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GLOSSARY 

BPLim – Banco de Portugal’s Microdata Research Laboratory 

CBSD – Central Balance Sheet Database. 

CCR – Central Credit Register. 

IES – Informação Empresarial Simplificada. 

MNL – Multinomial logit model. 

NFC – Non-financial corporations. 
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ABSTRACT, KEYWORDS AND JEL CODES 

In the last decade, a high proportion of inefficient firms has been observed in the most 

advanced economies, contradicting the firm dynamics theory that states that economically 

unviable firms exit the market. Recent research claims that survival of ‘zombie’ firms is 

related to banks’ lending behaviour, as financially stressed firms are allowed to survive 

due to the credit granted to them.  

This dissertation analyses the impact of additional loans over the probability for the 

Portuguese firms to move across profitable, non-profitable and exit states. In particular, 

the probabilities for a non-profitable firm to remain non-profitable or turn to profitable 

or exit are analysed. Using firm and bank level information for the 2011-2015 period, an 

autoregressive multinomial logistic model is estimated to describe the firms’ dynamics as 

an absorbing Markov chain, conditional on the existence of an additional bank loan, and 

controlling for other covariates. 

The results contradict the hypothesis that banks’ lending behaviour is keeping 

‘zombie’ firms from exiting the market. Non-profitable firms that were granted an 

additional loan during the 2011-2015 period were more likely to recover to the profitable 

state, while having a lower probability of remaining non-profitable and keeping a similar 

probability of exit. As the firms’ ‘zombieness’, measured by the probability to remain 

non-profitable, was lower for firms with additional bank loans, this points to a low 

contribution of banks’ lending behaviour for the high proportion of inefficient firms 

observed in the Portuguese economy. 

 

KEYWORDS: Bank Lending; Productivity; Zombie Firms, Absorbing Markov Chains, 

Multinomial Logistic Model. 

JEL CODES: C25; D22; G21, G33, L25. 
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HOW BANK LENDING AFFECTS FIRMS' LIFECYCLE: A MARKOV CHAIN 

APPROACH 

By Cloé Leal de Magalhães 

THIS DISSERTATION analyses how additional loans granted to non-profitable 
firms affect their probability to remain non-profitable, recover to profitable or 
exit the market. This assessment is carried out through the estimation of a 
Markov process conditional to the existence of additional bank loans, using the 
multinomial logit model estimates. Applying this model to Portuguese firm 
and bank level data from 2011 to 2015, the results point to a positive effect of 
additional bank loans over survival and recovery rates of non-profitable firms, 
contradicting some recent research on this topic.  

1. INTRODUCTION 

The productivity slowdown observed in the advanced economies since the early 

2000s, and reinforced by the financial crisis in 2008, has raised several concerns towards 

the reasons behind the high prevalence of non-productive firms. Firm’s entry, exit and 

growth has been widely analysed through the models for firm dynamics started by 

Hopenhayn (1992). These models work under the assumption of a strict rationality for 

firms and lenders to maximize profits, and assume that firms exit the market when its net 

value is negative; therefore, they are unable to describe the prevalence of firms that are 

economically unviable. 

In recent years, a number of studies have focused in the relation between the financial 

system and the non-financial corporations to analyse this phenomenon, following the 

seminal paper by Caballero, Hoshi and Kashyap (2008) on the role of the financial system 

in the Japanese stagnation during the decade of 1990’s. The hypothesis behind these 

studies is that economically unviable firms were able to survive due to banks’ assistance, 

lowering the aggregate productivity and reducing opportunities for entrants. 

This dissertation aims at answering the following question: what is the effect of 

granting an additional bank loan over non-profitable firms’ dynamics? To pursue this 

objective, the impact of bank lending over the dynamics of Portuguese firms from 2011 

to 2015 was estimated. This time span is characterized by the reinforcement of financial 

regulation over banks, and by a high proportion of financially stressed firms, low 

profitability and financial deleverage for firms. The macroeconomic context, along with 

the availability of rich datasets with microdata, offer the possibility to further investigate 
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the relation between a stressed financial system and the high prevalence of inefficient 

firms. 

Making use of firm and bank level microdata, a multinomial logistic model was used 

to estimate a Markov process where firms walk across states according to their economic 

status (profitable, non-profitable and exit). The hypothesis that ‘zombie’ firms are 

maintained by banks’ assistance is evaluated by the effect of an additional loan over the 

probability for a firm to remain non-profitable. The results contradict the hypothesis that 

banks’ lending behaviour was the cause of the high prevalence of ‘zombie’ firms in the 

Portuguese economy, as non-profitable firms with additional loans from their banks 

presented a higher probability to survive as profitable firms, a lower probability to remain 

non-profitable and a similar probability of exit. 

This dissertation is organized as follows: section 2 provides a literature review on firm 

dynamics and the relation between bank lending and ‘zombie’ firms; section 3 describes 

the Markov process for firms’ dynamics and the multinomial logistic model that was used 

to estimate the process; and finally section 4 provides the empirical results and discussion. 
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2. FIRM’S DYNAMICS, BANK LENDING AND ZOMBIE FIRMS 

Economic growth is a major concern among researchers. From a micro perspective, 

economic growth arises from the firms’ capacity to produce goods and services in an 

efficient way. For that reason, a large number of models was developed to describe firms’ 

dynamics. In particular, the models for firms’ endogenous entry, exit and growth were 

built upon the work of Hopenhayn (1992). According to this models, firms choose the 

amount of capital and labour (and therefore their size) that maximizes the expected profit, 

given by their productivity functions and their costs of production. Firms exit the market 

if the expected profits are negative. The Hopenhayn model also included idiosyncratic 

shocks that could explain firm’s behaviour; later developments included other 

determinants. Cooley and Quadrini (2002) and Albuquerque and Hopenhayn (2004), in 

particular, developed models to account for financial frictions considering financial costs 

for both equity and debt as determinants for the choice of the optimum level of capital.  

Cooley and Quadrini (2002) found that financial frictions improved the capacity for 

these models of endogenous growth to explain empirical regularities observed for firms’ 

dynamics according to their size (smaller firms rely more on debt) and to their age 

(younger firms rely more on debt). Albuquerque and Hopenhayn (2004) focused on the 

firm-lender relation to describe firms’ decisions to entry, exit and growth. Under this 

model, the firm needs the lender to fund the initial investment and the early working 

capital; the lender provides the debt only if the expected values of the project is positive. 

The lender continues to finance the project as long as the debt can be repaid, and the firm 

is liquidated by the lender as soon as the expected value of the project is lower than the 

liquidation value. 

Though the models for endogenous growth are able to describe some stylized facts 

about firm’s dynamics, they are unable to explain the high prevalence of unviable firms 

that has been observed in the most advanced economies, nor the high amount of credit 

granted to those firms. Adalet McGowan (2017) estimates ‘zombie’ firms to account for 

6% of the firms, on average, in eight OECD countries. Alexandre (2017), using different 

criteria, estimates that zombies accounted for 35% of Portuguese firms in 2012 and 26% 

in 2015.  
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After the financial crisis and the economic slowdown that followed, research turned 

to the relation between the financial system and firms as a cause for the prevalence of 

economically unviable firms. The role of the banking system in the Japanese economic 

stagnation in the 1990s was widely studied as a case of banks’ assistance to inefficient 

firms, creating bank-related exit barriers. In their seminal study, Caballero, Hoshi and 

Kashyap (2008) found evidence of subsidized loans to insolvent firms in Japan, and 

measured the negative impact of those subsidized firms (‘zombies’) on the aggregate 

productivity and on firms’ dynamics. Peek and Rosengren (2005) found evidence of 

Japanese banks ‘evergreening’ credit to zombie firms to avoid losses in their balance-

sheets, under the benevolent supervision of public authorities, who wished to avoid the 

financial and political costs of massive firms and banks bankruptcy. Other reasons could 

be behind this behaviour, namely assisting troubled firms included in the same keiretsu 

(Japanese economic group). 

Following the research on the Japanese case, some authors searched for an 

‘evergreening’ behaviour in the banking system as the proportion of less productive firms 

started to rise in the OECD economies after the financial crisis in 2008. After the crash 

of Lehman Brothers and the financial crisis that followed, the financial regulation has 

been reformed in Europe, putting additional pressure on banks. The Basel II Accord gave 

place to the Basel III Accord, the Equity Ratios were revised and new levels of capital 

requirements were defined (Haldane and Neumann, 2016). The Capital Requirements 

Directive IV was introduced in 2013 to implement the Basel III Accord in the European 

Union, along with the new financial regulation architecture in the European Union 

introduced by the European Banking Union (Carletti and Leonello, 2016). This Directive 

raised the European bank’s Core Equity Tier 1 (CET 1) from 2.5% to 4% of risk-weighted 

assets. In addition, the European Banking Authority (EBA) introduced the stress tests in 

2010, which were significantly improved in 2011 (Petrella and Resti, 2016). During this 

process to reinforce the financial regulation, banks were frequently asked to raise capital 

to meet the new requirements.  

While this reform was taking place, the level of overdue loans ratio was increasing as 

the economic situation was deteriorating, putting additional pressure for banks to meet 

the capital requirements. Blattner et al. (2018) found evidence of banks’ assistance to 

Portuguese firms after the EBA’s 2011 stress test, followed by and obligation for some 
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Portuguese banks to raise their capital ratios by 2012. The authors point two reasons that 

could be behind the banks’ assistance to zombies: (i) to avoid the recognition of 

impairments, which would affect banks’ capacity to meet the capital requirements, and 

(ii) risk-shifting behaviour, as stressed banks gamble with the probability for a zombie to 

recover. Banks might be using soft information to evaluate which firms are more likely 

to recover and choose to assist those firms. This hypothesis had been rejected by Peek 

and Rosengren (2005), who found no evidence of this ‘cherry picking’ the best zombies 

to improve their portfolio; on the contrary, these authors focused on the attempt to avoid 

losses as the main cause for zombie lending. According to Blattner et al. (2018), some 

firms are more likely to be assisted by banks: firms with larger loans, firms with 

insufficient collateral to cover the non-performing debt and firms with a long relation 

with their banks.  

Overall, the ‘zombie literature’ points to a causal relation between banks’ assistance 

to less productive firms, which acted as an exit barrier, and the productivity slowdown 

observed in the OECD economies during the last decade. Adler et al. (2017) points to the 

relation between zombies and the capital misallocation that lowers the aggregate 

productivity. Adalet McGowan et al. (2017) analyses zombie firms in the OECD 

countries and suggests that banks’ assistance to less productive firms favours the survival 

of inefficient firms at the cost of diminishing the opportunities for entrants and healthy 

incumbents. Gouveia and Osterhold (2018) found evidence of the negative effects of a 

high proportion of zombies on the Portuguese aggregated productivity, as more resources 

are sunk in less efficient firms and the entrance and exit channels get distorted by a higher 

mean productivity of entrants and a lower mean productivity of exiters.  

To analyse the impact of banks’ behaviour over the firms’ performance, many 

approaches have been proposed in the literature. As the recent research on zombie firms 

assumes this as a state caused by banks’ assistance, the zombie definition focuses mainly 

on the firms’ financial costs.  Adalet McGowan et al. (2017), Gouveia and Osterhold 

(2018) and Azevedo et al. (2018) propose a definition of zombie firms based on their 

capacity to pay the debt cost, defining zombies as firms with an interest coverage ratio 

(EBITDA over interest expenses) below 1 for three consecutive years; firms with less 

than 10 years of activity are excluded from this definition. Caballero, Hoshi and Kashyap, 
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(2008) and Alexandre (2017), on the other hand, define zombies as firms with a debt cost 

below the theoretical cost, given the risk level. 

 This study proposes a different approach to analyse the zombie phenomenon. First, 

this analysis turns to a definition of zombie based on the firms’ operating performance, 

in the spirit of the firm dynamics models. Secondly, it is based on individual transitions 

across states of profitability and non-profitability, as a stable proportion of zombies in the 

economy across time may be given by a changing population of zombies. In this sense, 

the firms’ ‘zombieness’ is measured by the probability for a firm to remain non-profitable.  

 

3. THEORETICAL FRAMEWORK: NON-EFFICIENCY AS A STATE IN FIRMS’ 

LIFECYCLE 

As stated in the previous section, this analysis turns to the definition of unviable firms 

that follows from the models for endogenous firm growth. The focus relies on the firms’ 

capacity to produce goods and services in an efficient way, in the sense that the firm is 

able to obtain a profit from its operating activity. This definition of efficiency is 

necessarily linked to its productivity: more productive firms are likely to be profitable. 

Therefore, profitable is a dichotomous variable assuming 1 if the firm is able to obtain a 

profit from its activity, and 0 otherwise. As the firms may face losses for strategic reasons 

(investment plan, entering new markets or launching new products), an additional 

condition was added to capture firms with losses during a time of growth of their activity. 

Therefore, in this context, a firm is profitable if (i) has positive operating profit, or (ii) 

the sales’ annual rate of change is over 2%. Firms are non-profitable otherwise.  

The model for the firms’ lifecycle has four states, as in Figure 1. New is the state for 

firms with 2 years of activity. After the second year of activity, firms either survive into 

a profitable firm at a rate e, turn into a non-profitable firm at a rate n, or exit at a rate of  

1 – e – n. The factors that determine the survival of the firms in the first years of activity 

are out of the scope of this analysis, therefore firms that do not survive until the third year 

of activity are excluded to avoid the contamination of the results. 

Profitable firms can change into non-profitable at a rate z, exit at a rate d, or remain 

profitable with a probability of 1 – z – d. Non-profitable firms may recover to profitable 

at a rate r, exit at a rate w or remain non-profitable at a rate 1 – r – w. The probability to 
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remain non-profitable is a measure of the firms’ ‘zombieness’: the higher this probability, 

the longer the firms are expected to remain in this state, therefore surviving for a longer 

period without being viable from an economic point of view. 

If firms exit, they are absorbed in this state, therefore the probability to remain in this 

state is 1. Firms are in this state if (i) are identified as ceased in the database, or (ii) in the 

last year they are observed in the database, if they have at least two years afterwards 

without data.  

 

FIGURE 1 – Model for firms’ dynamics 

 

3.1. Absorbing Markov chains 

Having a set of M states {𝑆𝑆1,…, 𝑆𝑆𝑀𝑀}, a first-order Markov chain is a process that 

describes the passage of the observations from one stage to another. Each move is called 

a step. If the process is in state 𝑆𝑆𝑖𝑖 in period t, the probability to move to state 

𝑆𝑆𝑗𝑗, 𝑗𝑗 = 1, … ,𝑀𝑀 in t+1 is called the transition probability and is given by: 

(3.1.1)  𝑃𝑃�𝑌𝑌𝑡𝑡+1 = 𝑆𝑆𝑗𝑗|𝑌𝑌𝑡𝑡 = 𝑆𝑆𝑖𝑖� = 𝑝𝑝𝑖𝑖𝑗𝑗 

By assumption, the transition probability 𝑝𝑝𝑖𝑖𝑗𝑗 does not depend on where the process 

was in t - 1, t - 2, … This implies that 

(3.1.2) 𝑝𝑝𝑖𝑖𝑗𝑗 = 𝑃𝑃�𝑌𝑌𝑡𝑡+1 = 𝑆𝑆𝑗𝑗|𝑌𝑌𝑡𝑡 = 𝑆𝑆𝑖𝑖� = 𝑃𝑃�𝑌𝑌𝑡𝑡+𝑘𝑘+1 = 𝑆𝑆𝑗𝑗|𝑌𝑌𝑡𝑡+𝑘𝑘 = 𝑆𝑆𝑖𝑖�,∀ 𝑘𝑘 

Therefore, period t is not necessary to describe the process, but only the number of 

steps. The transition probabilities are elements of the 1-step transition matrix 𝑃𝑃(𝑀𝑀𝑀𝑀𝑀𝑀).  

New

Profitable

Non-profitable

Exit
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1 – e – n
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All the process can be described as a function of P. Considering 𝑝𝑝𝑖𝑖𝑗𝑗
(2) as the probability 

for the process to move from state 𝑆𝑆𝑖𝑖 to 𝑆𝑆𝑗𝑗 in two steps, it corresponds to the probability 

to move from 𝑆𝑆𝑖𝑖 to any of the M states in step 1 and from here to state 𝑆𝑆𝑗𝑗 in step 2: 

(3.1.3) 𝑝𝑝𝑖𝑖𝑗𝑗
(2) = ∑ 𝑝𝑝𝑖𝑖𝑘𝑘𝑝𝑝𝑘𝑘𝑗𝑗𝑀𝑀

𝑘𝑘=1  

This is equivalent to the product of the i-th line and the j-th column of P. Therefore, 

matrix 𝑃𝑃2 is the 2-step transition matrix of the process. Following this, 𝑃𝑃𝑁𝑁 is the N-step 

transition matrix of the process, and the element 𝑝𝑝𝑖𝑖𝑗𝑗
(𝑁𝑁) of this matrix is the probability for 

the process to start in 𝑆𝑆𝑖𝑖 and be in 𝑆𝑆𝑗𝑗 after N steps. 

State 𝑆𝑆𝑘𝑘 is an absorbing state if, once the process reaches this state, it is impossible 

to leave it. This implies that 𝑝𝑝𝑘𝑘𝑘𝑘 = 1. A M-state Markov Chain can have at most M-1 

absorbing states; if there is at least one absorbing state, the process is said to be an 

absorbing markov chain. In these processes, the states that are not absorbing are transient 

states. 

The canonical form of an M-state absorbing Markov chain with T transient states and 

A absorbing states (T + A = M) is  

(3.1.4) 𝑷𝑷 = �𝑸𝑸 𝑹𝑹
𝟎𝟎 𝑰𝑰� 

Having 𝑃𝑃(𝑀𝑀𝑀𝑀𝑀𝑀) as the 1-step transition matrix, 𝑄𝑄(𝑇𝑇𝑀𝑀𝑇𝑇) as the matrix of the transition 

probabilities between transient states, 𝑅𝑅(𝑇𝑇𝑀𝑀𝑇𝑇) as the transition matrix from transient to 

absorbing states, 0(𝑇𝑇𝑀𝑀𝑇𝑇) as a matrix of zeroes (as the transition probabilities from 

absorbing to transient states are null) and 𝐼𝐼(𝑇𝑇𝑀𝑀𝑇𝑇) as the identity matrix. 

For N steps, the transition matrix is given by  

(3.1.5) 𝑷𝑷𝑵𝑵 = �𝑸𝑸
𝑵𝑵 𝑹𝑹∗
𝟎𝟎 𝑰𝑰

�  

Where 𝑹𝑹∗ = 𝒇𝒇(𝑸𝑸,𝑹𝑹). The process is absorbed after reaching one of the A absorbing 

states; thus, as N increases, the probability of being in a transient state gets close to zero: 
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(3.1.6) 𝐥𝐥𝐥𝐥𝐥𝐥
𝑵𝑵→∞

𝑸𝑸𝑵𝑵 → 𝟎𝟎 

A variable of interest is the expected number of steps before the process is absorbed, 

which can provide the ‘life expectancy’ given the process starts in one of the M states. 

Assuming the process starts in the transient state 𝑆𝑆𝑖𝑖, the probability of being in transient 

state 𝑆𝑆𝑗𝑗 after N steps is 𝑞𝑞𝑖𝑖𝑗𝑗𝑁𝑁. Making 𝑋𝑋𝑁𝑁 as a dummy variable that assumes 1 if the process 

is in state 𝑆𝑆𝑗𝑗 after N steps, then 

(3.1.7) 𝑷𝑷(𝑋𝑋𝑁𝑁 = 1) = 𝐸𝐸(𝑋𝑋𝑁𝑁) = 𝑞𝑞𝑖𝑖𝑗𝑗𝑁𝑁  

From here, it is possible to know the expected number of times the process is in state 

𝑆𝑆𝑗𝑗 after N steps, given the process starts on stage 𝑆𝑆𝑖𝑖: 

(3.1.8) 𝐸𝐸(𝑋𝑋0 + 𝑋𝑋1 + ⋯+ 𝑋𝑋𝑁𝑁) = ∑ 𝑞𝑞𝑖𝑖𝑗𝑗𝑘𝑘𝑁𝑁
𝑘𝑘=0   

Note that 𝑄𝑄0 = I, allowing to include the initial state in the count. When 𝑁𝑁 → ∞ then  

(3.1.9) 𝐸𝐸(𝑋𝑋0 + 𝑋𝑋1 + ⋯ ) = ∑ 𝑞𝑞𝑖𝑖𝑗𝑗𝑘𝑘∞
𝑘𝑘=0 = 𝑛𝑛𝑖𝑖𝑗𝑗 

having 𝑛𝑛𝑖𝑖𝑗𝑗 as the element of the fundamental matrix 𝑁𝑁 = 𝐼𝐼 + 𝑄𝑄 + 𝑄𝑄2 + ⋯ that gives 

the expected number of times the process is in state 𝑆𝑆𝑗𝑗 before being absorbed, given it 

started in state 𝑆𝑆𝑖𝑖. It can be proven that 𝑁𝑁 = (𝐼𝐼 − 𝑄𝑄)−1, by doing: 

(3.1.10) (𝐼𝐼 − 𝑄𝑄)𝑁𝑁 = (𝐼𝐼 − 𝑄𝑄)(𝐼𝐼 + 𝑄𝑄 + 𝑄𝑄2 + ⋯ ) 

(𝐼𝐼 − 𝑄𝑄)𝑁𝑁 = 𝐼𝐼 − 𝑄𝑄𝑁𝑁 

From (3.1.6) it is known that as N tends to infinity, 𝐼𝐼 − 𝑄𝑄𝑁𝑁 = 𝐼𝐼 and  

(3.1.11) 𝑁𝑁 = (𝐼𝐼 − 𝑄𝑄)−1 

Having N, it is possible to obtain the expected number of steps before the process is 

absorbed, given it starts in the transient state 𝑆𝑆𝑖𝑖: 

(3.1.12) 𝑡𝑡𝑖𝑖 = ∑ 𝑛𝑛𝑖𝑖𝑘𝑘𝑀𝑀
𝑘𝑘  

Considering c as a column vector of 1, the 𝑡𝑡(𝑀𝑀𝑀𝑀1) column with the expected number 

of steps before the process is absorbed for all the transient states is given by: 
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(3.1.13) 𝒕𝒕 = 𝑵𝑵𝑵𝑵 

Markov chains can be estimated with a multinomial logistic regression model, as 

described in the next section. 

 

3.2. Multinomial logistic model 

The multinomial logistic model (MNL) applies to the cases where an individual can 

choose among several unordered outputs. Considering the categorical dependent variable 

𝑌𝑌 = 0, … , 𝐽𝐽, the MNL predicts the relative probability of obtaining one outcome j, given 

a set of individual attributes: 

(3.2.1) 𝑃𝑃(𝑌𝑌 = 𝑗𝑗|𝒙𝒙) = 𝑒𝑒𝒙𝒙𝜷𝜷𝒋𝒋

∑ 𝑒𝑒𝒙𝒙𝜷𝜷𝒉𝒉𝐽𝐽
ℎ=0

 

The MNL allows the inclusion of K regressors, including a constant term and 

individual characteristics in the form of continuous or categorical variables. The regressor 

matrix 𝒙𝒙(𝑵𝑵𝒙𝒙𝑵𝑵) is the same for all possible J outcomes, but the effect of the regressors, 

given by the coefficient vectors 𝜷𝜷𝒋𝒋, is choice-specific. The more general case where the 

set of regressors is choice-specific refers to the conditional logit model, and lies outside 

the scope of this study. 

In the latent variable formulation, the probability of obtaining one outcome (e.g., 

outcome 1) is given by 

(3.2.2) 𝑃𝑃(𝑌𝑌 = 𝑗𝑗|𝒙𝒙) = 𝑃𝑃(𝑌𝑌1∗ > 𝑌𝑌𝑙𝑙∗,∀ 𝑙𝑙 = 2, … , 𝐽𝐽) 

Having 𝑌𝑌𝑗𝑗∗ = 1, … , 𝐽𝐽 as the latent variable for output j defined as follows: 

(3.2.3) 𝑌𝑌𝑗𝑗∗ = 𝒙𝒙𝜷𝜷𝒋𝒋 + 𝒖𝒖𝒋𝒋 

Where 𝒖𝒖𝒋𝒋 follows a standard type-1 extreme value distribution. 

To allow the estimation of M-state Markov chains, the MNL must include state 

dependence through the inclusion of the lagged dependent variable. The J - state Markov 
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chain conditional to the set of exogenous variables z has a 1-step transition matrix with 

elements i, j given by: 

(3.2.4) 𝑝𝑝𝑖𝑖𝑗𝑗 = 𝑃𝑃(𝑌𝑌𝑡𝑡 = 𝑗𝑗|𝒛𝒛𝒕𝒕,𝑌𝑌𝑡𝑡−1 = 𝑖𝑖) 

Having 𝑖𝑖, 𝑗𝑗 = 0, … , 𝐽𝐽. For simplicity, 𝒙𝒙 = [𝒛𝒛𝒕𝒕 𝑌𝑌𝑡𝑡−1] and the subscript t is removed, 

as in (3.1.2), without loss of generality. 

The lagged dependent variable is necessarily endogenous, as 𝐸𝐸(𝑢𝑢𝑡𝑡|𝒙𝒙𝑘𝑘) ≠ 0 for 

𝑡𝑡 = 𝑘𝑘 − 1 because 𝒙𝒙𝑖𝑖𝑡𝑡+1includes 𝑦𝑦𝑖𝑖𝑡𝑡. Nevertheless, the MNL estimator still produces 

consistent estimators if 𝑦𝑦𝑖𝑖𝑡𝑡 is sequentially exogenous, i.e., 𝐸𝐸(𝒖𝒖𝑡𝑡|𝒙𝒙𝑘𝑘) = 0 for 𝑡𝑡 ≥ 𝑘𝑘 (see 

Wooldridge, 2010, pages 482-3 for a discussion of the use of the lagged dependent 

variable on the pooled probit and logit models). This is equivalent to assume that the 

probability of outcome j conditional to 𝒙𝒙𝑡𝑡 does not depend on any past values of 𝒙𝒙𝑡𝑡, and 

therefore the model is dynamically complete: 

(3.2.5) 𝑃𝑃(𝑌𝑌 = 𝑗𝑗|𝒙𝒙𝑡𝑡 ,𝒙𝒙𝑡𝑡−1, … ,𝒙𝒙0) = 𝑃𝑃(𝑌𝑌 = 𝑗𝑗|𝒙𝒙𝑡𝑡) 

The pooled MNL is used in this analysis instead of the dynamic MNL for two reasons: 

first, the panel is unbalanced, as the entry and exit of firms needs to be observed in order 

to estimate transition probabilities for new firms and for firms exiting the market. This 

limits the estimation of the dynamic MNL, which requires balanced panels to observe 

each individual though the entire period. Secondly, the purpose of this analysis is not to 

study firms’ individual behaviour itself, but the population as a hole, which changes from 

year to year. The use of the pooled MNL is equivalent as considering the observations for 

each year as independent samples.  

It follows from (3.2.1) that the model is indetermined. As the sum of the probabilities 

always adds up to one, setting any 𝜷𝜷𝒋𝒋∗, the remaining 𝜷𝜷𝒌𝒌 ,≠ 𝑗𝑗 will adjust to obtain the 

same probabilities for the J outcomes. The model is solved by defining outcome J = 0 as 

the pivot category and making 𝜷𝜷𝟎𝟎 = 𝟎𝟎: 

(3.2.6) �
𝑃𝑃(𝑌𝑌 = 0|𝒙𝒙) = 1

1+∑ 𝑒𝑒𝒙𝒙𝜷𝜷𝒉𝒉𝐽𝐽
ℎ=1

𝑃𝑃(𝑌𝑌 = 𝑗𝑗|𝒙𝒙) = 𝑒𝑒𝒙𝒙𝜷𝜷𝒋𝒋

1+∑ 𝑒𝑒𝒙𝒙𝜷𝜷𝒉𝒉𝐽𝐽
ℎ=1

, 𝑗𝑗 = 1, … , 𝐽𝐽
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Therefore, coefficient vectors 𝜷𝜷𝒋𝒋, 𝑗𝑗 = 1, … , 𝐽𝐽 are relative to a base outcome, and have 

no absolute interpretation. Also, provide little information about the marginal effect of 

the regressors on the outcome. The marginal effect of 𝑥𝑥𝑘𝑘 over 𝑃𝑃(𝑌𝑌 = 𝑗𝑗|𝒙𝒙) is: 

(3.2.7) 𝜕𝜕𝜕𝜕(𝑌𝑌=𝑗𝑗|𝒙𝒙)
𝜕𝜕𝑀𝑀𝑘𝑘

= 𝑒𝑒𝒙𝒙𝜷𝜷𝒋𝒋

1+∑ 𝑒𝑒𝒙𝒙𝜷𝜷𝒉𝒉𝐽𝐽
ℎ=1

�𝛽𝛽𝑗𝑗𝑘𝑘 −
∑ 𝛽𝛽ℎ𝑘𝑘𝑒𝑒𝒙𝒙𝜷𝜷ℎ
𝐽𝐽
ℎ
1+∑ 𝑒𝑒𝒙𝒙𝜷𝜷𝒉𝒉𝐽𝐽

ℎ
� 

In the MNL, 𝜷𝜷𝒋𝒋 provides information on the effect of 𝒙𝒙 on the probability of obtaining 

𝑌𝑌 = 𝑗𝑗, relative to the probability of obtaining any other outcome: 

(3.2.8) 𝜕𝜕(𝑌𝑌=𝑗𝑗|𝒙𝒙)
𝜕𝜕(𝑌𝑌=𝑚𝑚|𝒙𝒙)

= 𝑒𝑒𝒙𝒙𝜷𝜷𝒋𝒋

𝑒𝑒𝒙𝒙𝜷𝜷𝒎𝒎
= 𝑒𝑒𝒙𝒙�𝜷𝜷𝒋𝒋−𝜷𝜷𝒎𝒎�  

Expression (3.2.8) gives the odds-ratio of obtaining outcome j relative to obtain 

outcome m. The odds-ratio does not depend on the remaining outcomes. To obtain a 

measure linear on the coefficients, the log-odds ratio can be used, as follows: 

(3.2.9) 𝑙𝑙𝑛𝑛 � 𝜕𝜕(𝑌𝑌=𝑗𝑗|𝒙𝒙)
𝜕𝜕(𝑌𝑌=𝑚𝑚|𝒙𝒙)

� = 𝒙𝒙�𝜷𝜷𝑗𝑗 − 𝜷𝜷𝑚𝑚� 

If m is the base outcome, it follows that the log-odds ratio is equal to 𝒙𝒙𝜷𝜷𝑗𝑗. Therefore, 

the signs of 𝜷𝜷𝑗𝑗 show the direction of the effect of each 𝑥𝑥𝑘𝑘 on the probability of outcome 

j relative to the probability of the base outcome. 

The MNL predicts relative probabilities (odds ratios), and those probabilities are not 

a linear function of the coefficients. The marginal effect of each regressor on the 

probability of each outcome, as in (3.2.7), depends on all 𝑥𝑥𝑘𝑘 ,𝑘𝑘 = 1, … ,𝐾𝐾 and all 

𝜷𝜷𝒋𝒋, 𝑗𝑗 = 1, … , 𝐽𝐽. The term inside brackets in (3.2.7) shows that the sign of the marginal 

effect is not necessarily given by 𝛽𝛽𝑗𝑗𝑘𝑘. Therefore, there is little interpretation for the 

coefficients of the MNL.  

In such cases, the average marginal effect is often used to access the effect of the 

regressors over the expected outcome. For a given set of observed (fixed) K-1 regressors 

𝒙𝒙𝟎𝟎, the average partial effect of 𝑥𝑥𝑘𝑘 over outcome J is given by 

(3.2.10)  𝐴𝐴𝑀𝑀𝐸𝐸 = 1
𝑛𝑛
∑ 𝜕𝜕𝜕𝜕(𝑌𝑌=𝑗𝑗|𝒙𝒙𝟎𝟎,𝑀𝑀𝑘𝑘)

𝜕𝜕𝑀𝑀𝑘𝑘
𝑛𝑛
𝑖𝑖  
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Expression (3.2.10) corresponds to the marginal effect of 𝑥𝑥𝑘𝑘 over outcome J, given in 

(3.2.7), averaged for the n observations in the sample, keeping the remaining regressors 

as observed. If 𝑥𝑥𝑘𝑘 is a dichotomous variable, the average marginal effect can be estimated 

as the average difference between 𝑃𝑃(𝑌𝑌 = 𝑗𝑗|𝒙𝒙𝟎𝟎, 𝑥𝑥𝑘𝑘 = 1) and 𝑃𝑃(𝑌𝑌 = 𝑗𝑗|𝒙𝒙𝟎𝟎, 𝑥𝑥𝑘𝑘 = 0) for the 

observations in the sample.  

The MNL model is estimated by maximum likelihood, using the log-likelihood 

function 

(3.2.11) ℒ(𝜷𝜷) = ∑ ℓ𝑖𝑖(𝜷𝜷)𝑛𝑛
𝑖𝑖 = ∑ ∑ �𝑦𝑦�𝑖𝑖𝑗𝑗 ln � 𝑒𝑒𝑥𝑥𝑖𝑖𝛽𝛽𝑗𝑗

∑ 𝑒𝑒𝑥𝑥𝑖𝑖𝛽𝛽𝑘𝑘𝑘𝑘
��𝐽𝐽

𝑗𝑗
𝑛𝑛
𝑖𝑖  

Where 𝑦𝑦�𝑖𝑖𝑗𝑗is 1 if 𝑦𝑦𝑖𝑖𝑗𝑗 = 𝑗𝑗 and 0 otherwise. The standard errors for 𝜷𝜷�𝑴𝑴𝑵𝑵𝑴𝑴 are obtained 

from the partial second derivatives of the likelihood function, as in Hosmer (2000). 

 

3.3. Neglected heterogeneity 

When relevant explanatory variables are omitted from the model, the estimation of 

the MNL is valid if the unobserved variables are uncorrelated with x. In the presence of 

neglected heterogeneity, model (3.2.1.) will be given by 

(3.3.1) 𝑃𝑃(𝑌𝑌 = 𝑗𝑗|𝒙𝒙, 𝑵𝑵) = 𝑒𝑒𝒙𝒙𝜷𝜷𝒋𝒋+𝑵𝑵

∑ 𝑒𝑒𝒙𝒙𝜷𝜷𝒉𝒉+𝑵𝑵𝐽𝐽
ℎ=1

 

Where 𝑵𝑵 is the unobserved explanatory variable. In a panel data model, 𝑵𝑵 can account 

for individual time variant or invariant unobserved variables. If 𝑵𝑵 is independent of 𝒙𝒙, 

than the parameter estimates 𝜷𝜷�𝑴𝑴𝑵𝑵𝑴𝑴 are inconsistent, but not the average marginal effect 

of 𝒙𝒙 on 𝑃𝑃(𝑌𝑌 = 𝑗𝑗|𝒙𝒙, 𝑵𝑵) (see Wooldridge, 2010, pages 470-2 for a discussion on the effect 

of neglected heterogeneity over the average marginal effects of the probit and logit 

models). 

If there is one 𝑥𝑥𝑘𝑘 not independent of 𝑵𝑵, than 𝑥𝑥𝑘𝑘 is an endogenous regressor and the 

MNL estimation produces inconsistent estimators for 𝜷𝜷 and for the average marginal 

effects. To test for endogenous regressors, Wooldridge (2010) suggests the Rivers and 

Vuong 2-step procedure for the probit model: (1) OLS regression of 𝑥𝑥𝑘𝑘 on all other 

(exogenous) regressors and an instrumental variable 𝑣𝑣; (2) probit the binary dependent 
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variable 𝑦𝑦 on 𝒙𝒙 and the residuals of the first step regression. The t-test on the coefficient 

of the residuals in the second regression is equivalent to test the null hypothesis of 

exogenous 𝑥𝑥𝑘𝑘. Concerning the MNL, the references used in this study do not provide a 

valid endogeneity test. 

 

3.4. Hypothesis tests  

To access the significance of the regressors in the MNL, the standard z-test holds, as  

�̂�𝛽𝑘𝑘,𝑀𝑀𝑁𝑁𝑀𝑀 follows a normal distribution (Hosmer, 2000). The test statistic for 𝐻𝐻0:𝛽𝛽𝑘𝑘 = 0 is 

𝑧𝑧 = �̂�𝛽𝑘𝑘 �𝑣𝑣𝑣𝑣𝑣𝑣��̂�𝛽𝑘𝑘�� . 

Also, the Likelihood ratio test (LR) and the Wald test can be applied. The LR test has 

the null hypothesis 𝐻𝐻0: 𝜷𝜷∗ = 𝟎𝟎, having 𝜷𝜷∗ as the column vector containing the Q 

coefficients to be tested. The LR test statistic is  

(3.4.1) 𝐿𝐿𝑅𝑅 = 2�ℒ�𝜷𝜷�� − ℒ�𝜷𝜷��� 

Having 𝜷𝜷� ̃ as the coefficients’ estimates of the restricted model and ℒ(∗) as the log 

likelihood function as in (3.2.9). Under the null hypothesis, the LR follows a 𝜒𝜒2 

distribution with Q degrees of freedom. 

To test more general hypothesis, both linear and nonlinear, the Wald test has the null 

hypothesis 𝐻𝐻0: 𝑐𝑐(𝜷𝜷∗) = 𝒒𝒒, considering 𝑐𝑐(𝜷𝜷∗) as the column vector of Q continuous 

functions of 𝜷𝜷∗ to be tested and q as the column vector with the values of 𝑐𝑐(𝜷𝜷∗) to be 

tested. The Wald test statistic is 

(3.4.2) 𝑊𝑊 = [𝑐𝑐(𝜷𝜷∗) − 𝒒𝒒]′�𝐶𝐶(𝜷𝜷∗)𝑽𝑽�𝐶𝐶(𝜷𝜷∗)′�−1[𝑐𝑐(𝜷𝜷∗) − 𝒒𝒒] 

Having 𝐶𝐶(𝜷𝜷∗) = 𝜕𝜕𝜕𝜕(𝜷𝜷∗)
𝜕𝜕𝜷𝜷∗

. When the null hypothesis is 𝐻𝐻0: 𝛽𝛽𝑗𝑗 = 0, (3.4.2) reduces to 

𝑊𝑊 =
𝛽𝛽�𝑗𝑗
2

𝜎𝜎�𝛽𝛽𝑗𝑗
2 . Under the null hypothesis, the Wald test statistic follows a 𝜒𝜒2 distribution with 

Q degrees of freedom. 
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As the output of interest of the MNL is the predicted probability for each outcome, it 

is relevant to test hypothesis for this statistic. Following Long (2009), the predicted 

probability for outcome j is a function of the estimated coefficients 𝜷𝜷�𝑗𝑗: 

(3.4.3) 𝑃𝑃�𝑦𝑦𝑖𝑖 = 𝑗𝑗|𝒙𝒙,𝜷𝜷�𝑗𝑗� = 𝐺𝐺�𝜷𝜷�𝑗𝑗�, 

Where 𝐺𝐺�𝜷𝜷�𝑗𝑗� is the logistic function as in (3.2.1) in the case of the MNL. The delta 

method states that 𝐺𝐺�𝜷𝜷�𝑗𝑗� follows a normal distribution around 𝐺𝐺�𝜷𝜷𝑗𝑗� with asymptotic 

variance given by 

(3.4.4) 𝑉𝑉𝑣𝑣𝑣𝑣�𝐺𝐺�𝜷𝜷�𝑗𝑗�� = 𝜕𝜕𝐺𝐺�𝜷𝜷�𝑗𝑗�

𝜕𝜕𝜷𝜷�𝑗𝑗
′ 𝑉𝑉𝑣𝑣𝑣𝑣�𝜷𝜷�𝑗𝑗�

𝜕𝜕𝐺𝐺�𝜷𝜷�𝑗𝑗�
𝜕𝜕𝜷𝜷�𝑗𝑗

 

The difference in the predicted probability of outcome j between two independent 

groups of observations (1) and (2) follows a normal distribution with asymptotic variance 

given by 

(3.4.5) 𝑉𝑉𝑣𝑣𝑣𝑣 �𝐺𝐺�𝜷𝜷�𝑗𝑗�
1
� + 𝑉𝑉𝑣𝑣𝑣𝑣 �𝐺𝐺�𝜷𝜷�𝑗𝑗�

2
� 

 

3.5. Goodness of fit 

The logistic models differ from the linear regression by assuming a categorical output 

variable. The goodness of fit statistics for the linear regression model are not valid for the 

logistic models, as the residuals of the latter do not follow a normal distribution. 

Several measures have been proposed to assess the goodness of fit of MNL. As the 

R2 is not applicable in the case of the MNL, the Pseudo- R2 proposed by McFadden is 

mostly used to assess the capacity of the model to fit the data. The Pseudo- R2 is given by 

1 − ℒ(𝜷𝜷) ℒ0(𝜷𝜷)⁄ , having ℒ0(𝜷𝜷) as the log-likelihood for the base model with only an 

intercept. The LR test can also be used, considering the base model with only an intercept 

as the restricted model. 

Additionally, the Pearson’s 𝜒𝜒2 test can be used to evaluate the goodness of fit of the 

MNL, if at least one 𝒙𝒙  is continuous. The test statistic is given by: 
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(3.5.1) 𝑋𝑋2 = ∑ ∑ ��𝑦𝑦
�𝑖𝑖𝑗𝑗−𝑝𝑝�𝑖𝑖𝑗𝑗�

2

𝑝𝑝�𝑖𝑖𝑗𝑗
�𝐽𝐽

𝑗𝑗
𝑛𝑛
𝑖𝑖  

Considering 𝑦𝑦�𝑖𝑖𝑗𝑗 as a binomial variable that assumes 1 if 𝑦𝑦𝑖𝑖 = 𝑗𝑗 and 0 otherwise, and 

n as the sample size. Under the null hypothesis that 𝜷𝜷� are the true coefficients of the 

model, the Pearson’s test statistic follows a 𝜒𝜒2 distribution with 𝑛𝑛(𝐽𝐽 − 1) degrees of 

freedom.  

Hosmer and Lemeshow (2000) analyse the goodness of fit for the MNL under the 

presence of categorical regressors, which leads to a number of possible regressor patterns 

Q inferior to the number of observations N. A special case is the saturated MNL model, 

presenting a finite number of possible regressor patterns. This affects the distribution of 

the residuals, which is given by the residual for each pattern, weighted by the probability 

for each pattern to occur. Considering �̂�𝑝𝑞𝑞𝑗𝑗 the expected probability for output j in the 

regressor pattern q, the Pearson’s 𝜒𝜒2 for the saturated model, which follows a 𝜒𝜒2 

distribution with 𝑄𝑄(𝐽𝐽 − 1) degrees of freedom, is given by  

(3.5.2) 𝑋𝑋𝑆𝑆2 = ∑ ∑ �
�∑ 𝑦𝑦�𝑞𝑞𝑗𝑗

𝑛𝑛𝑞𝑞
𝑖𝑖 −∑ 𝑝𝑝�𝑞𝑞𝑗𝑗

𝑛𝑛𝑞𝑞
𝑖𝑖 �

2

∑ 𝑝𝑝�𝑞𝑞𝑗𝑗
𝑛𝑛𝑞𝑞
𝑖𝑖

�𝐽𝐽
𝑗𝑗

𝑄𝑄
𝑞𝑞  

The authors also propose the Hosmer-Lemeshow goodness of fit test statistic for the 

binomial logit, corresponding to the Pearson’s 𝜒𝜒2 test over a sample of G equally 

distributed groups (percentiles). Fagerland, Hosmer and Bonfin (2008) propose an 

extension of the Hosmer-Lemeshow test for the multivariate logit, which is based in the 

division of the sample in G percentiles, ordered according to the predicted probability for 

each observation to be in one of the output categories except the base category (1 − �̂�𝑝𝑖𝑖0): 

(3.5.3) 𝐻𝐻𝐿𝐿𝐺𝐺 = ∑ ∑ �
�∑ 𝑦𝑦�𝑔𝑔𝑗𝑗

𝑛𝑛𝑔𝑔
𝑖𝑖 −∑ 𝑝𝑝�𝑔𝑔𝑗𝑗

𝑛𝑛𝑔𝑔
𝑖𝑖 �

2

∑ 𝑝𝑝�𝑔𝑔𝑗𝑗
𝑛𝑛𝑔𝑔
𝑖𝑖

�𝐽𝐽
𝑗𝑗=1

𝐺𝐺
𝑔𝑔   

Under the null hypothesis that 𝜷𝜷� are the true coefficients of the model, the Hosmer-

Lemeshow test statistic follows a 𝜒𝜒2 distribution with (𝐺𝐺 − 2)(𝐽𝐽 − 1) degrees of 

freedom. It has been pointed out that the multivariate Hosmer-Lemeshow test is not 

invariant to the choice of the base category (𝐽𝐽 = 0); also the definition of the degrees of 

freedom of the 𝜒𝜒2 distribution is not consensual. 
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4. EMPIRICAL ANALYSIS 

4.1. Database 

This analysis uses data from the Central Balance Sheet Database and the Central 

Credit Register from Banco de Portugal. The Central Balance Sheet Database (CBSD) is 

an annual database covering all non-financial corporations (NFC) operating in Portugal 

from 2006 to 2017. This information is collected through IES – Informação Empresarial 

Simplificada and benefits from the quality control procedures defined by Banco de 

Portugal to guarantee temporal and vertical consistency of the data. 

The Central Credit Register (CCR) is a database comprising monthly data on all credit 

liabilities vis-à-vis the Portuguese financial corporations above 50€. This database 

provides detail on the amounts owed, the credit instrument, the original and residual 

maturity of the liabilities, and their situation (regular/overdue), among other information. 

This database is available from 2009 onwards. 

The CBSD and CCR databases were accessed through Banco de Portugal’s Microdata 

Research Laboratory (BPLim), which is a database with anonymized information at a 

firm and bank level made available for researchers by Banco de Portugal. 

As the CCR database begins in 2009, and to allow the identification of exited firms 

and the use of lagged variables, the data used in this analysis covers the 2011-2015 period, 

on an annual basis. Though this dataset does not cover the period immediately after the 

financial crisis, it allows the observation of firms’ dynamics during a period of financial 

turbulence and adjustment, marked by a strong pressure for banks to meet higher capital 

requirements.  

Firms with no employees or annual sales under 10.000€ were excluded. Firms without 

bank loans registered on CCR, therefore with no responsibilities towards the Portuguese 

financial system, are also excluded from the estimation. Variable State indicates the state 

of the firm, as defined in section 3. According to the definition of the New state, only the 

transitions from the third year of activity onwards are observed; therefore firms with less 

than three years of activity are excluded from the sample. Variable Bank is a dummy 

variable assuming 1 if the firm got an additional loan above 100.000€ or representing 
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more than 5% of total assets, and 0 otherwise. It should be noted that this variable assumes 

1 only if there is a pre-existent relation with the bank granting the loan. As this variable 

intends to capture the loans ‘evergreening’ to non-profitable firms, the thresholds were 

defined to exclude retail exposures, mostly related to operations concerning the revolving 

of small amounts granted for liquidity purposes, which are recurrent among Portuguese 

firms. Tables IX to XI in Appendix provide additional information on the distribution of 

additional loans, in Euros and in percentage of assets, observed in the sample, along with 

an analysis of the impact of changing the criteria used to identify and additional bank 

loan1. 

Some variables were defined to characterize the sample. Employees is the number of 

remunerated persons employed by the firms during the year, used as a proxy for the firms’ 

size. Alternatively, it may be considered size, a categorical variable assuming 1 for 

microfirms, 2 for small firms, 3 for medium firms and 4 for large firms, following the 

definition of the European Commission (2003). Industry is a categorical variable 

assuming one of 6 economic activities, as in Table XII in Appendix. Sector depressed is 

a dummy variable assuming 1 if the firms’ sector of activity (defined at 2-digit level of 

the NACE code) presented a negative aggregate turnover growth rate, and 0 otherwise. 

This variable, interacted with Bank, allows to infer if banks additional loans have a 

different impact during depressed periods. Table XIII in Appendix provides the complete 

list of variables and their definitions. 

The database contains 672,143 observations (Table I), corresponding to 205,470 

distinct firms with an average of 3.3 observations in the database; only 38% of the firms 

are observed through the entire period (5 years). The observations are well distributed 

across the years covered in the database, the proportion of observations in each year 

rounding 20%, though this proportion is slightly decreasing by year (Table II). This is 

expected as the number of firms with credit relations with the financial system decreased 

during this period (Banco de Portugal, 2018). The activities with the largest proportion of 

observations are “Trade, accommodation and food services” (38.9%) and “Other 

                                                 
1 Several thresholds for the additional loan, in total amount and in percentage of assets, were tested. 

The proportion of firms with additional bank loans is more sensible to changes in the threshold for the loan 
in percentage of total assets than for the threshold for total amount (Table X in Appendix). Nevertheless, 
the observed transition matrices across states remain similar using other thresholds, as shown in Table XI 
in Appendix. 
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services” (21.7%). On the opposite side, “Agriculture and mining” represents 3.3% of the 

observations.  

TABLE I 

NUMBER OF OBSERVATIONS AND MEAN VALUES 

Variable Obs. Mean Std. Dev. 

Assets (€) 672 143 2 819 053 85 801 242 
Sales (€) 672 143 1 812 320 35 999 355 
Employees 672 143 14 128 
Bank 672 143 0,15 0,359 
Sector depressed 672 143 0,60 0,490 
CCR exposure (€) 672 143 455 564 5 375 450 

 

TABLE II 

SAMPLE STRUCTURE 

  Freq. Percentage 

by size     
Micro firms 508 623 75,7% 
Small firms 136 503 20,3% 
Medium firms 23 084 3,4% 
Large firms 3 933 0,6% 

by industry     

Agriculture and mining 22 090 3,3% 
Manufacturing 99 851 14,9% 
Utilities 54 120 8,1% 
Construction and real estate 88 379 13,1% 
Trade, accomm. and food 261 547 38,9% 
Other services 146 156 21,7% 

by year     

2011 150 008 22,3% 
2012 138 000 20,5% 
2013 130 404 19,4% 
2014 125 942 18,7% 

2015 127 789 19,0% 

 

Around 60% of the observations concern to firms operating in a depressed activity; 

most of them occurred in 2011 and 2012, the years with the worst performance for the 

NFC in the period covered in this study. Additionally, firms operating in depressed 

activities are concentrated in the “Trade, accommodation and food services” (42.8%) 
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“Other services” (24.1%) and “Construction and real estate” (15.5%). Table XIV, in 

Appendix, provides further information on this variable. 

The sample is mostly composed by micro firms (75.7%) and small firms (20.3%). 

Large firms correspond to 0.6% of the observations. Despite the exclusions based on sales 

and employees thresholds, this structure is very similar to the one observed for the 

population of non-financial corporations in Portugal (Banco de Portugal, 2018). The 

average firm in the sample has €2.8 million of assets and 14 employees, nearly twice the 

average Portuguese firm. 

An additional bank loan was granted to 15% of the observations in the sample. A 

closer look at the Bank variable shows that 67% of the firms that received at least one 

additional loan between 2011 and 2014 received it only once during this time span; firms 

that record Bank = 1 twice, mostly get an additional loan in two consecutive years 

(Table III). 

TABLE III 

PATTERN OF VARIABLE BANK 

2011 2012 2013 2014 2015 Obs. Percent. 
Percent 

cum. # bank 
0 0 0 0 1 11 593 16% 16% 1 
1 0 0 0 0 11 545 16% 33% 1 
0 0 0 1 0 9 427 13% 46% 1 
0 0 1 0 0 7 865 11% 57% 1 
0 1 0 0 0 6 967 10% 67% 1 
0 0 0 1 1 3 060 4% 71% 2 
0 0 1 1 0 2 100 3% 74% 2 
0 0 1 0 1 1 977 3% 77% 2 
1 1 0 0 0 1 587 2% 79% 2 
1 0 1 0 0 1 442 2% 81% 2 
0 1 1 0 0 1 386 2% 83% 2 
1 0 0 0 1 1 377 2% 85% 2 
0 1 0 1 0 1 366 2% 87% 2 
1 0 0 1 0 1 364 2% 89% 2 
0 1 0 0 1 1 231 2% 91% 2 

Other patterns       6 434 9% 100%   
Total         70 721 100%     

Notes: the table includes observations with at least one additional loan  
(Bank = 1) between 2011 and 2015. All the patterns in the sample with one or 
two additional loans are represented on the table; ‘other patterns’ (9% of the 
observations) refer to observations with 3 to 5 additional loans. 

 

Concerning the firms’ state, 75.41% are profitable firms, 21.57% are non-profitable 

firms and 3.02% are in the exit state. Table IV shows the transition matrix observed for 

the database. Nearly 5% of firms were new firms in the previous year. Non-profitable 
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firms post the higher death rate in the following year (4.95%), while this proportion is 

2.5% among profitable firms. 

TABLE IV 
TRANSITION MATRIX FOR VARIABLE STATE  

   State n    
State n-1 Profitable Non-profitable Exit Total 

New 25 082 6 391 1 731 33 204 
  (75.54%) (19.25%) (5.21%) (100%) 

Profitable 426 125 94 436 13 373 533 934 
  (79.81%) (17.69%) (2.5%) (100%) 

Non-profitable 55 668 44 141 5 196 105 005 
  (53.01%) (42.04%) (4.95%) (100%) 

Total 506 875 144 968 20 300 672 143 
  (75.41%) (21.57%) (3.02%) (100%) 
Notes: transition frequencies in two consecutive years observed in the sample. Row percentages in 
parenthesis.  

 

4.2. Econometric model 

The probability of change to state j is estimated by a multinomial logit model, as in 

(3.2.6), defining profitable as the pivot category and for j = non-profitable, exit: 

(4.2.1) 𝒙𝒙𝜷𝜷𝑗𝑗 = 𝛽𝛽1𝑗𝑗 + 𝛽𝛽2𝑗𝑗𝑠𝑠𝑡𝑡𝑣𝑣𝑡𝑡𝑒𝑒𝑡𝑡−1 + 𝛽𝛽3𝑗𝑗𝑏𝑏𝑣𝑣𝑛𝑛𝑘𝑘𝑡𝑡−1 + 𝛽𝛽4𝑗𝑗𝑠𝑠𝑒𝑒𝑐𝑐𝑡𝑡𝑠𝑠𝑣𝑣 𝑑𝑑𝑒𝑒𝑝𝑝𝑣𝑣𝑒𝑒𝑠𝑠𝑠𝑠𝑒𝑒𝑑𝑑𝑡𝑡−1  

The variable 𝑠𝑠𝑡𝑡𝑣𝑣𝑡𝑡𝑒𝑒𝑡𝑡−1 is the firms’ state in the previous year, assuming three possible 

outcomes: new, profitable and non-profitable; 𝑏𝑏𝑣𝑣𝑛𝑛𝑘𝑘𝑡𝑡−1 is the binary variable assuming 1 

if the firm got an additional loan from a bank in the previous year, and sector depressed 

assumes 1 if the firm operates in a depressed activity and 0 otherwise. The model in 

(4.2.1) is a saturated model, having 12 possible patterns for the regressors.  

The set of controls may also include 𝑏𝑏𝑣𝑣𝑛𝑛𝑘𝑘𝑡𝑡−1 interacted with 𝑠𝑠𝑒𝑒𝑐𝑐𝑡𝑡𝑠𝑠𝑣𝑣_𝑑𝑑𝑒𝑒𝑝𝑝𝑣𝑣𝑒𝑒𝑠𝑠𝑠𝑠𝑒𝑒𝑑𝑑𝑡𝑡−1, 

to evaluate if the effect of bank assistance significantly varies for depressed activities. 

 

4.3. Results and discussion 

Table V presents the results of the MNL, considering two specifications for the model 

as in (4.2.1) estimated for the Portuguese data from 2011 to 2015.  
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In the baseline model (1), only bank and the state in the previous year (profitable and 

non-profitable, having new as the base category) are considered. All regressors are 

statistically significant (individually and jointly, as the Likelihood Ratio test points). Bank 

has a negative sign, meaning that having an additional bank loan reduced the log-odds 

ratio of being non-profitable and exit compared to profitable. The model also shows state 

dependence, as the coefficients for the state in the previous year are statistically 

significant. The log-odds of being non-profitable and exit in t, relative to being profitable, 

was lower if the firm was profitable in t-1, compared to being new in t-1. Non-profitable 

firms in t-1 showed higher log-odds of being non-profitable and exit in t, relative to being 

profitable, than new firms in t-1. 

 

TABLE V 

ESTIMATION OUTPUTS FOR THE MULTINOMIAL LOGIT 

Outcome Regressor Baseline Final 
(1) (2) 

Non-
profitable Bank t-1 

-0,172 -0,175 
(0,000) (0,000) 

 Profitable t-1 
-0,136 -0,137 
(0,000) (0,000) 

 Non-profitable t-1 
1,133 1,136 

(0,000) (0,000) 

 Sector depressed t-1 
  -0,017 
  (0,01) 

 Sector depressed t-1* Bank t-1 
  0,004 
  (0,816) 

 Const. -1,343 -1,333 
(0,000) (0,000) 

Exit Bank t-1 
-0,073 -0,116 
(0,000) (0,000) 

 Profitable t-1 
-0,787 -0,788 
(0,000) (0,000) 

 Non-profitable t-1 
0,301 0,32 

(0,000) (0,000) 

 Sector depressed t-1 
  -0,112 
  (0,000) 

 Sector depressed t-1* Bank t-1 
  0,073 
  (0,066) 

 Const. -2,663 -2,602 
(0,000) (0,000) 

  Number of obs 672 143 672 143 
 Pseudo R2 0,0361 0,0362 
 Log likelihood -420687,1250 -420660,0625 
 LR test 31556,348 31610,496 
 Prob > chi1 0,000 0,000 
 Pearson's chi2 (sat)  1107,963 
 Prob > chi0  0,000 
 Hosmer-Lemeshow (G=3)  192,230 
  Prob > chi2   0,000 

Notes: p-values in parentheses. Profitable is the base outcome. Pearson's chi2 and Hosmer-Lemeshow tests are 

presented for the final model only. 
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The final model (2) includes sector depressed, alone and interacted with bank. 

Variable sector depressed is statistically significant and presents a negative coefficient 

for outcomes non-profitable and exit, meaning the log-odds of being non-profitable and 

exit, relative to being profitable, was lower for firms in depressed activities with no 

additional bank loans. As for the interaction between bank and sector depressed, it is not 

statistically significant for outcome 3 (non-profitable), but is positive and statistically 

significant at a 10% significance level for outcome 4 (exit), pointing to a lower effect of 

an additional bank loan over survival rates on depressed periods. 

The average marginal effects over the probability of the three possible outcomes 

confirm the conclusions for the final model (Table VI). On average, an additional bank 

loan increased the probability of Portuguese firms being profitable by 2.7 percentage 

points (pp), and reduced the probability of being non-profitable by 2.7 pp; the effect on 

exit was 0.01 pp and was not statistically significant. 

 

TABLE VI 

AVERAGE MARGINAL EFFECTS FOR THE FINAL MODEL 
Variable Profitable Non-profitable Exit 
Bank .0275275 -.0265521 -.0009754 
  (0.000) (0.000) (0.088) 
Profitable n-1 .0422005 -.0151458 -.0270546 
  (0.000) (0.000) (0.000) 
Non-profitable n-1 -.2254401 .227217 -.0017769 
  (0.000) (0.000) (0.205) 
Sector depressed .0048012 -.0019547 -.0028465 
  (0.000) (0.052) (0.000) 
Note: p-values in parentheses. As all the regressors are dummy variables, the average marginal effect for each 
variable corresponds to the average difference in the probability of each outcome considering that variable 
assumes 1 and the probability of each outcome considering that variable assumes 0, keeping the original value 
for all the other variables. 

 

Given the regressor patterns for the final model, the Hosmer-Lemeshow test can only 

be calculated for G=3. The test rejects the null hypothesis that 𝜷𝜷� are the true coefficients 

of the model. As for the Pearson’s 𝜒𝜒2 for the saturated model, the null hypothesis is also 

rejected. This results point to a miscalibration of the model to predict the outcomes of 

some groups of observations (Table XVI in Appendix provides additional information on 

the regressor patterns for this sample and the Pearson’s 𝜒𝜒2 test). As the purpose of this 
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study is to access the effect of an additional bank loan for the average firm of the sample, 

and not to predict individual outcomes, these results do not imply dropping the previous 

conclusions; nevertheless, this may point to the existence of unobserved heterogeneity 

that explain firms’ dynamics that limit the capacity for this model to predict individual 

outcomes. 

In order to evaluate the final model for specific groups of firms, Table XV in 

Appendices provides additional outputs. Model (1) is restricted to firms in “Construction 

and real estate” activities, model (2) to large firms and model (3) to small firms. 

“Construction and real estate” activities and small firms were the most affected during 

the financial crisis; large firms, on the other hand, tend to behave differently from the 

remaining firms. The results show that in fact these subgroups presented a different 

dynamic. Concerning the effect of an additional bank loan, in particular, large firms did 

not show a statistically significant effect over the log-odds of non-profitable and exit over 

profitable, but for the remaining groups this effect was significant and similar to that 

observed for the final model. This is an interesting result, as it shows that large firms may 

behave differently from the remaining firms, and that additional bank loans do not seem 

to impact their recovery and exit rates. Nevertheless, these firms account for 0.6% of the 

sample and do not change the conclusions for the sample as a hole. 

Additionally, considering the database before excluding firms with no credit relations 

with banks, nearly 40% of the observations concern to firms with no credit relations with 

the Portuguese financial system. Though these firms are excluded from the estimation, 

they are relevant to understand firms’ dynamics and the difference between those firms 

who have access to additional lines of credit and those who do not. Model (4) provides 

and additional analysis by estimating the final model for all firms. Concerning the effect 

of an additional bank loan, the conclusions are also similar to the final model. 

 

4.4. Markov chain matrices 

The transition matrices of the Markov chain process (as defined in Figure 1) allows a 

more intuitive analysis of the results of the MNL obtained for the final model (2) as in 

Table V. The 1-step transition matrices of the process as in (3.1.4) are obtained with the 
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expected probability for each outcome, given the state and the regressors’ values in the 

previous step. The results are provided in Table VII. 

For non-depressed activities, the effect of having an additional bank loan increased 

the probability of moving from non-profitable to profitable in 4.18pp, mostly 

compensated by a reduction in the probability of remaining non-profitable (Table VII-C). 

The p-values for the differences in the expected probabilities show these differences are 

statistically significant. The probability of exit is similar. The same situation was observed 

for depressed activities: the probability of moving from non-profitable to profitable 

increased by 3.9pp, compensated by a reduction in the probability of remaining non-

profitable by 4pp. These differences are also statistically significant. The effect of an 

additional bank loan over exit was not statistically significant. 

The same was observed for profitable firms: for these, an additional bank loan had a 

similar effect for non-depressed and depressed activities, and increased the probability of 

remaining profitable by 2.6pp, mostly compensated by a reduction in the probability of 

moving to non-profitable. The exit probability was slightly lower for firms with additional 

bank loans. 
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TABLE VII 

1-STEP TRANSITION MATRICES FOR THE FINAL MODEL 
Sector depressed = 0 

(non-depressed activities) 
Sector depressed=1 

(depressed activities) 
(A) Bank=1 (D) Bank=1 

  

(B) Bank=0 (E) Bank=0 

  

(C) Difference (A)-(B) (F) Difference (D)-(E) 

  
Notes: 1-step transition matrices as in (3.1.4). Lines correspond to state in t-1 and columns correspond to state in t. 
Cells in bold correspond to matrix Q in the canonical form. The transition probabilities correspond to the expected 
probability for the outcome given the regressor pattern (bank, sector depressed and state t-1). P-values in parenthesis 
using the standard errors as in (3.4.4.) for the expected probabilities and (3.4.5) for the differences in the expected 
probabilities.  

 

These results point that an additional loan to Portuguese non-profitable firms was not 

the cause for the high proportion of zombies in the economy, in the sense that the 

probability of remaining non-profitable significantly decreased with this variable.  

The fundamental matrices of the process allows an analysis of the firms’ dynamics, 

in particular the expected survival rates. As Table VIII shows, firms that were granted an 

additional loan had higher survival rates and were expected to live longer as profitable 

firms. The increase in the life expectancy for non-profitable firms in non-depressed 

activities with Bank = 1 was 3.01 years, most of this value arising from an increase in the 

expected number of steps as profitable (3.49 years, from 20.84 years to 24.33 years).  

New Efficient Non-effic. Exit
New 0,0000 0,7768 0,1719 0,0513

(0,000) (0,000) (0,000)
Efficient 0,0000 0,8177 0,1578 0,0245

(0,000) (0,000) (0,000)
Non-effic. 0,0000 0,5619 0,3870 0,0511

(0,000) (0,000) (0,000)

Exit 0,0000 0,0000 0,0000 1,0000

New Efficient Non-effic. Exit
New 0,0000 0,7802 0,1703 0,0495

(0,000) (0,000) (0,000)
Efficient 0,0000 0,8201 0,1562 0,0237

(0,000) (0,000) (0,000)
Non-effic. 0,0000 0,5659 0,3846 0,0495

(0,000) (0,000) (0,000)
Exit 0,0000 0,0000 0,0000 1,0000

New Efficient Non-effic. Exit
New 0,0000 0,7475 0,1971 0,0554

(0,000) (0,000) (0,000)
Efficient 0,0000 0,7913 0,1820 0,0267

(0,000) (0,000) (0,000)
Non-effic. 0,0000 0,5201 0,4268 0,0531

(0,000) (0,000) (0,000)
Exit 0,0000 0,0000 0,0000 1,0000

New Efficient Non-effic. Exit
New 0,0000 0,7545 0,1955 0,0500

(0,000) (0,000) (0,000)
Efficient 0,0000 0,7961 0,1799 0,0240

(0,000) (0,000) (0,000)
Non-effic. 0,0000 0,5269 0,4250 0,0481

(0,000) (0,000) (0,000)
Exit 0,0000 0,0000 0,0000 1,0000

New Efficient Non-effic. Exit
New 0,0000 0,0293 -0,0252 -0,0042

(0,000) (0,000) (0,002)
Efficient 0,0000 0,0263 -0,0242 -0,0021

(0,000) (0,000) (0,001)
Non-effic. 0,0000 0,0418 -0,0398 -0,0020

(0,000) (0,000) (0,074)
Exit 0,0000 0,0000 0,0000 0,0000

New Efficient Non-effic. Exit
New 0,0000 0,0256 -0,0252 -0,0005

(0,000) (0,000) (0,357)
Efficient 0,0000 0,0241 -0,0237 -0,0003

(0,000) (0,000) (0,311)
Non-effic. 0,0000 0,0390 -0,0404 0,0014

(0,000) (0,000) (0,142)
Exit 0,0000 0,0000 0,0000 0,0000
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An increase in the survival rates for non-profitable firms with Bank = 1 was also 

observed for depressed activities, though substantially lower than the increase for non-

depressing activities. Non-profitable firms with additional loans were expected to survive 

0.89 years longer than non-profitable firms without additional bank loans, of which 1.91 

years as profitable firms and less 1.02 years as non-profitable firms. 

 

TABLE VIII 

FUNDAMENTAL MATRICES AND EXPECTED NUMBER OF STEPS BEFORE ABSORPTION FOR 

THE FINAL MODEL 
Sector depressed = 0 

(non-depressed activities) 

Sector depressed=1 

(depressed activities) 

(A) Bank=1 (D) Bank=1 

  

(B) Bank=0 (E) Bank=0 

  

(C) Difference (A)-(B) (F) Difference (D)-(E) 

  

Note: t (column in bold) gives the expected number of steps before the process is absorbed given it starts in the 

transient state 𝑆𝑆𝑖𝑖, as in (3.1.13). The cells not in bold correspond to the fundamental matrix N as in (3.1.11). 

 

The fundamental matrix of the process provides the expected number of periods 

before absorption assuming fixed regressors. Nevertheless, it is unlikely that a firm 

receives an additional loan every year (see Table II). To evaluate the effect of a single 

additional loan and two consecutive additional loans on the firms’ probability of moving 

from non-profitable to profitable after 5 years, the 5-step transition matrix of the process 

can be obtained by multiplying the conditional 1-step transition matrices according to the 

pattern to be analyzed. One loan refers to the case where a firm gets a single additional 

t New Efficient Non-effic.
New 32,4670 1,0000 24,8011 6,6659

Efficient 33,3756 0,0000 26,5419 6,8337
Non-effic. 32,2266 0,0000 24,3308 7,8958

t New Efficient Non-effic.
New 33,7021 1,0000 25,8611 6,8410

Efficient 34,6135 0,0000 27,6063 7,0072
Non-effic. 33,4560 0,0000 25,3871 8,0689

t New Efficient Non-effic.
New 29,3815 1,0000 21,2804 7,1011

Efficient 30,2677 0,0000 22,9730 7,2947
Non-effic. 29,2085 0,0000 20,8449 8,3637

t New Efficient Non-effic.
New 32,7491 1,0000 23,9228 7,8263

Efficient 33,6411 0,0000 25,6228 8,0183
Non-effic. 32,5671 0,0000 23,4802 9,0869

t New Efficient Non-effic.
New 3,0855 0,0000 3,5207 -0,4352

Efficient 3,1079 0,0000 3,5689 -0,4610
Non-effic. 3,0181 0,0000 3,4860 -0,4679

t New Efficient Non-effic.
New 0,9530 0,0000 1,9383 -0,9853

Efficient 0,9724 0,0000 1,9835 -1,0111
Non-effic. 0,8889 0,0000 1,9069 -1,0180
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bank loan in T=1; in this case, Bank assumes 1 in T=1 and 0 in T=2, …, 5. Two loans 

refers to the case where a firm receives additional loans in two consecutive years; Bank 

assumes 0 in the remaining periods. These situations are the most common patterns in the 

database, and are compared with the extreme cases where firms have their loans renewed 

every year (All Bank=1) and no additional loans (All Bank=0). The results are presented 

in Figure II. The results point that an additional loan in the first step or in the two initial 

steps increased the probability of moving to profitable in the short-run; nevertheless, after 

5 years the situation was similar to not ever getting an additional loan. Concerning death 

rates, the conclusions are similar. 

 

Non-depressed activities Depressed activities 

(a) Non-profitable to profitable (c) Non-profitable to profitable 

  

(b) Non-profitable to exit (d) Non-profitable to exit 

  

FIGURE 2 – Transition probabilities up to 5 years for the final model 
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5. CONCLUDING REMARKS 

The literature on non-productive (zombie) firms assumes, in general, a causal relation 

between loans ‘evergreening’ to distressed firms and the survival of those inefficient 

firms. Zombie firms are often identified as financially stressed firms assisted by banks, 

being the financial distress, and not the operational efficiency or productivity, which 

defines the firms’ state as a zombie. This comes from the hypothesis that turbulence in 

the financial markets during the last decade was one of the causes for the prevalence of a 

high proportion of zombies and, in consequence, for the productivity slowdown observed 

in most of the developed economies. 

In this study firms are categorized according to their operational performance. Non-

profitable firms are those who are not able to obtain an operating profit, for reasons that 

are not related to the firms’ growth. This definition is independent from firms’ funding 

decisions and financial pressure to meet obligations towards their creditors. 

The role of banks’ behavior towards non-profitable firms is analyzed through the 

impact of an additional loan over the probability for these firms to recover, stay non-

profitable or exit the market. Estimating this model for Portuguese firms with a credit 

relation with banks for the 2011-2015 period, the results obtained point to a positive effect 

of these additional loans over firms’ dynamics, which increased their probability to 

become profitable firms while reducing the probability to remain non-profitable. This 

was observed even for depressed activities, which was the case for most firms during 

the2011-12 period, when banks were under a higher pressure to meet additional capital 

requirements and, therefore, were facing higher incentives to avoid recognizing losses in 

their balance-sheets.  

This model was estimated for specific sub-groups (“Construction and real estate”, 

small and large firms), and also for all firms regardless of having a credit relation with 

the banking system. These groups may have behaved differently during this period. The 

estimation of the model for these sub-groups show that for all these cases, except for large 

firms, the effect of an additional bank loan is different in magnitude but the same 

conclusions can be taken as for the final model. Concerning large firms, the results show 

that an additional loan does not seem to impact the firms’ ‘zombieness’, as the coefficients 

for these variable are not statistically significant. 
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The model presented in this study provides an interesting contribution to the analysis 

of the effects of the financial crisis over non-financial corporations, by proposing a 

different framework based on individual transitions across efficiency states. Besides 

offering a new perspective to analyze the zombie phenomenon, the results seem to 

contradict the hypothesis that stressed banks impact negatively the aggregate productivity 

by allowing inefficient firms to survive as zombies.  

The results point to significant differences in the recovery rates of Portuguese non-

profitable firms that were granted additional bank loans during the 2011-2015 period, but 

the results also suggest the existence of unobserved heterogeneity that may be limiting 

the capacity for this model to predict individual outcomes. Despite lacking references for 

a valid endogeneity test for the MNL, the Rivers and Vuong 2-step procedure for the 

probit model was used to test endogeneity in bank, using the total amount of the loan in 

t-1 as instrumental variable. The test does not reject the null hypothesis of exogeneity of 

bank at 1% significance level, but reservations about the validity of the test and the weak 

instrumental variable available do not allow this test to be conclusive. Further 

developments to this analysis could include controlling for the unobserved heterogeneity, 

either by including additional explanatory variables or by IV estimation.  

  



CLOÉ LEAL DE MAGALHÃES  HOW BANK LENDING AFFECTS FIRMS' LIFECYCLE 

31 
 

REFERENCES 

ADALET MCGOWAN, M., D. Andrews, V. Millot (2017), The Walking Dead? Zombie 

firms and productivity performance in OECD countries, OECD Economic 

Department working papers, nº1372. 

ADLER, G., R. Duval, D. Furceri, S. K. Çelik, K. Koloskova, M. Poplawski-Ribeiro 

(2017), Gone with the Headwinds: Global Productivity, IMF Staff Discussion Note 

nº 17/04, International Monetary Fund. 

ALBUQUERQUE, R., H. Hopenhayn (2004), Optimal Lending Contracts and Firm 

Dynamics, The Review of Economic Studies, vol. 71, nº 2, pp 285-315. 

ALEXANDRE, F. (Coord.) (2017), “Investimento empresarial e o crescimento da 

economia portuguesa”, Fundação Calouste Gulbenkian. 

AZEVEDO, N., M. Mateus, A. Pina (2018), Bank credit allocation and productivity: 

stylized facts for Portugal, Banco de Portugal Working Paper nº25/2018. 

BLATTNER, L., L. Farinha, F. Rebelo (2018), When losses turn into loans: the cost of 

undercapitalized banks, Banco de Portugal Working Paper. 

CABALLERO, R., T. Hoshi, A. K. Kashyap (2008), Zombie lending and depressed 

restructuring in Japan, The American Economic Review, nº98, vol. 5, pp. 1943-77. 

COOLEY, T. F., V. Quadrini (2002), Financial Markets and Firm Dynamics, The 

American Economic Review, vol.91, nº 5, pp 1286-1340. 

CARLETTI, E., A. Leonello (2016), Regulatory reforms in the European Banking Sector, 

in “The Palgrave Handbook of European Banking”, T. Beck and B. Casu (ed.), 

Palgrave Macmillan.  

EUROPEAN COMMISSION (2003), Commission Recommendation of 6 May 2003 

concerning the definition of micro, small and medium-sized enterprises 

(2003/361/EC). 

FAGERLAND, M. W., D. W. Hosmer (2012), A generalized Hosmer–Lemeshow 

goodness-of-fit test for multinomial logistic regression models, The Stata Journal 12, 

nº 3, pp. 447–453. 



CLOÉ LEAL DE MAGALHÃES  HOW BANK LENDING AFFECTS FIRMS' LIFECYCLE 

32 
 

FAGERLAND, M. W., D. W. Hosmer, A. M. Bofin. (2008), Multinomial goodness-of-

fit tests for logistic regression models, Statistics in Medicine 27: 4238–4253. 

GOUVEIA, A.F., C. Osterhold (2018), Fear the walking dead: zombie firms, spillovers 

and exit barriers, OECD Productivity working papers, June 2018, nº13. 

GREENE, W. H. (2003), “Econometric analysis”, fifth edition, Prentice Hall, New 

Jersey. 

GRINSTEAD, C. M. and J. L. SNELL (2004), “Introduction to probability”, American 

Statistical Society. 

HALDANE, A., T Neumann (2016), Complexity in regulation, in “The Palgrave 

Handbook of European Banking”, T. Beck and B. Casu (ed.), Palgrave Macmillan. 

HOPENHAYN, H. A. (1992), Entry, exit and firm dynamics in the long run, 

Econometrica, nº60, vol. 5, pp 1127-1150. 

HOSMER, D. W., S. Lemeshow (2000), “Applied logistic regression”, second edition, 

John Wiley & Sons. 

LONG, J. (2009), Group comparisons in logit and probit using predicted probabilities, 

Indiana University, Working Paper, June 25, 2009. 

PEEK, J., E. S. Rosengren (2005), Unnatural selection: perverse incentives and the 

misallocation of credit in Japan, American Economic Review, nº 95, vol. 4, pp 1144-

1166. 

PETRELLA, G., A. Resti (2016), The interplay between Banks and Markets: supervisory 

stress test results and investor reaction, in “The Palgrave Handbook of European 

Banking”, T. Beck and B. Casu (ed.), Palgrave Macmillan. 

RAJARSHI, M. B., (2013), “Statistical inference for discrete time series stochastic 

processes”, Springer India. 

WOOLDRIDGE, J. M. (2010), “Econometric analysis of cross-section and panel data”, 

second edition, MIT Press, Cambridge. 

 

  

  



CLOÉ LEAL DE MAGALHÃES  HOW BANK LENDING AFFECTS FIRMS' LIFECYCLE 

33 
 

APPENDICES  

TABLE IX 

DISTRIBUTION OF VARIABLE ADDITIONAL LOAN (IN EUROS AND PERCENTAGE OF ASSETS) 

  Additional loan (€) Additional loan / assets 

Obs 672 143 672 143 
Mean 44 286,029 0,059 
Std. Dev. 1 126 303,107 19,265 
P1 0,000 0,000 
P5 0,000 0,000 
P10 0,000 0,000 
P25 0,000 0,000 
P50 0,000 0,000 
P75 987,000 0,005 
P90 28 505,000 0,084 
P95 85 396,000 0,161 

P99 580 625,000 0,385 

 

TABLE X 

PROPORTION OF FIRMS WITH ADDITIONAL LOANS FOR ALTERNATIVE THRESHOLDS 

 

> 500 thd€ or 
10% of assets

> 100 thd€ or 
10% of assets

> 100 thd€ or 
5% of assets

> 500 thd€ or 
10% of assets

> 100 thd€ or 
10% of assets

(1) (2) (3) (4) (5) (6) (7) (8) (9) = (4) - (6) (10) = (5) - (6)
No New Profitable 18% 19% 24% 76% 100% -6% -6%
No Profitable Profitable 11% 13% 19% 81% 100% -7% -5%
No Non-profit. Profitable 6% 7% 10% 90% 100% -4% -3%
No New Non-profit. 14% 15% 19% 81% 100% -4% -4%
No Profitable Non-profit. 9% 10% 15% 85% 100% -5% -5%
No Non-profit. Non-profit. 5% 6% 10% 90% 100% -4% -3%
No New Exit 19% 19% 24% 76% 100% -5% -5%
No Profitable Exit 10% 11% 14% 86% 100% -5% -4%
No Non-profit. Exit 8% 9% 11% 89% 100% -3% -2%

Yes New Profitable 15% 15% 20% 80% 100% -5% -5%
Yes Profitable Profitable 9% 10% 15% 85% 100% -6% -5%
Yes Non-profit. Profitable 5% 6% 10% 90% 100% -4% -3%
Yes New Non-profit. 12% 12% 16% 84% 100% -4% -4%
Yes Profitable Non-profit. 8% 9% 13% 87% 100% -5% -4%
Yes Non-profit. Non-profit. 5% 6% 9% 91% 100% -4% -3%
Yes New Exit 18% 18% 21% 79% 100% -4% -4%
Yes Profitable Exit 10% 11% 14% 86% 100% -4% -4%
Yes Non-profit. Exit 6% 7% 9% 91% 100% -3% -2%

Total 9% 11% 15% 85% 100% -6% -5%

sector 
depressed

Additional loan
Difference from the adopted 

definition
other cases / 

no loans Totalstate tstate t-1
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TABLE XI 

TRANSITION MATRICES FOR VARIABLE STATE CONDITIONAL ON HAVING AN ADDITIONAL 

BANK LOAN FOR ALTERNATIVE THRESHOLDS 
Non-depressed activities Depressed activities 

Additional loan: > €500.000 or 10% of assets 

  

Additional loan: > €100.000 or 10% of assets 

  

Additional loan: > €100.000 or 5% of assets 

  

 

 

TABLE XII 

INDUSTRIES 

Industry Name NACE 2 digit codes 

1 Agriculture & Mining 01 to 09 

2 Manufacturing 10 to 33 

3 Utilities 35 to 39 (Electricity), 49 to 53 (Transport), 58 to 63 

(Communications) 

4 Construction & Real Estate 41 to 43 (Construction), 68 (Real estate) 

5 Trade & Accommodation and Food 45 to 47 (Trade), 55 to 56 (A&F) 

6 Other services 69 to 96 

State n-1 Profitable Non-profit. Exit Total
New 74% 18% 7% 100%

Profitable 48% 46% 6% 100%
Non-profit. 78% 19% 3% 100%

State n
State n-1 Profitable Non-profit. Exit Total

New 83% 13% 4% 100%
Profitable 59% 34% 7% 100%

Non-profit. 86% 12% 2% 100%

State n

State n-1 Profitable Non-profit. Exit Total
New 75% 18% 7% 100%

Profitable 48% 46% 6% 100%
Non-profit. 79% 18% 3% 100%

State n
State n-1 Profitable Non-profit. Exit Total

New 83% 12% 4% 100%
Profitable 59% 35% 6% 100%

Non-profit. 87% 11% 2% 100%

State n

State n-1 Profitable Non-profit. Exit Total
New 75% 18% 7% 100%

Profitable 50% 45% 5% 100%
Non-profit. 79% 18% 3% 100%

State n
State n-1 Profitable Non-profit. Exit Total

New 83% 12% 4% 100%
Profitable 59% 35% 5% 100%

Non-profit. 87% 11% 2% 100%

State n
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TABLE XIII 

LIST OF VARIABLES AND DEFINITIONS 
Variable Reference Definition 
Zombie firm 
(interest rate definition) 

Caballero et al. (2008) 
Alexandre (2017) 

Firms with a cost of debt below the 
theoretical interest rate 

Zombie firm 
(interest coverage ratio 
definition) 

Adalet McGowan et al. (2017) 
Gouveia and Osterhold (2018) 
Azevedo et al. (2018) 

Firms with EBITDA over interest expenses 
ratio below 1 for 3 consecutive years and 
more than 10 years of activity 

New firm This study Firms with less than 3 years of activity 

Profitable firm This study Firms with 3 or more years of activity and one 
of the following conditions: (i) positive 
operating result or (ii) sales’ annual growth 
rate above 2% 

Non-profitable firm This study Firms with 3 or more years of activity and 
negative operating result and sales’ annual 
growth rate below 2% 

Exit firm This study Firms that ceased activity during the 
economic year. 

Bank This study Dichotomous variable assuming 1 if the firm 
recorded an increase in the loans from a bank 
already a creditor in the previous year above 
€100.000 or above 5% of its total assets, and 
0 otherwise. 

Sector depressed This study Dichotomous variable assuming 1 if the firm 
is in a 2-digit level activity (NACE Rev.2) 
that recorded a negative sales’ annual growth 
rate.  
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TABLE XIV 

OBSERVATIONS WITH SECTOR DEPRESSED=1 BY INDUSTRY AND YEAR 

  2011 2012 2013 2014 2015 Total 

Frequencies             

Agriculture and mining 4 026 966 4 271 3 891 677 13 831 
Manufacturing 9 513 12 351 4 337 5 695 2 119 34 015 
Utilities 4 027 10 857 4 153 792 3 452 23 281 
Construction and real estate 22 136 18 812 13 666 6 738 910 62 262 
Trade, accomm. and food 58 331 53 804 45 109 0 15 089 172 333 
Other services 31 212 27 188 24 110 4 306 10 193 97 009 
Total 129 245 123 978 95 646 21 422 32 440 402 731 
Percentage             

Agriculture and mining 1,0% 0,2% 1,1% 1,0% 0,2% 3,4% 
Manufacturing 2,4% 3,1% 1,1% 1,4% 0,5% 8,4% 
Utilities 1,0% 2,7% 1,0% 0,2% 0,9% 5,8% 
Construction and real estate 5,5% 4,7% 3,4% 1,7% 0,2% 15,5% 
Trade, accomm. and food 14,5% 13,4% 11,2% 0,0% 3,7% 42,8% 
Other services 7,8% 6,8% 6,0% 1,1% 2,5% 24,1% 
Total 32,1% 30,8% 23,7% 5,3% 8,1% 100,0% 
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TABLE XV 

ESTIMATION OUTPUTS FOR ADDITIONAL SPECIFICATIONS 

Outcome Regressor 
Construction and 

real estate Large firms Small firms All firms 

(1) (2) (3) (4) 
Non-

profitable Bank t-1 
-0,16 0,099 -0,159 -0,245 

(0,000) (0,521) (0,000) (0,000) 

 Profitable t-1 
0,083 1,231 0,059 -0,174 

(0,059) (0,226) (0,284) (0,000) 

 Non-profitable t-1 
0,922 3,18 1,691 1,002 

(0,000) (0,002) (0,000) (0,000) 

 Sector depressed t-1 
-0,094 -0,186 -0,034 0,021 
(0,000) (0,137) (0,051) (0,000) 

 Sector depressed t-1* Bank t-1 
-0,067 0,156 -0,03 -0,02 
(0,164) (0,469) (0,457) (0,224) 

 Const 
-1,399 -3,435 -1,957 -1,209 
(0,000) (0,001) (0,000) (0,000) 

Exit Bank t-1 
-0,026 0,886 -0,085 -0,217 
(0,717) (0,057) (0,162) (0,000) 

 Profitable t-1 
-0,621 -2,403 -0,926 -0,948 
(0,000) (0,000) (0,000) (0,000) 

 Non-profitable t-1 
0,159 -0,954 0,477 0,005 

(0,046) (0,124) (0,000) (0,764) 

 Sector depressed t-1 
-0,205 0,778 -0,264 -0,068 
(0,000) (0,048) (0,000) (0,000) 

 Sector depressed t-1* Bank t-1 
-0,021 -1,471 0,193 0,044 
(0,829) (0,03) (0,027) (0,233) 

 Const 
-2,4 -2,62 -2,682 -2,256 

(0,000) (0,000) (0,000) (0,000) 
  Number of obs 88 379 3 933 136 503 1 112 084 
 Pseudo R2 0,0144 0,0758 0,0495 0,0336 
 Log likelihood -58145,5078 -1613,3492 -69854,6250 -742851,5625 
 LR test 1694,216 264,712 7278,148 51634,246 
  Prob > chi1 0,000 0,000 0,000 0,000 

Notes: p-values in parentheses. Profitable is the base outcome.  
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TABLE XVI 

PEARSONS’ Χ2 TEST – OBSERVED AND EXPECTED OBSERVATIONS BY GROUP 
Regressor pattern  Outcome probabilities Profitable Non-profitable Exit Total   

State 
n-1 Bank 

Sector 
depressed Obs. Profitable 

Non-
profitable Exit Observed Expected Observed Expected Observed Expected Observed Expected 

Pearsons' χ2 
statistic p(chi>0) 

1 0 0 12 735 0,75 0,20 0,06 9 881 9 519 2 249 2 510 605 706 12 735 12 735 55 0,000 
1 0 1 15 545 0,75 0,20 0,05 11 586 11 729 3 149 3 039 810 777 15 545 15 545 7 0,029 
2 0 0 206 533 0,79 0,18 0,03 161 452 163 436 39 376 37 589 5 705 5 508 206 533 206 533 116 0,000 
2 0 1 237 165 0,80 0,18 0,02 190 581 188 803 41 108 42 674 5 476 5 687 237 165 237 165 82 0,000 
3 0 0 24 409 0,52 0,43 0,05 14 317 12 694 8 892 10 419 1 200 1 296 24 409 24 409 438 0,000 
3 0 1 67 203 0,53 0,43 0,05 33 775 35 410 30 018 28 562 3 410 3 231 67 203 67 203 160 0,000 
1 1 0 2 359 0,78 0,17 0,05 1 762 1 833 460 405 137 121 2 359 2 359 12 0,002 
1 1 1 2 565 0,78 0,17 0,05 1 853 2 001 533 437 179 127 2 565 2 565 53 0,000 
2 1 0 48 325 0,82 0,16 0,02 39 285 39 513 7 834 7 627 1 206 1 185 48 325 48 325 7 0,026 
2 1 1 41 911 0,82 0,16 0,02 34 807 34 373 6 118 6 546 986 992 41 911 41 911 34 0,000 
3 1 0 3 891 0,56 0,39 0,05 2 485 2 186 1 244 1 506 162 199 3 891 3 891 93 0,000 
3 1 1 9 502 0,57 0,38 0,05 5 091 5 377 3 987 3 655 424 470 9 502 9 502 50 0,000 

Total   672 143    506 875 506 875 144 968 144 968 20 300 20 300 672 143 672 143 1 108 0,000 

Note: observed and expected number of observations by regressor pattern. The outcome probabilities provide the expected probability of the outcomes given the regressors patterns. The expected observations 

are given by the product of the observations in the regressor pattern and the expected probability of the outcome. Pearsons' χ2 statistic is calculated as in (3.5.2). P(chi>0) is the p-value, considering 24 degrees of 

freedom for the total statistic and 2 degrees of freedom for the partial statistics 
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