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Abstract

This thesis describes a memetic algorithm applied to the design of a three-echelon

logistics network over multiple periods with transportation mode selection and out-

sourcing. The memetic algorithm can be applied to an existing supply chain in order

to obtain an optimized configuration or, if required, it can be used to define a new

logistics network. In addition, production can be outsourced and direct shipments of

products to customer zones are possible. In this problem, the capacity of an existing

or new facility can be expanded over the time horizon. In this case, the facility cannot

be closed. Existing facilities, once closed, cannot be reopened. New facilities cannot

be closed, once opened. The heuristic is able to determine the number and locations

of facilities (i.e. plants and warehouses), capacity levels as well as the flow of products

throughout the supply chain.

KEYWORDS: Memetic Algorithm, Genetic Algorithm, Outsourcing.
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Chapter 1

Introduction

Logistics network design (LND) is a strategic planning process that aims to provide an

exceptional performance in order to achieve shareholder goals and clients satisfaction.

As result, LND is dedicated to process optimization by taking the following decisions:

∙ Defining the optimal number and location of facilities (e.g., manufacturing

plants and warehouses)

∙ Allocating capacity and technology requirements to facilities

∙ Deciding on the flow of products throughout the supply chain

In order to be competitive a company may consider redesigning its supply chain or

designing a new chain, depending on the company business requirements and strat-

egy objectives. If a company decides to enter a new market or to expand its product

segments, then designing a new logistics network (LND) is the most advantageous

decision. In contrast, if there is change in the market and business conditions, in or-

der to deal with increasing costs or new business requirements a company is impelled
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to adopt a restructuration of its supply chain through logistics network re-design

(LRD). Strategic network decisions have a direct influence on the competitiveness

of a company and it is crucial for management to have a framework for successful

tactical and operational supply chain processes. As highlighted by Ballou [4] and

Harrison [14], a network re-design project can result in a 5 to 15 percent reduction

of the overall logistics costs, with 10 percent being often achieved. In this thesis, an

Plants Warehouses Customer

zones

Suppliers

Figure 1-1: Possible configuration of a multi-echelon logistics network.

integrated and comprehensive view of the supply chain is taken by considering sup-

pliers, manufacturing facilities, warehouses, transportation channels, and customer

zones as shown in Figure 1-1. In an LRD approach, a network is already in place

with a number of plants and warehouses being operated at fixed locations (these

are the facilities marked by the dashed lines in the figure). A variety of decisions

have to be made regarding facility location and logistics functions along the supply

chain, such as opening new plants and/or warehouses at potential sites (the facilities

without dashed lines in Figure 1-1) and selecting their capacity levels from a set of
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available discrete sizes. This is motivated by the fact that capacity is often purchased

in the form of equipment which is only available at a few discrete sizes. As strategic

planning for multiple time periods is considered, capacity can be acquired more than

once over the time horizon in the same location. Existing plants and warehouses

can be closed throughout the planning horizon. Alternatively, their capacities can

be expanded if a company forecasts future expansion into new markets or to meet

increasing product demand in current markets. In an LND approach, the scope of

the location decisions is limited to deciding on the optimal size, number, and loca-

tion of new facilities. Logistics decisions, the second group of key business decisions,

involve supplier selection in conjunction with procurement as well as production and

distribution decisions. Furthermore, a strategic choice between in-house manufac-

turing, outsourcing or a mixed approach is to be taken. In the network depicted

in Figure 1-1, multiple types of products are manufactured at plants by processing

sub-assemblies and components, hereafter called raw materials. The latter can be

procured from various suppliers taking into account their availability and cost. Fin-

ished products can be delivered to warehouses or shipped directly to customer zones.

The flow of goods throughout the network and the use of transportation modes are to

be determined in each time period. In addition, end products can also be purchased

from external sources and consolidated at the warehouses. The objective is to deter-

mine the optimal network configuration over a planning horizon so as to minimize

the total cost. The remainder of this thesis is organized as follows. In chapter 2, we

review the relevant literature dedicated to LND/LRD and describe its relation to our

new model. Chapter 3 introduces a mixed-integer linear programming formulation
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for logistics network design and re-design. In chapter 4, the memetic algorithm is

described. In chapter 5, the heuristic performance is analyzed for a set of randomly

generated instances. Moreover, possible ways of improving the heuristic performance

are presented. In chapter 6, the main conclusions are exposed and recommendations

for future research are provided.
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Chapter 2

Literature review

Beginning with the work of Geoffrion and Graves [12] on multi-commodity distribu-

tion network design in 1974, a large number of optimization-based approaches have

been proposed for the design of logistics networks as shown by the recent surveys

of Melo et al. [17] and Mula et al. [22]. These works have resulted in significant

improvements in the modeling of these problems as well as in algorithmic and com-

putational efficiency. One of the reasons that contributes to such a large number of

literature references is the variety of characteristics that can be taken into account

in LND problems: type of planning horizon (single or multi-period), facility location

and sizing, number of echelons and distribution levels, multi-stage production taking

the bill of materials (BOM) into account, and transportation mode selection, among

others.

Although the timing of facility locations and expansions over an extended time horizon

is of major importance to decision-makers in strategic network design, the majority

of the literature addresses single-period problems, e.g., Babazadeh et al. [2], Cordeau
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et al. [7], Elhedhli and Goffin [10], Eskigun et al. [11], Olivares et al. [23], and Sadjady

and Davoudpour [24]. Our research is different in that a multi-period planning horizon

is considered. Unlike our work, in some multi-period LND problems facility sizing

is static, meaning that facilities cannot have their capacities expanded or contracted

over the planning horizon. The model proposed by Gourdin and Klopfenstein [13]

falls into this category.

We will focus next on multi-period LND and LRD problems with dynamic facility

sizing decisions. In particular, we will discuss the extent to which the features of the

model to be detailed in Section 3 differ from those reported so far in the literature.

To re-design a two-layer network, Antunes and Peeters [1] suggest a modeling frame-

work that allows opening new facilities and closing existing locations, as well as

reducing and expanding capacity. Budget constraints are taken into account over the

time horizon. To find the minimum discounted cost solution, the authors propose a

simulated annealing approach.

Melo et al. [16] study the re-design of a multi-echelon network considering facility

expansion and contraction. This feature is modeled through relocating capacity from

existing facilities to new facilities over the planning horizon. Network re-design de-

cisions (opening, closing, and relocating facilities) are subject to budget constraints

in each time period. General purpose optimization software is used to solve small

and medium-sized problem instances. Melo et al. [18, 19] also developed heuristic

procedures for this special form of network re-design. The numerical experiments in-

dicate that good solutions can be obtained for large-sized instances within acceptable

computational time.
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Hinojosa et al. [15] address a multi-echelon, multi-commodity network re-design prob-

lem with inventory strategic decisions at warehouses and outsourcing of demand.

Commodities flow from manufacturing plants to customers via warehouses. Out-

sourced commodities are delivered directly to customers. An initial network con-

figuration is considered that gradually changes over a multi-period horizon through

opening new facilities and closing existing facilities. A lower bound is imposed on the

number of plants and warehouses operating in the first and last time periods. The

problem is solved using a Lagrangean-based procedure through decomposition into

simpler subproblems. A heuristic method is then applied to obtain a feasible solution.

Thanh et al. [25] consider a multi-period, multi-product logistics network comprising

suppliers, plants, warehouses (public and private), and customers. Strategic decisions

include facility location and capacity acquisition as well as supplier selection, produc-

tion, distribution, and inventory planning. In particular, plants and warehouses can

have their capacities expanded (but not contracted) over the time horizon. Pro-

duction decisions take into account the BOM and intermediate components can be

sub-contracted to an external plant. Furthermore, products flow downstream not

only between adjacent supply chain layers but also directly from plants to customers.

In addition, plants may exchange components. To identify the least-cost network

configuration, Thanh et al. [27] propose an LP-rounding heuristic. This method is

later improved by combining it with DC programming (cf. Thanh et al. [26]).

Bashiri and Badri [5] address the problem of designing a new supply chain network

with a similar topology to that considered in [25]. The objective is to find the network

configuration that maximizes the total net profit subject to a given budget in each
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time period. In this work, demand requirements may not be completely satisfied.

Strategic decisions include opening and expanding new plants and private (company-

owned) warehouses. In addition, public warehouses can be hired for a pre-specified

number of time periods and variable costs are charged for their operation. The pro-

posed model is extended in Bashiri et al. [6] through introducing different time scales

for strategic and tactical decisions. In particular, the latter are made in each time

period, whereas network design decisions are only made over a subset of periods of the

planning horizon. The models presented in [5, 6] are solved with a general-purpose

optimization solver. Later, Badri et al. [3] develop a Lagrangean-based approach.

Feasible solutions are obtained by dualising the budget constraints for opening new

facilities or expanding the capacities of existing facilities and adding some constraints

to the subproblems to guarantee feasibility.

Dias et al. [9] proposed a memetic algorithm for an LND problem involving opening,

closing, and re-opening facilities over a planning horizon with multiple periods. Vari-

ous mechanisms were employed to search the solution space. In addition,the decision

taken is able to set the search area and establish limits to the objective function.

In order to relate the existing literature to the LND and LRD problems that are

studied in this paper, a classification of the aforementioned works is given in Table 2.1.

This table is not intended to provide an exhaustive list of the features described in

this section but rather to illustrate the extent to which our research generalizes the

existing literature.

The characteristics of the surveyed LND and LRD problems are classified according to

five categories. The category “Network” comprises the number of layers in the supply
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chain, including the customer level (column 2) and the number of layers involving

location decisions (column 3). Furthermore, it is specified whether products can be

distributed directly from higher level facilities to customer locations (column 4). The

second category (column 5) refers to the type of planning horizon. The category

“Facility sizing” summarizes the type of capacity decisions that can be made. To this

end, column 6 indicates if the size of each facility is limited (G: global capacities)

and if capacity levels are selected from a set of available discrete sizes (M: modular

capacities). In column 7, the type of capacity planning is given: expansion (E) and/or

downsizing (D) over the time horizon. Moreover, to distinguish network design from

network re-design problems, the latter are highlighted with the letter C, meaning

that existing facilities can be closed. The category in column 8 refers to the selection

of transportation modes. Finally, the category “Products” outlines characteristics

related to the number of products (column 9), multi-stage production taking into

account the BOM (column 10), satisfaction of demand requirements (column 11),

and the possibility of outsourcing components or end products as an alternative to

in-house manufacturing (column 11).

The last row of Table 2.1 highlights the main features of the model to be detailed

in Section 3. It can be seen that in our model various features are considered si-

multaneously in a multi-period planning context. To the best of our knowledge, this

integration of practically relevant features into a single model has not been addressed

in the related literature so far.
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Chapter 3

Mathematical formulation

In this section, we introduce a mathematical model for a comprehensive LRD problem.

The formulation integrates location and capacity choices for plants and warehouses

with supplier and transportation mode selection as well as outsourcing options over

multiple time periods. As will be seen, the model also can be used for designing a

new logistics network.

3.1 Input data and decision variables

Table 3.1 describes the index sets that are used, while Table 3.2 summarizes all costs.

For notational convenience, we introduce the set 𝑂𝐷 with all origin-destination pairs

in the logistics network (recall Figure 1-1):

𝑂𝐷 = {(𝑠, ℓ) : 𝑠 ∈ 𝑆, ℓ ∈ 𝐿} ∪ {(ℓ, 𝑤) : ℓ ∈ 𝐿, 𝑤 ∈ 𝑊} ∪

{(ℓ, 𝑐) : ℓ ∈ 𝐿, 𝑐 ∈ 𝐶} ∪ {(𝑤, 𝑐) : 𝑤 ∈ 𝑊, 𝑐 ∈ 𝐶}

18



Cristiano Maciel

The links (𝑠, ℓ) are used to transport raw materials 𝑟 ∈ 𝑅, while all other origin-

destination pairs concern links to move end products, 𝑝 ∈ 𝑃 .

Set Description
𝑇 Time periods
𝑆 Suppliers
𝐿𝑒 Existing plants at the beginning of the time horizon
𝐿𝑛 Potential sites for locating new plants
𝐿 = 𝐿𝑒 ∪ 𝐿𝑛 All plant locations
𝐾𝐿 Discrete capacity sizes that can be installed in plant locations
𝑊 𝑒 Existing warehouses at the beginning of the time horizon
𝑊 𝑛 Potential sites for locating new warehouses
𝑊 = 𝑊 𝑒 ∪𝑊 𝑛 All warehouse locations
𝐾𝑊 Discrete capacity sizes that can be installed in warehouse lo-

cations
𝐶 Customer zones
𝑅 Raw materials
𝑃 End products
𝑀 Transportation modes
𝑂𝐷 All origin-destination pairs in the logistics network

Table 3.1: Index sets.

The parameters 𝐹𝐶𝑡,𝑗 and 𝑆𝐶𝑡,𝑗 reflect fixed costs associated with location decisions.

The first term comprises the fixed costs of setting up an infrastructure for a new plant

or warehouse (e.g., property acquisition) in time period 𝑡. Facility closing costs (the

second term) are incurred when an existing plant or warehouse is closed in period 𝑡.

Other facility costs concern the acquisition of capacity in both new and existing

locations and the operation of that capacity. To this end, 𝐼𝐶𝑡,𝑗,𝑘 = 𝐼𝑡,𝑗,𝑘+
∑︀|𝑇 |

𝜏=𝑡 𝑂𝐶𝑛
𝜏,𝑗,𝑘,

where 𝐼𝑡,𝑗,𝑘 denotes the fixed installation cost of capacity level 𝑘 ∈ 𝐾𝐿 ∪ 𝐾𝑊 in

location 𝑗 ∈ 𝐿 ∪ 𝑊 in period 𝑡 ∈ 𝑇 , and 𝑂𝐶𝑛
𝜏,𝑗,𝑘 is the fixed operating cost in

period 𝜏 ≥ 𝑡. The fixed costs 𝐼𝐶𝑡,𝑗,𝑘 reflect economies of scale. Expansion plans may

result in extending the capacity of existing facilities and/or establishing new facilities

19



Cristiano Maciel

with given capacity.

Symbol Description
𝐹𝐶𝑡,𝑗 Fixed cost of establishing a new facility in location 𝑗 ∈ 𝐿𝑛 ∪𝑊 𝑛 in

period 𝑡 ∈ 𝑇
𝑆𝐶𝑡,𝑗 Fixed cost of closing an existing facility in location 𝑗 ∈ 𝐿𝑒 ∪𝑊 𝑒 in

period 𝑡 ∈ 𝑇
𝐼𝐶𝑡,𝑗,𝑘 Cost of installing capacity level 𝑘 ∈ 𝐾𝐿∪𝐾𝑊 in location 𝑗 ∈ 𝐿∪𝑊

in period 𝑡 ∈ 𝑇
𝑂𝐶𝑡,𝑗 Fixed cost of operating existing facility 𝑗 ∈ 𝐿𝑒∪𝑊 𝑒 in period 𝑡 ∈ 𝑇
𝑃𝐶𝑡,𝑠,𝑟 Cost of procuring one unit of raw material 𝑟 ∈ 𝑅 from supplier

𝑠 ∈ 𝑆 in period 𝑡 ∈ 𝑇
𝑀𝐶𝑡,ℓ,𝑝 Cost of manufacturing one unit of product 𝑝 ∈ 𝑃 at plant ℓ ∈ 𝐿 in

period 𝑡 ∈ 𝑇
𝑇𝐶𝑡,𝑜,𝑑,𝑖,𝑚 Cost of shipping of one unit of item 𝑖 ∈ 𝑅∪𝑃 using transportation

mode𝑚 ∈ 𝑀 from origin 𝑜 ∈ 𝑆∪𝐿∪𝑊 to destination 𝑑 ∈ 𝐿∪𝑊∪𝐶
in period 𝑡 ∈ 𝑇

𝐸𝐶𝑡,𝑤,𝑝 Cost of purchasing one unit of product 𝑝 ∈ 𝑃 from an external
source by warehouse 𝑤 ∈ 𝑊 in period 𝑡 ∈ 𝑇

Table 3.2: Fixed and variable costs.

Logistics costs include procurement, production, outsourcing, and distribution costs.

The latter depend on the choice of the transportation modes for moving raw materials

and end products through the network. The available transportation modes differ

with respect to their variable costs and capacities. For example, railroad and road

freight transport may be viable options with known trade-offs (cost, service time,

environmental impact). External costs concern the purchase of end products from

other business firms. The consolidation of outsourced products takes place at the

warehouses. A pre-specified percentage of the total customer demand for each end

product sets an upper bound on the total quantity that can be acquired from an

external source. This option may be attractive when the cost of setting up a new

facility to process given items is higher than the cost of outsourcing them.
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Table 3.3 introduces additional input parameters. We assume that the available

capacity levels are sorted in non-decreasing order of their sizes. For plant locations

ℓ ∈ 𝐿 this means that 𝑄ℓ,1 < 𝑄ℓ,2 < . . . < 𝑄ℓ,|𝐾𝐿|. Similar conditions hold for

warehouse locations. As distinct technologies may be used by different plants to

manufacture a given product 𝑝 ∈ 𝑃 , we consider a production consumption factor 𝜇ℓ,𝑝

for every plant location ℓ ∈ 𝐿. Moreover, the quantity of raw materials required to

manufacture one unit of a specific product may also differ among the various plants.

Plant-dependent BOMs are specified by the parameters 𝑎ℓ,𝑟,𝑝. In contrast, the usage

of warehouse capacity by an end product does not depend on the warehouse location,

thus a consumption factor 𝛾𝑝 is assumed for every 𝑝 ∈ 𝑃 .

Constant 𝛼𝑗 is used to specify a minimum throughput level at facility 𝑗, the latter

being defined by multiplying 𝛼𝑗 by the capacity installed in location 𝑗 ∈ 𝐿 ∪𝑊 . In

this way, it will be guaranteed that facilities are operated at least at a meaningful

level.

All decisions are implemented at the beginning of each time period. As indicated in

Table 3.4, strategic decisions on facility location and capacity acquisition are ruled

by binary variables, while tactical logistics decisions are described by continuous

variables. The statuses of new facilities (i.e. plants, warehouses) over the time horizon

are controlled by the variables 𝑦𝑛𝑡,𝑗. If a new plant or warehouse is established at the

beginning of period 𝑡 in site 𝑗 ∈ 𝐿𝑛∪𝑊 𝑛 then 𝑦𝑛𝑡,𝑗 = 1 and 𝑦𝑛𝜏,𝑗 = 0 for all other periods

𝜏 ∈ 𝑇, 𝜏 ̸= 𝑡. Regarding the existing facilities, if facility 𝑗 ∈ 𝐿𝑒∪𝑊 𝑒 ceases to operate

at the beginning of period 𝑡 then 𝑦𝑒𝑡,𝑗 = 1 and 𝑦𝑒𝜏,𝑗 = 0 for all periods 𝜏 ∈ 𝑇, 𝜏 ̸= 𝑡.

Observe that if a new facility 𝑗 is available in period 𝑡 then
∑︀𝑡

𝜏=1 𝑦
𝑛
𝜏,𝑗 = 1. Similarly,
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Symbol Description
𝑎ℓ,𝑟,𝑝 Number of units of raw material 𝑟 ∈ 𝑅 required to manufacture

one unit of product 𝑝 ∈ 𝑃 in plant ℓ ∈ 𝐿
𝑄𝑆𝑡,𝑠,𝑟 Capacity of supplier 𝑠 ∈ 𝑆 for raw material 𝑟 ∈ 𝑅 in period 𝑡 ∈ 𝑇
𝜇ℓ,𝑝 Production capacity usage by one unit of product 𝑝 ∈ 𝑃 in plant

ℓ ∈ 𝐿
𝛾𝑝 Handling capacity usage by one unit of product 𝑝 ∈ 𝑃 in a ware-

house
𝑄𝑒

𝑗 Capacity of existing facility 𝑗 ∈ 𝐿𝑒 ∪𝑊 𝑒 available at the beginning
of the time horizon

𝑄𝑗,𝑘 Capacity of level 𝑘 ∈ 𝐾𝐿 ∪ 𝐾𝑊 that can be installed in facility
𝑗 ∈ 𝐿 ∪𝑊

𝑄𝑗 Maximum overall capacity of facility 𝑗 ∈ 𝐿∪𝑊 in each time period
𝑄𝑀𝑡,𝑜,𝑑,𝑚 Capacity of transportation mode 𝑚 ∈ 𝑀 from origin 𝑜 ∈ 𝑆∪𝐿∪𝑊

to destination 𝑑 ∈ 𝐿 ∪𝑊 ∪ 𝐶 in period 𝑡 ∈ 𝑇
𝜎𝑖,𝑚 Capacity utilization factor by one unit of item 𝑖 ∈ 𝑅 ∪ 𝑃 in trans-

portation mode 𝑚 ∈ 𝑀
𝑑𝑡,𝑐,𝑝 Demand of customer zone 𝑐 ∈ 𝐶 for product 𝑝 ∈ 𝑃 in period 𝑡 ∈ 𝑇
𝜆𝑡,𝑝 Fraction of the total demand for product 𝑝 ∈ 𝑃 in period 𝑡 ∈ 𝑇 that

can be delivered directly from plants to customers; 0 ≤ 𝜆𝑡,𝑝 < 1
𝛽𝑡,𝑝 Fraction of the total demand for product 𝑝 ∈ 𝑃 in period 𝑡 ∈ 𝑇

that can
be supplied by an external source; 0 ≤ 𝛽𝑡,𝑝 < 1

𝛼𝑗 Number between zero and one for a facility 𝑗 ∈ 𝐿 ∪ 𝑊 (to set a
minimum
throughput level at the facility)

Table 3.3: Additional input parameters.

if an existing facility 𝑗 is operated in period 𝑡 then
∑︀𝑡

𝜏=1 𝑦
𝑒
𝜏,𝑗 = 0.

3.2 Network redesign constraints

In this section, we describe in detail the specific constraints that compose our LRD prob-

lem.
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Symbol Description
𝑦𝑛𝑡,𝑗 1 if a new facility is established in location 𝑗 ∈ 𝐿𝑛 ∪𝑊 𝑛 in period

𝑡 ∈ 𝑇 , 0 otherwise
𝑦𝑒𝑡,𝑗 1 if an existing facility in location 𝑗 ∈ 𝐿𝑒 ∪ 𝑊 𝑒 is closed at the

beginning of period 𝑡 ∈ 𝑇 , 0 otherwise
𝑢𝑡,𝑗,𝑘 1 if capacity level 𝑘 ∈ 𝐾𝐿 ∪𝐾𝑊 is installed in location 𝑗 ∈ 𝐿 ∪𝑊

in period 𝑡 ∈ 𝑇 , 0 otherwise
𝑥𝑡,𝑜,𝑑,𝑖,𝑚 Quantity of item 𝑖 ∈ 𝑅 ∪ 𝑃 shipped in period 𝑡 ∈ 𝑇 from origin 𝑜

to destination 𝑑, (𝑜, 𝑑) ∈ 𝑂𝐷, using transportation mode 𝑚 ∈ 𝑀
𝑧𝑡,𝑤,𝑝 Quantity of product 𝑝 ∈ 𝑃 provided by an external source to ware-

house 𝑤 ∈ 𝑊 in period 𝑡 ∈ 𝑇

Table 3.4: Decision variables.

Supplier-related constraints

Supplier selection and procurement of raw materials are ruled by the following con-

ditions:

∑︁
ℓ∈𝐿

∑︁
𝑚∈𝑀

𝑥𝑡,𝑠,ℓ,𝑟,𝑚 ≤ 𝑄𝑆𝑡,𝑠,𝑟 𝑡 ∈ 𝑇, 𝑠 ∈ 𝑆, 𝑟 ∈ 𝑅 (3.1)

∑︁
𝑠∈𝑆

∑︁
𝑚∈𝑀

𝑥𝑡,𝑠,ℓ,𝑟,𝑚 =
∑︁
𝑝∈𝑃

𝑎ℓ,𝑟,𝑝

(︃∑︁
𝑤∈𝑊

∑︁
𝑚∈𝑀

𝑥𝑡,ℓ,𝑤,𝑝,𝑚

+
∑︁
𝑐∈𝐶

∑︁
𝑚∈𝑀

𝑥𝑡,ℓ,𝑐,𝑝,𝑚

)︃
𝑡 ∈ 𝑇, ℓ ∈ 𝐿, 𝑟 ∈ 𝑅 (3.2)

Constraints (3.1) limit the quantity of each raw material provided by a supplier.

Equalities (3.2) ensure that the total amount of raw material 𝑟 purchased by a plant

is used to manufacture end products. Observe that the expression within brackets

on the right-hand side defines the total quantity of product 𝑝 manufactured in time

period 𝑡 in plant ℓ. End products can be distributed to warehouses or delivered

directly to customer zones.
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Facility location and capacity acquisition constraints

The following constraints impose the required conditions for setting up new facilities

and closing existing facilities over the planning horizon. In addition, they also rule the

installation of capacity and its expansion. For notational convenience, let us denote

𝐾𝑗 = 𝐾𝐿 if 𝑗 ∈ 𝐿 and 𝐾𝑗 = 𝐾𝑊 if 𝑗 ∈ 𝑊 .

∑︁
𝑡∈𝑇

𝑦𝑛𝑡,𝑗 ≤ 1 𝑗 ∈ 𝐿𝑛 ∪ 𝑊 𝑛 (3.3)

𝑦𝑛𝑡,𝑗 ≤
∑︁
𝑘∈𝐾𝑗

𝑢𝑡,𝑗,𝑘 ≤
𝑡∑︁

𝜏=1

𝑦𝑛𝜏,𝑗 𝑡 ∈ 𝑇, 𝑗 ∈ 𝐿𝑛 ∪ 𝑊 𝑛

(3.4)

∑︁
𝑘∈𝐾𝑗

𝑢𝑡,𝑗,𝑘 ≤ 1−
|𝑇 |∑︁
𝜏=1

𝑦𝑒𝜏,𝑗 𝑡 ∈ 𝑇, 𝑗 ∈ 𝐿𝑒 ∪ 𝑊 𝑒

(3.5)∑︁
𝑘∈𝐾𝑗

𝑄𝑗,𝑘

∑︁
𝑡∈𝑇

𝑢𝑡,𝑗,𝑘 ≤ 𝑄𝑗

∑︁
𝑡∈𝑇

𝑦𝑛𝑡,𝑗 𝑗 ∈ 𝐿𝑛 ∪ 𝑊 𝑛 (3.6)

𝑄𝑒
𝑗

(︃
1−

∑︁
𝑡∈𝑇

𝑦𝑒𝑡,𝑗

)︃
+
∑︁
𝑘∈𝐾𝑗

𝑄𝑗,𝑘

∑︁
𝑡∈𝑇

𝑢𝑡,𝑗,𝑘 ≤ 𝑄𝑗

(︃
1−

∑︁
𝑡∈𝑇

𝑦𝑒𝑡,𝑗

)︃
𝑗 ∈ 𝐿𝑒 ∪ 𝑊 𝑒 (3.7)

Constraints (3.3) impose that at most one new facility (plant/warehouse) can be

established in a potential location over the time horizon. Moreover, once open, new

facilities cannot be closed. Constraints (3.4), resp. (3.5), rule the installation of

capacity in new, resp. existing, locations. In each time period, at most one capacity

level can be selected provided that a facility is already operating in that site. On the

other hand, if a new facility is established in a given period then a capacity level must

also be acquired in the same period. Moreover, constraints (3.5) guarantee that if an
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existing facility has its capacity extended then it cannot be closed. Since the location

variables 𝑦𝑒𝑡,𝑗 are binary, the term
∑︀|𝑇 |

𝜏=1 𝑦
𝑒
𝜏,𝑗, which appears on the right-hand side of

(3.5), takes a non-negative integer value. If this term is zero then facility 𝑗 ∈ 𝐿𝑒 ∪𝑊 𝑒

remains in operation over the whole time horizon. As a result, the right-hand side

of (3.5) is equal to one, thereby setting an upper bound on the number of capacity

expansions that are permitted in each period. If
∑︀|𝑇 |

𝜏=1 𝑦
𝑒
𝜏,𝑗 = 1 then facility 𝑗 was

closed in some period 𝜏 and so the right-hand side of (3.5) becomes zero. In this

case, the facility cannot be expanded in any period (recall that the variables 𝑢𝑡,𝑗,𝑘

that appear on the left-hand side of (3.5) are binary). Finally, notice that values of∑︀|𝑇 |
𝜏=1 𝑦

𝑒
𝜏,𝑗 larger than one are not possible as this would yield a negative right-hand

side of (3.5). These constraints would become invalid since 𝑢𝑡,𝑗,𝑘 represent binary

variables.

Constraints (3.6), resp. (3.7), set a limit on the capacity expansion of each new, resp.

existing, plant or warehouse.

Constraints related to capacity utilization

The next sets of constraints establish minimum and maximum capacity utilization

limits on both plants and warehouses. These limits depend on the acquisition of ca-

pacity over time. In every location, the capacity available in each period is determined

by

𝐴𝑛
𝑡,𝑗 =

∑︀
𝑘∈𝐾𝑗

𝑄𝑗,𝑘

𝑡∑︀
𝜏=1

𝑢𝜏,𝑗,𝑘 𝑡 ∈ 𝑇, 𝑗 ∈ 𝐿𝑛 ∪ 𝑊 𝑛

𝐴𝑒
𝑡,𝑗 = 𝑄𝑒

𝑗

(︂
1−

𝑡∑︀
𝜏=1

𝑦𝑒𝜏,𝑗

)︂
+
∑︀

𝑘∈𝐾𝑗

𝑄𝑗,𝑘

𝑡∑︀
𝜏=1

𝑢𝜏,𝑗,𝑘 𝑡 ∈ 𝑇, 𝑗 ∈ 𝐿𝑒 ∪ 𝑊 𝑒
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The above capacities are used for processing end products at plants and warehouses.

For ease of exposition, we introduce two expressions for the total quantity processed

by plants and warehouses:

𝐹𝐿
𝑡,𝑗 =

∑︀
𝑝∈𝑃

𝜇𝑗,𝑝

(︂ ∑︀
𝑤∈𝑊

∑︀
𝑚∈𝑀

𝑥𝑡,𝑗,𝑤,𝑝,𝑚 +
∑︀
𝑐∈𝐶

∑︀
𝑚∈𝑀

𝑥𝑡,𝑗,𝑐,𝑝,𝑚

)︂
𝑡 ∈ 𝑇, 𝑗 ∈ 𝐿

𝐹𝑊
𝑡,𝑗 =

∑︀
𝑝∈𝑃

𝛾𝑝
∑︀
𝑐∈𝐶

∑︀
𝑚∈𝑀

𝑥𝑡,𝑗,𝑐,𝑝,𝑚 𝑡 ∈ 𝑇, 𝑗 ∈ 𝑊

Constraints (3.8) and (3.9) guarantee that the total quantity of products manufac-

tured by each plant must be within pre-defined lower and upper limits in each time

period. Constraints (3.10)–(3.11) impose similar conditions on warehouses. Observe

that the lower capacity utilization limits refer to minimum throughputs corresponding

to a given percentage of the maximum capacities.

𝛼𝑗 𝐴
𝑛
𝑡,𝑗 ≤ 𝐹𝐿

𝑡,𝑗 ≤ 𝐴𝑛
𝑡,𝑗 𝑡 ∈ 𝑇, 𝑗 ∈ 𝐿𝑛 (3.8)

𝛼𝑗 𝐴
𝑒
𝑡,𝑗 ≤ 𝐹𝐿

𝑡,𝑗 ≤ 𝐴𝑒
𝑡,𝑗 𝑡 ∈ 𝑇, 𝑗 ∈ 𝐿𝑒 (3.9)

𝛼𝑗 𝐴
𝑛
𝑡,𝑗 ≤ 𝐹𝑊

𝑡,𝑗 ≤ 𝐴𝑛
𝑡,𝑗 𝑡 ∈ 𝑇, 𝑗 ∈ 𝑊 𝑛 (3.10)

𝛼𝑗 𝐴
𝑒
𝑡,𝑗 ≤ 𝐹𝑊

𝑡,𝑗 ≤ 𝐴𝑒
𝑡,𝑗 𝑡 ∈ 𝑇, 𝑗 ∈ 𝑊 𝑒 (3.11)
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Transportation, outsourcing, and demand-related constraints

∑︁
𝑖∈𝑅∪𝑃

𝜎𝑖,𝑚 𝑥𝑡,𝑜,𝑑,𝑖,𝑚 ≤ 𝑄𝑀𝑡,𝑜,𝑑,𝑚 𝑡 ∈ 𝑇, (𝑜, 𝑑) ∈ 𝑂𝐷, 𝑚 ∈ 𝑀 (3.12)

∑︁
ℓ∈𝐿

∑︁
𝑐∈𝐶

∑︁
𝑚∈𝑀

𝑥𝑡,ℓ,𝑐,𝑝,𝑚 ≤ 𝜆𝑡,𝑝

∑︁
𝑐∈𝐶

𝑑𝑡,𝑐,𝑝 𝑡 ∈ 𝑇, 𝑝 ∈ 𝑃 (3.13)

∑︁
𝑐∈𝐶

∑︁
𝑚∈𝑀

𝑥𝑡,𝑤,𝑐,𝑝,𝑚 =
∑︁
ℓ∈𝐿

∑︁
𝑚∈𝑀

𝑥𝑡,ℓ,𝑤,𝑝,𝑚 + 𝑧𝑡,𝑤,𝑝 𝑡 ∈ 𝑇, 𝑤 ∈ 𝑊, 𝑝 ∈ 𝑃 (3.14)

∑︁
𝑤∈𝑊

𝑧𝑡,𝑤,𝑝 ≤ 𝛽𝑡,𝑝

∑︁
𝑐∈𝐶

𝑑𝑡,𝑐,𝑝 𝑡 ∈ 𝑇, 𝑝 ∈ 𝑃 (3.15)

∑︁
ℓ∈𝐿

∑︁
𝑚∈𝑀

𝑥𝑡,ℓ,𝑐,𝑝,𝑚 +
∑︁
𝑤∈𝑊

∑︁
𝑚∈𝑀

𝑥𝑡,𝑤,𝑐,𝑝,𝑚 = 𝑑𝑡,𝑐,𝑝 𝑡 ∈ 𝑇, 𝑐 ∈ 𝐶, 𝑝 ∈ 𝑃 (3.16)

Capacity constraints on individual transportation modes are imposed by (3.12). For

supplier-plant links (𝑠, ℓ), these constraints rule the utilization of transportation ca-

pacity for raw materials 𝑟 ∈ 𝑅, while for all other origin-destination pairs equali-

ties (3.12) involve end products. Inequalities (3.13) limit the quantity of direct de-

liveries from plants to customers for every product. Constraints (3.14) guarantee the

conservation of product flows for all operated warehouses in each time period. These

constraints along with inequalities (3.10) and (3.11) state that outsourced products

also use the handling capacity available at warehouses. Constraints (3.15) impose

an upper limit on the total outsourced quantity per product type. Finally, con-

straints (3.16) ensure the satisfaction of all customer demands over the time horizon.
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Domains of variables

The following constraints (3.17)-(3.21) represent non-negativity and binary condi-

tions.

𝑥𝑡,𝑜,𝑑,𝑖,𝑚 ≥ 0 𝑡 ∈ 𝑇, (𝑜, 𝑑) ∈ 𝑂𝐷, 𝑖 ∈ 𝑅 ∪ 𝑃, 𝑚 ∈ 𝑀 (3.17)

𝑧𝑡,𝑤,𝑝 ≥ 0 𝑡 ∈ 𝑇, 𝑤 ∈ 𝑊, 𝑝 ∈ 𝑃 (3.18)

𝑦𝑛𝑡,𝑗 ∈ {0, 1} 𝑡 ∈ 𝑇, 𝑗 ∈ 𝐿𝑛 ∪𝑊 𝑛 (3.19)

𝑦𝑒𝑡,𝑗 ∈ {0, 1} 𝑡 ∈ 𝑇, 𝑗 ∈ 𝐿𝑒 ∪𝑊 𝑒 (3.20)

𝑢𝑡,𝑗,𝑘 ∈ {0, 1} 𝑡 ∈ 𝑇, 𝑗 ∈ 𝐿 ∪𝑊, 𝑘 ∈ 𝐾𝐿 ∪𝐾𝑊 (3.21)

3.3 Objective function

The objective function (3.22) minimizes the overall strategic and logistics costs. Fixed

facility costs are given by the first four components, while variable costs are deter-
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mined by the remaining terms.

Min
∑︁
𝑡∈𝑇

∑︁
𝑗∈𝐿𝑛∪𝑊𝑛

𝐹𝐶𝑡,𝑗 𝑦
𝑛
𝑡,𝑗 +

∑︁
𝑡∈𝑇

∑︁
𝑗∈𝐿𝑒∪𝑊 𝑒

𝑆𝐶𝑡,𝑗 𝑦
𝑒
𝑡,𝑗 +

∑︁
𝑡∈𝑇

∑︁
𝑗∈𝐿∪𝑊

∑︁
𝑘∈𝐾𝑗

𝐼𝐶𝑡,𝑗,𝑘 𝑢𝑡,𝑗,𝑘 +

∑︁
𝑡∈𝑇

∑︁
𝑗∈𝐿𝑒∪𝑊 𝑒

𝑂𝐶𝑡,𝑗

(︃
1−

𝑡∑︁
𝜏=1

𝑦𝑒𝜏,𝑗

)︃
+
∑︁
𝑡∈𝑇

∑︁
𝑤∈𝑊

∑︁
𝑝∈𝑃

𝐸𝐶𝑡,𝑤,𝑝 𝑧𝑡,𝑤,𝑝 +

∑︁
𝑡∈𝑇

∑︁
𝑠∈𝑆

∑︁
ℓ∈𝐿

∑︁
𝑟∈𝑅

∑︁
𝑚∈𝑀

(𝑃𝐶𝑡,𝑠,𝑟 + 𝑇𝐶𝑡,𝑠,ℓ,𝑟,𝑚) 𝑥𝑡,𝑠,ℓ,𝑟,𝑚+

∑︁
𝑡∈𝑇

∑︁
ℓ∈𝐿

∑︁
𝑗∈𝑊∪𝐶

∑︁
𝑝∈𝑃

∑︁
𝑚∈𝑀

(𝑀𝐶𝑡,ℓ,𝑝 + 𝑇𝐶𝑡,ℓ,𝑗,𝑝,𝑚) 𝑥𝑡,ℓ,𝑗,𝑝,𝑚+

∑︁
𝑡∈𝑇

∑︁
𝑤∈𝑊

∑︁
𝑐∈𝐶

∑︁
𝑝∈𝑃

∑︁
𝑚∈𝑀

𝑇𝐶𝑡,𝑤,𝑐,𝑝,𝑚 𝑥𝑡,𝑤,𝑐,𝑝,𝑚 (3.22)

The problem of re-designing an existing logistics network is modeled by the objective

function (3.22) subject to the constraints (3.1)–(3.21). We remark that for 𝐿𝑒 = ∅

and 𝑊 𝑒 = ∅, the formulation reduces to the special case of designing a new network.

3.4 Model enhancements

There are various ways of enhancing the LRD model. A simple strategy is to mul-

tiply the right-hand side of the capacity constraints (3.12) by appropriate sets of

facility location variables. For the flow of end products from plants and warehouses
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to customer zones, this corresponds to replacing inequalities (3.12) by

∑︁
𝑝∈𝑃

𝜎𝑝,𝑚 𝑥𝑡,𝑗,𝑐,𝑝,𝑚 ≤ 𝑄𝑀𝑡,𝑗,𝑐,𝑚

𝑡∑︁
𝜏=1

𝑦𝑛𝜏,𝑗 𝑡 ∈ 𝑇, 𝑗 ∈ 𝐿𝑛 ∪𝑊 𝑛, 𝑐 ∈ 𝐶, 𝑚 ∈ 𝑀

(12a)

∑︁
𝑝∈𝑃

𝜎𝑝,𝑚 𝑥𝑡,𝑗,𝑐,𝑝,𝑚 ≤ 𝑄𝑀𝑡,𝑗,𝑐,𝑚

(︃
1−

𝑡∑︁
𝜏=1

𝑦𝑒𝜏,𝑗

)︃
𝑡 ∈ 𝑇, 𝑗 ∈ 𝐿𝑒 ∪𝑊 𝑒, 𝑐 ∈ 𝐶, 𝑚 ∈ 𝑀

(12b)

Similar transformations can be easily performed for transportation modes linking

suppliers to plants. In this case, raw materials cannot be moved from supplier 𝑠 to

plant ℓ with transportation mode 𝑚 in time period 𝑡 unless plant ℓ is operated in that

period. For plant-warehouse pairs, transportation modes cannot be selected unless

the origin plant and the destination warehouse are both operated. In this case, it

is necessary to duplicate inequalities (3.12) for these types of transportation links,

thereby adding |𝑇 | · |𝐿| · |𝑊 | · |𝑀 | new constraints to the LRD model. We opted

to transform inequalities (3.12) without increasing the model size. To this end, for

plant-warehouse pairs we extend the right-hand side of (3.12) to ensure that products

are only distributed to warehouses in operation.
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Chapter 4

Memetic Algorithm

A memetic algorithm (MA) is an evolutionary algorithm that makes use of a local

search heuristic. The general idea behind an MA is to combine the advantages of

evolutionary operators that identify interesting regions of the search space, with local

neighbourhood search that quickly finds good solutions in a small region of the search

space.

The primary objective of the developed MA is to set the status and size of facilities

(the values of the binary decision variables) in order to obtain feasible solutions to

LND/LRD problems. In this algorithm, a solution/an individual is composed by a

set of closed and open facilities. The MA includes the following procedures:

1. Create initial population - P(0)

2. Apply local search to P(0)

3. Binary tournament selection

4. Crossover
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5. Facility status correction procedure

6. Mutation

7. Capacity correction procedure

8. Apply local search to new population

Two criteria are used to stop the MA procedure. One is by setting a maximum

number of generations. Thereby, when the MA achieves the established number

of generations the procedure terminates. The other criterion defines a maximum

number of generations without improvement of the best solution. Currently, the

MA procedure stops if there is not an improvement of the best solution over 60% of

generations.

4.1 Genetic algorithm

In this work, the genetic representation is set up of two chromosomes, the S-chromosome

that represents the statuses of the facilities (i.e. open/closed) in every period and the

F-chromosome that describes the capacity sizes available at the active facilities. The

number of chromosomes in each solution is equal to the number of time periods while

the number of genes in each chromosome is equal to the number of existing and new

facilities. However, in the F-chromosome, each gene has three alleles referring to three

different capacity levels k (𝑘 ∈ 𝐾𝐿 ∪𝐾𝑊 ).

For each given choice of the binary variables (S and F-chromosomes), the original

problem reduces to solving a linear program (with continuous variables representing
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the flow of products and the outsourcing quantities). Each sub-problem is solved to

optimality with Cplex. Its objective function value represents the solution fitness.

4.1.1 Initial Population

The initial population procedure aims at creating a set of solutions that will be used

by the algorithm to generate new individuals in the next generations. In order to

create feasible solutions, the following features are considered:

∙ The total capacity available in time period t (at plants and warehouses) must

cover the demand requirements in that period (𝑡 ∈ 𝑇 ).

∙ In every time period t, the capacity installed in each facility j (𝑗 ∈ 𝐿 ∪ 𝑊 )

cannot exceed the global capacity limit of that facility.

Although these two features are crucial to ensure the feasibility of a solution, they do

not guarantee the quality of the solution with respect to the objective function value.

Naturally, the random selection of facilities to be operated does not ensure that the

best set of facilities is selected to satisfy the demand. In fact, the initial solutions are

typically "expensive" as they represent logistics networks with more capacity than

the one needed to cover the demand. In order to readjust the choice of capacity sizes,

a local search procedure is applied. Often, this technique helps to improve the quality

of the initial solutions.

The initial population, P(0), is initialized with four solutions, independently of the

number of time periods or customer zones. Preliminary numerical tests indicated that

this seems to be a good choice. Observe that initializing P(0) with more individuals
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will have a strong impact on the time performance of the algorithm. On the other

hand, taking less individuals will have a negative effect on the population diversifica-

tion.

After each new generation, the new individuals are added to the previous population,

originating the new population.

Generation of the initial population:

1. For each period[t], (𝑡 ∈ 𝑇 )

1.1 Determine the minimum demand requirements to be satisfied by plants

and warehouses in period[t] (𝑡 ∈ 𝑇 )

1.2 Separately for existing plants and warehouses (𝑗 ∈ 𝐿𝑒 ∪ 𝑊 𝑒), evaluate

available capacity in period[t]

1.2.1 If available capacity is not enough to satisfy the demand in period[t]

then randomly select a facility[j] (𝑗 ∈ 𝐿 ∪𝑊 )

1.2.2 Determine installed capacity at selected facility j until period 𝑡− 1

1.2.3 Select the most suitable size k (𝑘 ∈ 𝐾𝐿 ∪ 𝐾𝑊 ), starting with the

smallest size

2. Apply local search (Section 4.2, p. 40)

3. Evaluate solution quality using Cplex to solve the subproblem
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4.1.2 Genetic operators

Binary tournament selection

From the pool of N individuals (with N denoting the number of existing parents), N-1

individuals will be selected by applying a binary tournament. This is equivalent to

selecting the N-1 best individuals of the pool, but in this procedure, the randomness

of the two solutions selected to participate in the binary tournament defines the

sequence of parents that will be used in the crossover. For example, combining the

winner of the binary tournament [i] with the winner of the binary tournament [i+1]

(𝑖+1 ≤ 𝑁 −1) will yield one pair of parents for crossover. Hence, in the next genetic

operator, the pairs of parents are already established.

Crossover

This genetic operator will act through two random crossover points, OX𝑗, j ∈ {1, 2},

as proposed by Michalewicz and Fogel [20]. Thus, three arguments will be created that

will influence the generation of the offsprings. The three arguments are as follows:

∙ [1;𝑂𝑋1]

∙ ]𝑂𝑋1;𝑂𝑋2]

∙ ]𝑂𝑋2; |𝑇 |]

The offspring [i] will be created by combining the genes of the S-chromosome and

F-chromosome of the two parents. This offspring will receive new genes from the

parent [𝑖 + 1] by changing the 1st and 3rd arguments given above and keeping the
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original genes from the 2nd argument belonging to parent [i].

The number of crossovers (q) depends on the number of parents available, however

the total number of parents can be an even or odd number. As a result, if the total

number of parents is odd, the parent[q] will not have a pair to generate a son. To

prevent this situation, the following formula is used:

⌊𝑞⌋ =
⌊︂
Number of parents in current generation− 0.5

2

⌋︂

For example, if the number of available parents is 5, the crossover procedure can only

be applied twice. In the first one, the procedure will be applied to parent[1] and

parent[2] and in the second time to parent[3] and parent[4].

Crossover procedure:

1. Select randomly crossover points OX𝑗, j ∈ {1, 2}

2. Select two parents, parent[i] and parent [i+1], 𝑖 ∈ {1, ..., 𝑞}

2.1 From [1, 𝑂𝑋1], transfer the genes of the S-chromosome and F-chromosome:

2.1.1 parent[i] to son[i+1]

2.1.2 parent[i+1] to son[i]

2.2 From ]𝑂𝑋1, 𝑂𝑋2], transfer the genes of the S-chromosome and F-chromosome:

2.2.1 parent[i] to son[i]

2.2.2 parent[i+1] to son[i+1]

2.3 From ]𝑂𝑋2, |𝑇 |], transfer the genes of the S-chromosome and F-chromosome:
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2.3.1 parent[i] to son[i+1]

2.3.2 parent[i+1] to son[i]

3. Call "Facility status correction" procedure

At this stage, it is required to take into account the possibility that a facility is

assigned an invalid status. For example, if in the 2nd argument some facilities have

installed capacity, then it is necessary to verify if those facilities are open. If this is

not the case then a status correction procedure is applied.

Facility status correction procedure:

1. For each solution[i] (𝑖 ∈ 𝑁), determine in the S-chromosome the open period[t]

(𝑡 ∈ 𝑇 ) of each facility[j] (𝑗 ∈ 𝐿 ∪𝑊 )

1.1 If gene[t][j] of facility[j] = 1: S-chromosome[𝜏 ] : for period[𝜏 ] (𝜏 ∈ {𝑡 +

1, ..., |𝑇 |}), set genes [𝜏 ][𝑗] = 0

2. For each solution[i] (𝑖 ∈ 𝑁), analyze the installed capacity size k (𝑘 ∈ 𝐾𝐿∪𝐾𝑊 ),

in period[t] (𝑡 ∈ 𝑇 ) for each facility[j] (𝑗 ∈ 𝐿 ∪𝑊 )

2.1 If facility size[t][j][k] = 1, update installed capacity[t][j].

2.2 If installed capacity[t][j] > Global capacity of facility[j]

2.2.1 F-chromosome: from period [𝜏 ](𝜏 ∈ {𝑡, ..., |𝑇 |}), set genes [𝜏 ][𝑗][𝑘] = 0

2.2.2 S-chromosome: set genes [𝜏 ][𝑗] = 0
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Mutation

Mutation is an operator that allows the diversification of the population and is applied

to offsprings generated by the crossover procedure. However, not all elements benefit

from this operator. With a mutation probability (Pm), as indicated by Mühlenbein et

al. [21], 𝑃𝑚 = 1.7
𝑁×|𝑇 | , the mutation probability decreases in each new generation due

to adding new individuals to the population. As a result, mutation is more likely to be

used in early generations and only when a random number (random mutation ∈ [0, 1])

is less than Pm.

This procedure is applied to facilities by selecting randomly one active facility (current

facility) and another that is not operated yet (new facility). After selection, the genes

of the S-chromosome and F-chromosome are swapped from the current facility to the

new selected facility.

Mutation procedure:

1. Calculate Pm

2. Select son[i] for mutation

3. Generate a random continuous number, random nutation (random mutation ∈

[0, 1]), to decide if mutation is applied to current son[i]. If random mutation <

Pm, go to 4. Otherwise, mutation is not applied.

4. Select randomly two genes[j], 𝑗 ∈ 𝐿 ∪𝑊

4.1 If 1st random 𝑗 ∈ 𝐿, then the 2nd j will also be a plant (𝑗 ∈ 𝐿). Else, the

2nd facility j is a warehouse (𝑗 ∈ 𝑊 )
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5. Swap S-chromosome and F-chromosome

6. Call "Facility capacity correction" procedure

7. Select son[i+1] and go to 3

After this procedure, it is required to take into account the transferred capacity into

the new facility, because the global capacities are different from facility to facility

and may transform a feasible solution into an infeasible one. To prevent this from

happening, a capacity correction procedure is applied after mutation. This procedure

analyzes the installed capacity of a facility during its active time periods and verifies

if the global capacity limit is satisfied.

In case of an infeasible solution, the capacity correction procedure will restrict the

installed capacity of the facility and in addition, a new facility will be opened to

satisfy the demand[t] that otherwise could not be covered.

Facility capacity correction procedure:

1. For each open facility[j] (𝑗 ∈ 𝐿 ∪𝑊 ) analyze the already installed size k (𝑘 ∈

𝐾𝐿 ∪𝐾𝑊 ), in period[t] (𝑡 ∈ 𝑇 ). Set k = current size

2. For each period, analyse if Installed capacity[t] < Total demand[t] and facility

size[t][j][k] = 1

2.1 For each facility[t][j], regarding the global capacity of facility[j], select the

most suitable size k, defined as new size k (current size < new size ≤ 𝑘).

2.2 If installed capacity[t] with new size ≤ Global capacity of facility[j]

2.2.1 S-chromosome: update the period in which the facility is opened
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2.2.2 F-chromosome: for facility[j] in period t, set current size = 0 and new

size = 1

3. If Installed capacity[t] < Total demand[t], it is required to open a new facility

3.1 Select randomly a new non-active facility

3.2 Starting with k = 1 (current size), select the most appropriate size (new

size) for facility[j], as follows

3.2.1 If facility size[t][j][k] ≤ Global capacity of facility[j], then

3.2.2 S-chromosome: if required, update the period in which the facility is

opened

3.2.3 F-chromosome: set current size = 0 and new size = 1

4. If Installed capacity[t] < Total demand[t], return to step 3

4.2 Local search

This procedure tries to improve the fitness of new individuals. To start this proce-

dure two facilities belonging to the same network layer are randomly selected. The

first corresponds to an active facility (current facility) and the second one to a non-

operated facility (new facility). In order to keep diversity, a facility (new facility) can

only be selected once.

After a new facility has been selected, the genes of the S-chromosome and the F-

chromosome are swapped. At this stage, due to the different characteristics of the

facilities, the sizes and the global capacity of facilities must be taken into account.

40



Cristiano Maciel

As a result of these differences, four possibilities can occur by changing the current

size of the new facility:

∙ The current size installed at facility[j] at period[t] cannot supply demand and

a larger size must be selected.

∙ The current size can supply demand and the global capacity is satisfied. As a

result, no changes are required.

∙ Due to the different capacity sizes of the new facility it is possible to select a

smaller size.

∙ The solution has an excess of capacity and it is possible not to use the selected

facility. This may occur when at previous local searches, the surplus of installed

capacity is much higher than the required to satisfy demand.

In the current procedure, the term "most feasible new size" is introduced and it means

that the selected size is the best option because it does not compromise the global

capacity of the facility[j] and also allows the satisfaction of demand[t].

With this procedure, 15% of the neighbours available in the solution are visited. A

higher percentage of neighbors visited will lead to an increase of the computational

time required to solve the problem and a lower percentage will have a residual impact

on the diversification of the solutions. Preliminary tests indicated that 15% is an

appropriate value for this parameter. The total number of neighbours of a solution is

equal to the number of existing and new facilities. For example, if a solution contains

two existing facilities and 10 new facilities, the number of local searches will be equal

41



Cristiano Maciel

to ⌈(2 + 10)× 0.15⌉ = 2.

The purpose of this procedure is to find a facility that is able to satisfy demand[t],

but it is less expensive than the "initial facility". However, if there is enough installed

capacity to supply demand[t] without the initial/new facility, this facility is removed

from the solution.

Local search procedure:

1. Select initial facility: randomly choose a facility that is operated (𝑗 ∈ 𝐿 ∪𝑊 )

2. Select new facility: randomly choose a non-operated facility[j’]

3. Swap the genes of the S-chromosome and F-chromosome from the initial facility

to the new facility

3.1 Determine the current size k (𝑘 ∈ 𝐾𝐿 ∪𝐾𝑊 ) installed

3.2 Select the most feasible new size k or if possible remove current facility[j]

4. If current size ̸= new size, evaluate solution using Cplex to solve the subproblem

and keep new solution, independently if it improves or not.

5. If current size = new size, apply local search to a 2nd neighbourhood

5.1 To another "new" facility, apply steps 1, 2 and 3

5.2 If new solution has enough capacity to satisfy demand[t] (𝑡 ∈ 𝑇 ), the global

capacity of facility[j] is satisfied and the new solution value is better than

the previous one, keep the new solution. Else, restore initial solution.

6. If the number of local searches < ⌈(number of total facilities)×0.15⌉, go to 1. Else, stop
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Chapter 5

Computational results

In total, 60 test instances were randomly generated with different time periods and

different number of customers (50, 75, and 100). Half of the instances belong to

the network redesign (LRD) class and the other half to the network design (LND)

class. The interested reader is referred to Cortinhal et al. [8] for further details. Six

different combinations of the parameters 𝜆𝑡,𝑝 = 𝜆 and 𝛽𝑡,𝑝 = 𝛽 were considered as

follows: 𝜆𝑡,𝑝 ∈ {0%, 10%}, 𝛽𝑡,𝑝 ∈ {0%, 10%, 20%} for every 𝑡 ∈ 𝑇 , 𝑝 ∈ 𝑃 , thus yielding

in total 360 cases. For each parameter combination, a CPU time limit of 8h was set

for IBM ILOG Cplex 12.6.0. Both the model and the heuristic were implemented in

C++. All experiments were performed on a PC with a 3.5 GHz Intel Core i7-3770K

processor, 8 GB RAM and running Windows 7 (64-bit). The heuristic was run with

5 generations. This parameter results from results from running the test instances

with different values for the maximum number of generations. A number larger than

5 leads to an increase of the computational time required to create all generations. In

contrast, lower quality solutions could be obtained when the number of generations
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is less than 5. Moreover, the heuristic also stops when there is not an improvement

of the best solution over 60% of the generations.

In the next table the sizes of the test instances are presented for both problem variants

and |𝑇 | ∈ {4, 6}. The table gives the average, minimum and maximum number of

binary and continuous variables and the number of constraints. Table 5.2 displays a

Problem |𝑇 | = 4 |𝑇 | = 6
class Number of Avg Min Max Avg Min Max

LRD Binary variables 432 288 560 648 432 840

Continuous variables 156830 32161 345201 235244 48241 517801

Constraints 8605 3637 13949 12883 5439 20891

LND Binary variables 363 240 480 544 360 720

Continuous variables 129505 26001 289601 194258 39001 434401

Constraints 8010 3370 13100 11992 5040 19620

Table 5.1: Size of the test instances

classification of the best solutions found by Cplex within the pre-specified time of 8h

is given.

Cplex Network

solutions LND model LRD model

|𝑇 | = 4 Optimal 64.44% 74.44%

Non-Optimal 35.56% 25.56%

|𝑇 | = 6 Optimal 46.67% 67.78%

Non-Optimal 53.33% 32.22%

Table 5.2: Cplex performance

5.1 Memetic Algorithm versus Cplex

In Figures 5-1 and 5-2, the performance of the heuristic is compared to Cplex. In

particular, the objective function values and the CPU time of the best solutions iden-
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tified by the heuristic and Cplex are compared as follows:

𝐺𝑎𝑝 =
Heuristic performance− Cplex performance

Cplex performance

The analysis is focused on two parameters, the average objective value and the aver-

age CPU time. The first one is obtained by stratifying the gaps into five groups and

for each group the average value gap is calculated. A similar procedure is applied

to obtain the average gap time, but in this case the data is split into two groups,

the best time of the heuristic versus Cplex (Best) and worst time of heuristic versus

Cplex (Worst).

The analysis is conducted by comparing the LND problem class with the LRD prob-

lem class in order to allow an easier interpretation and comparison of each network

performance.

LND instances require the opening of more new facilities than LRD instances and as

a result, more facilities must be selected to satisfy demand. However, due to the ab-

sence of existing facilities in the LND problem class, the time required by the heuristic

to analyse capacity restrictions is smaller. Consequently, the CPU time performance

of the heuristic is better in the LND class than in the LRD class. However, it is harder

for the heuristic to find the better combination of individuals that will constitute a

solution in the LND instances. As a result, the objective value performance is better

in the LRD class.
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Figure 5-1: LND Model - Heuristic and Cplex performance

Figure 5-2: LRD Model - Heuristic and Cplex performance

5.2 Performance behaviour of different requirements

of outsourcing (𝛽) and direct shipments to clients

(𝜆)

Starting the analysis with LND test instances with 4 time periods, it is possible to

verify that different levels of 𝛽 and 𝜆 do not have a significant difference with respect
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to the objective function value and the CPU time performance. Once a new logistics

network is built from the beginning (LND), the gap between the installed capacity

and the demand is under the influence of the selected facilities. This means, that

more efficient selections will lead to smaller gaps. By analysing Figure 5-3, we verify

that the smaller average gap is 3.91% for 𝛽 = 0% and 𝜆 = 10% (at most 10% of the

production is sent directly to customer zones). In contrast, the biggest average gap

is 5.17% for 𝛽 = 20% and 𝜆 = 10%. In this case, at most 20% of the demand is

outsourced and 10% of the manufactured products is sent directly to customer zones.

There is a significant decrease of capacity handled by plants but not by warehouses.

Due to the maximum outsourcing level (20%), less plants are required but the heuristic

is not sensitive to minimize the gap between the installed capacity and the required

capacity to supply demand. Typically, the installed capacity is much higher than the

required capacity, leading to expensive solutions. Figure 5-4 shows that a slightly

Figure 5-3: LND Model - Value performance, |𝑇 | = 4

different behaviour is observed regarding the CPU time. This KPI (Key Performance
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Indicator) has a better performance for instances with 𝛽 ∈ {0%, 20%} and 𝜆 = 10%.

When at most 10% of the demand can be shipped directly from plants to customers,

less warehouse capacity is necessary and less time is consumed to select a warehouse

and a proper size to install. Hence, the time required by the heuristic to find a feasible

set of warehouses to satisfy the demand is smaller.

Analysing the transition from 𝛽 = {0%, 20%} and 𝜆 = 0% to 𝛽 = {0%, 20%} and

𝜆 = 10%, it is possible to observe a decrease of performance. Despite 10% of the

total demand being shipped directly to customer zones, once again the heuristic is

not able to select the most appropriate facilities in order to minimize the gap between

the installed capacity and the required capacity to supply demand. The exception is

the pair 𝛽 = 𝜆 = 10% because the quantity sent by plants, without direct shippment

to customers, is equal to the quantity received by warehouses. In this scenario, at

most 10% of the plants’ production is outsourced and 10% of the demand is shipped

directly to customer zones. For 𝛽 = 10% and 𝜆 = 0%, the average time gap is -

65.56% comparatively to -70.18% for 𝛽 = 10% and 𝜆 = 10%. This particular case

has a performance similar to the case with 𝛽 = 𝜆 = 0% (-71.26%). The performance

of the heuristic in the LRD class differs significantly from the LND class. In the

latter case, there is no installed capacity in the network at the beginning of the time

horizon. In contrast, in the LRD network, at the starting period there is already

installed capacity and often, less facilities must be opened to satisfy demand.

Comparing the test instances 𝛽 ∈ {0%, 10%} and 𝜆 = 0% with 𝛽 ∈ {0%, 10%}

and 𝜆 = 10%, normally it leads to an increase of the average gap, because with

𝜆 = 10%, the warehouses will handle less 10% of the plants’ production and solutions
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Figure 5-4: LND Model - CPU Time performance, |𝑇 | = 4

capacities must be adjusted in order to turn solution more efficient in terms of costs.

This production is shipped directly to customer zones, but the heuristic is not able

to select the most appropriate warehouses to supply demand. As a result, more

expensive solutions are created. This is the same reason as with the LRD network,

but because there is already installed capacity, less random selections must be done,

leading to smaller average value gaps compared to an LND network. In the LRD

test instances, the higher average value gap is 5.01% for 𝛽 = 10% and 𝜆 = 10%. In

contrast, the best average value gap is 1.63% for 𝛽 = 20% and 𝜆 = 10%.

The heuristic performance greatly improves for 𝛽 = 20% and 𝜆 ∈ {0%, 10%} because

less quantity must be handled by plants, as at most 20% of the demand requirements

can be outsourced. Additionally, when 10% of the plants’ production is shipped

directly to customer zones, less facilities (warehouses) must be opened. In Figure 5-

6 it is possible to analyse the average time gaps of LRD test instances for |T| =

4. For 𝛽 = {10%, 20%} and 𝜆 ∈ {0%, 10%} with exception of 𝛽 = 𝜆 = 10%,
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Figure 5-5: LRD Model - Value performance, |𝑇 | = 4

Cplex is able to obtain the optimal solution faster than the heuristic. In two cases

(𝛽 = {10%, 20%}), less quantity must be handled by plants and consequently, the

number of required plants is smaller. The same logic is valid when 𝜆 = 10%, because

this implies that direct shipments to customer zones are possible. In the LRD test

instances, Cplex is able to take advantage of existing facilities to obtain less expensive

solutions. Hence, better solutions are generated by Cplex.

Next, Figures 5-7 to 5-10 are representative of the heuristic performance for |T| =

6 and both problem classes. It is possible to observe a significant difference of the

heuristic performance compared to the instances with |T| = 4.

In Figure 5-7, the average value gaps are slightly higher compared to |T| = 4. For |T|

= 6 and the LND test instances, the heuristic must select more facilities to supply

demand, and so more plants and warehouses must be opened. The heuristic is not

sensitive in order to minimize the gap between the total installed capacity in time

period t and the required capacity in the same period. Therefore, the heuristic is not
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Figure 5-6: LRD Model - CPU Time performance, |𝑇 | = 4

able to select appropriate facilities and this is once again the cause of these positive

gaps.

Regarding the CPU time performance for |T| = 6, there is a significant improvement

Figure 5-7: LND Model - Value performance, |𝑇 | = 6

of the heuristic performance. In the "worst" case the heuristic was able to find a

solution in 82.83% of the instances (𝛽 = 10% and 𝜆 = 0%) faster than Cplex and

at the "better" this value increases to 88.73% (𝛽 = 20% and 𝜆 = 0%). With |T|
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= 6, more data must be analysed and Cplex spends more time to identify feasible

solutions that are on average 4.63% (𝛽 = 10% and 𝜆 = 0%) and 5.91% (𝛽 = 20%

and 𝜆 = 0%) cheaper than the heuristic solutions. Cplex takes more time to identify

a feasible solution. However, it is able to do a better selection of the facilities that

must operate, thus minimizing the total cost. In contrast, the heuristic is faster at

obtaining a feasible solution but the selection of the facilities that must be opened is

not as good as with Cplex. Hence, the heuristic solutions are more expensive.

Figure 5-8: LND Model - CPU Time performance, |𝑇 | = 6

In Figures 5-9 and 5-10, the performance of the LRD class is presented for |T| = 6.

Again, there is a significant difference of the heuristic behaviour compared to |T| =

4. The average value gaps are higher, with a minimum gap of 3.74% (𝛽 = 10% and

𝜆 = 0%) and a maximum gap of 5.73% (𝛽 = 20% and 𝜆 = 10%).

In contrast to |T| = 4, with |T| = 6 the heuristic is able to perform better than Cplex

with respect to the average time gaps. In the "worst" case, the heuristic was 20.78%

(𝛽 = 10% and 𝜆 = 0%) faster than Cplex to find a feasible solution that was on
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Figure 5-9: LRD Model - Value performance, |𝑇 | = 6

average 3.74% (𝛽 = 10% and 𝜆 = 0%) more expensive. In the "better" performance

case, the heuristic identifies a feasible solution 63.27% (𝛽 = 0% and 𝜆 = 10%) faster

than Cplex with a cost that is 4.44% higher (on average). The heuristic is able to

Figure 5-10: LRD Model - CPU Time performance, |𝑇 | = 6

find a feasible solution faster than Cplex. However, this comes at a cost with respect

to the quality of the solution obtained, which is lower than the one identified by
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Cplex. When a capacity size must be installed, the heuristic can determine the most

appropriate capacity level to select.

However, the same does not happen with respect to the selection of facilities. When

a facility must be selected, it is randomly chosen and therefore a capacity size is

selected. But, each facility has different characteristics, and when more capacity is

required, the heuristic is not able to decide if it is better to expand capacity or if it

is necessary to open a new facility. These decisions are taken randomly and as seen

with the performance analysis, they influence the quality of a solution.

5.2.1 Suggestions for improvements

Positive aspects of the heuristic are the CPU time performance and the capability to

produce homogeneous solutions for different lengths of the planning horizon. How-

ever, it is necessary to improve the quality of the solutions. Therefore, in this section

possible inefficiencies in the current version of the heuristic are discussed.

The following aspects were identified that could possibly increase the heuristic effi-

ciency:

∙ Similar probability of selecting facilities in LRD problems. Due to the great

number of new facilities in relation to existing facilities, the probability of se-

lecting an existing facility is smaller than the probability of selecting a new

facility. As a consequence, it is more difficult to take advantage of existing

facilities to perform a capacity extension.

∙ Optimize the selection of facilities in order to select the "most feasible" facility.
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The "most feasible" facility refers to the choice of a facility that minimizes the

gap between the total capacity available in time period t and the total demand

requirements in the same period. At the same time, the global capacity limit

of the facility cannot be exceeded.

∙ Allow the exchange to different facility types. Currently, any actions must be

taken within the same group of facilities (example: if local search is applied to

a new facility, the process will be conducted with new facilities).
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Chapter 6

Conclusion

The amount of available information is each day bigger and bigger, what requires a

great capacity to analyze data in order to better understand clients’ needs and keep

ahead of competitors. In order to become competitive, a company must be capable of

making decisions ahead of its competitors. Thus, time is a valuable asset in decision

making. Therefore, the MA has a clear advantage in relation to Cplex, since more

solutions can be provided to a decision maker within a given time frame. For example,

for an LND problem (|𝑇 | ∈ {4, 6}), the heuristic is able to provide a solution 77.30%

more faster that is on average 4.76% more expensive than Cplex solution. For LRD

instances, the heuristic is able to provide 22.57% faster solutions with a total cost

that is on average 4.13% higher than that obtained by Cplex.

If a company is not competitive or if it is losing competiveness, the cost associated

to this position is not quantified, however, it can have an important impact on the

future of the company. As a result, despite of the good performance of Cplex to

find optimal solutions or solutions that are less expensive than the heuristic, Cplex
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reached the time limit of 8h (CPU) without finding the optimal solution in 44.44%

of the LND instances (|𝑇 | ∈ {4, 6}). For LRD instances, Cplex performed is better.

However, in 28.89% of these instances Cplex did not obtain an optimal solution after

8h (CPU).

Taking benefit of the heuristic time performance, some changes can be applied to

increase the quality of heuristic solutions without having a significant impact on the

CPU time performance.

The proposed MA procedure is not very sensitive, all binary decisions are taken ran-

domly (except the selection of capacity levels). If the process becomes more aware of

the type of facility decision, the heuristic will be able to generate better individuals in

four or five generations. Turning the heuristic more sensitive means that the selection

of a facility would not depend on randomness, but it could identify the points in the

process that influence the heuristic performance and turn them less dependent on

randomness.

Some possibilities for improving the MA were proposed. For instance, the selection

between existing and new facilities should be more efficient, to decide in each period

what is the most advantageous to a company, choose between expanding the capacity

of an existing facility or opening a new facility. If there is available capacity at exist-

ing facilities then it should be used because less expensive solutions will be generated.

In order to keep diversification in the population, the heuristic may select a set of

best options and afterwards select one of them randomly.

Facilities have different characteristics, as a consequence if the heuristic is able to

select a facility that is able to supply demand but it is also the cheapest option avail-

57



Cristiano Maciel

able, better solutions will be obtained. Once again, diversification can be maintained,

if a set of facilities is selected and one is randomly chosen.
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