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Abstract

Each year, wildfires cause billions of dollars of claims in the global insurance sector.
Climate change scenarios suggest a potential increase in these losses, as rising tem-
peratures and more frequent droughts intensify the underlying risk. Portugal, for its
part, has one of the highest densities of wildfire ignitions among southern European
countries, with this phenomenon posing the greatest threat to the sustainability of our
forests.

Given the spatial and temporal uncertainty associated with wildfire occurrences,
quantifying the underlying risk can be a challenging task that requires the use of ad-
vanced analytical methods. In this study, we analyzed 89 839 ignitions that occurred
in Mainland Portugal over a 22-year period. Generalized Linear Models and Random
Forests (RF) were employed to estimate the expected burned area of a wildfire and the
likelihood of an ignition developing into a severe event, using a set of potentially ex-
planatory variables. The obtained results provided insights into the key determinants
within each modelling strand.

The estimated RF models were also used to predict the spatial patterns of ignitions
at the national level under a climate scenario. Risk maps for the municipalities of
Mainland Portugal were produced based on the resulting geographical predictions,
indicating that the highest risk is predominantly concentrated in the inner central
region of the country.

The estimated impact of the climate scenario considered in each modelling strand
was further assessed. Risk maps reflecting the predicted variations due to the scenario
were created, with the Alentejo region expected to be the most affected one.

Keywords: Wildfire; Burned Area; Severe Ignition; Random Forest; Climate Sce-
nario; Risk Map.
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Resumo

Todos os anos, os incêndios florestais causam a ńıvel global perdas seguradas na ordem
dos biliões de dólares. Cenários de alterações climáticas sugerem um posśıvel aumento
nessas perdas, à medida que a subida das temperaturas e a maior frequência de secas
intensificam o risco subjacente. Portugal, por sua vez, possui uma das maiores densi-
dades de ignições de incêndio entre os páıses do sul da Europa, sendo este fenómeno a
maior ameaça à sustentabilidade das nossas florestas.

Dada a incerteza espacial e temporal associada aos incêndios, quantificar o risco
subjacente constitui um processo complexo, podendo requerer o uso de métodos de
anaĺıtica avançada. Neste estudo, analisámos 89 839 ignições ocorridas em Portugal
Continental ao longo de 22 anos. Foram utilizados Modelos Lineares Generalizados
e Florestas Aleatórias (RF) para estimar a área ardida esperada de um incêndio e a
probabilidade de uma ignição evoluir para um incêndio grave, usando um conjunto de
variáveis potencialmente explicativas. Os resultados obtidos forneceram informações
sobre os principais determinantes em cada vertente de modelação.

Os modelos RF estimados foram também usados para prever os padrões espaciais
das ignições a ńıvel nacional, sob um cenário climático. Mapas de risco para os con-
celhos de Portugal Continental foram constrúıdos com base nas previsões geográficas
resultantes, indicando que o risco maior está predominantemente concentrado na região
interior centro do páıs.

O impacto estimado do cenário climático considerado em cada vertente de mode-
lação foi também avaliado. Mapas de risco refletindo as variações previstas devido à
imposição do cenário foram implementados, com a região do Alentejo a ser estimada
como a mais afetada.

Palavras-chave: Incêndio; Área Ardida; Ignição Grave; Floresta Aleatória; Cenário
Climático; Mapa de Risco.
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1 Introduction

1.1 Motivation

The present report follows on from the studies carried out during the Actuarial Science
Master’s curricular program. It summarizes the analysis developed from February to
August in an internship at Fidelidade, where I joined the Direção de Estat́ıstica e
Estudos Técnicos de Não Vida (DET). The project was organized in a progressive
manner where two main topics were defined, namely the severity of a wildfire, i.e, the
expected burned area caused by it, and the probability of an ignition developing into
a severe one. The expected dimension of severe wildfires, although appealing, could
not be fully embraced under the existing constraints on time and work dimension.

1.2 Context

1.2.1 Literature review

The topic of wildfires is not a new one, as it represents an extremely sensitive mat-
ter that has been affecting our society and environment. According to Copernicus
Atmospheric Monitoring Service (CAMS), implemented by the European Centre for
Medium-Range Weather Forecasts (ECMWF) on behalf of the European Union, wild-
fire events have far-reaching consequences for both air quality and greenhouse gas
emissions ([21]). Insurance companies are largely exposed to the underlying risk of
this phenomena. [18] reports that the global insured losses related to wildfire claims
were registered at almost 5 billions of dollars in 2023. It is, in fact, a subject that has
been capturing media attention, due to some unprecedented wildfire seasons, namely
the ones of Canada (2023) and Australia (2019/20), that resulted in widespread dev-
astation of local ecosystems and communities.

Given their chaotic nature, alongside the uncertainty regarding when and where
will they occur, the wildfire forecasters have been developing methods to quantify
the underlying risk with the aim of improving the ability of local communities and
agencies to manage and respond to wildfires effectively. As [21] reports, the traditional
fire forecasting has been relying on a method that links weather conditions with fire
activity to create an index of fire risk, known as Canadian Fire Weather Index (FWI).
However, this approach has its limitations, namely the tendency of overestimation in
areas with limited fuel. Moreover, since the FWI was originally developed for Canadian
forests, its extrapolation to different ecosystems becomes complex.

In addition, we must mention that the dataset that ICNF (Instituto da Conservação
da Natureza e das Florestas) provided, and will be presented later, highlighted a seri-
ous concern in relation to the possible causes of an ignition. The man-made wildfires
represent almost 90% of the occurrences among the ones with known cause in the
period 2001-2022. From these ones, 39% were intentionally caused, whereas the re-
maining ones were due to negligence. Therefore, the majority of the ignitions is due to
the unpredictable behaviour of humans, which relates to the adversities on predicting
wildfires. This fact raises the need of more sophisticated techniques to accurately as-
sess wildfire risk across diverse landscapes. In fact, there has been a remarkable growth
in the integration of machine learning into wildfire forecasting. ECMWF has devel-
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oped a tool based on this techniques, known as Probability of Fire (PoF), to effectively
predict ignition occurrence globally, up to ten days in advance. The key advantage
of it is not only the robust and accurate predictions, but also the low computational
burden of the underlying model ([21]).

Previous studies have also addressed the modelling of the ignition risk. It is meant
by ignition risk the chance of a fire starting as determined by the presence and activity
of any causative agent. Different approaches have been carried by several authors
across different countries. Logistic regression has been one of the most used ([8],
[9], [7], [27] and [20]). Artificial neural networks ([12]), classification and regression
tree algorithms ([6] and [5]) and Hurdle models ([10]) have also been used to model
ignition occurrence. In fact, neural networks are known to be more robust in modeling
inconsistent or incomplete databases ([8]).

1.2.2 Main approaches and goals

In the current work, due to the nature of our dataset, it was not possible to model the
probability of an ignition. It would be necessary to simulate geographical coordinates
in Mainland Portugal (for instance, outside some buffer centered in the ignition points)
for the points where ignitions did not occur. However, the extraction of real data
relative to the explanatory variables for those points would not be feasible. For this
reason, our work addresses two main topics that have not been approached by the
majority of previous studies: i) the modelling of the burned area per ignition, and ii)
the modelling of the probability of an ignition reaching 100 hectares (ha) of burned
area. In fact, the wildfire severity is also a concerning topic, since there are many
ignitions with small dimensions that do not generate such a loss as the generated by
the large ones. To elucidate the reader, only 19% of the ignitions in our dataset reached
1 ha of burned area. According to [26], only these ones are considered wildfires. This
differentiation is indeed important for statistical analyses, since the small ignitions can
be quickly controlled and do not cause a significant impact in burned area.

Therefore, the present paper aims to reach two main goals. First, we intend to
provide strong explanatory models that can elucidate about how each of the included
predictors may influence not only our expectation relative to the severity of an ignition,
but also the probability of an ignition being a severe one, i.e, of reaching 100 ha of
burned area (threshold set by ICNF and reported in [16]). For this component, Gener-
alized Linear Models (GLM) will be employed, as they provide great interpretability,
through the coefficient analysis. Moreover, we are also interested in incorporating a
predictive component in this study alongside climate scenarios. Hence, Random For-
est (RF) models will be used to predict the spatial patterns of wildfires for Mainland
Portugal, under those scenarios. Besides being less prone to overfitting than other ma-
chine learning techniques (particularly, boosting ones), a RF contains a more robust
predictive ability than the GLM approach ([24]). Risk maps for Mainland Portugal
will then be produced with the future predictions of the RF models, aggregated by
municipality. Hence, we aim at contributing to the measurement of the risk of each
municipality, in the context of our modelling strands.

The implementation of the models described was done through a dataset that ICNF
provided. It contains 475 449 geographical coordinates in Mainland Portugal, corre-
sponding to the location of each reported ignition in the period 2001-2022. Additional
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information relative to these points was also available, such as the burned area (in
hectares) of each occurrence. Since only the ignitions that we classify as wildfires were
taken into account, 89 839 observations were considered for this study, as the ones
that did not reach 1 ha of burned area were excluded. Other features relative to each
observation at the time of the ignition were also provided. Hence, the models were
built by testing the underlying variables. For the full description of the predictors
incorporated, refer to Section 3.3. The analysis was conducted using R, a program-
ming environment for statistical computing and plotting. As for the used packages,
tidyverse, ranger, pdp, leaflet and sf were some of the most relevant ones.

It may be worth to emphasize that, in the earliest years of our time period, the
geographical coordinates of the database may not always correspond to points where
the ignition started. Our source from ICNF confirmed that they may represent the
GPS (Global Positioning System) position of the first firefighters vehicle arriving to
the wildfire, or simply the coordinates of the nearest toponymy (locality, geodesic
vertex, etc.). Nevertheless, based on our prior knowledge on this subject and on the
comparison of our conclusions with the ones from previous studies (e.g, [8], [7], [5]),
we believe this situation did not significantly affect our results.

1.3 Document Structure

The outline of this thesis is as follows: in Chapter 2 we proceed to a descriptive analysis
of the temporal evolution of statistical wildfire indicators, in the context of Mainland
Portugal; in Chapter 3 a theoretical description of Generalized Linear Models and
Random Forests is discussed, followed by the description of the variables; Chapter 4
presents the models employed for the burned area per ignition and the probability
of an ignition reaching 100 ha; the models validation is approached in this stage; in
Chapter 5 we perform a sensitivity analysis of the climate variables, followed by the
methodologies employed in the climate scenarios and in the mapping of the resulting
future predictions; conclusions and final thoughts are drawn in Chapter 6.
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2 Wildfire Indicators in Mainland Portugal

2.1 Geographical Area covered by the study

The topic of wildfires represents a major concern at a national level and, among the
natural disaster events, it is perhaps the one that most affects our country. The biodi-
versity of portuguese forests raises the need of efficient policies for forest management.

Portugal has demonstrated, over the years, some susceptibility regarding wildfires.
In fact, it presents some natural features that increase the likelihood of this phenom-
ena, such as the usual hot and dry summers. There are also many regions with an
unfavourable topography (steep slope, for instance), especially the ones in the north-
east of the country, as well as some vegetation characteristics that may evoke the risk of
fire ignition, such as the evergreen vegetation with great resistance to dryness. These
conditions also favour the fire propagation, representing then a critical contribution to
burned surface indicators.

The study area of the current paper is Mainland Portugal. Regarding its main
features ([20]), Continental Portugal has an area of approximately 89 000 km2 and is
located between 37◦N and 42◦N of latitude and between 6◦W and 10◦W of longitude.
In terms of altitude, it ranges from the sea level to 2000 meters above it, whereas the
higher elevations tend to locate in northeast regions. Mean annual temperatures tend
to situate between 7◦C and 18◦C. Mean annual precipitation ranges from 400 mm to
2800 mm. It is worth to emphasize that the south tends to have, on average, higher
temperatures and lower levels of precipitation, when compared to the north.

Figure 1 (with data extracted from Pordata) illustrates a decrease tendency of the
total forest area in Mainland Portugal from 1995 to 2010, which has been inverted with
an increase from 2010 to 2015. Nevertheless, we observed a decrease of 2.46% of the
total forest area from 1995 to 2015, with the wildfire phenomena having a preponderant
contribution to it. In fact, Portugal has more critical indicators when compared with
other European countries, such as Spain, France, Italy and Greece. According to the
European Commission, since 1980 Portugal has been registering an increase tendency
of the total burnt surface, contrarily to the decrease behaviour verified in the referred
countries.
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Figure 1: Evolution of the Total Forest Area in Mainland
Portugal
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2.2 Frequency and Severity Indicators

Portugal has been considerably affected in terms of total burnt surface due to wildfires.
The annual average of this indicator from 2001 to 2022 is 138 033 ha, which represents
1.6% of the mainland territory. Figures 2 and 3 provide us some insights on this trend
and enable us to conclude that 2017 was the most critical year in this respect. In fact,
the most recent information we have on this concerns the year of 2022, when the burnt
surface was only 1.2% of Mainland Portugal. This reflects a huge decrease relatively
to 2017, when this indicator reached 6.1%. Several severe occurrences contributed
to this result, namely the wildfires in the municipalities of Sertã, Pedrogão Grande
and Lousã, that obviously had far-reaching consequences not only in terms of human
damages, but also in terms of insured losses. In fact, the latest of the mentioned ones
(Lousã, October of 2017) was the largest wildfire in Mainland Portugal from 2001 to
2022. The burned area caused by it reached 53 619 ha.

As it would be expected, the number of fire ignitions (displayed in Figure 3) has also
been reaching huge values, resulting in an annual average of almost 21 028 ignitions
from 2001 to 2022. Although this can be a relevant indicator, the main concern must
be the burned surface or the number of ignitions with large severity, due to the fact
that the fire frequency is highly affected by the ignitions with small dimensions. We
can observe that 2017 was under the average, as it reached only 21 006 ignitions.
However, it was one of the most tragic years in terms of not only total burnt surface,
but also regarding the huge human consequences. On the other hand, the maximum
value of 41 689 ignitions was observed in 2005. This was indeed a critical year, in which
more than 346 000 ha were devastated, due to wildfires. Hence, further developments
on this analysis regarding this year will follow.
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proportion of burned area

5



0

200,000

400,000

600,000

0

10,000

20,000

30,000

40,000

50,000

20
01

20
02

20
03

20
04

20
05

20
06

20
07

20
08

20
09

20
10

20
11

20
12

20
13

20
14

20
15

20
16

20
17

20
18

20
19

20
20

20
21

20
22

Year

B
ur

ne
d 

A
re

a 
(h

a)
O

ccurrences (N
r.)

Occurrences (Nr.) Burned Area (ha)

Figure 3: Evolution of wildfires in Mainland Portugal by
burned area and number of occurrences

Moreover, Figure 4 provides an insight on the temporal evolution of an important
indicator for our study, namely the annual number of wildfires exceeding 100 ha of
burned area. The analysis of this indicator comes in line with what should be the main
concern regarding the wildfire subject, namely the ignitions with large dimensions. In
fact, [3] reports that the lower ones occur with greater likelihood, but end up to be
controlled and extinct in the initial stages of the fire event, and the damages caused
would be non significant.

As we observe, 2005 was one of the most critical years, both in terms of fire occur-
rences and severity per occurrence: 427 ignitions reaching a severity of 100 ha were
incurred, which represents the maximum observed in the time period of our study.
This year was, in fact, a major concern to all the entities involved in the wildfires sub-
ject. Thereby, we found convenient to detail our descriptive analysis in this specific
year. According to ICNF, the ignitions in forest areas in 2005 were responsible for a
burned area of 325 226 ha. In the context of Mainland Portugal, we must note that
the man-made wildfires represent a proportion of almost 90% of the total wildfires.
In fact, in 2005 we observed that more than 1/3 of the ignitions were intentionally
caused.

According to [25], the wildfires with more than 100 ha were the most significant
component of the total burned area, having represented 85.1% of the burned surface
in 2005 and 93.1% in 2003. However, in both years, these large fires corresponded to
a relatively reduced number of occurrences, since they did not exceed 1% of the total
observed. In addition, a total of 3226 wildfires larger than 100 ha were observed from
2001 to 2022, corresponding to an annual average of 147. There were several years
that revealed low values of this indicator such as 2008, 2014 and 2018, representing a
downward contribution to the average. As previously said, Figure 4 proves that 2005
was the year that mainly pushed the mean of this measure in an upward direction.
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Figure 4: Evolution of wildfires in Mainland Portugal by
number of ignitions reaching 100 ha

In fact, the climate conditions of 2005 were a huge enhancer of the wildfire statistics,
namely the prolonged drought that affected the Portuguese mainland territory in that
year. As it was stated by the former responsible of ICNF ([26]), in 2005 almost the
whole all of the mainland territory was subject to high meteorological risk of wildfire,
especially the district of Aveiro, which registered 22 012 ha of burned surface, the
maximum of that year, among the 18 districts of the mainland territory. Moreover,
one may say this year gave strength to the observed tendency on the usual cause of
wildfires (natural or man-made) in Portugal, in the sense that only 2.2% of the total
wildfires were due to natural causes.

In addition, 2017 was also one of the most noticeable years, with some critical con-
sequences in human losses, and also for insurance companies. Figure 20 in Appendix
A provides some insight on the burned area in 2017 at the district level, since it was a
year when Portugal was highly affected by some severe incidences, with almost 49 000
ha burned in the district of Leiria. The ignition of Pedrógão Grande in June was the
main contributor to this value, since the respective burned area (30 359 ha) represented
62% of the total for the district. The neighbor municipalities were also affected by this
wildfire, some of them in other districts, such as Castelo Branco and Coimbra with a
burned area in 2017 of 63 000 ha and 126 000 ha, respectively. In fact, Coimbra was
the most concerning district regarding this indicator, also due to another fire incidence
with big proportions that was triggered on the same day as the Pedrógão wildfire in
the municipality of Góis. The competent authorities identified that the ignition source
of Pedrógão incidence was dry thunderstorm, as it is mentioned in [29]. These two
ignitions ended up to form a contiguous burnt area and had serious consequences in
what regards financial losses, due to the assets that were affected. Also [29] reports
that there were more than 500 destroyed houses, corresponding to an estimation of
500 million euros of total losses. Obviously, this situation had serious consequences
to insurance companies, due to the several policies that incurred in a claim caused by
these incidences.
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3 Theoretical Foundation

3.1 Generalized Linear Models

In this section we follow the references [4] and [11], where further details can be found.
Generalized Linear Models (GLM) are a well-known topic, regarding the implemen-
tation of statistical models, in which the aim is modelling the relationship between
a dependent variable of interest and the relevant predictors. They represent a wide
panoply of regression statistical methods with various applications, mainly regarding
the data science area. We can consider the GLM an extension of the ordinary linear
models ([11]), as they are particularly useful when the residuals (errors) appear to
have a distribution different than the normal one. It is worth to emphasize that the
distribution of the response variable is a good indicator of the residuals distribution.

Similarly to what is explained in [4] and [11], the main difference between a GLM
and the classic linear models can be summed up by two essential aspects:

• The probability distribution of the response variable must be chosen from the
exponential family (Gamma, Gaussian, Binomial, Poisson, Negative Binomial,
Inverse Gaussian); Hence, the chosen one does not have necessarily to be the
Gaussian distribution, as in an ordinary linear model.

• The relationship between the expected value of the response variable and the
explanatory variables is specified via a link function.

Moreover, the probability distribution of each observation Yi of the dependent
variable must be specified according to the following expression:

fYi
(yi; θi;ϕ) = exp

[
yiθi − b(θi)

ϕ/wi

+ c(yi;ϕ;wi)

]
(1)

As for the parametrization, θi and ϕ represent, respectively, the location and scale
parameters of the distribution of Yi. The latter one, also called the dispersion parame-
ter, is assumed to be constant for all the observations i. The parameter wi corresponds
to a prior weight specified in advance for each observation, and is denoted as the ex-
posure parameter. The functions b(.) and c(.) are specified according to the chosen
distribution for the response variable. In particular, b(.), denoted as the cumulative
function, is twice differentiable with the second derivative a positive function, whereas
c(.) is independent of the parameter θi. Thereby, we have that E(Yi) = µi = b′(θi)

and V ar(Yi) = ϕV (µi)
wi

, whereas Vi = V (µi) = b′′(θi) is called the variance function.
One of the key features of a GLM is its systematic component, denoted as the

linear predictor, η. Basically, it consists in a linear combination of the p independent
variables (x1, ..., xp) included in the model, as defined in expression (2). Afterwards,
the regression parameters (β0, ..., βp) must be estimated through maximum likelihood,
using the available past data regarding the response and explanatory variables.

η = β0 + β1x1 + ...+ βpxp (2)

In an ordinary linear regression, the linear predictor would model directly the stochas-
tic component, i.e., the response variable Y . However, with the GLM approach we
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must incorporate a link function g(.), i.e., a differentiable and invertible function that
maps the linear predictor with the expected value of the dependent variable. Thereby,
the aim of the link function is to establish an association between the systematic and
the stochastic components. The analytical reasoning is illustrated with expression (3),
where u corresponds to the mean response variable:

η = g(u) ⇔ u = g−1(η) (3)

The link function must be chosen in accordance with the modelling strand that
one aims to develop. As it was previously referred, one of the objectives of this paper
consists in the implementation of a GLM approach in order to model the probability
of an ignition reaching a severity of 100 ha. Thereby, a logistic regression will be
implemented, since we are interested in a functional relation between the available
predictors and the expected value of a binary variable (either the ignition reaches 100
ha or not). It is worth to emphasize the flexibility of this regression type, since it
accepts a mixture of continuous and categorical variables, as well as non-normally
distributed ones.

Therefore, a logistic function will be used to link the linear predictor with the
expected value of the response variable, which in our case is the probability of an
ignition being a severe one. Y represents the binary dependent variable, assuming
the values of 1 (severe ignition) and 0 (non-severe ignition), and u symbolizes the
respective expected value. The logistic link function is then defined as:

η = g(u) = log

(
u

1− u

)
(4)

As for the probability of an ignition reaching a severity of 100 ha:

P (Y = 1) = u = g−1(η) =
eη

1 + eη
(5)

Since we are modelling the probability of a binary event, the model validation to be
employed in Section 4.2 must be approached in a classification perspective, due to
the fact that the past data regarding the response variable refers to binary outcomes.
Hence, two different methods will be implemented with the aim of predicting a severe
ignition through the predicted probabilities. We must emphasize that, with a logistic
distribution, we are able to restrict the estimated values for the probability of success
to the interval [0,1].

A similar approach can be developed if the purpose is modelling the burned area
per wildfire. In this case, a Gamma distribution (particularly useful for modelling
non-negative, continuous outcomes) will be used. This decision was mainly based on
graphical inspection of the probability density function (p.d.f) of the Burned Area
variable. In fact, the Gamma distribution is suitable for the right-skewed data (with
a long tail towards larger areas) that we observe in Figure 5. This is consistent with
the nature of fire data where small events occur frequently, but the large ones, though
rarer, dominate the burned area totals. We have followed [28], that suggests the
Gamma distributions are suitable for modelling proportions of burned area. We must
highlight that the plotted variable in Figure 5 (the one we will use in the severity
modelling) was subject to an outlier treatment. Although the basis of this decision
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will be further explained in Section 4.1, we must mention that the ignitions exceeding
a burned area of 100 ha were censored at 100, in order to avoid convergence issues in
the computational process of the model fitting.
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Figure 5: Burned Area density function

Therefore, the logarithmic link function will be employed, in order to provide us
with the following coefficient interpretation: the parameter βi allows us to calculate
the percentage comparison of the category represented by xi with the base level, ceteris
paribus, regarding the expected burned area per ignition. We will further develop this
in Section 4.1. Expression (6) provides the analytical reasoning:

η = g(u) = log(u) ⇔ u = eη = eβ0+β1x1+...+βpxp (6)

3.2 Random Forest Models

In this work, we find it convenient to employ, besides the GLM, a machine learning
approach, since in the latest stage of the project the purpose will be to produce future
predictions for the spatial patterns of wildfire ignitions in our study area. In fact,
when the purpose of a model is to predict rather than explain, a machine learning
approach is preferred over a regression based one ([24]). Therefore, a RF model will
be employed.

This section follows the references [15] and [19], where further details can be found.
Random Forest is a machine learning method of ensemble used in classification and
regression tasks. An ensemble method is an approach that combines many simple
“building block” models in order to obtain a single and potentially very powerful
model. These building block models are sometimes known as weak learners, since they
may lead to mediocre predictions on their own ([19]). The algorithm is mainly based
in the construction of multiple independent decision trees, where each of them is grown
in a randomly selected bootstrapped sample from the training data. The results of
each tree are combined, in order to obtain more accurate predictions than the ones
provided by GLM.

We start by introducing the concept of bagging as described in [19]. This pro-
cedure allows to surpass an adversity surrounding some tree-based methods, namely
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the high variance of the results obtained when fitting decision trees to random sub-
sets of the training data. Therefore, bootstrap aggregation, also called bagging, is a
general-purpose procedure for reducing the variance of a statistical learning method.
Recall that averaging a set of observations reduces the variance, i.e, given a set of n
independent observations Z1, ..., Zn, each with variance σ2, the variance of the mean Z
of the observations is given by σ2/n. One way to reduce the variance and increase the
predictive accuracy of a statistical learning method would be to take several training
sets from the population, build a prediction model using each of those and average
the resulting predictions ([19]). Since it may not be feasible to have access to mul-
tiple training sets, with the bagging approach we must perform bootstrap selection.
Basically, we sample with replacement from the training dataset, in order to generate
B different bootstrapped training sets, although they may contain common points.
The model is then trained on the bth bootstrapped training set, in order to get the
respective prediction for that sample, denoted by f̂ ∗b(x). Finally, we average all the
predictions to obtain the bagging estimate, defined by:

f̂bag(x) =
1

B

B∑
b=1

f̂ ∗b(x) (7)

The bagging procedure can also be extended to a classification problem where the
response variable Y is qualitative. In this case, the simplest approach would be as
follows: for a given test observation, we record the class predicted by each of the B
decision trees, and take a majority vote, i.e, the overall prediction corresponds to the
most voted class among the B predictions.

A Random Forest is a substantial modification of bagging that builds a large col-
lection of de-correlated trees, and then averages them ([15]). Similarly to bagging, a
number of decision trees must be built in the bootstrapped training samples. How-
ever, in a RF procedure, on each split of a tree, a random sample of m predictors is
chosen as split candidates among the full set of p explanatory variables ([19]). The
split only uses one of those m predictors. While bagging considers m = p, in a RF
model we typically choose m ≈ √

p. By not considering the majority of the predictors
at each split in the tree, the RF procedure overcomes the adverse situation of having
one very strong predictor in the data set, along with a number of other moderately
strong predictors. In bagging, the predictions from the bagged trees would be highly
correlated, and averaging many highly correlated quantities does not lead to as large of
a reduction in variance as averaging many uncorrelated quantities ([19]). On the other
hand, with RF, an average of (p−m)/p of the splits will not even consider the strong
predictor, and so other predictors have more significance on those splits. Hence, the
main advantage of a RF over a bagging approach consists in what we may call “tree
decorrelation”, thereby reducing the variance of the average of the resulting trees and
making them more reliable. Table 1 summarizes how a RF works.

In addition, a bagging or a RF model has the advantage of providing us with
a variable importance measure through the computation of internal estimates. In
the case of modelling a quantitative variable (RF for regression), the residual sum of
squares (RSS) is computed, in order to provide an overall summary of the importance
for each predictor. The RSS is calculated as the sum of the squared differences between
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Random Forest for Regression or Classification

1. For b = 1 to B:
(a) Draw a bootstrap sample Z∗ of size N from the training data.
(b) Grow a random-forest tree Tb to the bootstrapped data, by recursively repeating
the following steps for each terminal node of the tree, until the minimum node size
nmin is reached.
i. Select m variables at random from the p variables.
ii. Pick the best variable/split-point among the m.
iii. Split the node into two daughter nodes.

2. Output the ensemble of trees {Tb}B1
To make a prediction at a new point x:

Regression: f̂B
rf (x) =

1
B

∑B
b=1 Tb(x)

Classification: Let Ĉb(x) be the class prediction of the bth random-forest tree. Then

ĈB
rf (x) = majority vote {Tb}B1

Source: [15]

Table 1: RF Algorithm

the observed values and the predicted values:

RSS =
n∑

i=1

(yi − ŷi)
2 , (8)

where:

• yi is the observed value of the target (response) variable for the i-th observation;

• ŷi is the predicted value of the target variable for the i-th observation;

• n is the number of observations.

The importance of the RSS measure in RF for regression is that it quantifies the
contribution of each feature (variable) to the model’s predictive power. Thereby, we
can record the total amount that the RSS is decreased due to splits over a given
predictor, averaged over all B trees ([19]). This measure helps to identify which
variables are most influential in predicting the target variable, thus providing valuable
insights into the model’s behavior and the underlying data.

In a RF for classification, i.e, when modelling a qualitative variable, we can also
record an importance measure for each predictor through the computation of the Gini
index (also known as Gini impurity). Similarly to regression, we can add up the total
amount that the Gini index is decreased by splits over a given predictor, averaged over
all B trees. Expression (9) displays the formula of this measure:

G(t) = 1−
m∑
i=1

p2i , (9)
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where pi is the proportion of instances of class i at node t, and m is the number of
classes. The Gini index is a fundamental metric that quantifies the impurity of a node
in a decision tree. By aggregating the reductions in Gini impurity across all trees,
RF provides a robust measure of how important each feature is for making accurate
classifications. This information can be crucial for understanding the model and for
feature selection in machine learning methods.

3.3 Explanatory Variables

As referred in Chapter 1, a wide panoply of information was provided by ICNF. The
dataset contains dynamic and structural features with respect to the place and time
of each ignition. For the implemented models, both type of variables were selected
and included. Although they had first to be tested as candidates, the prior selection
process was based on previous knowledge (e.g, [8], [5], [9]). The dynamic predictors
reflect temporary conditions subject to daily or even hourly change, like for instance
the temperature or the relative humidity at the time and place of the ignition. The
structural variables refer to intrinsic factors of the territory, which are relatively stable
over time, such as the slope or the road density with respect to the point of interest.
Hence, a total of 16 predictors were included in the models. The description of the
variables is as follows:

• Year - Year of the ignition occurrence.

• NSWD - Number of simultaneous wildfires in the district of the ignition.

• Density - Population density of the municipality where the ignition occurred
(persons per km2).

• District - District where the ignition occurred.

• Fire hazard - Structural ICNF index of wildfire risk.

• Month - Month of the occurrence.

• Altitude - Mean altitude of the square 1×1 km of the ignition point (meters
above sea level).

• Land Cover - Land use with respect to the ignition point.

• Slope - Mean slope of the square 1×1 km of the ignition point (%).

• Road Density - Road density of the square 1×1 km of the ignition point (meters
per hectare).

• Humidity - Relative humidity of the air (%) at the time and local of the ignition.

• Wind Direction - Wind direction at the time and local of the ignition.

• Precipitation - Precipitation (millimeters) at the time and local of the ignition.

• Temperature - Temperature (◦C) at the time and local of the ignition.

• Wind - Wind intensity (km/h) at the time and local of the ignition.
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• Dist. FD - Straight line distance (meters) to the nearest fire department.

We must note that other variables were also tested, such as the meteorological
indexes used in the calculation of the Canadian Fire Weather Index (FWI). However,
due to their low explanatory power, they were not included in the models.

Before the GLM fitting, the variables were subject to a prior categorization, such
that every level of a variable is compared to a base level. The quartiles of each variable
were key factors for the creation of levels, with some posterior adjustments being made
to achieve significance. Table 2 displays the treatment of the numerical predictors in
the severity GLM, followed by the categorical ones. The base levels (highlighted in
boldface) are the ones with the highest number of observations.

Variable
Level

Level 1 Level 2 Level 3 Level 4

Year ≤ 2009 ]2009, 2016] > 2016 -
NSWD ≤ 3 ]3, 6] > 6 -
Density < 40 [40, 100[ ≥ 100 -

Fire hazard < 2.5 ≥ 2.5 - -
Altitude ≤ 215 ]215, 509] > 509 -
Slope < 7 [7, 21[ ≥ 21 -

Road Density < 250 ≥ 250 - -
Humidity < 25 [25, 50[ ≥ 50 -

Precipitation = 0 > 0 - -
Temperature < 25 [25, 32[ [32, 35[ ≥ 35

Wind < 7 [7, 10[ [10, 15[ ≥ 15
Dist. FD < 1900 [1900, 4700[ [4700, 6700[ ≥ 6700

Table 2: Treatment of the numerical variables - Severity GLM

As for the categorical predictors:

• District

- Porto and Braga

- Lisboa and Santarém

- Évora and Setúbal

- Leiria and Coimbra

- Each of the 10 remaining districts corresponds to a level with no aggregations.

• Month

- July and August

- January and December

- Each of the 8 remaining months corresponds to a level with no aggregations.

• Land Cover

- Shrubland

- Forest

- Agriculture
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• Wind Direction

- West

- East

Although the explanatory variables used for modelling the probability of a severe
ignition coincide with the ones used in the severity, the categorization with respect to
the logistic regression may differ for some of them. Table 3 refers to the variables that
fit into that case. As for Year, NSWD, District, Month, Altitude, Land Cover, Wind
Direction, Precipitation and Dist. FD, the categorization remains the same.

Variable
Level

Level 1 Level 2 Level 3 Level 4

Density < 75 ≥ 75 - -
Fire hazard < 1.9 [1.9, 3[ ≥ 3 -

Slope < 16 ≥ 16 - -
Road Density < 175 ≥ 175 - -
Humidity < 40 ≥ 40 - -

Temperature < 30 [30, 35[ ≥ 35 -
Wind < 7 [7, 15[ ≥ 15 -

Table 3: Variable treatment - Logistic regression

Regarding the RF models, no prior categorization is considered. Thereby, the variables
are tested in the exact way as they were provided (e.g, the 18 districts and the 12
months are all included separately). With this decision, we benefit from the high
capacity of a RF in capturing interactions between variables.

The next section aims to describe the main details of the models employed for both
the wildfire severity and the probability of an ignition reaching 100 ha. The results
from the models validation approach are also displayed. We aim to provide a strong
explanatory feature that highlights the influence of each variable regarding both mod-
elling strands. The implementation of the GLMs were based on this objective. As for
the RF models employed, since they have a predictive purpose, further developments
will follow in Chapter 5.
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4 Models and Results

4.1 Modelling the Burned Area per Ignition

First, we want to model the wildfire severity, i.e, the expected burned area per ignition.
As already explained, two distinct methods were employed: a GLM and a Random
Forest. Due to the fact that the majority of the ignitions have low dimensions, we
started by facing convergence issues in the computational process. To deal with this
problem, the technique that we employed will be presented later.

4.1.1 Preliminary analysis of the variables

Before we deepen the analysis into the technical insights of our models, we found it
convenient to make a preliminary description of the patterns of the burned area per
ignition, in relation to some of the selected variables of the models. Observed averages
across the levels considered for the GLM were calculated.

• Firstly, we observed a decrease tendency of the average burned area per ignition
with the increase of the population density in the municipality of the occurrence.

• By analysing the wind direction with respect to the ignition points, we observed
that the ones in locations affected by easterly winds generated a burned surface,
which was, on average, 16% greater than the ignitions related to westerly winds
(36.2 versus 31.1 ha).

• As for the temperature at the time and local of the ignition, we display the
graphical reasoning on Figure 21(a) in Appendix A: as expected, we observed an
increasing tendency, whereas the ignitions belonging to the highest temperature
level had the greatest average severity (331.8 ha).

• For the binary variable representing the occurrence of precipitation in the day
of the ignition, the evidence is compatible with our prior knowledge, since the
average severity of a wildfire in the precipitation scenario is 3.4% lower than in
the no precipitation one.

• The distance from the ignition point to the nearest fire department also had the
expected behaviour: the average burned area is strictly increasing with the re-
ferred variable, whereas the ignition points located further than 6700 meters from
the nearest fire department had a mean severity of 49.1 ha. As for the ignitions
related to the nearest level (less than 1900 meters), the mean burned surface
was 15.2 ha. Figure 21(b) in Appendix A displays the graphical visualization
regarding this predictor.

4.1.2 Results

We start with the implementation of a GLM that can provide us a strong explanatory
ability. Although the main results of the RF models will be described in Chapter 5,
some insights regarding variable importance will follow in this section. Thus, dispari-
ties between the GLM and the RF can be assessed. First, in order to avoid convergence
issues in the computational process of the model fitting, a technique of outliers treat-
ment was applied as we opted to censor the ignitions data. Hence, a burned area of
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100 ha was set to all the observations with a severity larger than this threshold. This
decision was due to the fact that our distribution would be extremely right skewed,
since most of the ignitions have small dimensions. We remark that the chosen thresh-
old is the one set by ICNF to designate a wildfire as a severe one, as mentioned in
Chapter 1. Also, for the reasons given, we excluded the observations that did not reach
1 ha of burned surface. This decision resulted in a total of 89 839 wildfire ignitions.
As for training and test techniques, we proceeded to a random splitting of the data,
whereas the training set represents 80% and the remaining 20% is reserved for model
validation.

Before the GLM fitting process, we performed several Chi-square tests of inde-
pendence to our predictors, since we were interested in assessing possible associations
between variables. This was done through the building of contingency tables between
pairs of our categorical predictors. The Pearson’s Chi-squared test is then applied
to each of those tables. Hence, we verified that one of the most correlated pairs of
explanatory variables is Slope and Altitude (χ2 = 13795, p-value = 0). This result
strengthened our previous beliefs, motivating us to introduce an interaction compo-
nent in the modelling framework, as we will see. Nevertheless, it is worth to mention
that the results of the statistical tests performed should always be seen as an indication,
as observations are bound to have some degree of temporal and spatial dependence
([8]). In fact, one of the advantages of a RF model resides on this topic, since it has
an underlying optimization in the variables interaction to consider.

In line with this, two regressions, defined in Equations (10) and (11), have been
considered as possible candidates. The main difference between them is that regression
(10) is the simpler one with no interactions, whereas regression (11) employs the
interaction term between the predictors Slope and Altitude (represented by Slope ×
Altitude). Thus, both regressions were calibrated alongside the RF model.

log (Burned Area|Burned Area ≥ 1) = β0 + β1NSWD + β2Density

+ β3Year + β4District + β5Fire hazard

+ β6Month + β7Altitude + β8Land Cover

+ β9Slope + β10Road Density

+ β11Humidity + β12Wind Direction

+ β13Precipitation + β14Temperature

+ β15Wind + β16Dist. FD (10)

log (Burned Area|Burned Area ≥ 1) = β0 + β1NSWD + β2Density

+ β3Year + β4District + β5Fire hazard

+ β6Month + β7Land Cover

+ β8Slope × Altitude + β9Road Density

+ β10Humidity + β11Wind Direction

+ β12Precipitation + β13Temperature

+ β14Wind + β15Dist. FD (11)

In order to provide a measure of model preference between regressions (10) and (11),
the Akaike Information Criterion (AIC) of both models were calculated. The values of
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417 443 and 417 379 were obtained in regressions (10) and (11), respectively. The lower
value calculated for the latter means that regression (11) is the one which best balances
goodness of fit and model complexity. Despite these results, regression (10) was the
chosen one in the next developments. Although the AIC favored the model with the
interaction term, the regression without interactions provides a greater simplicity and
the ability to analyze each variable individually, making it more interpretable and
practical for the study’s objectives.

After the regression is calibrated, the focus goes to the interpretation of the es-
timated coefficients, as well as the assessment of the significance of each predictor.
Results are displayed in Table 4.

First, the signs of estimated parameters were checked, to make sure they were
compatible with some previous theoretical knowledge we had on the wildfires subject.
The formulation of regression (10) allows us to interpret the coefficients as a percentage
change in the burned area per ignition due to the marginal effect of any explanatory
variable. Therefore, Equation (12) displays the formula that gives the percentage
change on Y due to variable xk:

100(eβk − 1) . (12)

Table 4 displays the summary of some of the coefficients estimated for regression
(10) (for all the coefficients, refer to Table 16 in Appendix A). These estimations result
from a calibration to the whole dataset, as the more data we use, the more reliable is
the explanatory feature of a regression model.

Coefficients Estimate Std. Error t value p value Sign. code

(Intercept) 0.88944 0.03670 24.236 < 2e-16 ***
Slope LEV1 -0.08228 0.02118 -3.884 0.000103 ***
Slope LEV3 0.10273 0.01612 6.374 1.85e-10 ***
Road Density LEV2 -0.08234 0.01819 -4.528 5.96e-06 ***
Month Jan and Dec -0.09946 0.04350 -2.286 0.022230 *
Month Feb -0.32482 0.03328 -9.761 < 2e-16 ***
Month Nov -0.31893 0.04025 -7.924 2.33e-15 ***
District Aveiro 0.37176 0.03898 9.537 < 2e-16 ***
District Guarda 0.76434 0.03460 22.091 < 2e-16 ***
Wind Direction East 0.12998 0.01426 9.113 < 2e-16 ***
Altitude LEV 1 -0.22411 0.02511 -8.926 < 2e-16 ***
Altitude LEV 2 -0.15275 0.01876 -8.143 3.90e-16 ***
Dist. FD LEV1 -0.28712 0.02480 -11.579 < 2e-16 ***
Dist. FD LEV2 -0.21245 0.01777 -11.956 < 2e-16 ***
Dist. FD LEV3 -0.12084 0.01821 -6.636 3.24e-11 ***

Table 4: Some of the estimated coefficients for regression (10)

By applying (12) to the results in Table 4, some conclusions follow:

• The burned area per ignition in the districts of Aveiro and Guarda is expected
to be 45% and 115% greater than the verified one in the base level, Porto and
Braga, respectively.
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• Evidence of an upward effect of the variable Slope in fire propagation was also
given by the model: the burned area is expected to increase by 8% between
ignitions located in the area defined by the first level of Slope (under 7%) and
the ones located in the area defined by the second level of the same variable
(from 7% to 21%).

• It was also possible to quantify the effect of Wind Direction: the areas affected
by easterly winds have an expected severity 14% greater than the ones affected
by westerly winds. In fact, the former ones are normally associated to low levels
of humidity, while the latter ones tend to be related to higher levels.

• As for the month of the ignition, we observe an unexpected behaviour for the
January and December coefficient: the average burned area for this level is 9%
lower than the one for the base level, July and August. We would expect a
much stronger effect, in line with the coefficients verified for the levels November
and February. The main contribution to this result was the anomalous January
historic in 2021 and 2022: a total burned area of 1699 ha and 3312 ha were
observed, corresponding to a mean per ignition of 21.5 ha and 25 ha, respectively.

• Altitude was found to have a positive influence on the wildfire severity: between
the 1st level (under 215 meters) and the 3rd one (above 509 meters), we expect
an increase of 20% in the severity of an ignition. [8] has also concluded a positive
effect of this variable in the probability of ignition, namely due to some human
activities at higher altitudes (renovation of pastures for livestock).

• As for Road Density, our results may reflect a better fire combat in areas with
better road accessibility, as suggested by the negative effect of this variable. An
interesting fact is the positive effect of this variable on previous studies for the
probability of ignition. Nevertheless, this is expected since most of the wildfires
are human caused and this variable is an indicator of human proximity and
activity.

• We expect the severity of a wildfire to increase with the distance from where
the ignition occurred to the nearest fire department (Dist. FD). In fact, it was
proven that if the point of the ignition is located in less than 1.9 km (1st level),
the burned area is expected to be 25% lower than if it is in a point further than
6.7 km (4th level).

As for the Wald tests to assess the significance of the predictor levels of regression
(10), Table 4 displays on the rightmost column the p values of the significance tests of
each estimated coefficient. Since none of them exceeds 0.05, we conclude that all the
coefficients are significant at the level of 5%

1
. The referred tests were also performed

with each explanatory variable, in order to compare them based on significance. The
results are displayed in Figure 6(a), whereby the higher the transformation performed
on the p-value, the more important is the respective variable. Land Cover and NSWD
were identified as the predictors with the strongest influence on the expected burned
area per ignition, with Year and District also playing an important role. Precipitation

1

for the significance codes, see Table 15 in Appendix A
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is the least important feature of the regression model, since in the majority of the
observations there was no precipitation.

As for the RF model, an importance measure was computed, namely the one de-
scribed in Section 3.2. The results are displayed in Figure 6(b). Similarly to the
GLM, NSWD was pointed as the most significant predictor, but now with a consider-
able margin with respect to the remaining variables. The results highlighted by both
models may reflect the strong marginal effect NSWD has on the expected severity
of an ignition. In fact, the fire combat capacity is expected to be insufficient when
there is a significant increase in the number of simultaneous active fires. As for the
other predictors in the RF, the variability among them is not so extreme, regarding
this measure. A similar evidence with respect to Precipitation was provided, with
Wind Direction being the least important feature of the RF. On the other hand, some
disparities between the results of the GLM and RF were also obtained. The most
noticeable one concerns the variable Land Cover. In contrast with what happens in
the regression model, the RF identified it as one of the least significant features.

(a) Significance results of the Wald tests - Severity
GLM

(b) Variable importance - Severity RF

Figure 6: Comparison of the variable importance from the severity models

4.1.3 Validation

In order to assess the predictive ability of the models employed, we calculated the
following metrics: root mean squared error (RMSE), mean absolute error (MAE) and
the correlation between the predicted and observed severity per ignition. The results
are displayed in Table 5.

Therefore, we must first use the regression and the RF calibrated to the training
data, in order to predict the burned area per ignition in the test set. By modelling
the logarithm in regression models, we face the problem of transforming the estimated
expected log(Burned Area) back to expected Burned Area per ignition. To surpass
this issue, the Duan’s smearing factor (DSmear) is estimated, using the residuals of the
regressions ([14]). Thus, the mean response predictions of regression (10) is performed
by applying the formula shown in Equation 13 below:

E(y|x) = eE(log(y|x))DSmear (13)
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Regression (10) RF model

Correlation 0.4553842 0.5892691
RMSE 18.96258 17.24226
MAE 9.7268 9.113688

Table 5: Performance metrics for each model

Table 2 displays the Pearson coefficient of correlation, as well as the RMSE and
MAE between the predicted versus observed severity for each of the fitted models.
Basing the analysis on the RMSE, we can see that the regression does not perform
as good as the RF model. It presents a RMSE of 18.96258, which is 1.45% higher
than the one of the RF. If we base the analysis in the other displayed measures,
the conclusions are similar, as we observe a better performance of the RF model.
As referred in Section 3.3, no prior categorizations in the explanatory variables were
considered in the RF. This procedure offers the RF much more freedom in the variables
treatment, allowing for some optimization automatically performed by the algorithm.
The better predictive results of the RF in relation to regression (10) may be justified
by this. In fact, in a first approach, the explanatory variables were subject to the exact
same treatment as in the GLM implementation, while this final decision resulted in a
significant improvement compared to the referred approach. Moreover, it is worth to
mention that the results obtained gave strength to the decision of using the RF as a
predictive model instead of the GLM, as we will further see in Chapter 5.

To offer a graphical visualization of the model performance, Figure 7 displays the
observed versus predicted average burned area per ignition by each level of the variable
Month. Thereby, we can assess the temporal patterns of the results obtained.

Figure 7: Observed versus Predicted average burned area by Month

By analysing Figure 7, we confirm some of the prior knowledge we had on the
seasonal distribution of the wildfires severity in Mainland Portugal. July and August
are the most concerning months, which is mainly due to the greater temperatures and
the scarce levels of humidity and precipitation in the Portuguese summer. Our models
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were able to capture that feature: the analysis of the graphic allows us to see a slightly
underestimation with the GLM, in relation to what was observed in the test set.

On the other hand, the RF model overestimated in nearly all the months, the ex-
ceptions being October and June. In addition, January showed an identical behaviour
to what was previously explained in the coefficient analysis, namely the unexpected
high results for the predicted and observed severity.

As we are interested in assessing the spatial distribution of the wildfires severity,
Figure 22 in Appendix A allows us to do an identical analysis regarding the average
burned area per ignition in each of the 18 districts of Mainland Portugal.

Noting that the levels of the x -axis are in descendent order of ignitions number
per district in the test set, special attention should be given to a fact identified in
previous studies ([8] and [17]), namely that the areas of the country with the highest
number of ignitions may not coincide with those where larger fires occur. This can be
seen in Figure 22 (Appendix A), where we see that Braga and Porto are the districts
with more ignitions, but are not even close of being the most concerning ones in terms
of wildfire severity. Castelo Branco has the highest average burned area per ignition
(15.2 ha). In fact, the model predictions for this district gave us interesting results:
the RF model performed quite well, resulting in a slightly overestimation (15.4 ha),
whereas the GLM resulted in a considerable underestimation (12.4 ha). The district
of Coimbra is also known to have a concerning record, which can be related to the
average burned area observed in the test set (14.9 ha). However, for this region, both
models showed a relatively low prediction compared to what was observed: 11.4 ha
with the GLM and 13.9 with the RF model. This can be partially explained by some
severe ignitions that were not included in the training set and, consequently, were not
used in the model calibration, namely the wildfires of 2017 in the municipalities of
Góis and Figueira da Foz. In addition, we observe a tendency of higher predictions for
the majority of the districts when using a RF model versus a GLM. Possible reasons
for this may be related to the way each of the models treats the variables and their
interactions. In fact, a GLM is a linearizable model and may not perform well in
capturing complex or non linear relationships between a predictor and the response.
On the other hand, a RF is a powerful technique in this field, since each of the created
decision trees tries to capture different aspects of the data. Hence, it has a better
ability to capture the heterogeneity and local variations in the data than the GLM.
This may indeed contribute to greater predictions compared to the observed test set in
districts where the GLM underestimates, as it is the case of Braga, Vila Real, Viseu,
Santarém, Castelo Branco and Évora. Nevertheless, the GLM and the RF model are
effective tools to explain and predict (respectively) the spatial patterns of the ignitions
at the national level with good accuracy, which can be useful in decision-making for
wildfire management.

4.2 Modelling the Probability of an Ignition reaching 100 ha

4.2.1 Justification of the metric

The probability of an ignition reaching 100 ha is a critical metric for understanding
the likelihood of severe wildfires. In fact, they have disproportionate impacts on the
environment and public safety, besides representing a huge risk to insurance companies.
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Also, and as said in Section 4.1, the ignitions with a burned area greater than 100 ha
were censored, as a way of controlling the influence of extreme values, but also to
avoid computational issues in the model fitting of the wildfire severity. To elucidate
the reader, we must mention that the 75% quantile of the burned area variable is only
5 ha, while the maximum is 53 619 ha (Lousã, October of 2017). Therefore, the current
aim of this chapter is presenting the main details of our modelling approach, regarding
the probability of an ignition reaching the threshold set by ICNF. Two main events
must be considered in case of wildfire: the success (the ignition reaches 100 ha) and the
failure (the ignition does not reach 100 ha). Similarly to the severity modelling, a GLM
and a RF will be employed. The former contains a greater explanatory component,
while the latter one offers a powerful predictive ability.

4.2.2 Results

As in the severity modelling, we start with the implementation of a GLM with an
explanatory purpose, in order to highlight the contribution of each predictor to the
likelihood of a severe occurrence. Some insights regarding variable importance from
the RF model will follow in this section, in order to assess disparities between it and
the GLM.

Since we are interested in implementing, through the GLM approach, a functional
relation between the predicted probabilities of a severe ignition and the characteristics
of the respective ignition points, a logistic regression will be employed. For calibrating
purposes, it is evident that we must now use all the ignitions of our dataset with a
burned area not smaller than 1 ha. Regression (14) has been considered as possible
candidate, where p represents the probability of an ignition reaching 100 ha. Thus, we
proceeded to the calibration of it alongside the RF model.

log

(
p

1− p

)
= β0 + β1NSWD + β2Density + β3Year + β4District + β5Fire hazard

+ β6Month + β7Altitude + β8Land Cover + β9Slope

+ β10Road Density + β11Humidity + β12Wind Direction

+ β13Precipitation + β14Temperature + β15Wind + β16Dist. FD (14)

Once the logistic regression is calibrated, we proceed to the interpretation of the
estimated coefficients, as well as the assessment of the significance of each predictor.
Table 6 refers to regression (14) calibrated on the whole dataset, as the more data we
use, the more likely it is to generalise well (for all the coefficients, refer to Table 17 in
Appendix A).

First, we checked that the signs of the coefficients were compatible with the ones
estimated with the severity GLM. If we consider a logistic regression with dependent
variable Y and a vector of explanatory variables X, then the marginal effect of any
predictor on the odds of a severe ignition occur can be analyzed, by simply using the
formula defined in Equation (15).

odds(Y = 1|X, Xk = 1)

odds(Y = 1|X, Xk = 0)
= eβk (15)

The formula displayed allows us to compute the marginal effect of the categorical
variable Xk on the odds(Y = 1|X, Xk = 1) against the odds(Y = 1|X, Xk = 0). By
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Coefficients Estimate Std. Error z value p value Sign. code

(Intercept) -7.0536 0.12501 -56.42428 0 ***
Month November -1.5137 0.25091 -6.0328 1.61e-09 ***
Density LEV1 0.22784 0.06059 3.760 0.00017 ***
Dist. FD LEV1 -0.53357 0.09069 -5.883 4.02e-09 ***
Dist. FD LEV2 -0.44355 0.0559 -7.934 2.11e-15 ***
Dist. FD LEV3 -0.22835 0.05324 -4.289 1.79e-05 ***
Slope LEV2 0.11268 0.04993 2.257 0.02402 *
Road Density LEV2 -0.12523 0.05419 -2.311 0.02085 *
Humidity LEV1 0.32559 0.04846 6.718 1.84e-11 ***
Altitude LEV1 -0.41191 0.07751 -5.314 1.07e-07 ***
Altitude LEV2 -0.21353 0.05452 -3.917 8.98e-05 ***
Wind LEV1 -0.25393 0.04975 -5.104 3.32e-07 ***
Wind LEV3 0.39189 0.05218 7.511 5.89e-14 ***

Table 6: Some of the estimated coefficients for regression (14)

applying the expression in Equation (15) to the results of Table 6, we can see that
the odds of a severe ignition occurring in November is 78% lower than in the base
level, July and August. Another interesting result is that the odds of a severe ignition
is 26% higher for the points located in the area defined by the first level of variable
Density, with respect to those located in the second level of the same variable. This
means that, in Mainland Portugal, municipalities with a population density greater or
equal than 75 individuals per km2 have 26% lower odds than having a severe ignition
compared to those with a population density lower than 75. Also, the coefficients
estimated for the levels of the variable Dist. FD tend to increase from the first level
to the fourth, meaning that the propensity to a severe ignition increases by moving
away from the nearest fire department. As for variables Slope and Road Density, we
obtained opposite effects: the former contributes positively to the odds of a severe
ignition, as the zones in the higher slope level (above 16%) are 12% riskier than the
zones in the lower one (under 16%). Evidence of a negative effect of the increase in the
road density level was also proven, with respect to the propensity to a severe ignition.
As for Wind, one may conclude a positive influence of it: between the 1st level and
the 2nd one, we expect an increase of 22% on the odds of a severe ignition. On the
other hand, an increase of 48% is expected between the 2nd and 3rd levels of the same
variable.

Once again, the coefficients estimated for regression (14) are all statistically sig-
nificant at a significance level of 0.05. Wald tests were performed in each predictor,
in order to rank all the explanatory variables in terms of significance. As for the RF
model, the importance measure described in Section 3.2 was calculated. Both results
are displayed in Figures 8(a) and 8(b). In both models NSWD was identified as the
strongest predictor. The most noticeable disparity relates to the variable Land Cover,
since it plays a powerful role in the logistic model, but is one of the least important
features of the RF. As in the severity GLM, Year and District also play a significant
role in the regression (14). Another interesting result is the fact that Temperature,
Humidity and Wind seem to have greater importance in the RF model compared to
the logistic regression. In fact, it is the former one that will be used in the future
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predictions of Section 5.2, where projections to the referred climate variables will be
incorporated.

(a) Significance results of the Wald tests - Logistic
regression

(b) Variable importance from RF

Figure 8: Comparison of variable importance - Probability of a severe ignition

Finally, the overall significance of regression (14) was assessed through the Hosmer
and Lemeshow goodness-of-fit test, which is a measure of how well the model per-
forms. If the significance of the test is small (i.e, less than 0.05), then the model
does not adequately fit the data. By dividing the data into 10 groups (a stan-
dard practice in statistics as in [23]), we conclude that the model fits the data well
(χ2 = 5.7949, p value = 0.6702).

4.2.3 Validation

In a first approach, an oversampling technique is applied, in order to deal with the
imbalance of the data. Furthermore, risk classes will be created, in order to have a
graphical assessment of the models performance. We must emphasize that the models
have a regression purpose when used to predict the probability of a severe wildfire and
a classification one when used to predict a severe or non severe ignition based on the
probability estimated.

4.2.3.1 Using an oversampling technique

To validate the adjustment of the models, we will perform a 5-fold stratified cross-
validation (CV) method (see [1]). We must take into consideration the fact that our
dataset presents imbalanced proportions, since only 3.6% of the ignitions are severe,
corresponding to 3193 out of 89 839 observations. Each of the 5 resulting models
is calibrated in 80% of the dataset, such that all the observations are used once to
test the model. Instead of a random sampling in the training and test split of the
data, a stratified sampling was employed, allowing us to keep the same proportions
of real data (3.6% of 1 and 96.4% of 0) in each of the 5 training sets. Otherwise, we
would face the risk of having too few severe ignitions in the training set of some of
the folds. In addition, we also used an oversampling technique in this CV process,
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namely the Synthetic Minority Oversampling Technique (SMOTE) [2]. Basically, the
SMOTE method creates synthetic data of the minority class (i.e, the class of severe
ignitions), such that the training set reaches the 50% equilibrium for both classes of
the dependent variable. As it is reported in [2], this technique uses the calculation of
KNN (k-nearest neighbors) algorithm, which allows us to preserve the linear tendency
of the original predictors, as well as the structure and the relationships present in the
original data. Expression (16) displays the underlying formula for this technique:

si = xi + (xzi − xi) ∗ λ , (16)

where:

• si represents the new generated synthetic instance.

• xi is the original instance of the minority class.

• xzi is a randomly selected neighbour instance of xi.

• λ represents a value between 0 and 1 that controls the quantity of variation
introduced in the creation of the synthetic instance.

In a k-fold cross-validation, the original sample is randomly partitioned into k
equal size subsamples. In each fold the model is trained in k − 1 subsamples and the
remaining one is used as test set. The process is then repeated k times, such that each
subsample is used exactly once as validation data. To assess the performance of the
final models resulting from this experiment, we display in Table 7 the mean and the
variance of the sensitivity and specificity indexes across the 5 folds, since they measure
the ability of the models in predicting severe and non severe ignitions, respectively.
The sensitivity (also denoted true positive rate) and specificity (also denoted true
negative rate) can be computed according to the formulas defined in Equations (17)
and (18) [8].

Sensitivity =
Number of true positives

Number of true positives+Number of false negatives
(17)

Specificty =
Number of true negatives

Number of true negatives+Number of false positives
(18)

Regression (14) RF

Sensitivity (average) 0.8083 0.98997
Specificity (average) 0.7917 0.2841

SD(Sensitivity) 0.0043 0.0005
SD(Specificity) 0.0204 0.02134

Table 7: Mean and standard deviation of the sensitivity and specificity indexes
across 5 different folds

We can see that the overall performance of the logistic regression is good, since we
obtain an average of 81% of true positive rate and an average of 79% of true negative
rate. As for the RF model, the results were quite interesting, since it performs almost
perfectly in predicting 1 (average sensitivity of 99%), but the ability of predicting 0
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was not as good (average specificity of 28%). This bias of the RF towards predicting
the class of severe ignitions may be a result of how the model handles the synthetic
samples generated by SMOTE. Although Random Forests are known for having a
powerful predictive ability, when combined with SMOTE, they may become more
prone to overfitting on these synthetic samples ([2]). These samples may not be a good
representation of the minority class, leading to high sensitivity and low specificity.

Moreover, we may also perform an analysis based on receiver operating charac-
teristics (ROC) to evaluate how well a presence-absence model is parameterized and
calibrated, allowing to assess the model performance in a threshold independent fash-
ion ([8]). The ROC curve can be obtained by plotting the Specificity versus Sensitivity
for varying probability thresholds. Therefore, we were able to compute the mean area
under the curve (AUC) across the 5 models, which was approximately 0.88 for the
logistic regression and 0.91 for the RF. This result indicates good overall model per-
formance in both cases, and reflects a ROC curve relatively close to the top left corner.
As in ([8]), good model performance is characterized by a curve that maximizes sen-
sitivity for low values of specificity (i.e, large areas under the curve). In fact, it is
interesting to see that the performance analysis through ROC favours the RF model,
despite the disparity in the results regarding sensitivity and specificity.

In addition, the information displayed in Table 8 provides the mean and standard
deviation of three metrics computed across the 5 folds, in order to contribute to the
quantification of the predictive ability of the models employed, namely the RMSE,
the MAE and the correlation (Corr) between predicted and observed severe ignitions
in the test set of each fold. Once again, the performance assessment of the models
employed leaded to better results with the RF model. This conclusion follows from
the lower values for the expected RMSE and MAE and a higher one in the correlation.

Regression (14) RF

RMSE (average) 0.4385 0.1874
MAE (average) 0.1923 0.0351
Corr (average) 0.2714 0.3643
SD(RMSE) 0.0041 0.0023
SD(MAE) 0.0036 0.0009
SD(Corr) 0.0064 0.0218

Table 8: Mean and standard deviation of performance metrics across 5 different folds

4.2.3.2 Using an approach with risk classes

Each of the 5 models of the CV process is calibrated in a different training set. There-
fore, we extracted the respective index sets and trained a logistic regression in each
of the 5 samples, in order to compare them in terms of significance. Since the model
calibrated in the training set of fold 2 resulted in significance in all the levels of the
explanatory variables, we selected the training and test samples of the referred fold
for the next developments. In fact, the incoming approach requires a test set not used
in the calibration, which motivated the fold selection.

The logistic regression and the RF model were both calibrated on the referred
training set with the proportions previously referred: 3.6% of severe ignitions and
96.4% of non severe ones. Therefore, we are now using a training sample with no
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synthetic data. In order to transform the estimated probabilities into binary outcomes
we employed two different methods.

Method 1 consists in setting the cutoff value that maximizes the proximity between
specificity and sensitivity. In the case of the logistic regression, Figure 9 displays the
ROC curve for varying probability thresholds, whereas the cutoff value that meets our
objective is 0.0423371, corresponding to the following combination situated on the top
left corner of the curve:

• Sensitivity = 0.80721

• Specificity = 0.8222633

Figure 9: ROC curve for model predictions in the test set of
Fold 2 - logistic regression

Method 2 consists in a Bernoulli sampling. Basically, we sample outcomes 0 or 1
for each record of the test set, from a Bernoulli distribution using the probabilities
estimated through the implemented models.

In order to offer a visual comparison of the two methods and models, we decided
to create risk classes through the intersection of the levels of the following explanatory
variables: Altitude, Wind Direction, Land Cover, Wind, NSWD, Year, Density, Road
Density, Slope and Temperature. This decision resulted in a total of 3229 classes with
at least one observation in the test set. Table 9 gives an example of how a risk class
is made and displays the predicted versus observed number of severe ignitions in the
test set for that class.

Wind direction Year ... Observed Predicted

East ≥ 2017 ... 2 4

Table 9: Example of a risk class

Figures 10, 11, 12 and 13 display graphical visualizations of the ability of the models
to predict in the test set the number of severe ignitions for each risk class, using each
of the methods of prediction.

From Figures 10 and 11, we can see that with method 1 the majority of the classes
are situated on the right side of the bisector of odd quadrants for both models, indi-
cating a tendency of overestimation. Indeed, only 74 and 35 out of the 3229 classes
had more observed severe ignitions than the predicted ones in the regression and RF
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models, respectively. We also observed that the prediction was 100% accurate in 1991
and 1737 classes (regression and RF, respectively), as the number of predicted severe
ignitions coincided with the number of observed ones. It is worth to refer that, in the
regression case, 93% of the 1991 classes had no severe ignitions (both predicted and
observed).

Figure 10: Predicted versus observed severe ignitions for
different risk classes - Logistic regression and method 1

Figure 11: Predicted versus observed severe ignitions for
different risk classes - RF model and method 1

Tables 10 and 11 display the confusion matrices of Method 1, which shows the
relationship between predicted and observed 1 and 0. By applying the formula in
expression (19), Method 1 results in an accuracy of 82.2% and 83.15% in the regression
and the RF models, respectively.
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Accuracy =
Number of true positives+Number of true negatives

Total Number of ignitions in the test set
(19)

Observed
Predicted 0 1

0 14249 123
1 3080 515

Table 10: Confusion matrix of the pre-
dictions of Method 1 - Logistic model

Observed
Predicted 0 1

0 14405 103
1 2924 536

Table 11: Confusion matrix of the pre-
dictions of Method 1 - RF model

Figure 12: Predicted versus observed severe ignitions for
different risk classes - Logistic regression and method 2

Figure 13: Predicted versus observed severe ignitions for
different risk classes - RF model and method 2
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Figures 12 and 13 show a greater predictive ability of Method 2, as the distribution
of classes seems to have a better equilibrium among the two sides of the bisector of odd
quadrants. To have a numeric insight on this, 306 and 288 out of the 3229 classes had
more observed than predicted severe ignitions, whereas the opposite was verified for
300 and 297 risk classes (regression and RF, respectively). As for the 100% accurate
predictions, the results were quite similar for both models: 81% and 82% of the total
number of classes are situated in the bisector of odd quadrants, in the regression and
RF models, respectively. In addition, Tables 12 and 13 display the confusion matrices
of Method 2, from which we deduce an accuracy of 94.58% and 95% in the regression
and the RF models, respectively.

Observed
Predicted 0 1

0 16848 492
1 481 146

Table 12: Confusion matrix of the pre-
dictions of Method 2 - Logistic model

Observed
Predicted 0 1

0 16880 466
1 449 173

Table 13: Confusion matrix of the pre-
dictions of Method 2 - RF model

These results confirm the graphical insights from Figures 10, 11, 12 and 13, not
only by analysing the accuracy results but also the RMSE which is greater for Method
1 compared to Method 2 in both models: 0.422 versus 0.233 in the logistic regression
and 0.41 versus 0.226 in the RF model.

In addition, in order to strengthen the conclusions taken from the previous ap-
proach, the analysis of the two models and the two cut-off methods on the test set
was also performed at the risk class level, by assessing two metrics: i) the RMSE
between the predicted and observed number of severe ignitions in each risk class, and
ii) the weighted correlation (W.Corr) between predicted and observed values in each
risk class, weighted by the number of ignitions belonging to the class. The current
approach uses all of the 5 folds of the cross validation process. Hence, the displayed
metrics in Table 14 result from averages across the 5 models. The lower E(RMSE) and
the higher E(W.Corr) of the RF model with both Methods suggest a better predictive
ability compared to the logistic regression. Methods 1 and 2 were denoted by M1 and
M2, respectively.

M1 - Reg. (14) M2 - Reg. (14) M1 - RF M2 - RF

RMSE (average) 0.3375 0.1259 0.3056 0.1207
SD(RMSE) 0.4265 0.2766 0.3925 0.2685

W.Corr (average) 0.7691 0.6975 0.8079 0.7032
SD(W.Corr) 0.0376 0.0557 0.0274 0.0386

Table 14: Mean and standard deviation of the RMSE andW.Corr indexes of Regression
(Reg.) (14) and RF model and cut-off methods M1 and M2 on 5 different folds

Similarly to the severity modelling, the validation process provided evidence of a
greater performance of the RF model, compared to the logistic regression, in what
concerns predictive ability of the probability of an ignition reaching 100 ha. In fact,
the aim of the latest stage of the project is to produce and map future predictions
of the spatial patterns of the ignitions, under a climate scenario. Therefore, the RF
will once again be used, where we intend to predict in each municipality of Mainland
Portugal the likelihood of an ignition developing into a severe wildfire.
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5 Extensions of the RF Models

In this chapter, risk maps for Mainland Portugal will be produced through the pre-
dictions obtained for each municipality. The RF models are used for this purpose. In
fact, and as said in Section 3.2, when the purpose of a model is to predict rather than
explain, a machine learning approach is preferred over a regression based one ([24]).
Moreover, a RF is less prone to overfitting than other machine learning techniques,
particularly boosting ones ([24]).

5.1 Sensitivity Analysis of the Climate Variables

As a first step is necessary to assess the marginal behaviour of the variables Wind,
Temperature and Humidity through a ceteris paribus approach. Our aim is to analyse
the behaviour of these predictors in the RF models, as well as of having a prior insight
of the impact of different climate scenarios on the future spatial predictions.

The partial dependence plots (PDP) show the marginal effect the selected vari-
ables have on the predicted outcome of a machine learning model ([13]). Hence, we
may be able to check if the relationship between a feature and the target variable is
linear, monotonic or more complex. When applied to a linear regression model, partial
dependence plots always show a linear relationship.

For a classification problem where the model outputs probabilities, PDP displays
the probability for a certain class given different values for the features of interest ([22]).
The biggest issue with partial dependence plots is the assumption of independence,
since it is considered that there is no correlation between the predictors of interest and
the other ones. This may lead to biased results and misinterpretations. In addition,
heterogeneous effects may not be captured by the partial dependence estimations,
since PDP only show the average marginal effects. For further details regarding partial
dependence, refer to Appendix B.

5.1.1 Burned area analysis

Under these guidelines, we will perform an analysis of the sensitivity of the burned
area predictions to Temperature, Humidity and Wind. The PDP for Temperature in
Figure 14(a) does not show a strictly monotonic relationship. In fact, it is of our
knowledge that this variable may not be so significant for the lowest values as for the
highest ones. We can explain this by the lack of data in the ranges where the RF model
could probably not make a meaningful prediction. On the other hand, a temperature
increase seems to be more significant at the highest ranges, namely above 29◦C. This
was quite expected, since an increase of 1◦C in the higher ranges has a much greater
impact on the expected burned area, in case of an ignition.

For Humidity, the negative marginal effect that one may expect is observed in the
most critical range, namely under 45% (see Figure 14(b)). Similarly to temperature,
the most significant impacts of humidity increases in the expected burned area can
be observed in a particular range of the distribution, namely between 12% and 27%.
Above certain threshold, namely 55%, we observe a positive marginal effect on the
expected burned area. In fact, this range only concentrates 36% of the training data
and may contain the values where the relative humidity is not so significant. This
may be the reason that prevent us from obtaining a strictly monotonic relationship
between Humidity and the expected burned area due to a wildfire ignition.
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(a) Temperature PDP (b) Humidity PDP

(c) Wind PDP

Figure 14: Severity PDPs

The variable Wind shows an unexpected result in the downward part of the curve,
namely in the interval (0, 2.17) km/h (see Figure 14(c)).

Figure 15: PDP for Temperature
and Humidity

In fact, the strongest marginal impact of this fea-
ture is situated in this range. As it was previously
referred, these results must be analysed with spe-
cial attention, since the interval above refers to
only 2.6% of the training set. The main purpose of
this partial dependence analysis is to understand
the behaviour of a feature in the most “significant
part” of its distribution, i.e, where the majority of
the ignitions is concentrated. In fact, above 9.26
km/h, the wind intensity has a positive marginal
impact as it would be expected from experience
and the GLM analysis.

In addition, the partial dependence of interac-
tions between climate variables was also analysed.
The heat maps produced (Figure 15 and Figures
23(a) and 23(b) in Appendix A) display the av-
erage prediction for each selected vector of values
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for the two predictors to consider. The results for the 3 pairs of variables were com-
patible with our prior expectations: in general, the visual inspection of the graphic for
Temperature and Humidity (Figure 15) shows the expected effect that each of those
has on the predicted burned area. The most critical scenario is located in the high
ranges of Temperature and low ranges of Humidity. The results for high ranges of both
variables are slightly more concerning compared to the low ranges scenarios. This may
reflect the fact that, based on the importance measure previously introduced, Tem-
perature is a stronger predictor than Humidity. As for Temperature and Wind (Figure
23(a) in Appendix A), both variables tend to have a positive marginal effect in their
most significant ranges, i.e, where most of the ignitions occurred. An identical analysis
can also be done with the heat map of Wind and Humidity (Figure 23(b) in Appendix
A). In this case, the most critical scenario is located in the high ranges of the wind
intensity and low ranges of the relative humidity.

An alternative approach to partial dependence was also carried out (see Appendix
C).

5.1.2 Analysis of the probability of an ignition reaching 100 ha

The partial dependence analysis was also performed in the RF model for the prob-
ability of a severe ignition. Figures 24(a), 24(b) and 24(c) in Appendix A show an
identical tendency in what regards the marginal effect of the climate variables. As
for Temperature, the downward part of the curve is located in a similar range as in
the burned area model, namely under 20◦C. However, the marginal behaviour in this
interval seems to be much more attenuated than for the severity, as the variations in
the predictions are much less significant. As for the upward part of the curve, visual
differences are not so immediate, although the predominant positive marginal effect in
the range above 20◦C was patent in both models. For Wind it may be worth noting
that both models display the strongest marginal impact in a similar range, namely (0,
2.17) km/h. Once again, one may consider it an unexpected result, since the referred
range is located in the downward part of the curve. In what regards the upward part
of the curve, no significant differences between the two models were noticed. Sim-
ilarly, the partial dependencies of Humidity in both models show identical patterns
in what concerns the ranges of positive and negative marginal effects on the average
predictions.

5.2 Mapping the Predictions

The predictive component of this study was framed in the context of climate scenarios.
Several approaches were considered, followed by the assessment of the impact of each
of those in the resulting predictions. Thereby, we start this section by describing the
one that had the strongest impact, in particular the three main steps necessary to
implement the climate scenario.

As a first step, is necessary to model the climate variables through regression
methods. Instead of considering a general approach for the entire Mainland Portugal,
we proceeded to an analysis at the district and time period level. Regression models
were considered with the district and part of the day (6:00 - 11:00, 11:00 - 16:00,
16:00 - 21:00, 21:00 - 6:00) as explanatory variables. After inspection of the density
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functions, linear regressions (Normal distribution) were considered for Humidity and
Temperature and a GLM (Gamma distribution) for Wind, as defined in Equations
(20), (21) and (22).

Temperature = β0 + β1Hour + β2District (20)

Humidity = β0 + β1Hour + β2District (21)

1

Wind
= β0 + β1Hour + β2District (22)

Thereby, the models are used to predict the climate variables, according to the
district and the hour associated to each observation of our dataset. For each variable,
72 different predictions are obtained, each corresponding to a combination of time
period and district. Hence, we complete the first step with preliminary estimations of
the climate variables.

The second step can be summed up by the simulation of the variations to be
applied in the 89 839 estimated values. Thereby, those variations are treated as random
variables. As it was in our interest to consider more critical scenarios in relation to
the preliminary estimates obtained, we carried out the following simulations of the
differentials to be applied in the referred estimates:

• Average increase of 2◦C in the temperature.

• Average decrease of 15% in the relative humidity.

• Average increase of 5 km/h in the wind intensity.

To give a clearer insight of this procedure, the differentials to apply in the temper-
ature and relative humidity were generated according to a Normal distribution with
means of 2◦C and -15%, respectively. As for the wind, a Gamma distribution is used
with a mean of 5 km/h. Since there is no variation on the preliminary estimations
inside each pair (Hour, District) (as they are all equal), the standard deviations to
be considered in those simulations must be the ones calculated with the real data for
each set. Afterwards, the prediction set is now available before proceeding to the final
step.

In the third stage, the predictions for the burned area and likelihood of a severe
ignition must be performed using the obtained prediction set. Afterwards, we introduce
a “penalty” component to be applied directly in the predictions, through multiplicative
factors of 10%. This operation is only applied in the most critical ranges of each
predictor:

• Temperature > 38◦C

• Humidity < 15%

• Wind > 33 km/h

Thereby, we are imposing a critical profile to the ranges where the RF may not be
able to reflect a marginal behaviour as strong as one would expect, due to the lack of
observations.
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5.2.1 Risk maps

In order to be able to map the geographical predictions, we opted to aggregate them
by municipality and produce an average prediction for each one. Therefore, in case
that a future ignition occurs in a certain municipality, we were able to predict the
expected burned area caused by it and the probability of that ignition being a severe
one.

The maps displayed in Figures 16 and 17 contain the geographical predictions
obtained for the burned area and the probability of a severe ignition, respectively.
First we needed to make sure that both maps followed identical spatial patterns. In
fact, the municipalities with the most expected burned area due to a wildfire ignition
tend to be the most likely ones to be affected by a severe wildfire, conditioned to the
ignition occurrence.

Figure 16: Predicted severity per ignition
by municipality

Figure 17: Predicted probability of a
severe ignition by municipality

The riskiest municipalities seem to be centrally located in our study area, as it
is the case of Vila de Rei, Oleiros, Sertã (Castelo Branco) and Pampilhosa da Serra
(Coimbra). In the first one, we expect that 36% of the future ignitions will be severe
ones. This value sustains the fact that this may be one of the most critical areas of
the country due to the predominance of forest cover, although the wildfire historic also
plays a heavy role in this result. In addition, an ignition occurrence in this region is
expected to result in 55 ha of burned area. Special attention must be given to the
fact that severe ignitions were censored at 100 ha in the severity model. Although the
spatial patterns may not be highly affected, the predicted values for the severity must
be interpreted having this in consideration. Moreover, in the validation stage of the
RF model, the predictions for the test set gave us the highest results for the districts
of Castelo Branco and Coimbra, which is also related to the results obtained for the
municipalities above. In fact, the aforementioned municipalities may be considered

36



“re-incident” ones, since they have been registering multiple severe ignitions over the
years. For example, the municipality of Oleiros was affected by severe wildfires in nine
different years (2002-2005, 2011, 2012, 2015, 2017 and 2020) over the time period of
this study (2001-2022).

The Algarve mountain ranges are also known for having a noticeable wildfire his-
toric. In fact, a future ignition in the municipality of Monchique is expected to burn
an area of 37 ha. As for the predicted probability of a future ignition reaching 100 ha
of burned area, a value of 23% was estimated. This municipality has been considerably
affected by some severe ignitions: a total of 10 wildfires reaching 100 ha have been
registered in the time period of our dataset, namely in the years 2001, 2003, 2004,
2015, 2016, 2018 and 2021. One of the main factors contributing to this tendency
is the predominance of forest cover. The high temperatures and the scarce levels of
humidity and precipitation typical of the summer in this region are also related to
these results. In addition, all of the 10 mentioned ignitions occurred in steep slope
zones, which is indeed a relevant factor that favours the wildfire propagation.

On the other hand, the Lisbon Metropolitan area was considered to be the least
critical area of the country, namely in the municipalities of Cascais, Oeiras and Lisboa.
In fact, the latest one had the lowest predicted burned area per ignition (8 ha) and it
is also the one with the lowest probability of a future ignition developing into a severe
one (0.03). In fact, Lisboa is one of the municipalities with the highest population
density, which was proven to have a negative effect on the expected severity and the
probability of a severe ignition in the GLMs employed, but the lack of burning matter
and the near fire departments may also be factors that contributed to this result, as
it is one of the least affected municipalities in terms of wildfire historic.

Moreover, one may be interested in assessing the impact of the climate scenario not
only on the expected severity of a wildfire, but also in the probability of it reaching 100
ha. Thereby, besides the predictions obtained under the projection scenarios previously
described, it was also of our interest to consider predictions with no climate scenarios.
In the latest, only real data from the ICNF dataset is considered. Afterwards, we
consider, for each geographical coordinate, the future prediction under the climate
scenario and the one with no scenario. The difference is then calculated, in order to
take into account the variation imposed by the scenario.

Figures 18 and 19 display the average increase by municipality, with respect to
the expected burned area of a future ignition and the propensity to a severe wildfire,
respectively. Both maps show some heterogeneity in the spatial patterns of the pre-
dicted impacts per municipality. In fact, the North districts, such as Viana do Castelo,
Vila Real or Bragança tend to be less affected than other ones, namely in the Alen-
tejo region. It is quite interesting to realise that this behaviour is in line with some
insights observed in the sensitivity analysis approached in Chapter 5.1. We proved
that the most significant marginal effects occur in the most representative ranges of
the predictors of interest, i.e, the ones that contain higher numbers of observations.

For the predictor Temperature, Figure 14(a) and Figure 24(a) in Appendix A
showed that the strongest impact of a temperature increase occurs in the range above
29◦C. In fact, the Alentejo region is one of the areas of the country most affected by
periods of high temperatures, which relates to the stronger impact obtained with the
climate scenarios. The scarce levels of humidity in this region also contribute to the
patterns observed, since the marginal effect of this variable behaves in an opposite way
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according to Figure 14(b) and Figure 24(b) in Appendix A. The climate scenarios con-
sidered had the strongest predicted impact in the municipality of Gavião (Portalegre),
in terms of expected increases in wildfire severity and proportion of severe ignitions,
respectively. It is expected, on average, an increase of 14 ha in burned area. As for the
proportion of severe wildfires, an increase of 10% is predicted for that municipality.

Although outside of the main scope of this thesis, the burned area of severe wildfires
was also addressed. For a brief development on this topic, refer to Appendix D.

Figure 18: Predicted impact by
municipality of the climate scenario with
respect to the burned area of a future

ignition

Figure 19: Predicted impact by
municipality of the climate scenario with
respect to the probability of a severe

ignition
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6 Conclusions

The nature of the ignitions dataset provided by ICNF makes the estimation of the
ignition risk a difficult challenge: generating geographical coordinates for non-ignition
points would be feasible; extracting real data for the relevant features with respect to
these points would not.

In fact, previous studies ([8], [9], [7], [27], [20], [12], [6], [5] and [10]) have addressed
this topic through a variety of different methods. For this work we proceeded to an
alternative approach that aims two modelling strands not addressed by the referenced
studies: we provided methodologies to estimate the severity of a wildfire and the prob-
ability of an ignition reaching 100 ha. The results obtained from the analysis of the
coefficients of the regressions employed gave interesting conclusions regarding the im-
pact of each variable in both modelling strands. The variable Land Cover showed
a strong influence in the GLMs employed for both expected severity and risk of a
severe ignition. Among the predictors with a positive estimated effect, NSWD high-
lighted a strong influence, with considerably high values in the estimated coefficients.
On the other hand, a negative influence of the variable Density was found, meaning
higher probability of a severe wildfire and expected burned area per ignition in the
less populated areas where firefighting may not be so favourable.

Moreover, Random Forests were employed in both modelling strands alongside
partial dependence tools, in order to assess the marginal behaviour of the climate vari-
ables. RF are characterized by their ability to capture non-linearity and interactions
in the model inputs, which confer them a good predictive accuracy. Hence, we used
them to predict the spatial patterns of the ignitions with a climate scenario. As one
may expect, the resulting maps with the predicted severity and proportion of severe
ignitions showed identical patterns. Some of the most critical municipalities are cen-
trally located in Mainland Portugal (Oleiros, Vila de Rei, Pampilhosa da Serra), in
line with the abundance of forest cover in those areas. As for the impact of the sce-
nario considered in this report, the Alentejo region is expected to be the most affected
one. In fact, some heterogeneity was deduced regarding the spatial patterns obtained,
whereas the insights observed in the PD analysis were compatible with these results.
The highest predicted increases in expected burned area per wildfire and proportion
of severe ignitions were observed in the municipality of Gavião.

To sum up, the results from the implemented models showed an adequate adherence
to the real world. The explanatory models employed revealed behaviours for each
predictor that were compatible with our prior expectations. As for the predictive
component of this study, we were able to achieve significant climate scenario impacts,
meeting the interests of the company.
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redes neurais artificiais aplicada às regiões metropolitanas”. Programa de Pós-
Graduação em Modelagem e Análise de Sistemas Ambientais. Universidade Fed-
eral de Minas Gerais, Instituto de Geociências, 2019.

[13] Jerome H. Friedman. “Greedy function approximation: A gradient boosting ma-
chine.” In: The Annals of Statistics 29.5 (2001), pp. 1189–1232. doi: 10.1214/
aos/1013203451. url: https://doi.org/10.1214/aos/1013203451.

[14] Andrew Gelman and Jennifer Hill. Data analysis using regression and multi-
level/hierarchical models. Cambridge university press, 2006.

40

https://acervolima.com/validacao-cruzada-estratificada-k-fold/
https://acervolima.com/validacao-cruzada-estratificada-k-fold/
https://medium.com/@balemar/t%C3%A9cnicas-para-dados-desbalanceados-smote-e-adasyn-f891f9c46c6e
https://medium.com/@balemar/t%C3%A9cnicas-para-dados-desbalanceados-smote-e-adasyn-f891f9c46c6e
https://doi.org/10.1016/j.foreco.2006.08.077
https://doi.org/10.1016/j.foreco.2006.08.077
https://doi.org/https://doi.org/10.1186/s13717-020-00263-4
https://doi.org/https://doi.org/10.1186/s13717-020-00263-4
https://doi.org/10.1214/aos/1013203451
https://doi.org/10.1214/aos/1013203451
https://doi.org/10.1214/aos/1013203451


[15] T. Hastie, R. Tibshirani, and J. Friedman. “Random Forests”. In: The Elements
of Statistical Learning. Springer Series in Statistics. Springer, New York, NY,
2009. Chap. 15, pp. 587–604. doi: https://doi.org/10.1007/978-0-387-
84858-7_15.
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Figure 20: Total burned area per district in 2017

(a) Average burned area per ignition vs Tempera-
ture

(b) Average burned area per ignition vs Dist. FD

Figure 21: Descriptive Plots for Temperature and Dist. FD
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Figure 22: Observed versus Predicted average burned area by
District

(a) PDP for Temperature and Wind (b) PDP for Humidity and Wind

Figure 23: Heat Maps - Severity RF
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(a) PDP for Temperature (b) PDP for Humidity

(c) PDP for Wind

Figure 24: PDPs for the probability of a severe ignition RF

Significance code p-value
*** [0, 0.001]
** (0.001, 0.01]
* (0.01, 0.05]
. (0.05, 0.1]

(0.1, 1]

Table 15: Significance codes
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Coefficients Estimate Std. Error t value p value Sign. code

(Intercept) 0.8894 0.03670 24.236 < 2e-16 ***
Year LEV2 0.32166 0.01492 21.561 < 2e-16 ***
Year LEV3 0.64654 0.02069 31.250 < 2e-16 ***
NSWD LEV2 0.41192 0.01799 22.898 < 2e-16 ***
NSWD LEV3 1.15567 0.01773 65.189 < 2e-16 ***
Density LEV2 0.09627 0.02016 4.775 1.80e-06 ***
Density LEV1 0.15173 0.02602 5.832 5.50e-09 ***
District Lisboa and Santarém 0.18342 0.02850 6.436 1.24e-10 ***
District Aveiro 0.37176 0.03898 9.537 < 2e-16 ***
District Viseu 0.22964 0.02781 8.257 < 2e-16 ***
District Leiria and Coimbra 0.46437 0.03995 11.624 < 2e-16 ***
District Vila Real 0.23891 0.02936 8.136 4.13e-16 ***
District Viana do Castelo 0.46173 0.02735 16.881 < 2e-16 ***

District Évora and Setúbal 0.71395 0.04380 16.301 < 2e-16 ***
District Guarda 0.76434 0.03460 22.091 < 2e-16 ***
District Braganca 0.5993 0.03689 16.243 < 2e-16 ***
District Castelo Branco 0.55513 0.04709 11.788 < 2e-16 ***
District Faro 0.74772 0.06334 11.804 < 2e-16 ***
District Beja 1.05279 0.05594 18.819 < 2e-16 ***
District Portalegre 0.8507 0.06422 13.247 < 2e-16 ***
Fire hazard LEV1 -0.21959 0.01711 -12.832 < 2e-16 ***
Month September -0.0857 0.0193 -4.440 9.01e-06 ***
Month October -0.15944 0.02521 -6.324 2.56e-10 ***
Month March -0.22714 0.02705 -8.397 < 2e-16 ***
Month June -0.08741 0.02565 -3.407 0.000657 ***
Month April -0.26705 0.03287 -8.125 4.54e-16 ***
Month February -0.32482 0.03328 -9.761 < 2e-16 ***
Month May -0.32950 0.03539 -9.311 < 2e-16 ***
Month November -0.31893 0.04025 -7.924 2.33e-15 ***
Month January and December -0.09946 0.0435 -2.286 0.022230 *
Altitude LEV 2 -0.15275 0.01876 -8.143 3.90e-16 ***
Altitude LEV 1 -0.22411 0.02511 -8.926 < 2e-16 ***
Land Cover Forest 0.79094 0.01408 56.181 < 2e-16 ***
Land Cover Agriculture 0.24985 0.02558 9.768 < 2e-16 ***
Slope LEV3 0.10273 0.01612 6.374 1.85e-10 ***
Slope LEV1 -0.08228 0.02118 -3.884 0.000103 ***
Road Density LEV2 -0.08234 0.01819 -4.528 5.96e-06 ***
Humidity LEV3 -0.04876 0.01636 -2.981 0.002876 **
Humidity LEV1 0.14124 0.03173 4.451 8.55e-06 ***
Wind Direction East 0.12998 0.01426 9.113 < 2e-16 ***
Precipitation LEV2 -0.0827 0.02079 -3.979 6.94e-05 ***
Temperature LEV2 0.15304 0.01911 8.008 1.18e-15 ***
Temperature LEV3 0.42854 0.03777 11.345 < 2e-16 ***
Temperature LEV4 0.63192 0.05837 10.826 < 2e-16 ***
Wind LEV1 -0.12135 0.01738 -6.984 2.89e-12 ***
Wind LEV2 -0.07199 0.01822 -3.952 7.76e-05 ***
Wind LEV4 0.12745 0.01939 6.571 5.02e-11 ***
Dist. FD LEV3 -0.12084 0.01821 -6.636 3.24e-11 ***
Dist. FD LEV2 -0.21245 0.01777 -11.956 < 2e-16 ***
Dist. FD LEV1 -0.28712 0.0248 -11.579 < 2e-16 ***

Table 16: Estimated coefficients for regression (10) - Severity GLM
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Coefficients Estimate Std. Error z value p value Sign. code

(Intercept) -7.0536 0.12501 -56.424 < 2e-16 ***
Year LEV2 0.51564 0.04690 10.993 < 2e-16 ***
Year LEV3 1.32544 0.06311 21.001 < 2e-16 ***
NSWD LEV2 1.12292 0.07281 15.422 < 2e-16 ***
NSWD LEV3 2.7402 0.06384 42.925 < 2e-16 ***
Density LEV1 0.22784 0.06059 3.760 0.00017 ***
District Lisboa and Santarém 0.96962 0.10631 9.121 < 2e-16 ***
District Aveiro 0.88219 0.12042 7.326 2.37e-13 ***
District Viseu 0.98665 0.08074 12.22 < 2e-16 ***
District Leiria and Coimbra 1.82449 0.10196 17.894 < 2e-16 ***
District Vila Real 0.89149 0.09059 9.841 < 2e-16 ***
District Viana do Castelo 0.83806 0.08926 9.389 < 2e-16 ***

District Évora and Setúbal 1.70674 0.14604 11.687 < 2e-16 ***
District Guarda 1.81701 0.09686 18.759 < 2e-16 ***
District Bragança 1.63624 0.10146 16.128 < 2e-16 ***
District Castelo Branco 1.71367 0.11763 14.569 < 2e-16 ***
District Faro 2.70811 0.16850 16.072 < 2e-16 ***
District Beja 2.32374 0.15652 14.846 < 2e-16 ***
District Portalegre 2.07107 0.17383 11.914 < 2e-16 ***
Fire hazard LEV2 -0.50920 0.05225 -9.745 < 2e-16 ***
Fire hazard LEV1 -0.76421 0.07622 -10.026 < 2e-16 ***
Month September -0.281 0.05717 -4.915 8.87e-07 ***
Month October -0.65372 0.08030 -8.141 3.92e-16 ***
Month March -1.35348 0.113 -11.978 < 2e-16 ***
Month June -0.24350 0.08333 -2.922 0.00348 **
Month April -1.53818 0.17785 -8.649 < 2e-16 ***
Month February -1.90246 0.19817 -9.6 < 2e-16 ***
Month May -1.29663 0.20812 -6.23 4.66e-10 ***
Month November -1.51370 0.25091 -6.033 1.61e-09 ***
Month January and December -0.81527 0.2023 -4.03 5.58e-05 ***
Altitude LEV2 -0.21353 0.05452 -3.917 8.98e-05 ***
Altitude LEV1 -0.41191 0.07751 -5.314 1.07e-07 ***
Land Cover Forest 1.78835 0.05974 29.938 < 2e-16 ***
Land Cover Agriculture 1.1626 0.09113 12.758 < 2e-16 ***
Slope LEV2 0.11268 0.04993 2.257 0.02402 *
Road Density LEV2 -0.12523 0.05419 -2.311 0.02085 *
Humidity LEV1 0.32559 0.04846 6.718 1.84e-11 ***
Wind Direction East 0.25525 0.04245 6.013 1.83e-09 ***
Precipitation LEV2 -0.19003 0.07514 -2.529 0.01144 *
Temperature LEV2 0.45934 0.05948 7.722 1.15e-14 ***
Temperature LEV3 1.07854 0.09769 11.04 < 2e-16 ***
Wind LEV1 -0.25393 0.04975 -5.104 3.32e-07 ***
Wind LEV3 0.39189 0.05218 7.511 5.89e-14 ***
Dist. FD LEV3 -0.22835 0.05324 -4.289 1.79e-05 ***
Dist. FD LEV2 -0.44355 0.05590 -7.934 2.11e-15 ***
Dist. FD LEV1 -0.53357 0.09069 -5.883 4.02e-09 ***

Table 17: Estimated coefficients for the logistic regression - Regression (14)
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B Theoretical Description of Partial Dependence

As ([22]) reports, the partial dependence function for regression is defined as:

f̂S(xS) = EXC
[f̂(xS, XC)] =

∫
f̂(xS, XC) dP(XC) (23)

The xS represent the variables of the model for which we are interested in plotting
the partial dependence function and XC are the other variables used in the RF model
f̂ , which must be treated as random variables. Usually, the set S contains only one or
two features, being the ones we want to assess the effect on the prediction. Hence, the
total feature space is composed of the feature vectors xS and xC . The main aim can
be summed up by the averaging of the RF model output over the distribution of the
features in set C, in order to get a function that depends only on features in S, while
interactions with other features are included.

The x-axis of the graphical representations reflect the values of the variable for
which the partial dependence function should be plotted. Thereby, the plotted function
is estimated by calculating expected values in sets based on the training set. The
variables we are interested in assume fictitious values, while the remaining ones are
kept unchanged. We are then able to obtain the relationship between the predictors
of interest and the predicted outcome.

To be able to provide a discrete analysis through the partial dependence approach,
the partial function f̂S must be estimated through Monte Carlo method by calculating
averages in the training data ([22]):

f̂S(xS) =
1

n

n∑
i=1

f̂(xS, x
(i)
C ) (24)

The x
(i)
C represent the actual feature values from the dataset for the predictors in

which we are not interested, and n is the number of instances in the dataset.

C Severity RF using an alternative approach

Prior to the partial dependence analysis, a different approach was implemented in
order to study the sensitivity of the severity model to the climate variables. Although
it may not be so effective as the partial dependence analysis, we will sum up briefly
the main conclusions obtained. The marginal behaviour of the climate variables was
assessed through predictions for the test set in different scenarios. By manipulating
the samples in the test set of those variables we were able to perform a ceteris paribus
analysis for each of the three isolated predictors, and also for the whole of them. We
will only display the main results for the latter one, as the marginal effect of each single
variable (and interactions of two) was already assessed through partial dependence and
the results of both approaches were similar.

First, in each of the 3 samples considered for each of the 3 features, the observations
were all set at the same value. For Temperature, samples of 15◦C, 25◦C and 35◦C were
considered. As for Humidity, the samples were set at 25%, 50% and 75%. ForWind, we
considered the values of 5, 15 and 25 km/h. With this approach we were able to achieve
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monotony on the test set predictions for each of the three scenarios, denoted as good,
intermediate and critical. This conclusion follows from Figure 25. The good scenario
considers the least critical samples of each predictor: 15◦C for temperature, relative
humidity of 75% and a wind intensity of 5 km/h. The intermediate one considers 25◦C,
50% and 15 km/h for the temperature, humidity and wind intensity, respectively. As
for the critical scenario the values of 35◦C, 25% and 25 km/h were set. Although the
marginal impact of the intermediate scenario compared to the good one is positive, one
may think it was not so significant as the one caused by the critical scenario. In fact,
this behaviour is compatible with what was proven by the partial dependence analysis
of each isolated predictor. The marginal impact of variations in the climate features
show evidence of being stronger in the most representative ranges of the predictors. As
for the comparison between the intermediate and good scenarios, one could say that
the degree of risk does not suffer a huge increase. The observed bar of the graphic
corresponds to the original test set prediction with no sample manipulation. In fact,
one may deduce through visual inspection of Figure 25 some similarity between this
one and the intermediate scenario output.

Figure 25: Test set predictions on different scenarios

D Burned Area of Severe Wildfires

A third modelling strand has been left out of the main scope of this project, namely
the expected burned area of severe wildfires. In fact, the severity model does not
fully discriminates the burned area of those ignitions that were censored at 100 ha, as
reported in Section 4.1. Although the dataset only contains 3193 severe observations,
developments on this topic were produced through similar methods to those used in
the modelling strands previously approached.

First and foremost, insights regarding the GLM that was implemented will follow.
As one could expect, some of the 16 predictors were not significant and had to be
excluded as it was the case of Wind, Road Density, Altitude and Precipitation. The
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influences obtained for each predictor exhibit an identical behaviour to that observed
in the other models, except the month of October: due to the 103 severe wildfires
occurring in this month in 2017, the expected severity of a large ignition in either July
or August was estimated to be 23% inferior to one occurring in October.

Although the lack of data may represent an adversity for implementing a machine
learning model, a RF was also employed (for the predictive ability of the two mod-
els, refer to Table 18). The spatial patterns of the RF predictions were then assessed
alongside the climate projections previously considered (see Figures 26 and 27). The
most critical municipalities are similar to the ones previously analysed, being Pampil-
hosa da Serra the one with the highest predicted burned area: 4106 ha are expected
to burn, in case a severe ignition occurs. As for the climate scenario, the strongest
impact is verified in the municipality of Vila de Rei with a predicted increase of 699
ha.

In light of the findings presented in this section, we consider that future research
in this field should be encouraged to deepen our understanding. Despite the lack of
observations, we obtained reliable results and compatibility with the models presented
in this study.

GLM RF

RMSE 1449.938 1390.235
Correlation 0.323 0.444

Table 18: Performance metrics for each model - Burned area of severe ignitions

Figure 26: Predicted burned area of a severe ignition by
municipality
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Figure 27: Predicted impact by municipality of the climate
scenario with respect to the burned area of a severe ignition
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