents the

spatial extent of the grid cell, allowing for an area-weighted aggregation of climate variables. By

delineating these polygons, we ensure a precise and geographically relevant application of ERA5

data in our analysis, enabling a detailed investigation of climate impacts at the municipal level.

Following the creation of polygons for ERA5 grid cells, the next step in our spatial aggregation

process involves performing a spatial overlay to identify the intersecting areas between these ERA5

polygons and municipal boundaries. This overlay allows us to determine the specific area contri-

butions of each ERA5 grid cell to the municipalities, ensuring a precise geographical allocation of

climate data. Subsequently, we execute a spatial join (sjoin) to consolidate this information, which

38



Figure 17: 2-Metre Air Temperature Deviations from Historical Average for 2017Q3

(a) ERA5 Point Values (b) Constructed Grid Values

(c) Area-Weighted Values

Note: The above figure(s) depict the process of spatial aggregation of ERA5 climate data, using
the example of 2-meter air temperature deviations from the historical average in the third quarter
of 2017. Panel 17a illustrates the point data for each 0.25° × 0.25° ERA5 grid cell across Portugal.
Panel 17b shows the constructed polygons based on these grid cells, delineating the geographic
boundaries used for area-weighted aggregation. Finally, panel 17c presents the area-weighted
average temperatures for each municipality.

lays the groundwork for calculating area-weighted climate variable values for each municipality.

To compute these area-weighted averages, we first calculate the area of each intersecting poly-

gon, representing the portion of the ERA5 grid cell contributing to a municipality. The sum of

these areas for each municipality is then determined, facilitating the computation of weighted av-

erages. For each climate variable, its value is multiplied by the ratio of the intersecting polygon’s

area to the total area of the municipality. This process is repeated for all relevant climate vari-
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ables, such as temperature, sea-level pressure, and precipitation, yielding a set of area-weighted

climate variables that accurately reflect the climatic conditions experienced within each municipal

boundary. This methodological rigor ensures our analysis captures the nuanced impact of climate

variability across different regions of Portugal.

Panel Unit Root Testing

In section 5.1, we utilized panel unit root tests developed by Demetrescu and Costantini and

Lupi. The implementation of these tests was intended through a package by Kleiber and Lupi

(2011) within the R programming environment. Due to compatibility issues with the package and

the latest stable R release (version 4.3.3 used in our analysis), we could not directly apply these

tests. To address this, we extracted the source code for the tests from https://rdrr.io/rforge/

punitroots/f/ and executed it locally, which allowed us to conduct the necessary panel unit root

tests.

Panel VARX Estimation

We note that estimation of our model is feasible in STATA using the pvar command, although

it lacks the capability for fixed effects estimation, a limitation not present within the R package

(Abrigo and Love, 2016). Despite this, the STATA implementation offers the advantage of con-

structing dynamic multipliers for both exogenous and endogenous variables, a feature not currently

present in the panelvar package in R. For a comprehensive overview of the estimation methods

implemented, readers are referred to the pertinent literature Sigmund and Ferstl (2021).
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B. Tables

Table I: Selected Papers from Snowball Search for Literature Review

Author
Method

Used

Climate

Variables
Summary

Burke et al. (2015) - temperature

Dell et al. (2014)
literature re-

view
-

Dell et al. (2012)
panel regres-

sion

temperature

precipitation

Diffenbaugh and

Burke (2019)

fixed ef-

fects panel

regression

(bootstrap)

temperature

precipitation

Tol (2018)
literature re-

view
-

Dell et al. (2009)

fixed ef-

fects panel

regression

temperature

precipitation

Hsiang (2016)
literature re-

view
-

Deryugina and

Hsiang (2014)

panel regres-

sion
temperature

Deryugina and Hsiang (2014) employ panel regression

to analyze how daily temperature variations affect an-

nual income in U.S. counties. Their findings reveal a

productivity decrease of about 1.7% for every 1°C rise

in temperature beyond 15°C, highlighting the enduring

economic impact of environmental conditions despite

progress in adaptation measures.

Kalkuhl and Wenz

(2020)

fixed ef-

fects panel

regression

precipitation,

temperature

Kalkuhl and Wenz (2020) utilize fixed effects panel

regression to explore the relationship between cli-

mate conditions—specifically temperature and precipi-

tation—and economic production globally. Their anal-

ysis reveals that, despite the absence of long-term

growth effects, significant negative impacts of tempera-

ture on per-capita Gross Regional Product (GRP) per-

sist, indicating economies remain sensitive to temper-

ature changes without diminished influence from tech-

nological advancements.
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Table I continued from previous page

Author
Method

Used

Climate

Variables
Summary

Colacito et al.

(2019)

panel regres-

sion

temperature,

precipitation,

snowfall

Colacito, Hoffmann, and Phan (2019) analyze the U.S.

economy’s sensitivity to temperature, precipitation,

and snowfall using panel regression. They find that a

1°F increase in average summer temperature could de-

crease state-level output’s annual growth rate by 0.15

to 0.25 percentage points, potentially reducing U.S.

economic growth by up to one-third over the next cen-

tury.

Acevedo et al.

(2020)
local projections

temperature,

precipitation

Acevedo Mejia et al. (2018) utilize local projections

to examine the impact of temperature and precipita-

tion shocks on economic activity, pinpointing reduced

investment, lower labor productivity, deteriorating hu-

man health, and decreased agricultural and industrial

output as key transmission channels. Their findings

highlight that hot, low-income countries face the sever-

est economic repercussions, with an average annual

temperature rise of 1 degree potentially reducing ag-

gregate output by about 2% and investment by around

10% after seven years, indicating economic develop-

ment plays a crucial role in mitigating the effects of

temperature shocks.

Kotz et al. (2022)

fixed ef-

fects panel

regression

temperature

precipitation

Kotz, Levermann, and Wenz (2022) apply fixed ef-

fects panel regression to assess how variations in rain-

fall impact economic production, drawing on a global

dataset of subnational economic output across 1,554 re-

gions over four decades. They discover that economic

growth rates decrease with more wet days and extreme

daily rainfall events, particularly affecting high-income

nations and the services and manufacturing sectors,

thereby highlighting the complex ways in which daily

rainfall variability can influence the economy.
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Table I continued from previous page

Author
Method

Used

Climate

Variables
Summary

Kotz et al. (2021)

fixed ef-

fects panel

regression

temperature

Kotz et al. (2021) utilize fixed effects panel regres-

sion to explore how day-to-day temperature variability

affects economic growth, beyond the influence of an-

nual average temperature changes. Analyzing temper-

ature fluctuations and economic data from 1,537 re-

gions over 40 years, they reveal that increased tem-

perature variability can significantly hinder regional

economic growth rates by an average of five percent-

age points, with the most pronounced effects in low-

latitude, low-income regions.

Parker (2018)
panel regres-

sion
disasters

Parker (2018) employs panel regression to investigate

the relationship between disasters and consumer price

inflation, uncovering marked differences between ad-

vanced and developing economies. The study finds

that while the inflation impact is negligible in advanced

economies, it can persist for several years in develop-

ing ones. Additionally, the type of disaster plays a

role, with storms briefly elevating food price inflation

and earthquakes reducing CPI inflation excluding food,

housing, and energy.

Mukherjee and

Ouattara (2021)
panel var temperature

Mukherjee and Ouattara (2021) apply panel VAR anal-

ysis to examine how temperature shocks influence in-

flation in both developed and developing countries over

the period 1961–2014. Their research reveals that cli-

mate change triggers inflationary pressures, with the ef-

fects on inflation remaining significant for several years

following the initial shock. This presents a considerable

challenge for central banks striving to maintain infla-

tion and price stability, highlighting the importance of

considering temperature shocks in monetary policy de-

cisions and forecasting.
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Table I continued from previous page

Author
Method

Used

Climate

Variables
Summary

Gallic and Verman-

del (2020)
svar -

Gallic and Vermandel (2020) bridge the gap be-

tween theoretical and empirical analyses of weather

shocks’ economic impacts by employing a Vector Auto-

Regressive model on New Zealand data and construct-

ing a general equilibrium model focused on a weather-

dependent agricultural sector. Their study reveals that

weather shocks account for approximately 35% of GDP

and agricultural output fluctuations in New Zealand,

with a notable welfare cost that could intensify under

more severe climate change scenarios.

Uddin and Wadud

(2014)
var co2 emissions

Uddin and Wadud (2014) conduct a VAR analysis on

the causal relationship between CO2 emissions and eco-

nomic growth in SAARC countries from 1972 to 2012,

revealing a positive, significant long-term impact of

emissions on GDP, and highlighting the importance of

integrating environmental considerations into macroe-

conomic policy for environmental management.

Alessandri and

Mumtaz (2021)
panel var

temperature

precipitation

Alessandri and Mumtaz (2021) examine the effects of

climate volatility on economic growth using panel VAR

analysis on data from 133 countries between 1960 and

2019. Their findings indicate that increasing volatility

in annual temperatures, independent of temperature

changes, contributes to less predictable climate condi-

tions, resulting in an average decline of 0.3% in GDP

growth and a 0.7% increase in GDP volatility, impact-

ing both developed and developing nations.

Tol (2024)
literature re-

view
- -

Fernando et al.

(2021)

G-Cubed

model

temperature,

precipitation,

droughts ,

wildfires,

extreme

tempera-

ture events ,

storms, floods

Vrontisi et al.

(2022)

general equi-

librium model
-
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Table I continued from previous page

Author
Method

Used

Climate

Variables
Summary

Kotz et al. (2023)

fixed-effects

panel regres-

sion

precipitation,

temperature,

Standardised

Precipitation

Evapotran-

spiration

Indices

Kotz et al. (2023) explore the relationship between

global warming and inflation using fixed-effects panel

regression on a global dataset of monthly consumer

price indices. Their analysis reveals that rising average

temperatures exert non-linear upward pressures on in-

flation, persisting over 12 months across both higher-

and lower-income countries.

Ciccarelli et al.

(2023)

seasonal

dependent

BVAR

temperature,

precipitation

Ciccarelli, Kuik, and Mart́ınez Hernández (2023) ana-

lyze weather shocks’ inflationary effects in the euro area

using seasonal dependent Bayesian Vector Autoregres-

sions (BVAR). They uncover significant seasonal varia-

tions in inflation responses to temperature shocks, par-

ticularly through food, energy, and service prices, with

pronounced effects in warmer countries during sum-

mer and autumn. Their findings highlight the com-

plex, nonlinear nature of weather impacts on inflation,

suggesting greater inflationary pressures with increased

temperature variability, especially in southern Euro-

pean nations.

Natoli (2022)
panel lo-

cal projections
temperature

Natoli (2022) employs panel analysis and local pro-

jections with daily county-level data from the United

States since 1970 to examine the impact of temperature

surprise shocks, distinguishing the unexpected effects

of heat and cold events each season. The study reveals

that, contrary to popular belief, the mix of heat and

cold surprises has been balanced in the era of global

warming, showing a reduction in size over time. The

findings indicate that these shocks negatively affect the

US economy through consumption and investment at

the business cycle frequency, with a variable impact on

prices. Additionally, it’s noted that the central bank

adjusts its economic projections and interest rate poli-

cies in response to these temperature shocks, influenc-

ing the yield curve.

Creti et al. (2021)
literature re-

view
-
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Table I continued from previous page

Author
Method

Used

Climate

Variables
Summary

Habib (2022) panel var
temperature ,

precipitation

Habib (2022) analyzes the impact of climate variability

on North African countries’ GDP using panel VAR,

revealing that while weather changes slightly reduce

GDP, remittances significantly contribute to economic

stability by offsetting these effects.

Huber et al. (2023) panel var

Global Stan-

dardized

Precipitation

Evapotran-

spiration

Index

Huber, Krisztin, and Pfarrhofer (2023) employ a

Bayesian panel VAR approach to explore climate

shocks’ effects on agricultural commodity markets and

macroeconomic indicators in high-income economies,

revealing significant global reactions and strong inter-

connections between regional shocks and global mar-

kets.

Liu et al. (2023)

fixed-effect

panel regres-

sion

temperature ,

precipitation,

ENSO

Liu et al. (2023) utilize a fixed-effect panel regression

with a smooth nonlinear climate-economy model to as-

sess the economic impacts of El Niño under climate

change, finding that El Niño events lead to significant

economic losses, with effects intensifying for three years

post-event and predicting increased economic damage

with heightened ENSO variability.

Skrinjaric (2023) var
extreme vari-

ables

Škrinjarić (2023) explores the short- to medium-term

economic impacts of extreme weather on Croatia us-

ing VAR models with data from 1999 to 2022, find-

ing significant weather-induced inflationary pressures,

particularly from droughts, highlighting the need for

monetary policy and the insurance industry to adapt

to increasing weather extremes.

Accetturo and

Alpino (2023)

panel regres-

sion

precipitation,

temperature

Accetturo and Alpino (2023) analyze the impact of

weather shocks on key agricultural yields in Italy

through panel regression, utilizing province-level panel

data. They uncover significant non-linearities in

temperature effects, notably finding grapevines less

temperature-sensitive than cereals. Their projections

indicate varying impacts of climate change on crop

yields by 2030, with corn at higher risk of yield re-

duction.
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Table I continued from previous page

Author
Method

Used

Climate

Variables
Summary

Jalles (2024)
local projec-

tions

ND-GAIN in-

dex

Jalles (2023) employs the local projection method to

investigate the impact of financial crises on climate

change resilience, analyzing data from 178 countries

between 1995–2019. The study finds that while re-

silience to climate shocks has generally increased, fi-

nancial crises, especially systemic banking ones, cause

a short-term decline in resilience, particularly affecting

developing economies.

Ahmadi et al.

(2022)
bayesian svar

temperature

precipitation

Ahmadi et al. (2022) use a Bayesian Structural Global

VARX model to explore how temperature and precip-

itation shocks affect economic growth in various coun-

tries, noting significant heterogeneity in impacts. Con-

trary to the common belief that hot, poor countries

suffer the most, their findings reveal that rich, cold

countries also face severe economic challenges due to

climate shocks, with trade interdependence playing a

crucial role in mediating these effects.

Zappalà (2023)
panel regres-

sion

temperature,

precipita-

tion, dryness

conditions

,wind speed,

Tropical

cyclones

Zappalà (2023) uses panel regression to assess the im-

pact of climate variables like temperature, precipita-

tion, dryness, wind speed, and tropical cyclones on

sectoral production. The study reveals that agriculture

suffers the most from these weather shocks, with no-

table cross-sectoral economic losses due to heat shocks.

Kim et al. (2022) nonlinear var

High temper-

atures Low

temperatures

Heavy pre-

cipitation

Drought High

wind Sea level

Kim, Matthes, and Phan (2022) employ a nonlin-

ear VAR model to analyze the effects of severe

weather shocks, including high and low temperatures,

heavy precipitation, drought, high wind, and sea level

changes, on the US economy over sixty years. They

document increasing significant impacts over time,

showing reduced industrial production and consump-

tion growth, along with higher unemployment and in-

flation, indicating minimal adaptation at the macroe-

conomic level.
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Table I continued from previous page

Author
Method

Used

Climate

Variables
Summary

Li et al. (2023)

panel two-

way fixed

effects model

temperature

Li, Zhang, and He (2023) utilize a panel two-way fixed

effects model to investigate the impact of temperature

fluctuations, as proxies for climate shocks, on infla-

tion in 26 countries from 1995 to 2021. Their analy-

sis reveals a positive link between temperature changes

and inflation, with energy demand highlighted as a key

channel influencing this relationship. Furthermore, the

study identifies a nonlinear relationship between tem-

perature change and inflation, moderated by GDP per

capita.

Zouabi (2021)
general equi-

librium model

temperature,

precipitation

Zouabi (2021) uses a dynamic general equilibrium

model to analyze how temperature and precipitation

changes impact Tunisia’s agriculture and macroeco-

nomics through 2050, finding declines in citrus, cereal,

and olive production, alongside negative shifts in con-

sumption, investment, and unemployment rates.

Sugiarto et al.

(2023)

fixed ef-

fects panel

regression

-

demonstrated that climate-related disasters, especially

floods, significantly impact the banking sector in In-

donesia, notably reducing credit availability and in-

creasing non-performing loans (NPLs) between 2011

and 2021, indicating an urgent need for policy and reg-

ulatory adaptations.

Aslan et al. (2024) panel var

annual global

land temper-

ature anoma-

lies

Aslan, Altinoz, and Polat (2023) employ a panel VAR

approach to explore how temperature anomalies im-

pact economic and technological indicators in EU coun-

tries from 1996 to 2018, revealing negative effects on

economic growth, investment, and labor productivity,

while notably increasing patent applications by 0.4%

in the long term.

Romero et al.

(2023)
B var-x

El Niño

Southern

Oscillation

(ENSO)

fluctuations

Romero, Naranjo-Saldarriaga, and Muñoz (2023) use a

BVAR-X model to examine the effects of ENSO-related

weather shocks on Colombia’s economy, focusing on

agricultural output and inflation. Their study con-

firms that such adverse weather events reduce agricul-

tural production and spur inflation, while overall GDP

growth remains largely unaffected, paving the way for

a New Keynesian model that accounts for these dy-

namics through price channels.
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Table II: Data Description

Variable
Variable
Name

Frequency
Available

Units Source

t2m
2-Metre Temper-
ature

Hourly Kelvin ERA5

tp
Total Precipia-
tion

Hourly m ERA5

sp Surface Pressure Hourly Pa ERA5

stl2
Soil Temper-
ature Level
2

Hourly Kelvin ERA5

hicp yoy pct

Year on Year
Harmonised
Index of Con-
sumer Prices
Percentage

Monthly Percentage
INE, Banco De
Portugal

ur
Unemployment
Rate

Quarterly Percentage
INE, Banco De
Portugal

disp inc conc
Household Dis-
posable Income

Quartlerly Euros
INE, Banco De
Portugal

hpi
House Price In-
dex

Quartlerly Points

Confidencial
Imobiliario,
Banco De Por-
tugal

Results

Panel Unit Root Test Results

Table III: Panel Unit Root Test Results for Demetrescu et al. (2006)

Variable Test Statistic p-value
hicp yoy pct -2.619 0.004

ur -0.159 0.437
ur L1 -34.642 0.000

disp inc conc 7.193 1
disp inc conc l 2.323 0.990

disp inc conc l L1 -34.553 0.000
hpi 18.402 1
hpi l 3.296 0.999

hpi l L1 -35.195 0.000
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Panel VARX Estimation Set-Up and Results

Transformation: demean

Group variable: CCA 2

Time variable: time

Number of observations = 16680

Number of groups = 278

Obs per group: min = 60, avg = 60, max = 60

*** p < 0.001; ** p < 0.01; * p < 0.05

Table IV: Panel VARX Estimation Results

demeaned_hicp_yoy_

pct
demeaned_ur_L1

demeaned_disp_inc_

conc_l_L1
demeaned_hpi_l_L1

demeaned_lag1_hicp_

yoy_pct

1.2239 ***

(0.0073)

-0.0005

(0.0004)

0.0015

(0.0015)

0.0006

(0.0028)

demeaned_lag1_ur_L1 -0.0738

(0.1841)

-0.0423 ***

(0.0101)

0.0096

(0.0385)

-0.0332

(0.0710)

demeaned_lag1_disp_

inc_conc_l_L1

0.0460

(0.0493)

0.0011

(0.0027)

-0.0316 **

(0.0103)

-0.0099

(0.0190)

demeaned_lag1_hpi_

l_L1

-0.0116

(0.0285)

-0.0030

(0.0016)

0.0019

(0.0060)

-0.0276 *

(0.0110)

demeaned_lag2_hicp_

yoy_pct

-0.4761 ***

(0.0107)

0.0004

(0.0006)

-0.0024

(0.0022)

0.0020

(0.0041)

demeaned_lag2_ur_L1 0.2863

(0.1834)

-0.0116

(0.0101)

0.0040

(0.0383)

0.0360

(0.0708)

demeaned_lag2_disp_

inc_conc_l_L1

0.0163

(0.0493)

-0.0031

(0.0027)

-0.0024

(0.0103)

0.0109

(0.0190)

demeaned_lag2_hpi_

l_L1

-0.0060

(0.0285)

0.0024

(0.0016)

-0.0077

(0.0060)

-0.0221 *

(0.0110)

demeaned_lag3_hicp_

yoy_pct

0.2647 ***

(0.0108)

-0.0001

(0.0006)

0.0003

(0.0022)

-0.0060

(0.0041)

demeaned_lag3_ur_L1 0.2975

(0.1833)

-0.0242 *

(0.0101)

0.0521

(0.0383)

0.1469 *

(0.0707)

demeaned_lag3_disp_

inc_conc_l_L1

-0.0657

(0.0493)

0.0033

(0.0027)

-0.0294 **

(0.0103)

-0.0066

(0.0190)

demeaned_lag3_hpi_

l_L1

0.0052

(0.0285)

-0.0045 **

(0.0016)

0.0065

(0.0060)

0.0119

(0.0110)

demeaned_lag4_hicp_

yoy_pct

-0.2835 ***

(0.0069)

0.0003

(0.0004)

-0.0009

(0.0015)

0.0019

(0.0027)

demeaned_lag4_ur_L1 0.1345

(0.1835)

-0.0327 **

(0.0101)

-0.0251

(0.0383)

-0.0969

(0.0708)

50



Table IV continued from previous page

demeaned_hicp_yoy_

pct
demeaned_ur_L1

demeaned_disp_inc_

conc_l_L1
demeaned_hpi_l_L1

demeaned_lag4_disp_

inc_conc_l_L1

-0.0016

(0.0494)

-0.0015

(0.0027)

-0.0320 **

(0.0103)

0.0062

(0.0190)

demeaned_lag4_hpi_

l_L1

0.0144

(0.0286)

-0.0021

(0.0016)

0.0050

(0.0060)

-0.0150

(0.0110)

demeaned_t2m_wtd_hd 0.1014 ***

(0.0170)

0.0002

(0.0009)

0.0020

(0.0036)

-0.0067

(0.0066)

demeaned_tp_1000_

wtd_hd

-0.0538 ***

(0.0095)

-0.0001

(0.0005)

0.0000

(0.0020)

-0.0037

(0.0036)

demeaned_t2m_wtd_

std

0.1075 ***

(0.0212)

-0.0016

(0.0012)

0.0035

(0.0044)

0.0076

(0.0082)

demeaned_tp_1000_

wtd_std

2.6049 ***

(0.1202)

0.0032

(0.0066)

0.0091

(0.0251)

0.0359

(0.0464)

demeaned_sp_wtd_hd 0.0003 ***

(0.0000)

-0.0000

(0.0000)

-0.0000

(0.0000)

-0.0000

(0.0000)

demeaned_sp_wtd_std -0.0000 ***

(0.0000)

-0.0000

(0.0000)

-0.0000

(0.0000)

-0.0000

(0.0000)

demeaned_stl2_wtd_

hd

-0.0478 **

(0.0157)

0.0002

(0.0009)

-0.0037

(0.0033)

0.0026

(0.0060)

demeaned_stl2_wtd_

std

0.5042 ***

(0.0309)

0.0015

(0.0017)

0.0008

(0.0065)

-0.0077

(0.0119)

demeaned_t2m_wtd_

L1_hd

0.1381 ***

(0.0157)

0.0014

(0.0009)

0.0023

(0.0033)

-0.0093

(0.0061)

demeaned_t2m_wtd_

L2_hd

0.1910 ***

(0.0164)

0.0002

(0.0009)

0.0014

(0.0034)

0.0005

(0.0063)

demeaned_stl2_wtd_

L1_hd

-0.1071 ***

(0.0139)

-0.0013

(0.0008)

-0.0019

(0.0029)

0.0073

(0.0054)

demeaned_stl2_wtd_

L2_hd

-0.0970 ***

(0.0147)

-0.0000

(0.0008)

-0.0030

(0.0031)

-0.0035

(0.0057)

demeaned_sp_wtd_L1_

hd

0.0006 ***

(0.0000)

-0.0000

(0.0000)

0.0000

(0.0000)

0.0000

(0.0000)

demeaned_sp_wtd_L2_

hd

-0.0003 ***

(0.0000)

-0.0000

(0.0000)

-0.0000

(0.0000)

0.0000

(0.0000)

demeaned_tp_1000_

wtd_L1_hd

0.1160 ***

(0.0097)

-0.0003

(0.0005)

0.0019

(0.0020)

0.0018

(0.0037)

demeaned_tp_1000_

wtd_L2_hd

-0.1037 ***

(0.0097)

-0.0001

(0.0005)

-0.0033

(0.0020)

0.0011

(0.0037)

demeaned_t2m_wtd_

L3_hd

0.0636 ***

(0.0156)

0.0015

(0.0009)

-0.0060

(0.0033)

-0.0076

(0.0060)

demeaned_t2m_wtd_

L4_hd

0.0539 ***

(0.0156)

-0.0003

(0.0009)

0.0018

(0.0033)

0.0040

(0.0060)
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Table IV continued from previous page

demeaned_hicp_yoy_

pct
demeaned_ur_L1

demeaned_disp_inc_

conc_l_L1
demeaned_hpi_l_L1

demeaned_stl2_wtd_

L3_hd

-0.1059 ***

(0.0140)

-0.0010

(0.0008)

0.0047

(0.0029)

0.0042

(0.0054)

demeaned_stl2_wtd_

L4_hd

-0.0354 *

(0.0144)

0.0005

(0.0008)

-0.0020

(0.0030)

-0.0061

(0.0056)

demeaned_sp_wtd_L3_

hd

0.0007 ***

(0.0000)

0.0000

(0.0000)

0.0000

(0.0000)

0.0000

(0.0000)

demeaned_sp_wtd_L4_

hd

-0.0007 ***

(0.0000)

0.0000 *

(0.0000)

-0.0000

(0.0000)

-0.0000

(0.0000)

demeaned_tp_1000_

wtd_L3_hd

0.0223 *

(0.0096)

0.0004

(0.0005)

-0.0022

(0.0020)

0.0019

(0.0037)

demeaned_tp_1000_

wtd_L4_hd

0.1273 ***

(0.0090)

0.0004

(0.0005)

-0.0015

(0.0019)

-0.0041

(0.0035)

demeaned_t2m_wtd_

L1_std

-0.4661 ***

(0.0210)

-0.0013

(0.0012)

0.0086 *

(0.0044)

0.0112

(0.0081)

demeaned_t2m_wtd_

L2_std

-0.0832 ***

(0.0212)

0.0005

(0.0012)

-0.0019

(0.0044)

-0.0022

(0.0082)

demeaned_stl2_wtd_

L1_std

0.6309 ***

(0.0291)

0.0020

(0.0016)

-0.0192 **

(0.0061)

-0.0092

(0.0112)

demeaned_stl2_wtd_

L2_std

0.5114 ***

(0.0299)

-0.0010

(0.0016)

0.0003

(0.0063)

0.0018

(0.0115)

demeaned_sp_wtd_L1_

std

0.0000 ***

(0.0000)

-0.0000

(0.0000)

0.0000

(0.0000)

0.0000

(0.0000)

demeaned_sp_wtd_L2_

std

0.0000 ***

(0.0000)

0.0000

(0.0000)

-0.0000

(0.0000)

-0.0000

(0.0000)

demeaned_tp_1000_

wtd_L1_std

-1.2688 ***

(0.1319)

0.0091

(0.0072)

-0.0307

(0.0276)

-0.0793

(0.0509)

demeaned_tp_1000_

wtd_L2_std

1.0535 ***

(0.1306)

-0.0065

(0.0072)

0.0422

(0.0273)

0.0326

(0.0504)

demeaned_t2m_wtd_

L3_std

-0.1744 ***

(0.0219)

0.0005

(0.0012)

-0.0059

(0.0046)

-0.0106

(0.0085)

demeaned_t2m_wtd_

L4_std

0.0693 **

(0.0229)

0.0023

(0.0013)

-0.0067

(0.0048)

-0.0171

(0.0088)

demeaned_stl2_wtd_

L3_std

0.8038 ***

(0.0317)

-0.0010

(0.0017)

0.0084

(0.0066)

0.0191

(0.0122)

demeaned_stl2_wtd_

L4_std

0.0076

(0.0320)

-0.0018

(0.0018)

0.0051

(0.0067)

0.0091

(0.0124)

demeaned_sp_wtd_L3_

std

0.0000

(0.0000)

0.0000

(0.0000)

0.0000

(0.0000)

0.0000

(0.0000)

demeaned_sp_wtd_L4_

std

-0.0000 ***

(0.0000)

0.0000

(0.0000)

-0.0000

(0.0000)

-0.0000

(0.0000)
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Table IV continued from previous page

demeaned_hicp_yoy_

pct
demeaned_ur_L1

demeaned_disp_inc_

conc_l_L1
demeaned_hpi_l_L1

demeaned_tp_1000_

wtd_L3_std

0.9402 ***

(0.1306)

-0.0001

(0.0072)

-0.0133

(0.0273)

-0.0514

(0.0504)

demeaned_tp_1000_

wtd_L4_std

-1.4899 ***

(0.1254)

0.0010

(0.0069)

0.0052

(0.0262)

0.0248

(0.0484)

demeaned_tp_2_wtd_

hd

0.0259 ***

(0.0015)

0.0000

(0.0001)

-0.0004

(0.0003)

0.0002

(0.0006)

demeaned_tp_2_wtd_

hd_L1

0.0333 ***

(0.0015)

0.0001

(0.0001)

-0.0003

(0.0003)

0.0002

(0.0006)

demeaned_tp_2_wtd_

hd_L2

0.0128 ***

(0.0014)

0.0000

(0.0001)

0.0007 *

(0.0003)

0.0001

(0.0006)

demeaned_tp_2_wtd_

hd_L3

-0.0019

(0.0015)

-0.0000

(0.0001)

0.0006 *

(0.0003)

0.0010

(0.0006)

demeaned_tp_2_wtd_

hd_L4

-0.0206 ***

(0.0015)

0.0001

(0.0001)

0.0004

(0.0003)

-0.0002

(0.0006)

demeaned_tp_3_wtd_

hd

-0.0042 ***

(0.0003)

0.0000

(0.0000)

0.0000

(0.0001)

-0.0000

(0.0001)

demeaned_tp_3_wtd_

hd_L1

-0.0051 ***

(0.0003)

-0.0000

(0.0000)

-0.0000

(0.0001)

0.0000

(0.0001)

demeaned_tp_3_wtd_

hd_L2

-0.0012 ***

(0.0003)

0.0000

(0.0000)

-0.0001

(0.0001)

-0.0000

(0.0001)

demeaned_tp_3_wtd_

hd_L3

-0.0008 **

(0.0003)

-0.0000

(0.0000)

-0.0000

(0.0001)

-0.0001

(0.0001)

demeaned_tp_3_wtd_

hd_L4

-0.0012 ***

(0.0003)

-0.0000

(0.0000)

-0.0000

(0.0001)

0.0001

(0.0001)

demeaned_t2m_2_wtd_

hd

-0.0342 ***

(0.0007)

0.0001

(0.0000)

0.0001

(0.0002)

-0.0003

(0.0003)

demeaned_t2m_2_wtd_

hd_L1

-0.0064 ***

(0.0008)

0.0000

(0.0000)

0.0002

(0.0002)

-0.0001

(0.0003)

demeaned_t2m_2_wtd_

hd_L2

0.0066 ***

(0.0008)

0.0000

(0.0000)

-0.0001

(0.0002)

0.0004

(0.0003)

demeaned_t2m_2_wtd_

hd_L3

-0.0061 ***

(0.0008)

0.0001

(0.0000)

-0.0005 **

(0.0002)

-0.0006

(0.0003)

demeaned_t2m_2_wtd_

hd_L4

0.0256 ***

(0.0009)

-0.0000

(0.0000)

0.0001

(0.0002)

-0.0001

(0.0003)

demeaned_t2m_3_wtd_

hd

0.0018 ***

(0.0001)

-0.0000

(0.0000)

0.0000

(0.0000)

0.0000

(0.0000)

demeaned_t2m_3_wtd_

hd_L1

0.0000

(0.0001)

-0.0000

(0.0000)

-0.0000

(0.0000)

0.0000

(0.0000)

demeaned_t2m_3_wtd_

hd_L2

-0.0018 ***

(0.0001)

-0.0000

(0.0000)

0.0000

(0.0000)

-0.0000

(0.0000)
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Table IV continued from previous page

demeaned_hicp_yoy_

pct
demeaned_ur_L1

demeaned_disp_inc_

conc_l_L1
demeaned_hpi_l_L1

demeaned_t2m_3_wtd_

hd_L3

-0.0000

(0.0001)

-0.0000 *

(0.0000)

0.0000 **

(0.0000)

0.0001 **

(0.0000)

demeaned_t2m_3_wtd_

hd_L4

-0.0031 ***

(0.0001)

-0.0000

(0.0000)

-0.0000

(0.0000)

0.0000

(0.0000)
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