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DOUBLE UNIT TESTS IN THE PRESENCE OF 

STRUCTURAL BREAKS 

By Francisco Mendonça 

 We develop new statistical procedures aiming at accessing 

the presence of exactly two unit roots in a time series, that may 

have a single shift in its trend function, at a known or unknown 

date. The test statistics have a non-standard distribution based on 

functions of Wiener processes. 
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Abstract 

 The work presented concerns the field of unit root testing, allowing for the 

possibility of changes in the trend function of a time series. Two tests were designed for 

the null hypothesis of exactly two-unit roots, one for the case of a known change date, 

and another for the more likely case of an unknown changepoint. Each test statistic 

follows a non-standard distribution, which are based on functions of Wiener processes. 

The percentiles for both distributions were obtained via Monte Carlo simulation. Both 

tests were applied to several economic variables, and the results suggest that the double 

unit root hypothesis is a suitable candidate to explain the persistence of the innovations 

guiding many of those variables. 
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Resumo 

 O trabalho que se apresenta, centra-se no campo dos testes de raiz unitária, 

permitindo a existência de alterações na função de tendência de uma série temporal. 

Foram construídos dois testes para a hipótese nula de exatamente duas raízes unitárias, 

um para o caso de data de quebra conhecida, e outro para o cenário mais provável de 

uma data de quebra desconhecida. Ambas as estatísticas de teste seguem uma 

distribuição não convencional, baseada em processos de Wiener. Os percentis destas 

distribuições foram obtidos via simulação de Monte Carlo. Ambos os testes foram 

aplicados a várias variáveis económicas e os resultados sugerem que a hipótese de duas 

raízes unitárias é uma boa candidata para explicar a persistência das inovações em 

algumas destas séries. 
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1 Introduction 

 Testing for unit roots has received great attention over the latest decades, and 

has now become a standard procedure in time series analysis. Some of the most 

important consequences of the unit root hypothesis are the permanent effect of shocks 

on the long-run behaviour of a time series, its disruptive effect on conventional 

statistical inference, forecasting and properties of estimators, namely the Ordinary Least 

Squares (OLS) estimator. 

Perron (1989) made a very important contribution to the unit root literature as he 

emphasized the empirical relevance of breaks in the trend function of economic and 

financial data, and its effect on the OLS estimators and unit root tests. Perron proved 

that the presence of structural breaks dramatically decreased the power of the Dickey 

Fuller (DF) and Augmented Dickey Fuller (ADF) test statistics. However, Perron’s 

proposed test statistic requires a priori knowledge of the eventual date at which the 

break occurs. This was considered an important limitation and several authors sought to 

develop unit root tests that do not assume a known break date (Zivot & Andrews, 1992, 

and Perron, 1997, for example). Others, developed unit root test statistics which allow 

more than one changepoint in the trend, such as Lumsdaine & Papell (1997). 

However, the focus remained on testing for exactly one unit root, and rule out 

the possibility of more unit roots. In applied work, there have been cases of series which 

seem to behave according to a double unit root process such as price series, wages, 

stock variables and population (see, Haldrup, 1998, for example). The conventional 

tests for two unit roots were developed by Hasza & Fuller (1979), Dickey & Pantula 
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(1987) and Sen & Dickey (1987). These authors propose tests for the null hypothesis of 

two-unit roots but without permitting structural breaks in the deterministic components.  

 The purpose of this thesis is to extend double unit root testing procedures 

allowing for the presence of breaks in the data. Instead of assuming exactly one unit 

root under the null hypothesis, it will be assumed two unit roots. Two test statistics are 

considered. One is valid under the assumption of a known break date and is shown to 

have a non-standard limiting distribution and its percentiles are obtained through Monte 

Carlo simulations and provided in this thesis. The second statistic relaxes the known 

break date assumption and follows the method of Zivot & Andrews (1992) to propose 

an endogenous change point version of the test. The hypothesis of an unknown break 

date implies the need for an estimate for the break date, which is taken to be the one that 

gives the strongest evidence against the null hypothesis. It is shown that the asymptotic 

distribution of the test statistic is non-standard and again its percentiles are obtained 

through Monte Carlo simulations and provided in this thesis. 

 The dissertation is organized as follows. Section 2 reviews the existing literature 

on the topic of unit root testing with structural changes in the deterministic component. 

Section 3 briefly addresses double-unit root processes and its characteristics, as well as 

some important limiting results. Section 4 addresses the trend break model. Section 5 

explores the effect of structural breaks on the Hasza & Fuller test and derives the 

limiting distribution of the OLS estimator under the hypothesis of stationarity and 

exactly one-unit root, when structural changes are present, but ignored. In Section 6 the 

test statistics are presented and motivated, and its limiting distributions are derived as 

well as the simulated percentiles. Section 7 analyses empirical power and size through 

Monte Carlo simulations. It explores both tests’ finite sample properties against several 
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alternatives, including different pairs of autoregressive roots and more complex 

deterministic functions. In Section 8, the tests are applied to several time series, where 

we explore and comment on the results. Section 9 is reserved for the concluding 

remarks and suggestions for future research. The proofs of the theorems can be found in 

the Mathematical Appendix. 

2 Literature Review 

 This dissertation develops tests for two unit roots in an univariate time series that 

can be used when there are structural breaks in the trend function.  

 After the seminal paper of Nelson & Plosser (1982), it was believed that many 

macroeconomic time series were well described by a unit root process. However, at the 

time, the existing tests for the null hypothesis of exactly one unit root were based on 

strict assumptions, namely, parameter constancy of the deterministic components. Yet, 

we can identify a number of significant events that seem to have altered the path of 

several economic variables, such as the Great Crash (1929), the First and Second World 

Wars (1914-1919 and 1939-1945, respectively), the Oil Price Shock (1973), and more 

recently, the Financial Crisis (2007) that started with the bankruptcy of Lehman 

Brothers. These events, if not modelled, can potentially invalidate any inference based 

on unit root tests. 

 This means that unit roots and structural breaks cannot be treated independently. 

Perron (1989) made the first breakthrough, showing how structural changes impacted 

unit root tests. He proposed a test based on an augmented Dickey-Fuller regression that 

sought to eliminate the effect of the structural change. However, the test was based on 

the inconvenient assumption of a known break date. Nonetheless, Perron found that 
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many time series, studied by Nelson & Plosser (1982), that were first taught to exhibit a 

unit root, could instead be described by an I(0) process around a changing trend 

function. 

 The paper of Perron (1989) marked the beginning of a new strand in the 

literature of unit root testing. From that point onwards many authors worked to develop 

new tests which allowed for an unknown changepoint, whilst other studied the effect of 

using wrong break dates. For example, Zivot & Andrews (1992) developed the widely 

used inf 𝑡 test, which searches for the break date that maximizes the likelihood of 

observing the alternative hypothesis. Perron (1997) presents a more complete test that 

allows for a breakpoint under the null and alternative hypothesis. Other authors opted to 

explore the behaviour of Perron’s (1989) test, such as Montañés (1997), which revealed 

that an erroneous choice of the changepoint used in Perron’s 𝑡 test caused a significant 

loss in power in small samples 

  More recent examples of robust unit root tests include Carrion-i-Silvestre, Kim 

& Perron (2009) for their GLS-based unit root test that allows for multiple breaks both 

under the null and alternative hypothesis; Harvey, Leybourne & Taylor (2013) which 

propose minimum DF statistics in the possible presence of multiple breaks; Cavaliere et 

al. (2011) present a robust unit root test under multiple possible changepoints and non-

stationary volatility, using bootstrapped minimum DF test statistics. 

 Nevertheless, robust tests that allow for more than one unit root under the null 

hypothesis have not been developed. Since the existing tests allow for exactly one unit 

root under the null hypothesis, if a time series process exhibits more roots equal to 

unity, then those tests are theoretically invalid and can lead to wrong conclusions.  
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 The literature for two unit roots is scarcer. Nonetheless, there are some 

important contributions, namely Hasza & Fuller (1979) for an F-test which allows to 

test the restrictions imposed by the two unit roots; Dickey & Pantula (1987) for a 

sequential procedure based on 𝑡-statistics which allows for testing multiple unit roots, 

starting from the highest number of roots and testing down; Sen & Dickey (1987) 

proposed a 𝑡 test based on a symmetric OLS estimator. More recently, Haldrup (1994) 

and Shin & Kim (1999) develop semi-parametric tests for two unit roots. However, 

double unit root tests carry additional complexity, particularly when concerning the 

initial conditions. Rodrigues & Taylor (2003) explore the role of the initial conditions 

on the double unit roots tests, and find that the Hasza-Fuller F test and Sen-Dickey t 

test, are not invariant to the starting values and that the limit distributions depend on the 

demeaning method used. 

 Although tests for two unit roots have been developed, none is robust to 

structural changes in the deterministic function, thus, this dissertation seeks to address 

this issue, and proposes two tests that allow for that possibility. 

3 The Double-Unit Root Process and its Characteristics 

 

 Consider the following dynamic process for {𝑦𝑡}, without any type of 

deterministic component: 

(1 − 𝛼1𝐿)(1 − 𝛼2𝐿)𝑦𝑡 = 𝑒𝑡, 𝑒𝑡~𝑖𝑖𝑑 (0, 𝜎
2)                                                                (1) 

It is well known that when 𝛼1 = 1 (or 𝛼2 = 1) and |𝛼2| < 1 (or |𝛼1| < 1) we have that 

{𝑦𝑡} has one unit root. The idea of the DF and ADF type of statistics is to test this 

individual restriction, under the null hypothesis. When 𝛼1 = 𝛼2 = 1 {𝑦𝑡} has two unit 
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roots. However, when a second unit root is allowed, the statistical framework is more 

complex. In particular, when a test for two unit roots is performed in {𝑦𝑡}, the 

alternative hypothesis is not necessarily a stationary process as in DF and ADF, because 

under the alternative hypothesis, the process can either be a unit root process (𝛼1 = 1,

|𝛼2| < 1 or |𝛼1| < 1, 𝛼2 = 1), or I(0) (|𝛼1| < 1, |𝛼2| < 1) process. Naturally it can 

also be an explosive process (|𝛼2| > 1 or |𝛼1| > 1 or both) but we do not consider this 

possibility in this thesis. A second source of additional complexity is the effect of the 

starting values. To see this, take equation (1) with 𝛼1 = 𝛼2 = 1 and solve recursively, 

denoting the starting values by 𝑦0 and 𝑦−1, yielding: 

𝑦𝑡 = 𝑦0 + (𝑦0 − 𝑦−1)𝑡 + ∑ ∑ 𝑒𝑘
𝑗
𝑘=1

𝑡
𝑗=1       (2) 

This equation explicitly shows that, even without adding any deterministic component 

to the right-hand side of equation (1), the starting values generate a linear trend if 

𝑦−1 ≠ 𝑦0. Thus, in order for our tests to be invariant to these starting values we must 

introduce a linear trend to the test equations. 

Another characteristic of double integrated processes is its smoothness, when 

compared to I(0) and one-unit root processes as it can be observed in Figure 1. This is a 

direct consequence of the double summation of the errors (see equation 2). 
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4 The Trend Break Model 

In this thesis, we assume that the time series under analysis, denoted as 𝑦𝑡, is a 

realization of the following time series process (DGP):  

 𝑦𝑡 = 𝜷
𝒊′𝒛𝒕

𝒊(𝜆) + 𝑥𝑡 , 𝑡 = 1,… , 𝑇, 𝑖 = 𝐴, 𝐵, 𝐶                                                                      (3)                                            

where  

𝒛𝒕
𝑨(𝜆) = (1, 𝑡, 𝐷𝑈𝑡(𝜆))

′
, 𝒛𝒕
𝑩(𝜆) = (1, 𝑡, 𝐷𝑇𝑡(𝜆))

′
, 𝒛𝒕
𝑪(𝜆) = (1, 𝑡, 𝐷𝑈𝑡(𝜆), 𝐷𝑇𝑡(𝜆))

′
 (4) 

and  

𝜷𝑨
′
= (𝜇𝐴, 𝛿𝐴, 𝜇𝑏

𝐴)′,   𝜷𝑩
′
= (𝜇𝐵, 𝛿𝐵, 𝛿𝑏

𝐵)′,   𝜷𝑪
′
= (𝜇𝐶 , 𝛿𝐶 , 𝜇𝑏

𝐶 , 𝛿𝑏
𝐶)′   

(a) 𝛼1 = 𝛼2 = 0.5 (b) 𝛼1 = 1; 𝛼2 =
0.5 

(c) 𝛼1 = 1;  𝜋 = 0.9 (d) 𝛼1 = 𝛼2 = 1 

Figure 1  – Simulated paths for the process given in equation (1) with 𝑒𝑡~𝑖𝑖𝑑 𝑁(0, 1) 
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 with 𝐷𝑈𝑡(𝜆) = 1(𝑡 > 𝑇𝑏) and 𝐷𝑇𝑡(𝜆) = 1(𝑡 > 𝑇𝑏)(𝑡 − 𝑇𝑏). Here 1( . ) is the indicator 

function and 𝑇𝑏 = ⌊𝜆𝑇⌋ the break date with ⌊. ⌋ denoting the integer part.  

In words, the underlying process is generated as the sum of a deterministic 

(𝜷𝒊
′
𝒛𝒕
𝒊(𝜆), 𝑖 = 𝐴, 𝐵, 𝐶) and a stochastic component (𝑥𝑡). We allow the deterministic 

component to contain a linear trend and we assume that an exogenous shock may occur 

at period 𝑇𝑏 and cause a structural break in the process. In general, such a break is 

modelled as a permanent change in the parameters of the trend function after its 

occurrence. This justifies the functional form of the deterministic part of (3) and the fact 

that equation (3) is referred in the literature as the “trend break model” (see, for 

example, Harvey et al., 2009). In particular, we consider three possible formulations of 

the trend break model: under Model A (i=A) and Model B (i=B) the exogenous shock 

may cause either a level shift or a slope shift, respectively. Under Model C (i=C), we 

allow for a simultaneous level and slope shift as a consequence of the break.  

The stochastic component is assumed to follow an 𝐴𝑅(2) process for simplicity:  

(1 − 𝛼1𝐿)(1 − 𝛼2𝐿)𝑥𝑡 = 𝑒𝑡,   𝑒𝑡~𝑖. 𝑖. 𝑑 (0, 𝜎
2)      (5) 

The purpose of this thesis is to propose statistical procedures to test the presence of two 

unit roots in the process generating 𝑦𝑡 . Here the relevant null hypothesis is 𝐻0: 𝛼1 =

𝛼2 = 1 and the alternatives may be either one-unit root 

(𝛼𝑗 = 1 ∧ |𝛼𝑠| < 1, 𝑗 = 1,2;  𝑠 = 1,2;  𝑗 ≠ 𝑠) or no unit roots (|𝛼1| < 1 ∧ |𝛼2| < 1). 

We highlight that, to our knowledge, this is the first statistical testing procedure for the 

presence of I(2)ness in a given time series data allowing for the presence of a possible 

break in the trend function. This is the main contribution of this thesis.  
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5 Conventional double unit root tests under a break in trend 

 As remarked in the previous section, the interest of this thesis lies in testing the 

null hypothesis of I(2)ness in 𝑦𝑡. A number of statistical procedures have been proposed 

in the literature to test for the presence of two unit roots as mentioned in Section 2. 

However, all of these tests ignore the problem of structural breaks in the trend. Hence, 

to motivate this thesis a natural question to ask is: what are the consequences for 

conventional double unit root tests in terms of size and power when breaks in trend are 

present in the DGP?  

 For illustration, we study the behaviour of the Hasza & Fuller test (henceforth 

HF). Consider the auxiliary regression of the HF test: 

∆2𝑦𝑡 = 𝜇
∗ + 𝛿∗𝑡 + 𝜌1𝑦𝑡−1 + 𝜌2∆𝑦𝑡−1 + 𝑒𝑡       (6) 

Notice that this equation is nested in the statistical framework described by equations 

(3) and (5) with 𝜇𝑏 = 𝛿𝑏 = 0, i.e., without a break in trend. In particular, 𝜇∗ =

(1 − 𝛼1)(1 − 𝛼2)𝜇 + (𝛼1+𝛼2)𝛿 − 2𝛼1𝛼2𝛿, 𝛿∗ = (1 − 𝛼1)(1 − 𝛼2)𝛿, 𝜌1 =

−(1 − 𝛼1)(1 − 𝛼2), 𝜌2 = 𝛼1𝛼2 − 1. Given that 𝑦𝑡~𝐼(2) iff 𝛼1 = 𝛼2 = 1, the double 

unit root null hypothesis is 𝜌1 = 𝜌2 = 0. According to HF, such restrictions are tested 

with an F-type statistic which follows a non-standard asymptotic distribution under the 

null. The critical values are well known and can be obtained, for example, from Table 

10.2 of Patterson (2011).   

To assess the small sample effect of structural breaks on the properties of the HF 

test, a Monte Carlo experiment is presented. First, 5.000 replications of {𝑦𝑡
𝑖} for 𝑖 =

𝐴, 𝐵 of length 150 are generated, setting 𝜆 = 1/2, then the empirical size and power of 

the test are obtained for several values of 𝜇𝑏 and 𝛿𝑏. For the cases 𝛼1 = 𝛼2 = 0.8, and 



10 
 

𝛼1 = 1, 𝛼2 = 0.8, empirical power is computed. For the case 𝛼1 = 𝛼2 = 1, empirical 

test size is computed. In all calculations, the test equation is (6), and the null hypothesis 

tested is 𝜌1 = 𝜌2 = 0.  

Table I: Null Rejection Probabilities. Hasza-Fuller Test 

Model A Simulations: 𝜇 = 10, 𝛿 = 1 

𝛼1, 𝛼2 ↓  𝜇𝑏 = 0 𝜇𝑏 = 4 𝜇𝑏 = 16 𝜇𝑏 = 30 𝜇𝑏 = 34 𝜇𝑏 = 40 

0.8, 0.8  1.00 1.00 1.00 1.00 1.00 1.00 

1.0, 0.8 0.616 0.653 0.961 1.00 1.00 1.00 

1.0, 1.0 0.063 0.067 0.284 0.759 0.835 0.917 

Model B Simulations: 𝜇 = 10, 𝛿 = 1 

𝛼1, 𝛼2 ↓ 𝛿𝑏 = 0 𝛿𝑏 = 0.4 𝛿𝑏 = 1.4 𝛿𝑏 = 2.6 𝛿𝑏 = 3.4 𝛿𝑏 = 4 

0.8, 0.8  0.999 0.997 0.928 0.683 0.479 0.334 

1.0, 0.8 0.616 0.595 0.454 0.271 0.189 0.135 

1.0, 1.0 0.063 0.063 0.065 0.056 0.055 0.057 

 

Table I shows that when the true process has solely a level shift (Model A), the 

HF test becomes oversized and such an effect becomes more severe with the magnitude 

of the break. The empirical power of the test also increases apparently as a result of the 

size distortion. When the true process is Model B (only a break in the slope of the 

trend), the opposite happens, power is significantly reduced for higher values of 𝛿𝑏 but 

the size remains almost unchanged and close to the 5% level. Lastly, the simulations for 

Model C (simultaneous level and slope shift) were not presented because the pattern 

followed by power and size depend on which effect dominates the other. If 𝜇𝑏 is 

significantly higher relative to 𝛿𝑏, then results from Model A apply, whilst the opposite 

also verifies. To complement our results, we now derive the limiting distribution of the 
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OLS estimators �̂�𝑖 = (�̂�1
𝑖 , �̂�2

𝑖 )
′
𝑓𝑜𝑟 𝑖 = 𝐴, 𝐵, 𝐶 in equation (6), under the alternative 

hypotheses that {𝑥𝑡}  is stationary and I(1). 

Theorem 1: Let {𝑦𝑡} be generated by model 𝑖 = 𝐴, 𝐵, 𝐶, according to equation (3).  

Suppose we estimate equation (6), neglecting the level/slope shift. Then, as  𝑇 → ∞: 

(1) Under the alternative hypothesis that |𝛼𝑠| < 1 , 𝑠 = 1,2: 

(a) Under Model A 

(𝑎. 1)  √𝑇(�̂�1 − 𝜌1) →
𝑑 𝑁[0, 2𝜎2𝜏] 

(𝑎. 2)  √𝑇(�̂�2 − 𝜌2) →
𝑑 𝑁[0, 𝜎2𝜏] 

Where  

𝜏 =
(−3𝜆4 + 6𝜆3 − 4𝜆2 + 𝜆)𝜇𝑏

2 + 𝛾0

(𝛾0
2 − 𝛾1

2) + ((12𝜆3 − 6𝜆4 − 8𝜆2 + 2𝜆)𝛾0 + (6𝜆
4 − 12𝜆3 + 8𝜆2 − 2𝜆)𝛾1)𝜇𝑏

2
 

 

(b) Under Models B and C 

(𝑏. 1)  𝑇
3
2(�̂�1 − 𝜌1) →

𝒅 𝑁[0, 𝜎2𝜃1] 

(𝑏. 2)  √𝑇(�̂�2 − 𝜌2) →
𝒅 𝑁[0, 𝜎2𝜃2] 

 

Where 

𝜃1 = [𝑽]
−1
3,3 

𝜃2 = [𝑽]
−1
4,4 

Where [𝑽]−1 is the inverse of the matrix 𝑽 given by: 

 

𝐕 =

[
 
 
 
 
 
 
 1

1

2

1

2
𝛿𝑏(1 − 𝜆)

2 𝛿𝑏(1 − 𝜆)

1

2

1

3

1

6
(1 − 𝜆)(2𝜆2𝛿𝑏 − 4𝜆𝛿 + 2𝜆)

1

2
𝛿𝑏(1 − 𝜆)

2

1

2
𝛿𝑏(1 − 𝜆)

2
1

6
(1 − 𝜆)(2𝜆2𝛿𝑏 − 4𝜆𝛿 + 2𝜆)

1

6
(1 − 𝜆)(2𝜆2𝛿𝑏 − 4𝜆𝛿 + 2𝜆)

1

2
𝛿𝑏
2(1 − 𝜆)2

𝛿𝑏(1 − 𝜆)
1

2
𝛿𝑏(1 − 𝜆)

2
1

2
𝛿𝑏
2(1 − 𝜆)2 𝛿𝑏

2(1 − 𝜆) + 2(𝛾0 − 𝛾1)]
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(2)  

(3) Under the hypothesis of exactly one-unit root in {𝑦𝑡}  
 

(c) Under Model A 

Since the stochastic trend dominates the level shift, the asymptotic distributions 

are invariant to the break. 

 

(d) Under Models B and C 

 (𝑑. 1)   𝑇
3

2(�̂�1
𝑖 − 𝜌1

𝑖) →𝑝 𝜃−1(𝐺1 − 𝐺2) 

(𝑑. 2)    √𝑇(�̂�2
𝑖 − 𝜌2

𝑖 ) →𝑝 𝜃−1(𝐺3 − 𝐺4) 

For 𝑖 = 𝐵 𝑜𝑟 𝐶 

 Where: 

(1) 𝜃 =
1

12
𝛿𝑏
2(𝜆 − 1)3(4𝛾0 − 𝜆𝛿𝑏

2(12𝜆6 − 24𝜆5 + 15𝜆4 − 15𝜆3 + 24𝜆2 − 16𝜆 + 4)) 

(2) G1 = (𝛾0−𝜆𝛿𝑏
2(3𝜆3 − 6𝜆2 + 4𝜆 − 1))

× (𝜎𝛿𝑏(𝜆
3 − 𝜆2 − 2𝜆 + 2)𝑊(1) − 𝜎𝛿𝑏(1 − 𝜆)𝑊(𝜆)       

− 𝜎𝛿𝑏 (∫ 𝑊(𝑟)𝑑𝑟
1

𝜆

+ (𝜆 − 1)2(1 + 2𝜆)∫ 𝑊(𝑟)𝑑𝑟
1

0

)) 

(3) G2 =
1

2
𝜆2𝛿𝑏

2(𝜆 − 1)2(2𝜆 − 1)

× (𝜎(𝛿𝑏(2 + 2𝜆 − 3𝜆
2) − √𝛾0 )𝑊(1) − 𝛿𝑏𝜎𝑊(𝜆) − 6𝜆(1 − 𝜆)𝛿𝑏𝜎∫ 𝑊(𝑟)𝑑𝑟

1

0

) 

(4) G3 =
1

6
𝛿𝑏
2(𝜆 − 1)2(3𝜆2 − 6𝜆3)

× (𝜎𝛿𝑏(𝜆
3 − 𝜆2 − 2𝜆 + 2)𝑊(1) − 𝜎𝛿𝑏(1 − 𝜆)𝑊(𝜆)       

− 𝜎𝛿𝑏 (∫ 𝑊(𝑟)𝑑𝑟
1

𝜆

+ (𝜆 − 1)2(1 + 2𝜆)∫ 𝑊(𝑟)𝑑𝑟
1

0

)) 

(5) G4 =
1

6
𝛿𝑏
2(𝜆 − 1)2(3𝜆2 − 6𝜆3)

× (𝜎(𝛿𝑏(2 + 2𝜆 − 3𝜆
2) − √𝛾0 )𝑊(1) − 𝛿𝑏𝜎𝑊(𝜆) − 6𝜆(1 − 𝜆)𝛿𝑏𝜎∫ 𝑊(𝑟)𝑑𝑟

1

0

) 

Where 𝑊(𝑟) is a standard Brownian motion. 
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 Part (1) of Theorem 1 establishes that, under Model A, both estimators are 

normally distributed, with asymptotic variance depending on the parameters 𝜇𝑏
  and 

𝜆. However, in small samples, the estimators are increasingly biased as 𝜇𝑏
  grows, as can 

be inferred from Table I. For Models B and C, the limiting distribution is also Normal, 

with asymptotic variance as a function of 𝛿𝑏. From Table I, we find that in small 

samples both estimators are biased towards zero zero, when 𝛿𝑏 grows. For models B 

and C, the rate of converge of �̂�1 (𝑇
3

2) is higher than the common √𝑇, due to the fact 

that the slope change (𝐷𝑇𝑡) is present in the DGP but neglected in the test regression. 

For the second part of the theorem, for Models B and C, the limiting distribution 

of the OLS estimator depend on the slope shift parameter and the break fraction. 

According to the simulations in Table I, for a given break fraction, both distributions 

concentrate around zero when the slope shift parameter increases. The result for Model 

A is not presented because the limiting distribution is not affected by the break 

parameters, since the stochastic trend asymptotically dominates a level shift. However, 

the small sample distribution clearly depends on these parameters, as can be seen from 

Table I. 

 To sum up, changes in the deterministic component affect the outcome of the HF 

test. The need for a consistent testing strategy follows from the results so far. For 

Models B and C, the problem is the low power against stationary, and single unit root 

alternatives, whilst for Model A it is a size problem. In fact, considering Model A, the 

test will always reject the null hypothesis for a sufficiently large shift, thus leading to 

the conclusion that the underlying process has less than two unit roots, when in fact it 

can be a double unit root process, a single unit root process or an I(0) process with a 
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shift in its level. Therefore, inference based on the simple Hasza-Fuller test cannot lead 

to any valid conclusion. A similar argument holds for Models B and C. 

6 Double unit root tests in the presence of a trend break 

In this section, we present alternative testing procedures aimed at solving the 

problems considered in the previous section. First, the Hasza-Fuller test is extended to 

the case of a known break date. The methodology is similar to Perron (1989). Then a 

test allowing for a break at an unknown date is devised. This test is closely related to the 

𝑖𝑛𝑓 − 𝑡 test of Zivot & Andrews (1992). 

6.1 Known Break Date 

In this section we closely follow Perron (1989). 

 Consider the following modified test regression for Model C, where the dummy 

variables are included: 

𝑦𝑡 = 𝜇 + 𝛿𝑡 + 𝜇𝑏𝐷𝑈𝑡 + 𝛿𝑏𝐷𝑇𝑡 + 𝑥𝑡 

(1 − 𝛼1𝐿)(1 − 𝛼2𝐿)𝑥𝑡 = 𝑒𝑡~𝑖. 𝑖. 𝑑 (0, 𝜎
2) 

These equations can be combined, and after suitable transformations we arrive to: 

∆2𝑦𝑡 = 𝜇
∗ + 𝛿∗𝑡 + 𝜃1𝐷𝑇𝑡 + 𝜃2𝐷𝑈𝑡 + 𝜃3∆𝐷𝑈𝑡 + 𝜃4∆

2𝐷𝑈𝑡 + 𝜌1𝑦𝑡−1 + 𝜌2∆𝑦𝑡−1 + 𝑒𝑡     

(7) 

Where, 𝜇∗ = (1 − 𝛼1)(1 − 𝛼2)𝜇 + (𝛼1+𝛼2)𝛿 − 2𝛼1𝛼2𝛿, 𝛿∗ = (1 − 𝛼1)(1 − 𝛼2)𝛿, 

𝜃1 = (1 − 𝛼1)(1 − 𝛼2)𝛿𝑏, 𝜃2 = (1 − 𝛼1)(1 − 𝛼2)𝜇𝑏 + (2 − 𝛼1 − 𝛼2)𝛿𝑏, 𝜃3 =

(2 − 𝛼1 − 𝛼2)𝜇𝑏 + 𝛼1𝛼2𝛿𝑏, 𝜃4 = 𝛼1𝛼2𝜇𝑏, 𝜌1 = −(1 − 𝛼1)(1 − 𝛼2), 𝜌2 = 𝛼1𝛼2 − 1. 

Model A follows by fixing 𝛿𝑏 = 0 and Model B by setting 𝜇𝑏 = 0. 
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The OLS estimator of equation (7) attains exact invariance to the break parameters, 

thus, that equation should be used to test the null hypothesis 𝜌1 = 𝜌2 = 0. However, the 

following regression is asymptotically equivalent to (7): 

∆2𝑦𝑡 = 𝜇
∗ + 𝛿∗𝑡 + 𝜃1𝐷𝑇𝑡 + 𝜃2𝐷𝑈𝑡 + 𝜌1𝑦𝑡−1 + 𝜌2∆𝑦𝑡−1 + 𝑒𝑡 

This is because ∆𝐷𝑈𝑡 and ∆2𝐷𝑈𝑡 are pulse dummies, and thus, 𝑜𝑝(1). 

Hence, we can derive the limiting distribution of the test statistic with the reduced 

equation. 

Additionally, in empirical applications it might be needed to include lagged 

second differences to equation (7) to account for the presence of serial correlation in the 

error term 𝑒𝑡. 

In the following theorem, we study the limit distributions of the test statistic 

𝐹�̂�
𝑖(𝜆) from equation (7): 

Theorem 2: Let {𝑦𝑡} be generated according to equation (3). Additionally, let 𝐹�̂�
𝑖(𝜆) 

denote the statistic used for testing the nullity of both 𝜌1
𝑖  and 𝜌2

𝑖  in equations (7) for 𝑖 =

𝐴, 𝐵, 𝐶. Then, under the null hypothesis that 𝜌1 = 𝜌2 = 0, as 𝑇 → ∞: 

(𝑎)    𝐹�̂�
𝑖(𝜆) →𝑑 (2𝑆𝑖)

−1𝐴𝑖 

Where 

𝐴𝑖 = (𝜂2
𝑖 (𝜆)[𝜉1

𝑖(𝜆)]
2
− 2𝜂3

𝑖 (𝜆)𝜉1
𝑖(𝜆)𝜉2

𝑖(𝜆) + 𝜂1
𝑖 (𝜆)[𝜉2

𝑖(𝜆)]
2
)  

𝑆𝑖 = (𝜂1
𝑖 (𝜆)𝜂2

𝑖 (𝜆) − [𝜂3
𝑖 (𝜆)]

2
) 

𝑖 = 𝐴, 𝐵, 𝐶 
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Where: 

𝜉1
𝑖(𝜆) = {∫ Υ1𝑑𝑊(𝑟)

1

0

−∫ 𝒁𝒊(𝜆, 𝑟)′𝑑𝑊(𝑟) (∫ 𝒁𝒊(𝜆, 𝑟)𝒁𝒊(𝜆, 𝑟)′𝑑𝑟
1

0

)

−1

∫ 𝒁𝒊(𝜆, 𝑟)
1

0

1

0

Υ1𝑑𝑟} 

𝜉2
𝑖(𝜆) = {∫ Υ2𝑑𝑊(𝑟)

1

0

−∫ 𝒁𝒊(𝜆, 𝑟)′𝑑𝑊(𝑟)(∫ 𝒁𝒊(𝜆, 𝑟)𝒁𝒊(𝜆, 𝑟)′𝑑𝑟
1

0

)

−1

∫ 𝒁𝒊(𝜆, 𝑟)
1

0

1

0

Υ2𝑑𝑟} 

𝜂1
𝑖 (𝜆) = ∫ {Υ1 − 𝒁

𝒊(𝜆, 𝑟)′ (∫ 𝒁𝒊(𝜆, 𝑟)𝒁𝒊(𝜆, 𝑟)′𝑑𝑟
1

0

)

−1

∫ 𝒁𝒊(𝜆, 𝑟)
1

0

Υ1𝑑𝑟}

2

𝑑𝑟
1

0

 

𝜂2
𝑖 (𝜆) = ∫ {Υ2 − 𝒁

𝒊(𝜆, 𝑟)′ (∫ 𝒁𝒊(𝜆, 𝑟)𝒁𝒊(𝜆, 𝑟)′𝑑𝑟
1

0

)

−1

∫ 𝒁𝒊(𝜆, 𝑟)
1

0

Υ2𝑑𝑟}

2

𝑑𝑟
1

0

 

𝜂3
𝑖 (𝜆) = ∫ {Υ1 − 𝒁

𝒊(𝜆, 𝑟)′ (∫ 𝒁𝒊(𝜆, 𝑟)𝒁𝒊(𝜆, 𝑟)′𝑑𝑟
1

0

)

−1

∫ 𝒁𝒊(𝜆, 𝑟)
1

0

Υ1𝑑𝑟}
1

0

× {Υ2 − 𝒁
𝒊(𝜆, 𝑟)′ (∫ 𝒁𝒊(𝜆, 𝑟)𝒁𝒊(𝜆, 𝑟)′𝑑𝑟

1

0

)

−1

∫ 𝒁𝒊(𝜆, 𝑟)
1

0

Υ2𝑑𝑟} 𝑑𝑟 

Υ1 = [𝑟𝑉(𝑟) + 𝑉𝑟(𝑟) +𝑊𝑟(𝑟)] 

Υ2 = [𝑉(𝑟) +𝑊(𝑟)] 

Where 𝑉(𝑟) and 𝑊(𝑟) are two independent standard Brownian motions and 𝑉𝑟(𝑟) =

∫ 𝑉(𝑠)𝑑𝑠
𝑟

0
 and 𝑊𝑟(𝑟) = ∫ 𝑊(𝑢)𝑑𝑢

𝑟

0
.  

The representation of the limit distribution of 𝐹�̂�
𝑖(𝜆) is free of nuisance 

parameters and it is only a function of 𝜆. In particular, it does not depend on the 

magnitude of the break, thus allowing for hypothesis testing under the assumption of a 

known break date. Table II presents the selected simulated percentiles of the asymptotic 

distribution of  𝐹�̂�
𝑖(𝜆) for 𝑖 = 𝐴, 𝐵, 𝐶.  These critical values were obtained through 

Monte Carlo simulations. First we simulate 𝑇 = 1000 random 𝑁(0,1) variates, and 

generate 𝑥𝑡 according to equation (5), fixing 𝛼1 = 𝛼2 = 1. Then, for each model 𝑖 =
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𝐴, 𝐵, 𝐶, the value of 𝜆 is fixed, as shown in each column entry of Table II, 𝑦𝑡 is 

generated as in (3) and the test regressions (7) are estimated. Finally, we calculate the 

value of the test statistic. We repeat this process 5000 times for each 𝜆 from 0.1 to 0.9, 

and obtain the desired percentiles with the 5000 obtained test statistics.  

Some key features are worth mention regarding these critical values. First, for 

all values of 𝜆, the critical values are greater than those of the conventional HF test. 

Moreover, the critical values are clearly influenced by 𝜆, exhibiting a symmetric 

behaviour around 𝜆 = 0.5, and achieving its maximum around that same value. 

Secondly, as 𝜆 → 0 or 1, the critical values get closer to those tabulated by Hasza & 

Fuller (1989), which is also to be expected from the asymptotic derivations. 

 

 

Table II: Selected Percentiles of the Asymptotic Distribution of 𝐹�̂�
𝑖(𝜆) 

𝑀𝑜𝑑𝑒𝑙 𝐴 

𝜆 → 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 

90% 8.212 9.952 9.073 9.103 9.019 9.186 9.094 8.917 8.188 

95% 9.288 10.269 10.379 10.367 10.205 10.397 10.412 10.196 9.327 

99% 11.537 12.648 12.922 12.830 12.559 12.509 13.060 12.501 11.731 

𝑀𝑜𝑑𝑒𝑙 𝐵 

𝜆 → 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 

90% 8.201 9.422 10.761 11.602 11.841 11.523 10.765 9.427 8.194 

95% 9.295 10.784 12.054 12.915 13.136 13.014 12.110 10.819 9.297 

99% 11.509 13.145 14.599 15.672 15.816 15.789 15.167 13.592 11.705 

𝑀𝑜𝑑𝑒𝑙 𝐶 
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𝜆 → 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 

90% 8.189 9.465 10.797 11.573 11.873 11.531 10.744 9.435 8.175 

95% 9.275 10.724 12.019 12.949 13.163 12.937 12.108 10.841 9.321 

99% 11.466 13.158 14.818 15.688 15.669 15.747 15.145 13.553 11.705 

6.2 Unknown Break Date 

 The first part of the text is concerned with testing for two unit roots allowing for 

the possibility of a single break in trend at a known date. However, in practice, we 

seldom know the true break date, whether that’s caused by lagged decisions made by 

the agents, which not always coincide with the announcement of economic events or 

simply because the investigator does not have any a priori information about a possible 

shift in the trend function. Therefore, if parameters change at an unknown date, the 

empirical researcher either ignores it or chooses a date which will likely be wrong. In 

those two cases, statistical inference will be misleading. A third choice is to search for 

the break date. Whenever a systematic search is made, the test presented in section 6.1 

is no longer valid, because it treats the break date as exogenous, and thus, the test is 

likely to indicate the rejection of the null hypothesis, when in fact it is true. 

Therefore, we propose an alternative test procedure, which is an extension of 

Zivot & Andrews (1992) to the case of two unit roots. The first step is to reformulate 

our null hypothesis. In what follows, we will no longer consider that the null hypothesis 

is a double unit root process with a break in the deterministic trend. Under the null 

hypothesis, we will assume a pure double unit root process. 

(1 − 𝐿)2𝑦𝑡 = 𝑒𝑡          (8) 

Because the null hypothesis implicit in Equation (8) is different, the new test 

equations are defined by (9), without the need for additional dummy variables. 
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∆2𝑦𝑡 = 𝜇
∗ + 𝛿∗𝑡 + 𝜃1𝐷𝑇𝑡 + 𝜃2𝐷𝑈𝑡 + 𝜌1𝑦𝑡−1 + 𝜌2∆𝑦𝑡−1 + 𝑒𝑡                                     (9) 

 The key difference is that we now treat 𝜆 as unknown, thus 𝐷𝑈𝑡(𝜆) and 𝐷𝑇𝑡(𝜆) are also 

unknown. 

 To proceed with the test, we need an estimate of 𝜆, denoted by �̂�. Under our 

maintained hypothesis, �̂� is such that the evidence for a process with a trend shift is 

greatest. Thus, if we construct an algorithm that searches across every possible 𝜆, for the 

greatest evidence in favour of the alternative hypothesis, and compare the value of the 

test statistic computed with �̂� with a threshold mark, and then we will be able to test our 

null hypothesis. 

 Since we are dealing with an 𝐹 test, the scheme consistent with the argument 

above is to choose the greatest value of the sequence of test statistics, computed across 

every 𝜆 ∈ (0,1). The next theorem provides the limiting distribution for the test statistic 

of interest.  

Theorem 3: Let {𝑦𝑡} be generated according to Equation (8), with the error sequence 

{𝑒𝑡} i.i.d, with 𝐸(𝑒𝑡) = 0 and 𝐸(𝑒𝑡
2) = 𝜎2 > 0. Additionally, let 𝐹�̂�

𝑖(𝜆) be the test 

statistic computed for equations (9) for 𝑖 = 𝐴, 𝐵, 𝐶, for a given 𝜆 ∈ (0,1). Then, as 𝑇 →

∞: 

(𝑎)   sup𝜆∈Λ𝐹�̂�
𝑖(𝜆) →𝑑 sup𝜆∈Λ((2𝑆𝑖)

−1𝐴𝑖)          (𝑖 = 𝐴, 𝐵, 𝐶) 

Where 𝑆𝑖 and 𝐴𝑖 have the same expressions as in Theorem 2. 

The proof is given in Appendix B. 

 Theorem 3 provides the limiting distribution of the test statistics used to test the 

null hypothesis of two unit roots. These are functions of Wiener processes and 𝜆. 
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Additionally, these distributions are valid only when the error term {𝑒𝑡} in equation (9) 

is 𝑖. 𝑖. 𝑑. The percentiles for these distributions were obtained through Monte Carlo 

simulation and are presented in Table III. For each test statistic, we construct a sequence 

of 𝑁(0,1) random variables {𝑒𝑡}𝑡=1
𝑇  with 𝑇 given in each row of Table III. Then, we 

construct the process {𝑦𝑡}𝑡=1
𝑇  based on equation (8). Next, we run 𝑇 − 2 regressions (9), 

one for each 𝜆, from 𝜆 = 2 𝑇⁄  to 𝜆 = (𝑇 − 1) 𝑇⁄ , and calculate the test statistic 𝐹�̂�
𝑖(𝜆) 

for each. Finally, we take the supremum of the 𝑇 − 2 test statistics. We repeat this 

process 5000 times to obtain the percentiles of the distribution of sup𝜆∈Λ𝐹�̂�
𝑖(𝜆). 

The results in Theorem 3 also show that the test statistic is asymptotically 

invariant to the magnitude of the break. However, in small samples, the distribution will 

depend on these parameters. This is a direct consequence of the asymmetry imposed 

under the null and alternative hypothesis, that is, under the null hypothesis, changes in 

the level or slope of the series can only be explained by exogenous shocks coming from 

the error distribution. This problem does not arise in the test for a known break date 

because a level (slope) shift is allowed both under the null and the alternative 

hypotheses. This is clearly one of the limitations of the proposed test for an unknown 

changepoint. However, the effect of structural breaks on test size and power vanish 

asymptotically. 

 Table III: Selected percentiles of the distribution of 𝑠𝑢𝑝𝜆∈𝛬𝐹�̂�
𝑖(𝜆) 

Model A 

Sample Size ↓ 90% 95% 97.5% 99% 

50 17.972 20.102 22.185 25.306 

100 15.747 17.476 19.059 21.191 

200 15.049 16.563 17.968 19.853 
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>500 14.712 15.943 17.122 18.408 

Model B 

Sample Size ↓ 90% 95% 97.5% 99% 

50 19.052 21.764 24.073 26.377 

100 16.032 17.719 19.554 21.596 

200 14.953 16.645 17.817 19.117 

>500 14.019 15.367 16.622 18.183 

Model C 

Sample Size ↓ 90% 95% 97.5% 99% 

50 21.950 24.388 26.556 30.175 

100 18.712 20.585 22.253 24.619 

200 17.601 18.691 20.339 22.383 

>500 16.761 18.049 19.299 20.861 

 

Testing for the null hypothesis goes as follows: Choose the Model (A, B or C) 

that best describe the data from (9), and estimate it by OLS for break fractions, 𝜆, going 

from 𝑗 = 2 𝑇⁄  until 𝑗 = (𝑇 − 1) 𝑇⁄ . For each possible break fraction, it might be needed 

to augment the test regression with lagged second differences of 𝑦𝑡 to remove the effect 

of autocorrelated errors on the properties of the test statistics. The number 𝑘 of lags can 

be determined with the GTS (General-to-Specific) methodology with the usual p-value 

of 10% starting from 𝑘 = 𝑘𝑚𝑎𝑥. Then compute 𝐹�̂�
𝑖(𝜆) for each 𝜆, and choose the 

greatest entry of the sequence of test statistics, and compare it with the respective 

critical value presented in Table III. Reject the null hypothesis if the value of the test 

statistic is greater than the chosen critical value. 
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6.3 Rejecting the Null Hypothesis 

 One key issue when testing for two unit roots is how to proceed when the test 

leads to the rejection of the null hypothesis. In this case, the series can either be I(0) or 

have a unit root. Several tests have been devised to test the null of exactly one unit root 

when there is a break in the deterministic trend, such as Perron (1989), Zivot & 

Andrews (1992) and more recently Perron (1997). Therefore, when rejecting the null 

hypothesis of two unit roots, one natural suggestion is to proceed sequentially and in a 

second step apply one of these tests for one unit root and conclude whether the series is 

I(0) or I(1). Caution should be taken when a second test is performed sequentially, 

because the overall test size increases with the application of a new individual test. The 

difference between the significance level defined for each individual test and the 

probability of Type I error of the sequential procedure is lwft for future research.  

7 Size and Power Simulations 

 We now assess the finite sample power and size of the proposed tests. The data 

generating processes for the Monte Carlo simulations are given by equations (3) 𝑖 =

𝐴, 𝐵, 𝐶 and (5) with 𝑒𝑡~𝑖. 𝑖. 𝑑 𝑁(0,1). The number of replications is set to 2500, and the 

sample size is 50, 100, 200, 300, 400 and 500. The nominal size was fixed at 5% and 

the asymptotic critical values from Table II were used for the test with a known break 

date. The reported results are for Model A only, but Monte Carlo simulations for 

Models B and C undertaken by the author of this thesis1 show identical outcomes. For 

the test with unknown break date the critical values from the Model A entry in Table III 

were used. Because the null hypothesis assumes that no change occurs in the 

deterministic function, we also investigate the robustness of the test to structural 

                                                      
1 The simulation results for models B and C are available upon request. 
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changes under the null. In those simulations, the sample size is fixed in T=150 and 𝜆 =

1

2
, while varying the break magnitude. Lastly, we inspect the behaviour of the test for an 

unknown changepoint when multiple breaks occur, both under the null, and under 

different alternatives, for Models A and B. In this case the sample size is also T=150. 

Table IV: Null Rejection Probabilities – Known Changepoint Test 

𝛼1, 𝛼2 ↓ 50 100 200 300 400 500 

1.0, 1.0 0.046 0.018 0.021 0.034 0.033 0.041 

1.0, 0.9 0.112 0.067 0.128 0.305 0.577 0.818 

1.0, 0.7 0.287 0.249 0.434 0.782 0.960 0.998 

0.9, 0.9 0.188 0.199 0.567 0.922 0.995 1.000 

0.9, 0.8 0.315 0.427 0.861 0.966 0.999 1.000 

0.99, 0.99 0.066 0.033 0.040 0.055 0.082 0.108 

 

Table V: Null Rejection Probabilities – Unknown Changepoint Test 

𝛼1, 𝛼2 ↓ 50 100 200 300 400 500 

1.0, 1.0 0.213 0.100 0.068 0.055 0.057 0.053 

1.0, 0.9 0.338 0.348 0.562 0.842 0.974 1.000 

1.0, 0.7 0.732 0.928 1.000 1.000 1.000 1.000 

0.9, 0.9 0.465 0.648 0.987 1.000 1.000 1.000 

0.9, 0.8 0.658 0.914 1.000 1.000 1.000 1.000 

0.99, 0.99 0.228 0.132 0.134 0.138 0.138 0.168 

 Starting with the test for a known breakpoint (Table IV), the empirical size is 

very close to nominal 5%, even when the sample includes only 50 observations. When 

the sample grows larger, the simulated size draws a U-shaped trajectory, with a 

minimum close to 2% when the sample size is around 100 observations. However, it 

tends to the nominal value of 5% with successive increases in T. 
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The test also displays decent power to reject the null in finite samples against 

several configurations of the alternative hypothesis. In the somewhat extreme case of 

both roots equal to 0.99, the test presents very low power, close to the nominal size. 

However, even in this case, we notice that power tends to increase with the sample size, 

albeit at a very slow rate. 

 For the test with an unknown changepoint (Table V), there is a modest size 

distortion in small samples. The test has finite sample power to reject the null, and lacks 

power only in the extreme cases of both inverse roots equal to 0.99, although in the 

latter case, convergence to maximum power is much faster. 
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Figure 2 -  Size as a function of the break parameters. Model A (left) and Model B (right) 

Figure 3 Size (left) and Power (right) as a function of the number of changepoints for Model A 
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 Figures 2-4 show the behaviour of the test for an unknown break date, under 

different configurations. Figure 2 shows that a level shift (Model A) under the null 

hypothesis leads to an oversized test, which is aggravated when the break parameter 

grows larger. However, from Theorem 3, this problem disappears when the sample size 

grows large. If instead of a level shift, we have a slope change (Model B) the effect is 

almost negligible. The test becomes oversized, but the size distortion increases very 

slowly with the magnitude of the break. Again, Theorem 3 ensures that this problem 

does not exist in large samples. 

 Figure 3 shows a similar exercise; however, this time it is the number of 

breakpoints that changes. Here, both size and power increase with the number of breaks. 

Figure 4 -  Size (left) and Power (right) as a function of the number of changepoints for Model B 
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Figure 4 shows the effect of multiple changepoints, but for Model B. Here, the test size 

and power remain almost unchanged. 

8 Empirical Applications 

 We now apply the previous tests to a dataset composed of monthly, quarterly 

and annual series. Information about the complete dataset can be found in the Data 

Appendix. One relevant aspect to the application of the proposed tests is the choice of 𝑘, 

i.e., the number of lagged second-differences, Δ2𝑦𝑡−𝑖, 𝑖 = 1,… , 𝑘, to be added in 

equation (7. 𝑖). We opted to use a conventional GTS strategy with p-value=0.1, starting 

from 𝑘 = 𝑘𝑚𝑎𝑥. The 𝑘𝑚𝑎𝑥 chosen depended on the frequency of each time series. For 

the annual series we used 𝑘𝑚𝑎𝑥 = 4 or 6, for the quarterly series we used 𝑘𝑚𝑎𝑥 = 8 and 

for the monthly series we used 𝑘𝑚𝑎𝑥 = 24. For each model, the sequence of test 

statistics was calculated. Once the sequence of test statistics is obtained, we use the 

estimate of the break date of each model, which is the one that corresponds to the 

sup𝜆∈Λ𝐹�̂�
𝑖(𝜆0), for 𝑖 = 𝐴, 𝐵, 𝐶, and rerun the test regression with those estimated break 

dates and calculate the AIC and BIC information criteria. The chosen model is that 

which minimizes these criteria. In the case of different models chosen, the Schwartz 

criteria is favoured because it tends to choose a more parsimonious model. The results 

are given in Table VI. 

The test under the unknown changepoint framework was applied for all series, 

except the Greek government debt. For the Greek Government Debt series, the test for a 

known break date was used, since there is a clear level shift in the last quarter of 2013. 

For the monthly series, the null hypothesis was rejected for all but three series when 

using the sup𝜆∈Λ𝐹�̂�(𝜆). From Figures 1 and 2 (left panels) it is known that the proposed 
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test has excessive size-distortions when a level shift truly exists, even if the null 

hypothesis is true. Structural changes are a common feature of long span data, thus, it is 

possible that the null hypothesis is rejected due to the presence of a level shift. This 

problem, and an eventual solution, will be discussed shortly. 

 For the quarterly series, we highlight the fact that for the Portuguese and Greek 

General Government debts, the null hypothesis was not rejected meaning that 

innovations have a very persistent behaviour. In fact, if we assume that the data can be 

described by an 𝐴𝑅𝐼𝑀𝐴(𝑝, 2, 𝑞) process, then it is easy to understand and justify the 

marked increase in debt observed in the latest years (several positive shocks), and why 

it has been difficult to lower said debt (past shocks have its effects increased over time).  

 For the annual time series, there are some differences in both tests, namely for 

some population series, which is an interesting outcome. For six population series, the 

HF test rejects the null hypothesis, whilst the supremum test does not. Non-rejection of 

the null hypothesis for the population series suggests that, with the right policies 

(positive shocks), it might be possible to reverse the downward trend verified in many 

developed countries. For Portugal, however, the null hypothesis was rejected when 

using sup𝜆∈Λ𝐹�̂�
𝐴(𝜆), but not rejected when using the common HF test, which seems to 

go against the findings in Table I. However, note that the sup𝜆∈Λ𝐹�̂�
𝐴(𝜆) might be 

rejecting because there really is a level shift in 1974, which coincides with a major 

event in Portugal.  
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Table VI: Tests for the Double Unit Root Null Hypothesis 

Variable 𝑇 𝑇�̂� HF test Model sup𝜆∈Λ𝐹�̂�
𝑖(𝜆) Conclusion 

PIPCE 699 2/1973 14.72 A 18.65 H0 (1%) 

PIPCECORE 699 2/1973 14.12 A 18.30 H0 (1%) 

PIPCEDG 699 3/1980 4.65 B 28.27 H1 

PIPCEF 699 1/1973 11.58 A 30.85 H1 

CPIALL 686 10/1981 5.75 C 26.99 H1 

CPICORE 700 2/1973 4.34 A 15.28 H0 

TCCOUT 891 2/2006 29.62 A 35.95 H1 

EMPLOYNF 940 11/1997 39.82 B 53.05 H1 

M1 700 12/1993 11.55 A 21.37 H1 

M2 700 1/1987 10.70 A 19.95 H1 

PIGDP 281 1/1973 4.37 A 14.39 H0 

PIPCEHOUSE 281 10/1973 6.03 A 13.94 H0 

PIGPDI 281 Q1/1973 14.43 A 28.76 H1 

TFD 204 Q1/1990 5.61 B 12.09 H0 

PTGGOVDEBT 68 Q1/2012 4.94 B 11.19 H0 

ESGGOVDEBT 68 Q1/2003 13.54 B 335.29 H1 

GRGGOVDEBT* 68 Q4/2013 12.24 A - H0 (1%) 

ITGGOVDEBT 68 Q3/2003 58.90 A 65.71 H1 

USNRULR 68 Q1/1990 9.03 A 13.99 H0 

USNRUSR 273 Q3/1975 12.60 B 17.73 H0 (2.5%) 

ROUTM 273 Q1/2008 23.94 A 38.71 H1 

OUTNFB 121 Q1/2006 19.04 C 93.72 H1 

COMPNFB 281 Q1/1982 6.48 A 28.64 H1 

PTCPBNAS 281 Q2/2008 11.38 A 38.19 H1 

PTCP 88 Q2/2008 24.34 A 37.08 H1 

PTCPUB 87 Q2/2010 11.10 A 19.11 H0 

USMFI 88 1980 16.02 B 30.59 H1 

USRMFI 60 1969 26.38 B 30.55 H1 

USFDTOGDP 60 1964 10.94 B 42.13 H1 

USFDHP 76 1975 16.65 A 21.93 H0 (2.5%) 

USFDDSL 76 2000 1.68 B 9.20 H0 

USFGSL 71 1995 9.36 C 18.74 H0 
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BEL 71 1998 7.11 B 16.19 H0 

CAN 56 1998 14.09 A 18.25 H0 

CHN 56 1996 10.22 B 60.99 H1 

EMU 56 1974 10.44 B 17.42 H0 

EUU 56 1976 11.01 B 16.88 H0 

FIN 56 1999 17.46 A 37.23 H1 

FRA 56 1973 11.43 B 17.15 H0 

ITA 56 1989 3.47 B 21.12 H0 

PRT 56 1974 9.14 A 39.17 H1 

ESP 56 1993 11.54 A 15.64 H0 

DE 56 1989 13.60 A 25.40 H0 (1%) 

US 86 1947 3.72 C 26.44 H0 (2.5%) 

  

One of the limitations of the proposed test for an unknown changepoint is that it 

tends to reject the null hypothesis more often than it should, when a change in the 

deterministic function exists. If the data series studied is not too long, then it is plausible 

that, should it be present, a very reduced number of changepoints exist. With this in 

mind, for those series in Table VI for which the null was rejected, the sample was split 

in two using the estimated break date. Then, the test for two-unit roots was applied to 

the longest segment. Table VII shows the results. The green entries indicate those series 

for which the conclusion of the test changed, yellow indicate those for which the 

conclusion did not change, and the grey series were not re-tested since the null had been 

not rejected before. The letters in brackets, (L) and (R), indicate whether the left or right 

subsample was used.  

 Having repeated the test, it was possible to reverse the conclusion in seven 

series. However, splitting the samples in two led to small subsamples in five of those 

series, thus, it is necessary to be cautious before not rejecting the null hypothesis. 
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Nonetheless, there are some interesting non-rejections of the null, such as the Spanish 

debt, the US Debt to GDP ratio, and the Portuguese population suggesting that, for the 

subsample considered, innovations have a very persistent impact, which can be well 

described by the two-unit root model. 

Table VII: Tests for the Double Unit Root Null Hypothesis - Revised 

Variable 𝑇 𝑇�̂� HF test Model sup𝜆∈Λ𝐹�̂�
𝑖(𝜆) Conclude 

PIPCE 419 2/1973 14.72 A 18.65 H0 (1%) 

PIPCECORE 419 2/1973 14.12 A 18.30 H0 (1%) 

PIPCEDG 363 (R) 8/1980 14.74 B 20.24 H1 

PIPCEF 372 (R) 9/1980 16.38 B 23.84 H1 

CPIALL 298 (R) 8/2008 24.51 A 30.79 H1 

CPICORE 420 2/1973 4.34 A 15.28 H0 

TCCOUT 410 (L) 5/1950 23.36 B 29.23 H1 

EMPLOYNF 490 (R) 11/1964 41.65 A 46.11 H1 

M1 197 (R) 9/2008 8.14 A 16.83 H0 

M2 255 (R) 5/1995 9.25 A 39.17 H1 

PIGDP 169 1/1973 4.37 A 14.39 H0 

PIPCEHOUSE 169 10/1973 6.03 A 13.94 H0 

PIGPDI 123 (R) Q1/1981 15.81 B 25.24 H1 

TFD 122 Q1/1990 5.61 B 12.09 H0 

PTGGOVDEBT 41 Q1/2012 4.94 B 11.19 H0 

ESGGOVDEBT 68 Q1/2003 13.54 B 335.29 H1 

GRGGOVDEBT* 68 Q4/2013 12.24 A - H0 (1%) 

ITGGOVDEBT 32 (R) Q1/2007 18.66 A 54.28 H1 

USNRULR 164 Q1/1990 9.03 A 13.99 H0 

USNRUSR 164 Q3/1975 12.60 B 17.73 H0 (2.5%) 

ROUTM 60 (R) Q2/2000 14.05 A 25.13 H0 (1%) 

OUTNFB 166 (L) Q1/1961 23.54 C 87.27 H1 

COMPNFB 99 (L) Q2/1965 12.08 B 24.39 H1 

PTCPBNAS 38 (R) Q3/1999 38.18 C 79.33 H1 

PTCP 38 (R) Q1/2000 45.66 B 62.55 H1 

PTCPUB 53 Q2/2010 11.10 A 19.11 H0 
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USMFI 25 (R) 2000 12.66 B 21.55 H0 

USRMFI 32 (R) 2000 20.23 B 24.25 H0 (1%) 

USFDTOGDP 35 (R) 2008 11.75 A 14.83 H0 

USFDHP 46 1975 16.65 A 21.93 H0 (2.5%) 

USFDDSL 43 2000 1.68 B 9.20 H0 

USFGSL 43 1995 9.36 C 18.74 H0 

BEL 56 1998 7.11 B 16.19 H0 

CAN 56 1998 14.09 A 18.25 H0 

CHN 34 (R) 1974 13.99 B 61.26 H1 

EMU 56 1974 10.44 B 17.42 H0 

EUU 56 1976 11.01 B 16.88 H0 

FIN 36 (R) 1969 14.01 A 61.20 H1 

FRA 56 1973 11.43 B 17.15 H0 

ITA 56 1989 3.47 B 21.12 H0 

PRT 36 (R) 2006 6.29 C 20.60 H0 

ESP 56 1993 11.54 A 15.64 H0 

DE 56 1989 13.60 A 25.40 H0 (1%) 

US 88 1947 3.72 C 26.44 H0 (2.5%) 
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9 Conclusions 

 Structural changes affect the limiting distribution of the OLS estimator, and can 

distort the inference based on non-robust methods. In this dissertation, we extended the 

test proposed in Hasza & Fuller (1979) for two-unit roots, to cover the case of a possible 

change in the deterministic function. 

 Two different approaches were developed, one that exploits information 

available about the break date, and other that assumes no prior knowledge about it. 

Under the known break date hypothesis, the test regression from the common Hasza-

Fuller test was adapted to include the information available. The test statistic has a non-

standard limiting distribution under the null hypothesis, which does not depend on 

nuisance parameters, and its critical values are obtained via Monte Carlo simulation. 

For the case of an unknown break date, a supremum approach was taken in order to 

pinpoint the date that gives the highest evidence for the alternative hypothesis. The test 

statistic has a non-standard limiting distribution, and is also free of nuisance parameters 

under the null hypothesis. However, due to the way the null hypothesis is formulated, 

the small sample distribution is perturbed by the break parameters. Nonetheless, this is 

only a problem under model A with integrated errors, and it quickly dissipates as the 

sample size grows large. 

 The tests were subject to a series of simulations in order to verify its robustness 

against several alternatives. Both tests are asymptotically consistent and have the correct 

size. One of the limitations of the test for an unknown break date is the excessive size 

distortions, in small samples, when facing a level shift under the null hypothesis. 

However, this problem vanishes asymptotically. This issue does not arise when there is 

a slope change under the null. Another issue emerges when there is more than one 
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changepoint but, again only for model A and it vanishes with the increase of the sample 

size. 

 In section 8, both tests were applied to several time series which are suitable 

candidates to be explained by the two-unit root model. The null hypothesis was not 

rejected for 23 of those time series, with special attention to the Portuguese and Greek 

General Government debts. Other interesting results concern the natural rates of 

unemployment for the United States and for many of the population series. It seems that 

the double-unit root model is a suitable candidate to explain some major economic 

variables. 

 The tests proposed are F type of statistics, and thus, bilateral in nature. This 

means that additional power gains can be achieved by exploring unilateral t-tests, by 

following for example the Dickey & Pantula approach. However, their method is more 

complex since it requires changing the test regression in each step. Another issue that 

should be solved in the unknown changepoint test starts by admitting a trend break 

model even under the null hypothesis, to prevent excessive size distortions when there 

is a level shift and the error is integrated of order two. Finally, it would be interesting to 

develop tests that can accommodate multiple breaks. 
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A Data Appendix 

Table VIII: Dataset Description 

Variable Description Freq. Nº Obs. 

PIPCE USA - Personal Consumption Expenditure Price Index (2009=100) M 699 

PIPCECORE USA - Personal Consumption Expenditure Price Index, less Food and 

Energy (2009=100) 

M 699 

PIPCEDG USA - Personal Consumption Expenditure Price Index, Durable Goods 

(2009=100) 

M 699 

PIPCEF USA - Personal Consumption Expenditure, Food (2009=100) M 699 

CPIALL USA - Consumer Price Index, All Items (2010=100) M 686 

CPICORE USA - Consumer Price Index, less Food and Energy (2010=100) M 686 

TCCOUT USA - Total Consumer Credit Owned and Securitized, Outstanding Bn. $ M 891 

EMPLOYNF USA - Total Employment, Non-Farm M 940 

M1 USA - M1 Money Stock M 700 

M2 USA - M2 Money Stock M 700 

PIGDP USA - Gross Domestic Product Price Index (2009=100)  Q 281 

PIPCEHOUSE USA - Personal Consumption Expenditure Price Index – Housing 

(2009=100) 

Q 281 

PIGPDI USA - Gross Private Domestic Investment Price Index (2009=100) Q 281 

TFD USA - Total Federal Debt, Million $ (no sa) Q 204 

PTGGOVDEBT Portuguese General Government Debt, Million € Q 68 

ESGGOVDEBT Spanish General Government Debt, Million € Q 68 

GRGGOVDEBT Greek General Government Debt, Million € Q 68 

ITGGOVDEBT Italian General Government Debt, Million € Q 68 

USNRULR USA – Natural Rate of Unemployment, Long Run Q 68 

USNRUSR USA – Natural Rate of Unemployment, Short Run Q 68 

ROUTM USA - Real Output - Manufacturing Q 121 

OUTNFB USA – Non Farm Business Sector – Real Output Q 281 

COMPNFB USA – Non Farm Business Sector – Compensation per Hour Q 281 

PTCPBNAS PT – Private Consumption. Services and non Food Goods Q 88 

PTCP PT – Private Consumption Q 88 

PTCPUB PT – Public Consumption Q 88 

USMFI Mean Family Income – USA A 63 

USRMFI Real Mean Family Income – USA A 63 
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USFDTOGDP Federal Debt % of GDP - USA A 77 

USFDHP Federal Debt Held by the Public - USA A 77 

USFBDSL Financial Businesses – Debt Securities and Liabilities - USA A 72 

USFGSL Federal Government – Debt Securities and Liabilities – USA A 72 

BEL Total Population, Belgium A 56 

CAN Total Population, Canada A 56 

CHN Total Population, China A 56 

EMU Total Population, Euro Area (19) A 56 

EUU Total Population, European Union (28)  A 56 

FIN Total Population, Finland A 56 

FRA Total Population, France A 56 

ITA Total Population, Italy A 56 

PRT Total Population, Portugal A 56 

ESP Total Population, Spain A 56 

DE Total Population, Germany A 56 

US Total Population, USA A 56 
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B Mathematical Appendix 

 

Proof of Theorem 1 

 For convenience, we write here the data generation process. 

(𝐴. 1)    𝑦𝑡 = 𝜷
𝒊′𝒛𝒕

𝒊(𝝀) + 𝑥𝑡 

(𝐴. 2)   (1 − 𝛼1𝐿)(1 − 𝛼2𝐿)𝑥𝑡 = 𝑒𝑡 

(𝐴. 3)   𝑒𝑡~
𝑖𝑖𝑑(0, 𝜎2)   

We also write here the test equation: 

(𝐴. 4)    ∆2𝑦𝑡 = 𝜇
∗ + 𝛿∗𝑡 + 𝜌1𝑦𝑡−1 + 𝜌2∆𝑦𝑡−1 + 𝑒𝑡 

          ⇔ 𝑦𝑡 = 𝜇
∗ + 𝛿∗𝑡 + 𝜙1𝑦𝑡−1 + 𝜙2𝑦𝑡−2 + 𝑒𝑡 

, where 𝜙1 = 𝜌1 + 𝜌2 + 2 and 𝜙2 = −𝜌2 − 1. 

Note that, we are estimating the test equation (A.4), as if the data generating process 

was a pure double unit root process, instead of the trend break model in (A.1). This can 

be understood as an omitted variables problem. 

Part 1 – model A 

Under the hypothesis |𝛼𝑗| < 1 for 𝑗 = 1,2 for model A, we have 𝜷𝑨
′
=

(𝜇, 𝛿, 𝜇𝑏) and 𝒛𝒕
𝑨(𝝀) = (1, 𝑡, 𝐷𝑈𝑡)

′ . 

Since a linear trend is present in the DGP, the regressors 𝑦𝑡−𝑘 (𝑘 = 1, 2) and 𝑡 
will be asymptotically perfectly collinear, since the trend asymptotically dominates the 

remaining terms, thus we need to modify the test regression, by adding and subtracting 

𝜙𝑘[𝜇
∗ + 𝛿∗(𝑡 − 𝑘)] for 𝑘 = 1, 2. This transformation was suggested in Sims, Stock & 

Watson (1990) and is presented in detail in Hamilton, J. (1994). 

Following with that transformation, we get: 

(𝐴. 5)  𝑦𝑡 = 𝜇
∗∗ + 𝛿∗∗𝑡 + 𝜙1�̃�𝑡−1 + 𝜙2�̃�𝑡−2 + 𝑒𝑡 

Where: 

𝜇∗∗ = 𝜇∗(1 + 𝜙1 + 𝜙2) − 𝛿
∗(𝜙1 + 2𝜙2) 

𝛿∗∗ = (1 + 𝜙1 + 𝜙2) 

�̃�𝑡−𝑘 = 𝑦𝑡−𝑘 − 𝜇
∗ − 𝛿∗(𝑡 − 𝑘) 

𝑘 = 1,2 

Note that, whilst we are transforming the test equation, �̃�𝑡−𝑘 is obtained from the DGP 

(A.1). 

The transformation from (A.4) to (A.5) can be summarized in matrix form. Write (A.5) 

as 𝑦𝑡 = 𝒙
′
𝒕𝜷 + 𝑒𝑡 = 𝒙

′
𝒕𝑯

′[𝑯′]−𝟏𝜷 + 𝑒𝑡 = 𝒙′̃𝒕�̃� + 𝑒𝑡, where the “~” indicates the 

transformed vector of variables and parameters. 
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The matrix 𝑯′ can be found by solving the system of equations: 

[𝑯′]−𝟏𝜷 = �̃� 

Which yields [𝑯′]−𝟏 = [

1 0 𝜇∗ − 𝛿∗ 𝜇∗ − 2𝛿∗

0 1 𝛿∗ 𝛿∗

0 0 1 0
0 0 0 1

] ⇒ 𝑯′ =

[

1 0 𝛿∗ − 𝜇∗ 2𝛿∗ − 𝜇∗

0 1 −𝛿∗ −𝛿∗

0 0 1 0
0 0 0 1

] 

Now, the OLS estimation error of the transformed regression is given by: 

(𝐴. 6)  (�̂̃� − �̃�) = [∑𝒙𝒕[�̃�𝒕]
′

𝑻

𝒕=𝟏

]

−𝟏

[∑�̃�𝒕𝑒𝑡

𝑻

𝒕=𝟏

] = [𝑯(∑𝒙𝒕𝒙
′
𝒕

𝑻

𝒕=𝟏

)𝑯′]

−𝟏

𝑯(∑𝒙𝒕

𝑻

𝒕=𝟏

𝑒𝑡) 

Consider the diagonal matrix 𝚪 = diag (√𝑇, 𝑇
3

2, √𝑇, √𝑇).  

Premultiply (A.6) by 𝚪: 

𝚪 (�̂̃� − �̃�) = [𝚪−𝟏 (∑�̃�𝒕[𝒙𝒕]
′

𝑻

𝒕=𝟏

)𝚪−𝟏]

−𝟏

[𝚪−𝟏 (∑�̃�𝒕𝑒𝑡

𝑻

𝒕=𝟏

)] 

The first term is equal to: 

𝚪−𝟏 (∑�̃�𝒕[𝒙𝒕]
′

𝑻

𝒕=𝟏

)𝚪−𝟏 = 

[
 
 
 
 
1 𝑇−2∑𝑡 𝑇−1∑ �̃�𝑡−1 𝑇−1∑ �̃�𝑡−2
𝑇−2∑ 𝑡 𝑇−3∑𝑡2 𝑇−2∑ 𝑡�̃�𝑡−1 𝑇−2∑ 𝑡�̃�𝑡−2
𝑇−1∑ �̃�𝑡−1 𝑇−2∑𝑡�̃�𝑡−1 𝑇−1∑ �̃�𝑡−1

2 𝑇−1∑ �̃�𝑡−1�̃�𝑡−2
𝑇−1∑ �̃�𝑡−2 𝑇−2∑𝑡�̃�𝑡−2 𝑇−1∑ �̃�𝑡−1�̃�𝑡−2 𝑇−1∑ �̃�𝑡−2

2 ]
 
 
 
 

  

Where all summations go from 1 to T 

The terms 𝑇−2∑𝑡 and 𝑇−3∑𝑡2 converge to 1 2⁄  and 1 3⁄  respectively. 

The terms evolving sums of �̃�𝑡−𝑘 can be shown to have the following limiting results: 

𝑇−1∑�̃�𝑡−𝑖�̃�𝑡−𝑗 →
𝑝 𝛾|𝑖−𝑗| + 𝜇𝑏

2(1 − 𝜆),   𝑖, 𝑗 = 1,2 

𝑇−1∑�̃�𝑡−𝑘 →
𝑝 𝜇𝑏(1 − 𝜆),   𝑘 = 1,2 

𝑇−1∑�̃�𝑡−𝑘
2 →𝑝  𝛾0 + 𝜇𝑏

2(1 − 𝜆),   𝑘 = 1,2 

Finally, 𝑇−2∑𝑡�̃�𝑡−𝑘 →
𝑝 1

2
𝜇𝑏(1 − 𝜆)

2,   𝑘 = 1, 2. 
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Therefore, 𝚪−𝟏(∑ �̃�𝒕[𝒙𝒕]
′𝑻

𝒕=𝟏 )𝚪−𝟏 →𝒑 𝐕 

Next, consider the vector [𝚪−𝟏(∑ �̃�𝒕𝑒𝑡
𝑻
𝒕=𝟏 )] = 𝑻−

𝟏

𝟐∑ 𝝃𝒕
𝑻
𝒕=𝟏  where  

𝝃𝒕 =

[
 
 
 
𝑒𝑡
(𝑡 𝑇⁄ )𝑒𝑡
�̃�𝑡−1𝑒𝑡
�̃�𝑡−2𝑒𝑡 ]

 
 
 
 which is a martingale difference sequence with covariance matrix given 

by 𝐸[𝝃𝒕𝝃𝒕
′] = 𝜎2𝐕𝐭, where 𝑇−1∑ 𝐕𝐭

𝑻
𝒕=𝟏 → 𝐕 

𝐕 =

[
 
 
 
 
 
 
 1

1

2
𝜇𝑏(1 − 𝜆) 𝜇𝑏(1 − 𝜆)

1

2

1

3

1

2
𝜇𝑏(1 − 𝜆)

2
1

2
𝜇𝑏(1 − 𝜆)

2

𝜇𝑏(1 − 𝜆)
1

2
𝜇𝑏(1 − 𝜆)

2 𝜇𝑏
2(1 − 𝜆) + 𝛾0 𝛾1 + 𝜇𝑏

2(1 − 𝜆)

𝜇𝑏(1 − 𝜆)
1

2
𝜇𝑏(1 − 𝜆)

2 𝛾1 + 𝜇𝑏
2(1 − 𝜆) 𝜇𝑏

2(1 − 𝜆) + 𝛾0]
 
 
 
 
 
 
 

  

Thus, appealing to the Martingale Difference Sequence Central Limit Theorem, we 

have that 𝚪−𝟏(∑ �̃�𝒕𝑒𝑡
𝑻
𝒕=𝟏 ) →𝒅 𝑵(𝟎, 𝜎2𝐕) and, applying Slutsky’s theorem, it follows: 

 𝚪 (�̂̃� − �̃�) →𝒅 𝑵(𝟎,𝑽−𝟏𝜎2𝐕𝐕−𝟏) = 𝑵(𝟎, 𝜎2𝐕−𝟏).  

Finally, recalling the transformation matrix 𝑯 we find that the OLS estimators �̂�1 and 

�̂�2 are identical in the transformed and untransformed regressions, hence their 

distribution is also the same. Therefore, 

√𝑇(�̂�1 − 𝜙1) →
𝑑 𝑁[0, 𝜎2𝜏]  

√𝑇(�̂�2 − 𝜙2) →
𝑑 𝑁[0, 𝜎2𝜏] 

Where: 

𝜏 =
(−3𝜆4 + 6𝜆3 − 4𝜆2 + 𝜆)𝜇𝑏

2 + 𝛾0

(𝛾0
2 − 𝛾1

2) + ((12𝜆3 − 6𝜆4 − 8𝜆2 + 2𝜆)𝛾0 + (6𝜆4 − 12𝜆3 + 8𝜆2 − 2𝜆)𝛾1)𝜇𝑏
2

 

The final step links the estimators �̂�1 and �̂�2 to �̂�1 and �̂�2, respectively, through the 

linear relation 

[
𝜌1
𝜌2
] = [

1 1
0 −1

] [
𝜙1
𝜙2
] + [

−1
−1
] which can be estimated by [

�̂�1
�̂�2
] = [

1 1
0 −1

] [
�̂�1
�̂�2
] + [

−1
−1
]. 

Doing [
�̂�1 − 𝜌1
�̂�2 − 𝜌2

] = [
1 1
0 −1

] [
�̂�1 − 𝜙1
�̂�2 − 𝜙2

] and multiplying both sides by √𝑇, we obtain: 

[
√𝑇(�̂�1 − 𝜌1)

√𝑇(�̂�2 − 𝜌2)
] = [

1 1
0 −1

] [
√𝑇(�̂�1 − 𝜙1)

√𝑇(�̂�2 − 𝜙2)
], which in turn implies: 
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√𝑇(�̂�1 − 𝜌1) →
𝑑 𝑁[0, 2𝜎2𝜏] 

√𝑇(�̂�2 − 𝜌2) →
𝑑 𝑁[0, 𝜎2𝜏]  

As intended. 

 

Part 1 – models B and C 

 The proof for model A was based on a transformed regression, which helped to 

deal with the correlation between 𝑡, 𝑦𝑡−1 and 𝑦𝑡−2 in large samples. To prove the results 

for models B and C, that transformation is not enough, because even if we deal with the 

linear trend in the DGP, we are still left with the term 𝛿𝑏𝐷𝑇𝑡 which will still cause the 

perfect collinearity problem in large samples referred for model A, but this time 

between 𝑦𝑡−1 and 𝑦𝑡−2. Thus, we start by transforming the regression (A.4) in the same 

way as before, but then proceed to transform the equation an additional time to remove 

the problem of the neglected slope shift. 

Start with equation (A.5). Add and subtract 𝜙2�̃�𝑡−1, which yields the following 

equation 

(𝐴. 7)  𝑦𝑡 = 𝜇
∗ + 𝛿∗𝑡 + 𝜙1

∗�̌�𝑡−1 +𝜙2
∗Δ�̌�𝑡−1 + 𝑒𝑡 = �̌�𝒕

′�̌�+𝑒𝑡  

Where  𝜙1
∗ = 𝜙1 + 𝜙2 and 𝜙2

∗ = 𝜙2 

Where �̌�𝑡−1 = 𝜇𝑏𝐷𝑈𝑡−1 + 𝛿𝑏𝐷𝑇𝑡−1 + 𝑥𝑡−1 and Δ�̌�𝑡−1 = 𝜇𝑏∆𝐷𝑈𝑡−1 + 𝛿𝑏𝐷𝑈𝑡−1 +
∆𝑥𝑡−1. 

This time, the matrix 𝑯′ that solves [𝑯′]−𝟏𝜷 = �̌� is given by: 

[𝑯′]−𝟏 = [

1 0 𝜇∗ − 𝛿∗ 𝜇∗ − 2𝛿∗

0 1 𝛿∗ 𝛿∗

0 0 1 1
0 0 0 1

] ⇒ 𝑯′ = [

1 0 𝛿∗ − 𝜇∗ 𝛿∗

0 1 −𝛿∗ 0
0 0 1 −1
0 0 0 1

] 

And, like before, the OLS estimation error is given by 

(𝐴. 8)  (�̂̌� − �̌�) = [∑�̌�𝒕[�̌�𝒕]
′

𝑻

𝒕=𝟏

]

−𝟏

[∑�̌�𝒕𝑒𝑡

𝑻

𝒕=𝟏

] = [𝑯(∑𝒙𝒕𝒙
′
𝒕

𝑻

𝒕=𝟏

)𝑯′]

−𝟏

𝑯(∑𝒙𝒕

𝑻

𝒕=𝟏

𝑒𝑡) 

= 𝑯−𝟏(�̂� − 𝜷) 

Before proceeding, we need to check the order of convergence of the following 

moments: 
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Lemma A.1 

∑�̌�𝑡

𝑇

𝑡=1

=∑𝜇𝑏𝐷𝑈𝑡−1 + 𝛿𝑏𝐷𝑇𝑡−1 + 𝑥𝑡−1

𝑇

𝑡=1

= 𝜇𝑏𝑇(1 − 𝜆) +
1

2
𝛿𝑏𝑇(1 − 𝜆)(𝑇 − 𝜆𝑇 + 1) + √𝑇 [𝑇

−
1
2∑𝑥𝑡−1

𝑇

𝑡=1

] 

 

∑�̌�𝑡
2

𝑇

𝑡=1

=
1

6
𝑇(1 − 𝜆)[𝑇2(2𝜆2𝛿𝑏 − 4𝜆𝛿 + 2𝜆) + 𝑇(3𝛿𝑏

2 + 6𝛿𝑏𝜇𝑏 − 3𝜆𝛿𝑏 − 6𝜆𝜇𝑏𝛿𝑏)

+ (6𝜇𝑏
2 − 6𝜇𝑏𝛿𝑏 + 𝛿𝑏

2)] + 2𝜇𝑏√𝑇 [𝑇
−
1
2 ∑ 𝑥𝑡−1

𝑇

𝑡=𝜆𝑇+1

]

+ 2𝛿𝑏𝑇
3
2 [𝑇−

3
2 ∑ (𝑡 − 𝜆𝑇)𝑥𝑡−1

𝑇

𝑡=𝜆𝑇+1

] + 𝑇 [𝑇−1∑𝑥𝑡−1
2

𝑇

𝑡=1

] 

 

∑𝑡�̌�𝑡

𝑇

𝑡=1

=
1

6
𝑇(1 − 𝜆)[𝑇2(2𝛿𝑏 − 𝜆

2𝛿𝑏 − 𝜆𝛿𝑏) + 𝑇(3𝜇𝑏(1 + 𝜆) + 3𝛿𝑏) + 𝛿𝑏 + 3𝜇𝑏]

+ 𝑇
3
2 [𝑇−

3
2∑𝑡𝑥𝑡−1

𝑇

𝑡=1

] 

 

∑�̌�𝑡Δ�̌�𝑡

𝑇

𝑡=1

= 𝜇𝑏
2𝑇(1 − 𝜆) +

1

2
𝛿𝑏
2𝑇(1 − 𝜆)(𝑇 − 𝜆𝑇 + 1) + 𝜇𝑏√𝑇 [𝑇

−
1
2 ∑ Δ𝑥𝑡−1

𝑇

𝑡=𝜆𝑇+1

]

+ 𝛿𝑏𝑇
3
2 [𝑇−

3
2 ∑ (t − 𝜆𝑇)Δ𝑥𝑡−1

𝑇

𝑡=𝜆𝑇+1

] + 𝛿𝑏√𝑇 [𝑇
−
1
2 ∑ 𝑥𝑡−1

𝑇

𝑡=𝜆𝑇+1

]

+ 𝑇 [𝑇−1∑𝑥𝑡−1Δ𝑥𝑡−1

𝑇

𝑡=1

] 

 

Therefore, the scaling matrix is given by 𝚪 = diag (√𝑇, 𝑇
3

2, 𝑇
3

2, √𝑇). Premultiplying 

(A.8) by 𝚪 yields: 

𝚪 (�̂̌� − �̌�) = [𝚪−𝟏 (∑�̌�𝒕[𝒙𝒕]
′

𝑻

𝒕=𝟏

)𝚪−𝟏]

−𝟏

[𝚪−𝟏∑�̌�𝒕𝑒𝑡

𝑻

𝒕=𝟏

] 

The first term 𝚪−𝟏(∑ �̌�𝒕[�̌�𝒕]
′𝑻

𝒕=𝟏 )𝚪−𝟏 is given by: 
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𝚪−𝟏 (∑�̌�𝒕[𝒙𝒕]
′

𝑻

𝒕=𝟏

)𝚪−𝟏

=

[
 
 
 
 
 
 
 1 𝑇−2∑𝑡 𝑇−2∑�̌�𝑡−1 𝑇−1∑Δ�̌�𝑡−1

𝑇−2∑𝑡 𝑇−3∑𝑡2 𝑇−3∑𝑡�̌�𝑡−1 𝑇−2∑𝑡Δ�̌�𝑡−1

𝑇−2∑�̌�𝑡−1 𝑇−3∑𝑡�̌�𝑡−1 𝑇−3∑�̌�𝑡
2 𝑇−2∑�̌�𝑡−1Δ�̌�𝑡−1

𝑇−1∑Δ�̌�𝑡−1 𝑇−2∑𝑡Δ�̌�𝑡−1 𝑇−2∑�̌�𝑡−1Δ�̌�𝑡−1 𝑇−1∑Δ�̌�𝑡
2

]
 
 
 
 
 
 
 

 

 

Where all summations run from 1 to T. 

The elements 𝑇−2∑ 𝑡 and 𝑇−3∑𝑡2 converge to 1/2 and 1/3, respectively. 

As for the terms involving sums of Δ�̌�𝑡−1 and �̌�𝑡−1, using Lemma A.1 and the 

appropriate scaling factor, it can be shown that they converge to the following: 

𝑇−1∑Δ�̌�𝑡−1 → 𝛿𝑏(1 − 𝜆) 

𝑇−1∑Δ�̌�𝑡
2 →𝛿𝑏

2(1 − 𝜆) + 2(𝛾0 − 𝛾1) 

𝑇−2∑𝑡Δ�̌�𝑡−1 →
1

2
𝛿𝑏(1 − 𝜆)

2 

𝑇−2∑�̌�𝑡−1 →
1

2
𝛿𝑏(1 − 𝜆)

2 

𝑇−3∑�̌�𝑡
2 →

1

6
(1 − 𝜆)(𝛿𝑏(2𝜆

2 − 4𝜆) + 2𝜆) 

𝑇−2∑�̌�𝑡−1Δ�̌�𝑡−1 →
1

2
𝛿𝑏
2(1 − 𝜆)2 

𝑇−2∑𝑡�̌�𝑡−1 →
1

6
(1 − 𝜆)(𝛿𝑏(2𝜆

2 − 4𝜆) + 2𝜆) 

 

Hence, 𝚪−𝟏(∑ �̌�𝒕[�̌�𝒕]
′𝑻

𝒕=𝟏 )𝚪−𝟏 ⟶𝐕 

The second term given by [𝚪−𝟏∑ �̌�𝒕𝑒𝑡
𝑻
𝒕=𝟏 ] = 𝑻−

𝟏

𝟐∑ 𝝃𝒕
𝑻
𝒕=𝟏  where 𝝃𝒕 =

[
 
 
 
𝑒𝑡
(𝑡 𝑇⁄ )𝑒𝑡
�̃�𝑡−1𝑒𝑡
Δ�̃�𝑡−1𝑒𝑡]

 
 
 

, is a 

martingale difference sequence, with covariance matrix 𝜎2𝐕𝒕 , where 𝑇−1∑ 𝐕𝐭
𝑻
𝒕=𝟏 → 𝐕 
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𝐕 =

[
 
 
 
 
 
 
 1

1

2

1

2
𝛿𝑏(1 − 𝜆)

2 𝛿𝑏(1 − 𝜆)

1

2

1

3

1

6
(1 − 𝜆)(2𝜆2𝛿𝑏 − 4𝜆𝛿 + 2𝜆)

1

2
𝛿𝑏(1 − 𝜆)

2

1

2
𝛿𝑏(1 − 𝜆)

2
1

6
(1 − 𝜆)(2𝜆2𝛿𝑏 − 4𝜆𝛿 + 2𝜆)

1

6
(1 − 𝜆)(2𝜆2𝛿𝑏 − 4𝜆𝛿 + 2𝜆)

1

2
𝛿𝑏
2(1 − 𝜆)2

𝛿𝑏(1 − 𝜆)
1

2
𝛿𝑏(1 − 𝜆)

2
1

2
𝛿𝑏
2(1 − 𝜆)2 𝛿𝑏

2(1 − 𝜆) + 2(𝛾0 − 𝛾1)]
 
 
 
 
 
 
 

  

Which does not depend on 𝜇𝑏. 

Hence, 𝚪−𝟏(∑ �̌�𝒕𝑒𝑡
𝑻
𝒕=𝟏 ) →𝒅 𝑵(𝟎, 𝜎2𝐕), and applying Slutsky’s theorem, it follows 

𝚪 (�̂̌� − �̌�) →𝒅 𝑵[𝟎, 𝜎2𝐕−𝟏]. 

Therefore: 

𝑇
3
2(�̂�1

∗ − 𝜙1
∗) →𝒅 𝑁[0, 𝜎2𝜃1] 

√𝑇(�̂�2
∗ − 𝜙2

∗) →𝒅 𝑁[0, 𝜎2𝜃2] 

 

Next, consulting [𝑯′]−𝟏 = [

1 0 𝜇∗ − 𝛿∗ 𝜇∗ − 2𝛿∗

0 1 𝛿∗ 𝛿∗

0 0 1 1
0 0 0 1

],  we find that the linear  

transformation need to go from 𝜙1
∗ and 𝜙2

∗ to 𝜌1 and 𝜌2, respectively is given by 

[
𝜌1
𝜌2
] = [

1 0
0 −1

] [
𝜙1
∗

𝜙2
∗] + [

−1
−1
] which is estimated by [

�̂�1
�̂�2
] = [

1 0
0 −1

] [
�̂�1
∗

�̂�2
∗
] + [

−1
−1
] 

Writing [
�̂�1 − 𝜌1
�̂�2 − 𝜌2

] = [
1 0
0 −1

] [
�̂�1
∗ − 𝜙1

∗

�̂�2
∗ − 𝜙2

∗
] and premultiplying by [𝑇

3

2

√𝑇
], we find that the 

limiting distribution is left unchanged, hence: 

𝑇
3
2(�̂�1 − 𝜌1) →

𝒅 𝑁[0, 𝜎2𝜃1] 

√𝑇(�̂�2 − 𝜌2) →
𝒅 𝑁[0, 𝜎2𝜃2] 

 

Where 

𝜃1 = [𝑽]
−1
3,3 (Element 3,3 of the respective matrix) 

𝜃2 = [𝑽]
−1
4,4 (Element 4,4 of the respective matrix) 

 

Which completes the proof. 
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Part 2 – models B and C 

Under the alternative hypothesis of exactly one unit root, the error process given 

in equation (𝐴. 2) can be rewritten as 𝑥𝑡 = 𝑥𝑡−1 + 𝜁Δ𝑥𝑡−1 + 𝑒𝑡  ⇔ Δ𝑥𝑡−1 = 𝜓(𝐿)𝑒𝑡 =

𝑢𝑡 ⇔ 𝑥𝑡 = ∑ 𝑢𝑗
𝑡
𝑗=1 ,  

Now, consider model A. If 𝑥𝑡 has a unit root, then the stochastic trend ∑ 𝑢𝑗
𝑡
𝑗=1  

asymptotically dominates the level shift, thus, the limiting distribution of the OLS 

estimator under model A does not depend on the break parameter or the break fraction.  

As for models B and C, let’s consider the data generating process, 

(𝐴. 9)   𝑦𝑡 = 𝛿𝑏𝐷𝑇𝑡 + 𝑥𝑡 

(𝐴. 10)   𝑥𝑡 = ∑ 𝑢𝑗
𝑡
𝑗=1 ,   𝑥0 = 0  

We estimate the equation 

(𝐴. 11)   ∆2𝑦𝑡 = 𝜇
∗ + 𝛿∗𝑡 + 𝜌1𝑦𝑡−1 + 𝜌2∆𝑦𝑡−1 + 𝑒𝑡 

          ⇔ 𝑦𝑡 = 𝜇
∗ + 𝛿∗𝑡 + 𝜔1𝑦𝑡−1 + 𝜔2∆𝑦𝑡−1 + 𝑒𝑡 

⇔ 𝑦𝑡 = 𝒅𝑫𝒕 + 𝜔1𝑦𝑡−1 +𝜔2∆𝑦𝑡−1 + 𝑒𝑡 

Where: 

𝜔1 = 𝜌1 + 1, 𝜔2 = −𝜌2 − 1,𝑫𝒕 = (1, 𝑡)
′, 𝒅 = (𝜇∗, 𝛿∗) 

 

Then, apply the Frisch-Waugh-Lovell theorem and estimate the equation bellow, where 

the “~” indicates the residuals from the regression of that variable on a constant and a 

linear trend. The OLS estimators �̂�1 and �̂�2 are numerically equal in (A.11) and (A.12). 

(𝐴. 12)   𝑦�̃� = 𝜔1�̃�𝑡−1 + 𝜔2Δ�̃�𝑡−1 + 𝑒𝑡 

 The OLS estimation error is then, 

(𝐴. 13)   [
𝜔1̂ − 𝜔1
𝜔2̂ − 𝜔2

] =

[
 
 
 
 
 
∑�̃�𝑡−1

2

𝑇

𝑡=1

∑�̃�𝑡−1

𝑇

𝑡=1

Δ�̃�𝑡−1

∑�̃�𝑡−1

𝑇

𝑡=1

Δ�̃�𝑡−1 ∑Δ�̃�𝑡−1
2

𝑇

𝑡=1 ]
 
 
 
 
 
−𝟏

[
 
 
 
 
 
∑�̃�𝑡−1𝑒𝑡

𝑇

𝑡=1

∑Δ�̃�𝑡−1𝑒𝑡

𝑇

𝑡=1 ]
 
 
 
 
 

 

 To prove the limiting distribution of the OLS estimator above, we will make use of 

the step function 𝑋𝑇(𝑟): 

(𝐴. 14)   𝑋𝑇(𝑟) = 𝑇
−1∑𝑢𝑗

[𝑇𝑟]

𝑗=1
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 Appealing to Donsker’s invariance theorem, under the assumptions made for the 

error sequence 𝑒𝑡 (independence and identically distributed), the following holds: 

(𝐴. 15)  
1

√𝑇
[
𝑋𝑇(∙)

𝜎
] →𝑑 𝑊(∙) 

Where 𝑊(∙) is a standard Brownian motion. 

 The connection between the sample moments and the function 𝑋𝑇(𝑟) is given by: 

(𝐴. 16)   𝑋𝑇(𝑟) = 𝑇
−
1
2𝜎−1𝑆[𝑇𝑟] 

 The objective is now to express the sample moments, as functions of 𝑋𝑇(𝑟),  𝜎 and 

𝛿𝑏, in the following way. Take for example: 

(𝐴. 17)   ∑ �̃�𝑡−1𝑒𝑡

𝑇

𝑡=1

=∑{𝛿𝑏𝐷𝑇𝑡−1𝑒𝑡 + 𝑥𝑡−1𝑒𝑡 − 𝑒𝑡𝑫𝒕
′ (
1

𝑇
∑𝑫𝒕𝑫𝒕

′

𝑻

𝒕=𝟏

)

−𝟏

1

𝑇
∑𝑫𝒕(𝛿𝑏𝐷𝑇𝑡−1 + 𝑥𝑡−1)

𝑻

𝒕=𝟏

}

𝑇

𝑡=1

  

= ∑ 𝛿𝑏(𝑡 − 1 − 𝜆𝑇)𝑒𝑡

𝑇

𝑡=𝜆𝑇+1⏟              

𝑂𝑝(𝑇
3
2)

+∑𝑥𝑡−1𝑒𝑡

𝑇

𝑡=1⏟      
𝑂𝑝(𝑇)

−∑𝑒𝑡𝑫𝒕
′ (
1

𝑇
∑𝑫𝒕𝑫𝒕

′

𝑻

𝒕=𝟏

)

−𝟏

1

𝑇
∑𝑫𝒕

𝑻

𝒕=𝟏

𝑥𝑡−1

𝑇

𝑡=1⏟                        
𝑂𝑝(𝑇)

 

−∑𝑒𝑡𝑫𝒕
′ (
1

𝑇
∑𝑫𝒕𝑫𝒕

′

𝑻

𝒕=𝟏

)

−𝟏

1

𝑇
∑ 𝑫𝒕𝛿𝑏

𝑻

𝒕=𝝀𝑻+𝟏

(𝑡 − 1 − 𝜆𝑇)

𝑇

𝑡=1⏟                                  

𝑂𝑝(𝑇
3
2)

 

Therefore,  

(𝐴. 18)   𝑇−
3
2∑�̃�𝑡−1𝑒𝑡

𝑇

𝑡=1

= 𝛿𝑏𝜎 (𝑋𝑇(1) − 𝑋𝑇(𝜆) − ∫ 𝑋𝑇(𝑟)𝑑𝑟
1

𝜆

) − 𝜆𝛿𝑏𝜎(𝑋𝑇(1) − 𝑋𝑇(𝜆))

− [𝜎𝑋𝑇(1) 𝜎 (𝑋𝑇(1) − ∫ 𝑋𝑇(𝑟)𝑑𝑟
1

0

)]

[
 
 
 −𝛿𝑏

𝜆 − 1

𝑇(𝑇 − 1)
[𝑇2(𝜆2 − 𝜆) + 𝑇(2𝜆 − 1) + 1]

𝛿𝑏
𝜆 − 1

𝑇2 − 1
[𝑇2(2𝜆2 − 𝜆 − 1) + 3𝜆𝑇 + 1)] ]

 
 
 

+ 𝑜𝑝(1) 

Letting 𝑇 grow large, it follows: 
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(𝐴. 19)   𝑇−
3
2∑�̃�𝑡−1𝑒𝑡

𝑇

𝑡=1

→𝑑 𝜎𝛿𝑏(𝜆
3 − 𝜆2 − 2𝜆 + 2)𝑊(1) − 𝜎𝛿𝑏(1 − 𝜆)𝑊(𝜆)       

− 𝜎𝛿𝑏 (∫ 𝑊(𝑟)𝑑𝑟
1

𝜆

+ (𝜆 − 1)2(1 + 2𝜆)∫ 𝑊(𝑟)𝑑𝑟
1

0

) 

Likewise, ∑ ∆�̃�𝑡−1𝑒𝑡
𝑇
𝑡=1  can be decomposed as: 

(𝐴. 20)   ∑∆�̃�𝑡−1𝑒𝑡

𝑇

𝑡=1

= ∑ 𝛿𝑏𝑒𝑡

𝑇

𝒕=⌊𝜆𝑇⌋+𝟏⏟        
𝑂𝑝(√𝑇)

+∑𝑢𝑡−1𝑒𝑡

𝑇

𝑡=1⏟      
𝑂𝑝(√𝑇)

−∑𝑒𝑡𝑫𝒕
′ (
1

𝑇
∑𝑫𝒕𝑫𝒕

′

𝑻

𝒕=𝟏

)

−𝟏

1

𝑇
∑ 𝑫𝒕𝛿𝑏

𝑻

𝒕=⌊𝜆𝑇⌋+𝟏

𝑇

𝑡=1⏟                          
𝑂𝑝(√𝑇)

 

−∑𝑒𝑡𝑫𝒕
′ (
1

𝑇
∑𝑫𝒕𝑫𝒕

′

𝑻

𝒕=𝟏

)

−𝟏

1

𝑇
∑𝑫𝒕𝑢𝑡−1

𝑻

𝒕=𝟏

𝑇

𝑡=1⏟                          
𝑜𝑝(1)

 

Consider the term ∑ 𝑢𝑡−1𝑒𝑡
𝑇
𝑡=1 . When multiplied by 

1

√𝑇
, it is equal to √𝑇 times the 

sample mean of a martingale difference sequence whose variance is given by: 

𝐸(𝑢𝑡−1𝑒𝑡)
2 = 𝐸(𝑢𝑡−1

2 𝑒𝑡
2) = 𝜎2𝛾0, where 𝛾0 = lim𝑇→∞𝐸(𝑢𝑡−1

2 ). 

Thus, it satisfies the usual central limit theorem for martingale difference sequences.  

(𝐴. 21)   √𝑇∑𝑢𝑡−1𝑒𝑡

𝑇

𝑡=1

→𝑑 𝑁(0, 𝜎2𝛾0) = 𝜎√𝛾0𝑊(1) 

Therefore,    

(𝐴. 22)   
1

√𝑇
∑∆�̃�𝑡−1𝑒𝑡

𝑇

𝑡=1

= 𝛿𝑏𝜎(𝑋𝑇(1) − 𝑋𝑇(𝜆)) + 𝜎√𝛾0 𝑋𝑇(1)    

− [𝜎𝑋𝑇(1) 𝜎 (𝑋𝑇(1) − ∫ 𝑋𝑇(𝑟)𝑑𝑟
1

0

)] [
𝛿𝑏
𝜆 − 1

𝑇 − 1
[𝑇(3𝜆 − 1) + 1]

−6𝛿𝑏𝜆𝑇
2
𝜆 − 1

𝑇2 − 1

] 

Again, letting 𝑇 grow large, this weakly converges to: 

(𝐴. 23)   
1

√𝑇
∑∆�̃�𝑡−1𝑒𝑡

𝑇

𝑡=1

→𝑑 𝜎(𝛿𝑏(2 + 2𝜆 − 3𝜆
2) − √𝛾0 )𝑊(1) − 𝛿𝑏𝜎𝑊(𝜆)

− 6𝜆(1 − 𝜆)𝛿𝑏𝜎∫ 𝑊(𝑟)𝑑𝑟
1

0

 



50 
 

Proceeding in the same way as before, we obtain that: 

(𝑖) 𝑇−3∑�̃�𝑡−1
2

𝑇

𝑡=1

⟶𝑝
1

3
𝛿𝑏
2(1 − 𝜆)3 

(𝑖𝑖) 𝑇−1∑Δ�̃�𝑡−1
2

𝑇

𝑡=1

⟶𝑝 −𝜆𝛿𝑏
2(3𝜆3 − 6𝜆2 + 4𝜆 − 1) + 𝛾0 

(𝑖𝑖𝑖) 𝑇−2∑�̃�𝑡−1

𝑇

𝑡=1

Δ�̃�𝑡−1⟶
𝑝
1

2
𝜆2𝛿𝑏

2(𝜆 − 1)2(2𝜆 − 1) 

Next, define the (2 × 2) diagonal matrix 𝚪𝑻 = 𝑑𝑖𝑎𝑔 (𝑇
−
3

2, 𝑇−
1

2). Then multiplying the 

OLS estimator in (𝐴. 13) by 𝚪𝑻
−𝟏 yields: 

(𝐴. 35)   [
𝑇
3
2(𝜔1̂ − 𝜔1)

𝑇
1
2(𝜔2̂ − 𝜔2)

]

=

[
 
 
 
 
 
𝑇−3∑�̃�𝑡−1

2

𝑇

𝑡=1

𝑇−2∑�̃�𝑡−1

𝑇

𝑡=1

Δ�̃�𝑡−1

𝑇−2∑�̃�𝑡−1

𝑇

𝑡=1

Δ�̃�𝑡−1 𝑇−1∑Δ�̃�𝑡−1
2

𝑇

𝑡=1 ]
 
 
 
 
 
−𝟏

[
 
 
 
 
 
𝑇−

3
2∑�̃�𝑡−1𝑒𝑡

𝑇

𝑡=1

𝑇−
1
2∑Δ�̃�𝑡−1𝑒𝑡

𝑇

𝑡=1 ]
 
 
 
 
 

 

Finally, using (𝐴. 29), (𝐴. 34) and Lemma A.3, we have: 

(𝐴. 24)   𝑇
3
2(𝜔1̂ − 𝜔1) →

𝑑 𝜃−1(D1 − D2) 

(𝐴. 25)   𝑇
1
2(𝜔2̂ − 𝜔2) →

𝑑 𝜃−1(D3 − D4) 

Where 

(𝑖) 𝜃 =
1

12
𝛿𝑏
2(𝜆 − 1)3(4𝛾0 − 𝜆𝛿𝑏

2(12𝜆6 − 24𝜆5 + 15𝜆4 − 15𝜆3 + 24𝜆2 − 16𝜆 + 4)) 

(𝑖𝑖) G1 = (𝛾0−𝜆𝛿𝑏
2(3𝜆3 − 6𝜆2 + 4𝜆 − 1))

× (𝜎𝛿𝑏(𝜆
3 − 𝜆2 − 2𝜆 + 2)𝑊(1) − 𝜎𝛿𝑏(1 − 𝜆)𝑊(𝜆)       

− 𝜎𝛿𝑏 (∫ 𝑊(𝑟)𝑑𝑟
1

𝜆

+ (𝜆 − 1)2(1 + 2𝜆)∫ 𝑊(𝑟)𝑑𝑟
1

0

)) 
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(𝑖𝑖𝑖) G2 =
1

2
𝜆2𝛿𝑏

2(𝜆 − 1)2(2𝜆 − 1)

× (𝜎(𝛿𝑏(2 + 2𝜆 − 3𝜆
2) − √𝛾0 )𝑊(1) − 𝛿𝑏𝜎𝑊(𝜆) − 6𝜆(1 − 𝜆)𝛿𝑏𝜎∫ 𝑊(𝑟)𝑑𝑟

1

0

) 

(𝑖𝑣) G3 =
1

6
𝛿𝑏
2(𝜆 − 1)2(3𝜆2 − 6𝜆3)

× (𝜎𝛿𝑏(𝜆
3 − 𝜆2 − 2𝜆 + 2)𝑊(1) − 𝜎𝛿𝑏(1 − 𝜆)𝑊(𝜆)       

− 𝜎𝛿𝑏 (∫ 𝑊(𝑟)𝑑𝑟
1

𝜆

+ (𝜆 − 1)2(1 + 2𝜆)∫ 𝑊(𝑟)𝑑𝑟
1

0

)) 

(𝑣) G4 =
1

6
𝛿𝑏
2(𝜆 − 1)2(3𝜆2 − 6𝜆3)

× (𝜎(𝛿𝑏(2 + 2𝜆 − 3𝜆
2) − √𝛾0 )𝑊(1) − 𝛿𝑏𝜎𝑊(𝜆) − 6𝜆(1 − 𝜆)𝛿𝑏𝜎∫ 𝑊(𝑟)𝑑𝑟

1

0

) 

 

Since, 𝜌1 = 𝜔1 − 1 and 𝜌2 = 𝜔2 − 1, we verify that 𝑇
3

2(�̂�1 − 𝜔1) =

𝑇
3

2(�̂�1 − 1 + 1 − 𝜔1) = 𝑇
3

2((�̂�1 − 1) − (𝜔1 − 1)) = 𝑇
3

2(�̂�1 − 𝜌1). Using the same 

argument, we verify √𝑇(�̂�2 − 𝜔2) = √𝑇(�̂�2 − 𝜌2), meaning that the distribution is left 

unchanged by this transformation, and the desired result follows. 

 

Proof of Theorem 2 

We start by remembering the data generating process. 

 𝑦𝑡 = 𝜷
𝒊′𝒛𝒕

𝒊(𝜆) + 𝑥𝑡 

Where 𝒛𝒕
𝒊(𝜆) are as defined in equations (4) and, 

𝜷𝑨
′
= (𝜇𝐴, 𝛿𝐴, 𝜇𝑏

𝐴)′,   𝜷𝑩
′
= (𝜇𝐵, 𝛿𝐵, 𝛿𝑏

𝐵)′,   𝜷𝑪
′
= (𝜇𝐶 , 𝛿𝐶 , 𝜇𝑏

𝐶 , 𝛿𝑏
𝐶)′ 

The test equation is given by: 

(𝐴. 26) 

∆2𝑦𝑡 = 𝜇
∗ + 𝛿∗𝑡 + 𝜃1𝐷𝑇𝑡 + 𝜃2𝐷𝑈𝑡 + 𝜃3∆𝐷𝑈𝑡 + 𝜃4∆

2𝐷𝑈𝑡 + 𝜌1𝑦𝑡−1 + 𝜌2∆𝑦𝑡−1 + 𝑒𝑡 
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𝑡 = 3,…𝑇, 𝑖 = 𝐴, 𝐵, 𝐶 

But, as mentioned in the text, since ∆𝐷𝑈𝑡 and ∆2𝐷𝑈𝑡 are asymptotically negligible, we 

derive the limiting results from the equation below: 

∆2𝑦𝑡 = 𝜇
∗ + 𝛿∗𝑡 + 𝜃1𝐷𝑇𝑡 + 𝜃2𝐷𝑈𝑡 + 𝜌1𝑦𝑡−1 + 𝜌2∆𝑦𝑡−1 + 𝑒𝑡 

⇔ ∆2𝑦𝑡 = 𝝅
𝑖′𝒛𝒕

𝒊(𝜆) + 𝜌1𝑦𝑡−1 + 𝜌2∆𝑦𝑡−1 + 𝑒𝑡 

Where 𝒛𝒕
𝒊(𝜆) is given in equation (4) and 𝝅𝑖 = (𝜇∗, 𝛿∗, 𝜃1, 𝜃2)

′. 

Next, designate with a “~” the residuals of the projection of the indicated variable onto 

the space spanned by 𝒛𝒕
𝒊(𝜆). For instance: 

(𝐴. 27)   �̃�𝑡−1
𝑖 = 𝑦𝑡−1

𝑖 − 𝒛𝒕
𝒊(𝜆)′ (∑𝒛𝒕

𝒊(𝜆)𝒛𝒕
𝒊(𝜆)′

𝑇

𝑡=1

)

−1

∑𝒛𝒕
𝒊(𝜆)

𝑇

𝑡=1

𝑦𝑡−1
𝑖  

Additionally, define the diagonal matrix 𝚱𝑻
𝒊 , 𝑠. 𝑡 𝚱𝑻

𝒊 𝒛𝒕
𝒊(𝜆) → 𝒁𝒊(𝜆, 𝑟). For instance, for 

model A, 𝚱𝑻
𝑨 = 𝑑𝑖𝑎𝑔(1, 𝑇−1, 1). 

 The next lemma provides the limiting representations for the sample moments. 

Lemma A.2 

(𝑖)   𝑇−
3
2𝑦𝑡−1 →

𝑑 𝜎[𝑟𝑉(𝑟) + 𝑉𝑟(𝑟) +𝑊𝑟(𝑟)] = 𝜎Υ1 

(𝑖𝑖)   𝑇−
1
2Δ𝑦𝑡−1 →

𝑑 𝜎[𝑉(𝑟) +𝑊(𝑟)] = 𝜎Υ2 

(𝑖𝑖𝑖)  𝑇−2∑�̃�𝑡−1
𝑖 𝑒𝑡

𝑇

𝑡=1

→𝑑 𝜎2𝜉1
𝑖(𝜆) 

𝜉1
𝑖(𝜆) = {∫ Υ1𝑑𝑊(𝑟)

1

0

−∫ 𝒁𝒊(𝜆, 𝑟)′𝑑𝑊(𝑟) (∫ 𝒁𝒊(𝜆, 𝑟)𝒁𝒊(𝜆, 𝑟)′𝑑𝑟
1

0

)

−1

∫ 𝒁𝒊(𝜆, 𝑟)
1

0

1

0

Υ1𝑑𝑟} 
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(𝑖𝑣)  𝑇−1∑∆�̃�𝑡−1
𝑖 𝑒𝑡

𝑇

𝑡=1

→𝑑 𝜎2𝜉2
𝑖(𝜆) 

𝜉2
𝑖(𝜆) = {∫ Υ2𝑑𝑊(𝑟)

1

0

−∫ 𝒁𝒊(𝜆, 𝑟)′𝑑𝑊(𝑟)(∫ 𝒁𝒊(𝜆, 𝑟)𝒁𝒊(𝜆, 𝑟)′𝑑𝑟
1

0

)

−1

∫ 𝒁𝒊(𝜆, 𝑟)
1

0

1

0

Υ2𝑑𝑟} 

(𝑣)   𝑇−4∑(�̃�𝑡−1
𝑖 )

2
𝑇

𝑡=1

→𝑑 𝜎2𝜂1
𝑖 (𝜆) 

𝜂1
𝑖 (𝜆) = ∫ {Υ1 − 𝒁

𝒊(𝜆, 𝑟)′ (∫ 𝒁𝒊(𝜆, 𝑟)𝒁𝒊(𝜆, 𝑟)′𝑑𝑟
1

0

)

−1

∫ 𝒁𝒊(𝜆, 𝑟)
1

0

Υ1𝑑𝑟}

2

𝑑𝑟
1

0

 

(𝑣𝑖)   𝑇−2∑(∆�̃�𝑡−1
𝑖 )

2
→𝑑 𝜎2𝜂2

𝑖 (𝜆)

𝑇

𝑡=1

 

𝜂2
𝑖 (𝜆) = ∫ {Υ2 − 𝒁

𝒊(𝜆, 𝑟)′ (∫ 𝒁𝒊(𝜆, 𝑟)𝒁𝒊(𝜆, 𝑟)′𝑑𝑟
1

0

)

−1

∫ 𝒁𝒊(𝜆, 𝑟)
1

0

Υ2𝑑𝑟}

2

𝑑𝑟
1

0

 

(𝑣𝑖𝑖)   𝑇−3∑(�̃�𝑡−1
𝑖 ∆�̃�𝑡−1

𝑖 ) →𝑑 𝜎2𝜂3
𝑖 (𝜆)

𝑇

𝑡=1

 

𝜂3
𝑖 (𝜆) = ∫ {Υ1 − 𝒁

𝒊(𝜆, 𝑟)′ (∫ 𝒁𝒊(𝜆, 𝑟)𝒁𝒊(𝜆, 𝑟)′𝑑𝑟
1

0

)

−1

∫ 𝒁𝒊(𝜆, 𝑟)
1

0

Υ1𝑑𝑟}
1

0

× {Υ2 − 𝒁
𝒊(𝜆, 𝑟)′ (∫ 𝒁𝒊(𝜆, 𝑟)𝒁𝒊(𝜆, 𝑟)′𝑑𝑟

1

0

)

−1

∫ 𝒁𝒊(𝜆, 𝑟)
1

0

Υ2𝑑𝑟} 𝑑𝑟 

Both (i) and (ii) are derived in Taylor & Rodrigues (2004). 

The proof can be done with (i) and (ii) and by expressing the sample moments as 

functions of partial sums that weakly converge to functions of Wiener processes, and 

functions of the deterministic vector 𝚱𝑻
𝒊 𝒛𝒕
𝒊(𝜆) = 𝒁𝒕. 

Finally, under the null hypothesis, the test statistic of interest is given by: 
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(𝐴. 28)   𝐹�̂�
𝑖(𝜆) =

(2𝑠2)−1[∑ �̃�𝑡−1
𝑖 𝑒𝑡

𝑇
𝑡=1 ∑ ∆�̃�𝑡−1

𝑖 𝑒𝑡
𝑇
𝑡=1  ] [

∑ (�̃�𝑡−1
𝑖 )

2𝑇
𝑡=1 ∑ �̃�𝑡−1

𝑖 ∆�̃�𝑡−1
𝑖𝑇

𝑡=1

∑ �̃�𝑡−1
𝑖 ∆�̃�𝑡−1

𝑖𝑇
𝑡=1 ∑ (∆�̃�𝑡−1

𝑖 )
2𝑇

𝑡=1

] [
∑ �̃�𝑡−1

𝑖 𝑒𝑡
𝑇
𝑡=1

∑ ∆�̃�𝑡−1
𝑖 𝑒𝑡

𝑇
𝑡=1  

]  

Let 𝑫𝑇
𝒊 = 𝑑𝑖𝑎𝑔(𝑇−2, 𝑇−1) be a diagonal scaling matrix. Then: 

(𝐴. 29)   𝐹�̂�
𝑖(𝜆) = (2𝑠2)−1 [𝑇−2∑�̃�𝑡−1

𝑖 𝑒𝑡

𝑇

𝑡=1

𝑇−1∑∆�̃�𝑡−1
𝑖 𝑒𝑡

𝑇

𝑡=1

 ] × 

×

[
 
 
 
 
 
𝑇−4∑(�̃�𝑡−1

𝑖 )
2

𝑇

𝑡=1

𝑇−3∑�̃�𝑡−1
𝑖 ∆�̃�𝑡−1

𝑖

𝑇

𝑡=1

𝑇−3∑�̃�𝑡−1
𝑖 ∆�̃�𝑡−1

𝑖

𝑇

𝑡=1

𝑇−2∑(∆�̃�𝑡−1
𝑖 )

2
𝑇

𝑡=1 ]
 
 
 
 
 

[
 
 
 
 
 
𝑇−2∑�̃�𝑡−1

𝑖 𝑒𝑡

𝑇

𝑡=1

𝑇−1∑∆�̃�𝑡−1
𝑖 𝑒𝑡

𝑇

𝑡=1

 
]
 
 
 
 
 

 

Therefore, using Lemma A.2 and the fact that 𝑠2 →𝑝 𝜎2, after simple algebra, 

expression (𝐴. 29) has the following distributional limit. 

(𝐴. 30)   𝐹�̂�
𝑖(𝜆) →𝑑

1

2
(𝜂1

𝑖 (𝜆)𝜂2
𝑖 (𝜆) − [𝜂3

𝑖 (𝜆)]
2
)
−1

× (𝜂2
𝑖 (𝜆)[𝜉1

𝑖(𝜆)]
2
− 2𝜂3

𝑖 (𝜆)𝜉1
𝑖(𝜆)𝜉2

𝑖(𝜆) + 𝜂1
𝑖 (𝜆)[𝜉2

𝑖(𝜆)]
2
) 

As intended. 

 

Proof of Theorem 3 

 In order to prove Theorem 3, it needs to be established that taking the supremum 

of the sequence of test statistics preserves the convergence of the functionals that 

compose the argument of the function. To do that, we closely follow the work of Zivot 

& Andrews (1992) and divide the problem in three levels. In each level, the purpose is 
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to show the continuity of the functions involved, and thus, by the continuous mapping 

theorem (CMT), it follows that convergence is preserved in each successive level. 

 Remember that 𝑦𝑡 = ∑ ∑ 𝑒𝑘
𝑗
𝑘=1

𝑡
𝑗=1 = ∑ 𝑆𝑗

𝑡
𝑗=1 , ∆𝑦𝑡 = ∑ 𝑒𝑘

𝑡
𝑘=1 = 𝑆𝑡, where 𝑆ℎ =

∑ 𝑒𝑘
ℎ
𝑘=1  and 𝑆0 = 0. Next, define the step function 𝑋𝑇(𝑟) = 𝜎

−1𝑇−
1

2𝑆[𝑟𝑇]. Donsker’s 

theorem establishes 𝑋𝑇(∙) ⇒ 𝑊(∙). 

 The sketch of the proof begins by expressing the F-statistic in terms of the 

partial sum 𝑆𝑡, the vector of deterministic regressors 𝒁𝒕 (𝜆,
𝑡

𝑇
), and the vector 

𝑇−
1

2∑ 𝑒𝑡
𝑇
𝑡=1 𝒁𝒕 (𝜆,

𝑡

𝑇
). In what follows, we will only consider model A, since the proof is 

analogous for models B and C. 

(𝐴. 31)   𝐹�̂�(𝜆) = [∑�̃�𝑡−1
2

𝑇

𝑖=1

∑∆�̃�𝑡−1
2

𝑇

𝑖=1

− (∑�̃�𝑡−1

𝑇

𝑡=1

∆�̃�𝑡−1)

2

]

−1

× [(∑�̃�𝑡−1𝑒𝑡

𝑇

𝑡=1

)

2

∑∆�̃�𝑡−1
2

𝑇

𝑖=1

− 2∑�̃�𝑡−1𝑒𝑡

𝑇

𝑡=1

∑�̃�𝑡−1

𝑇

𝑡=1

∆�̃�𝑡−1∑∆�̃�𝑡−1𝑒𝑡

𝑇

𝑡=1

+ (∑∆�̃�𝑡−1𝑒𝑡

𝑇

𝑡=1

)

2

∑�̃�𝑡−1
2

𝑇

𝑖=1

] × [2𝑠2(𝜆)]−1 

Where “~ ” represents, as before, the residuals from the projection of the variable 

indicated, onto the vector space spanned by 𝒛𝒕(𝜆)
′. Denote 𝚱𝑻𝒛𝒕(𝜆) = 𝒁𝒕 (𝜆,

𝑡

𝑇
) = 𝒁𝒕. 

The supremum over all values of 𝜆, in a closed subset of (0,1), of expression (A.13) can 

be written as: 

(𝐴. 32)  sup
𝜆∈[0,1]

𝐹�̂�(𝜆) = sup
𝜆∈[0,1]

𝑓 (𝜎𝑋𝑇(𝑟), 𝒁𝒕, 𝑇
−
1
2∑𝑒𝑡

𝑇

𝑡=1

𝒁𝒕 (𝜆,
𝑡

𝑇
) , 𝜎2, 𝜎𝑇

2) 
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= 𝑔(ℎ(𝑚1, 𝑚2, 𝑚3))  

Each function will be defined later. 

The sample moments are given next: 

(𝐴. 33)    𝑇−4∑�̃�𝑡−1
2

𝑇

𝑖=1

= 𝑇−1∑{𝑇−1∑𝑇−
1
2𝑆𝑗

𝑡

𝑗=1

− 𝒁𝒕
′ (𝑇−1∑𝒁𝒕𝒁𝒕

′

𝑇

𝑡=1

)

−1

𝑇−1∑𝒁𝒕𝑇
−1∑𝑇−

1
2𝑆𝑠−1

𝑡

𝑡=1

𝑇

𝑡=1

}

2
𝑇

𝑡=1

= ∫ {∫ 𝜎𝑋𝑇(𝑢)𝑑𝑢
𝑟

0

− 𝒁𝒕
′ (∫ 𝒁𝒕𝒁𝒕

′𝑑𝑟
1

0

)

−1

∫ 𝒁𝒕

1

0

∫ 𝜎𝑋𝑇(𝑢)𝑑𝑢
𝑟

0

𝑑𝑠}

2

𝑑𝑟
1

0

+ 𝑜𝑝(1)

= 𝐴1[𝜎𝑋𝑇 , 𝒁𝒕](𝜆) + 𝑜𝑝(1) 

(𝐴. 34)    𝑇−3∑ �̃�
𝑡−1

𝑇

𝑡=1

∆�̃�
𝑡−1

= ∫ {𝜎∫ 𝑋𝑇(𝑠)𝑑𝑠
𝑟

0

− 𝒁𝒕
′ (∫ 𝒁𝒕𝒁𝒕

′𝑑𝑟
1

0

)

−1

∫ 𝒁𝒕

1

0

∫ 𝜎𝑋𝑇(𝑢)𝑑𝑢
𝑟

0

𝑑𝑠}
1

0

× {𝜎𝑋𝑇(𝑟) − 𝒁𝒕
′ (∫ 𝒁𝒕𝒁𝒕

′𝑑𝑟
1

0

)

−1

∫ 𝒁𝒕

1

0

𝜎𝑋𝑇(𝑠)𝑑𝑠} 𝑑𝑟

= 𝐴3[𝜎𝑋𝑇 , 𝒁𝒕](𝜆) + 𝑜𝑝(1) 

(𝐴. 35)    𝑇−2∑�̃�𝑡−1𝑒𝑡

𝑇

𝑡=1

= 𝜎2∫ ∫ 𝑋𝑇(𝑠)𝑑𝑠Δ𝑊𝑇(𝑟)
𝑟

0

− 𝑇−
1
2∑𝑒𝑡𝒁𝒕

′

𝑇

𝑡=1

(∫ 𝒁𝒕𝒁𝒕
′𝑑𝑟

1

0

)

−1

∫ 𝒁𝒕

1

0

∫ 𝜎𝑋𝑇(𝑢)𝑑𝑢
𝑟

0

𝑑𝑠
1

0

= 𝐴4 [𝜎𝑋𝑇 , 𝒁𝒕, 𝑇
−
1
2∑𝑒𝑡

𝑇

𝑡=1

𝒁𝒕, 𝜎𝑇
2] (𝜆) + 𝑜𝑝(1) 
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The functionals  𝑇−2∑ ∆�̃�𝑡−1
2𝑇

𝑖=1 = 𝐴2[𝜎𝑋𝑇(𝑟), 𝒁𝒕](𝜆) + 𝑜𝑝(1), and 

𝑇−1∑ �̃�𝑡−1𝑒𝑡
𝑇
𝑡=1 = 𝐴5 [𝜎𝑋𝑇 , 𝒁𝒕, 𝑇

−
1

2∑ 𝑒𝑡
𝑇
𝑡=1 𝒁𝒕, 𝜎𝑇

2] (𝜆) + 𝑜𝑝(1) are the same as 𝐻1(∙) 

and 𝐻2(∙), respectively, in Zivot & Andrews (1992). 

Lemma A.3.    𝑇−
1

2∑ 𝑒𝑡
𝑇
𝑡=1 𝒁𝒕 ⇒ 𝜎∫ 𝒁(∙, 𝑟)𝑑𝑊(𝑟)

1

0
 

Proof. 𝑇−
1

2∑ 𝑒𝑡
𝑇
𝑡=1 𝒁𝒕 = (𝑇

−
1

2∑ 𝑒𝑡
𝑇
𝑡=1 , 𝑇−

1

2∑
𝑡

𝑇𝑒𝑡

𝑇
𝑡=1 , 𝑇−

1

2∑ 𝑒𝑡
𝑇
𝑡=[𝜆𝑇]+1 )

′

=

(𝜎𝑋𝑇(1), 𝜎 (𝑋𝑇(1) − ∫ 𝑋𝑇(𝑟)
1

0
𝑑𝑟) , 𝜎(𝑋𝑇(1) − 𝑋𝑇(𝜆)))

′

. By the CMT, we have joint 

convergence to the vector (𝜎𝑊(1), 𝜎 (𝑊(1) − ∫ 𝑊(𝑟)
1

0
𝑑𝑟) , 𝜎(𝑊(1) −𝑊(𝜆)))

′

 

Lemma A.4.  s2(λ) ⇒ σ21(λ ∈ Λ), and σT
2 ⇒ σ2. 1(λ ∈ Λ) is the indicator function 

equal to 1 for all λ ∈ Λ.  

Using Lemma A.2., Lemma A.3., and Donsker’s theorem it follows that 

(𝜎𝑋𝑇(∙), 𝒁𝒕(∙,∙), 𝑇
−
1

2∑ 𝑒𝑡
𝑇
𝑡=1 𝒁𝒕 (∙,

𝑡

𝑇
) , 𝜎𝑇

2, 𝑠2(∙))

′

 

⇒ (𝜎𝑊(∙), 𝒁(∙,∙), 𝜎 ∫ 𝒁(∙, 𝑟)𝑑𝑊(𝑟)
1

0

, 𝜎2, 𝜎21(∙))

′

 

𝑊(∙) is a Wiener process with support on ℂ[0,1], and is continuous with 

probability 1. 

Lemma A.5 The functions 𝐴1 to 𝐴5 are continuous with probability 1. 



58 
 

Proof. Take for example 𝐴1[𝜎𝑊(∙), 𝑍](𝜆) defined in (A.33). To prove continuity of 𝐴1 

at (𝑊, 𝑍), it needs to be shown that every function that composes it, is continuous and 

bounded over 𝜆 ∈ Λ, where Λ is a closed subset of (0,1). 

Let 𝑊(𝑟) and �̃�(𝑟) be two Wiener processes s.t sup
𝑟∈[0,1]

|𝑊(𝑟) − �̃�(𝑟)| < 𝜀, for 𝜀 > 0. 

Then, 

|∫ 𝑊(𝑢)𝑑𝑢
𝑟

0

−∫ �̃�(𝑢)𝑑𝑢
𝑟

0

| ≤ |∫ 𝑊(𝑢) − �̃�(𝑢)𝑑𝑢
𝑟

0

| ≤ sup
0≤𝑢≤𝑟

|𝑊(𝑟) − �̃�(𝑟)| < 𝜀 

Thus, the map (𝑊, 𝑍) → ∫ 𝑊(𝑢)𝑑𝑢
𝑟

0
 is continuous 

Next, consider 𝒁𝒁′ = [

1 𝑟 𝑑𝑢(𝜆, 𝑟)

𝑟 𝑟2 𝑟𝑑𝑢(𝜆, 𝑟)

𝑑𝑢(𝜆, 𝑟) 𝑟𝑑𝑢(𝜆, 𝑟) 𝑑𝑢2(𝜆, 𝑟)

]. Integrating over [0,1] yields, 

∫ 𝑍𝑍′𝑑𝑟
1

0
=

[
 
 
 1

1

2
1 − 𝜆

1

2

1

3
(1 − 𝜆2) 2⁄

1 − 𝜆 (1 − 𝜆2) 2⁄ 1 − 𝜆 ]
 
 
 
.  

From the proof of the previous theorem, we have 𝒁𝑻𝒁𝑻
′ →  𝒁𝒁′. For a fixed T, write, 

sup
𝑟∈[0,1]

|𝒁𝑻𝒁𝑻
′ −  𝒁𝒁′| < 𝜀, for 𝜀 > 0. Then, 

|∫ 𝒁𝑻𝒁𝑻
′ 𝑑𝑟

1

0

−∫ 𝒁𝒁′𝑑𝑟
1

0

| ≤ |∫ 𝒁𝑻𝒁𝑻
′ − 𝒁𝒁′𝑑𝑟

1

0

| ≤ ∫ |𝒁𝑻𝒁𝑻
′ − 𝒁𝒁′|𝑑𝑟

1

0

≤ sup
𝑟∈[0,1]

|𝒁𝒕𝒁𝒕
′ − 𝒁𝒁′| < 𝜀 

Thus, by the CMT, the integral preserves the convergence of 𝒁𝒕𝒁𝒕
′  to 𝒁𝒁′. 
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Now, it needs to be established that ∫ 𝒁𝒁′𝑑𝑟
1

0
 is bounded over 𝜆 ∈ (0,1). Note that as 

long as inf  
𝜆∈Λ

det (∫ 𝒁𝒁′𝑑𝑟
1

0
) > 0, the matrix is bounded. 

 

 

 

 

 

 

 

 

 

 Furthermore, it can be shown that ∫ 𝒁𝒁′𝑑𝑟
1

0
 is definite positive, and symmetric, 

with probability 1, thus, it follows that max|𝑎𝑖𝑖| ≥ max|𝑎𝑖𝑗|, that is, the greatest 

element in the diagonal is greater than any off-diagonal element. Since the diagonal 

elements are bounded over 𝜆 ∈ (0,1), it follows that ∫ 𝑍𝑍′𝑑𝑟
1

0
 is bounded. 

 Because inf  
𝜆∈Λ

det (∫ 𝒁𝒁′𝑑𝑟
1

0
) > 0, it follows that the map ∫ 𝒁𝒁′𝑑𝑟

1

0
→

(∫ 𝒁𝒁′𝑑𝑟
1

0
)
−1

 is continuous, hence the map (𝑊, 𝒁) → (∫ 𝒁𝒁′𝑑𝑟
1

0
)
−1

 is also 

continuous. 

𝜆 

d
et
(
∫
𝒁
𝒁
′ 𝑑
𝑟

1

0

)
 

Figure 5: 𝑑𝑒𝑡 (∫ 𝒁𝒁′𝑑𝑟
1

0
) as a function of 𝜆. 
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 Applying the same arguments, it can be shown that the remaining functions are 

all continuous at (𝑊, 𝒁) with probability 1. 

 Now define ℎ[𝑚1, 𝑚2, 𝑚3] = 𝑚1
−1𝑚2𝑚3

−1, where each function 𝑚(∙) is defined 

in accordance with (A.31). ℎ(∙) is continuous if inf𝜆∈Λ|𝑚1| > 0 and 𝜎2 > 0. 

Lemma A.6. ℎ[𝑚1, 𝑚2, 𝑚3] is continuous. 

Proof. Write 𝑚1 = 𝐴1𝐴2 − (𝐴3)
2, where the functions 𝐴𝑗 form the continuous map 

(𝑊, 𝑍) → Λ.  Now, inf𝜆∈Λ|𝐴1𝐴2 − (𝐴3)
2| ≥  inf𝜆∈Λ|𝐴1|inf𝜆∈Λ|𝐴2| + sup𝜆∈Λ|(𝐴3)

2|. 

The results in Zivot & Andrews (1992) establish inf𝜆∈Λ|𝐴2| > 0.  

Following a similar argument, consider those realizations of 𝑊 𝑠. 𝑡. inf𝜆∈Λ|𝐴1| =

0. Then, since 𝐴1 is continuous on a compact set Λ, from the extreme value theorem it 

follows that, for a given 𝜆0 ∈ [0,1] random variable, we have 𝐴1(𝜆0) = 0 and 𝜆0 ∈ Λ 

hence, taking the limit of (𝐴. 33), this implies 

(𝐴. 36)∫ 𝑊(𝑠)𝑑𝑠
𝑟

0

= 𝒁(𝜆0, 𝑟)
′ (∫ 𝒁(𝜆0, 𝑢)𝒁(𝜆0, 𝑢)

′𝑑𝑢
1

0

)

−1

∫ 𝒁(𝜆0, 𝑢)
1

0

∫ 𝑊(𝑠)𝑑𝑠
𝑢

0

𝑑𝑢 

This equation implies that the distribution of the left-hand side, which is 𝑁[0, (1 3)𝑟3⁄ ], 

is equal to the distribution of the right-hand side, for every 𝑟 ∈ [0,1].  

 We start by deriving the distribution of ∫ 𝒁(𝜆0, 𝑢)
1

0
∫ 𝑊(𝑠)𝑑𝑠
𝑢

0
𝑑𝑢, where 

∫ 𝑊(𝑠)𝑑𝑠
𝑢

0
~𝑁[0, (1 3)𝑢3⁄ ]. 

Define the random variable 𝑌 = ∫ 𝒁(𝜆0, 𝑢) ∫ 𝑊(𝑠)𝑑𝑠
𝑢

𝑠=0
𝑑𝑢

1

0
 and 𝑌 =

∫ 𝒁(𝜆0, 𝑢) ∫ 𝑊(𝑡)𝑑𝑡
𝑢

𝑡=0
𝑑𝑢

1

0
. Then, the expectation of 𝑌 is zero, and its variance is given 

by 𝐸[𝑌𝑌′] = 𝐸 [∫ ∫ ∫ 𝒁(𝜆0, 𝑢)𝑊(𝑠)𝑊(𝑡)
𝑢

𝑠=0
𝒁(𝜆0, 𝑢)

′𝑑𝑠 𝑑𝑡 𝑑𝑢
𝑢

𝑡=0

1

0
] 
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=

[
 
 
 
 
 
 
 
 
 1

12

1

15

1

12
(𝜆0 − 1)

2∑𝜆0
𝑗

3

𝑗=0

1

15

1

18

1

15
(𝜆0 − 1)

2∑𝜆0
𝑗

4

𝑗=0

1

12
(𝜆0 − 1)

2∑𝜆0
𝑗

3

𝑗=0

1

15
(𝜆0 − 1)

2∑𝜆0
𝑗

4

𝑗=0

1

12
(𝜆0 − 1)

2∑𝜆0
𝑗

3

𝑗=0 ]
 
 
 
 
 
 
 
 
 

= Σ(𝜆0) 

From which it follows ∫ 𝒁(𝜆0, 𝑢)
1

0
∫ 𝑊(𝑠)𝑑𝑠
𝑢

0
𝑑𝑢~𝑵[𝟎, 𝚺(𝜆0)]. Now write the right-

hand side of equation (𝐴. 36) as, 

(𝐴. 37)   (1, 𝑟, 𝑑𝑢(𝜆0, 𝑟))𝐶 (∫𝑊 , 𝜆0), 

where 𝐶(∫𝑊 , 𝜆0)~𝑵[𝟎,𝐀
−𝟏(𝜆0)𝚺(𝜆0)𝐀

−𝟏(𝜆0)], and the matrix 𝐀−𝟏(𝜆0) =

(∫ 𝒁(𝜆0, 𝑢)𝒁(𝜆0, 𝑢)
′𝑑𝑢

1

0
)
−1

. 

 Now, consider setting 0 ≤ 𝑟 < inf(𝜆: 𝜆 ∈ Λ), and let inf(𝜆: 𝜆 ∈ Λ) get closer and 

closer to zero. Then, as inf(𝜆: 𝜆 ∈ Λ) (and thus 𝑟) approaches zero, the distribution of 

the left-hand side of equation (𝐴. 36) collapses to zero, but the variance of the 

distribution on the right-hand side goes to infinity, which is a contradiction. In fact, 

there is no 𝜆0 ∈ Λ that satisfies equation (A.36). Therefore, we conclude that, with 𝑊-

probability 1, inf𝜆∈Λ|𝐴1| > 0, and the desired result follows. 

 

 

 

 

Figure 6: Variance of (1, 𝑟, 𝑑𝑢(𝜆0, 𝑟))𝐶(∫𝑊 , 𝜆0) 
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Finally, the continuity of the function 𝑔(ℎ(∙)) = sup
𝜆∈[0,1]

ℎ(∙) is established in the 

following way. From the results built thus far, we have ℎ𝑇(∙) ⇒ ℎ(∙) over 𝜆 ∈ Λ 

Therefore, for a fixed T, we can find > 0, 𝑠. 𝑡 sup𝜆∈Λ | ℎ(𝜆) − ℎ𝑇(𝜆)| < 𝜀. Then, 

(𝐴. 38)   |sup𝜆∈Λ ℎ(𝜆) − sup𝜆∈Λ ℎ𝑇(𝜆)| ≤ sup𝜆∈Λ | ℎ(𝜆) − ℎ𝑇(𝜆)| < 𝜀 

And thus, by the CMT, convergence is preserved under the supremum function, from 

which it follows the claim of Theorem 3. 

 

 


