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Abstract 

This empirical study’s objective is to evaluate the impact of robust estimation on mean 

variance portfolios. This was accomplished by doing a simulation on the behavior of 15 

SP500 stocks. This simulation includes two scenarios: One with normally distributed 

samples and another with contaminated non-normal samples. Each scenario includes 

200 resamples. The performance of maximum likelihood (classical) estimated 

portfolios and robustly estimated portfolios are compared, resulting in some 

conclusions: On normally distributed samples, robust portfolios are marginally less 

efficient than classical portfolios. However, on non-normal samples, robust portfolios 

present a much higher performance than classical portfolios. This increase in 

performance is positively correlated with the level of contamination present on the 

sample. In summary, assuming that financial returns do not present a normal 

distribution, we can state that robust estimators result in more stable mean variance 

portfolios.
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Resumo 

Este estudo empírico tem como objectivo avaliar o impacto da estimação robusta nos 

portefólios de média variância. Isto foi conseguido fazendo uma simulação do 

comportamento de 15 acções do SP500. Esta simulação inclui dois cenários: um com 

amostras que seguem uma distribuição normal e outro com amostras contaminadas 

não normais. Cada cenário inclui 200 reamostragens. O performance dos portefólios 

estimados usando a máxima verosimilhança (clássicos) e dos portefólios estimados de 

forma robusta são comparados, resultando em algumas conclusões: Em amostras 

normais, portefólios robustos são marginalmente menos eficientes que os portefólios 

clássicos. Contudo, em amostras não normais, os portefólios robustos apresentam um 

performance muito superior que os portefólios clássicos. Este acréscimo de 

performance está positivamente correlacionado com o nível de contaminação da 

amostra. Em suma, assumindo que os retornos financeiros têm uma distribuição não 

normal, podemos afirmar que os estimadores robustos resultam em portefólios de 

média variância mais estáveis. 
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1. Introduction 

The purpose of this paper is to study the effect of estimation risk on the stability of 

portfolios resulting from Mean Variance Theory (MVT), developed by the work of 

Markowitz (1952, 1959).  It is focused on problems on practical applications of MVT, 

contrasting with the fact that in theory it produces optimal results and is the backbone 

of modern portfolio theory. Nonetheless, its translation into real life is not perfect, as 

the composition of the optimal portfolio1 is unstable over time and too sensitive to ill 

estimations of parameters, resulting in it being unconsidered by many portfolio 

managers, topic that was explored by Michaud (1989). How can a model like this be 

considered the answer for portfolio allocation problems and then result in less than 

efficient portfolios on its practical applications? See Jobson and Korkie (1981). 

To answer this question, first we should start by looking in to MVT and understand 

how it works. This theory takes a basket of n securities and allocates them in order to 

maximize expected returns for each possible risk level, on a certain investment period. 

Resulting in a curve in risk/expected return plan, representing the set of efficient 

portfolios, called efficient frontier. One of the advantages of MVT is its simplicity, 

mainly because it relies on two inputs: , a vector composed with n  securities’ 

expected returns and  , a *n n  variance-covariance matrix of the respective 

expected returns. In MVT the optimization problem is treated as a deterministic 

problem, i.e. it is assumed that both   and   which are be applied to the investment 

period are known with certainty. In real life, of course, these two inputs have to be 

estimated, and so they are subject to estimation error. The assumption that one knows 

for sure the future expected returns and future variance-covariance of expected 

returns of the different assets is difficult to stand. In practice, investors have to 

forecast those inputs, which inevitably results in estimation error. Estimation risk is 

therefore the main source of risk in MVT. As Fabozzi et al (2014) defended, the 

irrational relation between inputs and outputs and the great sensitivity of the portfolio 

allocation to changes in inputs are the main reasons for MVT not being applied by the 

majority of portfolio managers in practice.  

1- All mentions to optimal portfolio refer to the tangent portfolio of the efficient frontier.  
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On this study, several questions have to be answered. First, why does MVT produce 

sub-optimal portfolios in practice? How can robust estimators improve the stability of 

the resulting portfolios? How robust estimators perform in comparison with classical 

Maximum Likelihood estimators under different scenarios? And finally, how different 

degrees of parameter deviation affect the stability of the final output of MVT?  

We start by positioning this study with respect to what has already been done on this 

subject on chapter 2, showing several studies about MVT risk mitigation, optimization 

of the estimation process and portfolio optimization procedures. Additionally, in this 

chapter we demonstrate how this work differs from those past studies. Then on 

chapters 3 we present the methodology used. On chapter 4 a simulation study of 15 

Standard and Poor’s stocks is presented, where the performance of classical Maximum 

Likelihood estimators and robust estimators is compared. On chapter 5 some 

conclusions are drawn from the results of the simulation study. 



João M. Cardoso  Robust Mean Variance 
 
 

  3 

 

2. Literature Review 

Mean Variance Theory developed by Markowitz (1952, 1959) has been the basis of 

modern portfolio theory. Before him, the focus of investment selection was on 

evaluating securities individually in order to decide which securities yielded the higher 

returns. Not taking in account the risk associated with those securities. After 

Markowitz the focus changed to diversification and the impact of each security on a 

portfolio’s total risk-return.  

This literature review starts by taking a look at the main breakthroughs that MVT 

allowed, as well as the limitations of this theory on section 2.1. Subsequently, on 

section 2.2, are presented the major developments related with estimation risk, which 

is a very important topic through this paper. On the next section (2.3), are presented 

some important improvements and alternatives to classical MVT. To conclude, section 

2.4 presents a review on robust statistics.  

 

2.1 MVT Applications & Shortcomings  

Since its creation MVT has been widely used by researchers and practitioners. In the 

academia it laid the ground for several equilibrium models, like CAPM, produced 

through the work of Lintner (1965), Mossin (1966) and Sharpe (1966). It was also 

important in defining and understanding the difference between systematic and 

diversifiable risk. For practitioners it is important in many portfolio management 

applications. However, despite the simplicity of the model created by Markowitz, the 

powerful optimization theory supporting it and the existence of software able to easily 

solve the optimization problem, it is still disregarded in practice due to its poor ability 

to adapt to estimated inputs and due to the sensibility of optimal portfolios to small 

changes in inputs, see Michaud (1989). If we divide MVT in two parts, first we have the 

process of computing the inputs and secondly the optimization of those same inputs in 

to portfolios. The problem is that in the first part of the theory we can’t reach exact 
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results, whereas on the second part, the process is flawless. Though, the second part 

only results in solid portfolio allocations if the first part produced exact inputs, which 

most of the times is not possible. 

MVT is based on the assumption that the vector of expected returns    and variance-

covariance matrix    are sufficient to create the set of efficient portfolios. However 

this preposition does not consider an important factor. It implies that   and   are 

known, when in practice these parameters have to be estimated with base on 

historical prices of those same securities. Therefore, the actual inputs of MVT are ̂

and ̂ , which have some associated estimation error. This is a shortcoming of MVT, 

which does not take in account the fact that inputs were estimated, and include 

estimation error, treating them as the unbiased parameters. This is commonly referred 

to as “certainty equivalence”, as those estimated parameters are considered 

equivalent to the known parameters through the whole optimization process.  

2.2 Estimation Risk 

Estimation risk is a fundamental factor for the inefficiency of Mean Variance efficient 

portfolios. Merton (1980) has shown that expected returns are extremely sensitive to 

estimation error, variance is slightly sensitive and covariance is the less sensitive of the 

three. We also know that even small changes in input parameters may result in large 

changes in the optimal portfolio composition, Chopra (1993). Additionally, Chopra and 

Ziemba (1993) concluded that “errors in means are approximately 10 times as 

important as errors in variances and covariances considered together”. So, considering 

that investors have limited resources, they should focus their resources on finding the 

best possible estimates of expected returns, as this parameter is the one which most 

influences the quality of the estimated tangent portfolio.  

Jobson and Korkie (1981) made a simulation study where they estimated the expected 

return and risk of 20 securities from a simulated dataset of 60 monthly returns. The 

estimated tangent portfolio had a Sharpe ratio of 0.08, compared with the Sharpe ratio 

of 0.34 of the actual tangent portfolio, even less than the Sharpe of 0.27 of an equally 
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weighted portfolio of those same 20 securities, concluding that MV efficient portfolios 

can even be dominated by naive portfolios of the same assets due to the effect of 

estimation error.  

Taking a different perspective, Michaud (1989) introduced the concept of “estimation 

error maximizers”, defending that MVT behaves as a maximizer of estimation risk. 

Securities that have its expected return overestimated (underestimated), its standard 

deviation underestimated (overestimated) or its covariance underestimated 

(overestimated) will be overweighted (underweighted) on the resulting portfolio. This 

acts as proof of the ill effect of estimation risk on the output of the optimal portfolio 

composition.  

Best and Grauer (1991) made a computational simulation on the behavior of portfolios 

of different sizes and reached the conclusion that when changing the expected return 

of one asset, the composition, expected return and risk of the optimal portfolio 

changed drastically. Although when a non-negativity constraint was present the 

portfolio composition was still very sensitive to changes in one security expected 

return, but the expected return and risk of the portfolio tended to remain almost 

constant. 

What all of those studies show is that estimation risk has a big impact on portfolio 

allocation problems. More than changing the portfolio composition, it may also affect 

deeply the portfolio’s expected return and risk. Hence, estimation risk has to be 

mitigated as much as possible, something that researchers have been doing but is still 

a work in progress, like we can see on the next section. 

2.3 Mean Variance Theory extensions 

The inability of MVT to cope with estimated parameters and the fact that it did not 

acknowledge the existence of estimation error on its inputs has been criticized by 

several authors like Barry (1974), Bawa and Klein (1979), Brown (1976).  

According to Stein (1956) for an estimator to be admissible it must dominate all other 

estimators on a given risk or loss function. The same author has proven the 
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inadmissibility of sample means as estimators of expected returns. Based on this 

development Jobson et al(1979) proposed a James-Stein estimator to improve the 

efficiency of MVT, this estimator was put to the test on Jobson and Korkie (1981) and 

consists on a Bayesian estimator which shrinks the individual means of each security to 

a global mean, in a way that, the greater the volatility of each security, the greater the 

shrinkage, Jorion (1986) proposed a similar estimator, but shrinking the expected 

return estimates towards the minimum variance portfolio.  

Black Litterman (1991) introduced a market based shrinkage approach which combines 

equilibrium expected returns based on the weighted average market return from 

CAPM with investor’s views on each asset or group of assets and with the investor’s 

degree of confidence on each forecast. An important assumption of this model is that 

the expected return of a security should be consistent with the market equilibrium 

unless the investor has a particular view on that security. Therefore, an investor 

without any views (unconstrained) should hold the market portfolio. Another possible 

way to correct the ill effect of estimation error is to increase the risk aversion 

parameter. That is exactly what Horst, Roon and Werker (2002) did, developing a risk 

aversion correction to take estimation risk into account when estimating mean 

variance tangent portfolios, this new risk aversion is higher than the standard one and 

the increase depends on the sample size, number of securities on the portfolio and on 

the curvature of the mean variance frontier. This way, considering that the estimated 

efficient frontier is an overestimation of the true efficient frontier due to the error 

maximization effect, increasing the risk aversion parameter nullifies some of that 

overestimation.  

On 1998 Michaud presented a resampling methodology to mitigate estimation risk on 

a mean variance framework. Through statistical resampling, several risk/return 

estimates are created, from those estimates, tangent portfolios are created and by 

averaging the weights of those tangent portfolios an investor can reach a solid 

estimate of an optimal portfolio.  

On the late 90’s, a method that considers estimation error as part of the optimization 

process was developed. This method is called robust optimization, and was first 
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introduced by El Ghaoui and Lebret (1997) and Ben-Tal and Nemirovski (1998). It 

consists on finding a solution that is satisfactory to most possible realizations of the 

uncertain parameters  ,  . From this point, uncertainty sets are created, containing 

all or at least most of the possible realizations of the uncertain parameters, the greater 

the set, the more uncertain is the parameter (higher chance of estimation error) and 

more robust is the solution. The problem is then solved by finding the portfolio that 

maximizes utility on the worst-case scenario, from the possible values of the 

uncertainty set. See for instance: Lobo and Boyd (2000) and Goldfarb and Iyengar 

(2003). Even using any of these enhancements of MVT, and due to the stochastic 

behavior of the asset return process, estimation error will always exist, even if it is 

lower than the vanilla MVT. 

2.4 Robust Statistics 

What would be preferred by an investor: (i) make a solid estimation of expected 

returns and covariances of a set of securities or (ii) make an estimation that considers 

the infinitesimal probability of a sudden market crisis but isn’t as reliable as the first 

one on a non-crisis scenario? Should investors give the same importance to extreme 

returns as they do to more common returns? This results in a problem of statistical 

robustness. Robust statistics, developed by Huber (1964) and Hampel (1968), consists 

on procedures to deal with situations where the underlying distribution deviates 

slightly from the assumed model, see Huber and Ronchetti (1981). On MVT, extreme 

observations with a very few chance of happening have a great effect on the estimated 

input parameters.  

It is then important to clarify two concepts: efficiency and breakdown of estimators. 

Efficiency is the capability of an estimator to yield close to optimal estimates, therefore 

to minimize estimation errors. Breakdown is the amount of outlying observations that 

an estimator can withstand before it produces unstable results, see Huber and 

Ronchetti (1981). Usually, the more efficient an estimator is, the lower is its 

breakdown point, and vice versa. For example, if we compare the classical mean and 

median, we can see that the mean is a much more efficient estimator than the median, 
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as it tends to produce closer to optimal estimates. However, if we multiply the highest 

observation on a given sample by one million, the mean of that sample would be 

heavily biased by it, whereas its median would remain the same. Consequently robust 

estimators, the ones with a considerable higher breakdown point have an implied loss 

of efficiency associated with gains in stability, Huber and Ronchetti (1981).  

An estimator is considered robust if it can withstand extreme observations and still 

yield stable estimations. Classical estimators are known to result in dire results on the 

presence of those observations as its breakdown point is or is close to zero. One way 

to assess if an estimator is robust is to study its Influence Function. This function 

resulted from the work of Hampel (1968, 1974) as it “allows us to assess the relative 

influence of individual observations towards the value of an estimate or test statistic” 

and therefore “allows an immediate and simple heuristic assessment of the asymptotic 

properties of an estimate” Huber and Ronchetti (1981). Furthermore, Hampel (1986) 

has stated that the only necessary condition for an estimator to be robust is for it to 

have a bounded influence function, consequently the only condition necessary for 

MVT to be robust is to have its parameters estimated through robust estimators with 

bounded influence functions. 

On this study we see how estimation error and the inclusion of “noise” on the sample, 

affect the quality of the estimated parameters. Studying the effect of different 

magnitudes and frequencies of sample contamination and how robust estimators 

perform in comparison to classical estimators on all those different scenarios. To do 

this, we use a resampling method similar to the one developed by Michaud (1998). 

Though, on our case, two different estimates are applied to each sample, one classical 

and one robust and different kind of samples are used. In addition, we are able to see 

the effect of “estimation error maximizers” on practice. 
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3. Methodology 

In order to compare the performance of tangent portfolios resulting from classically 

and robustly estimated efficient frontiers, we simulate the returns of a set of stocks 

through a resampling process. This is repeated to several different scenarios. On each 

scenario, both types of estimations are applied to all samples, resulting in a number of 

different estimated parameters. From there, MVT is applied on each different 

scenario, for both estimation types and for all resamples, resulting in several estimated 

tangent portfolios which are the main tools to study the advantages and disadvantages 

of each estimator.  

On this chapter this methodology is explained in detail. On section 3.1 we start by 

presenting the data which served as base for this empirical study. Section 3.2 is where 

the simulation methodology is presented, being then divided in subsection 3.2.1 and 

3.2.2. On subsection 3.2.1 the control scenario, the one which does not contain any 

contamination, is explained. In opposition, subsection 3.2.2 describes the different 

contamination scenarios, and how the contamination process occurred. Section 3.3 

shows in more detail the robust estimator which is used on this study. And finally 

section 3.4 demonstrates how the portfolio creation process was developed.  
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3.1 Data 

A set of 15 Standard & Poor’s stocks are the objects of the simulation, all of them 

having been in the index for more than 20 years. This set of stocks encompasses 

companies from different industries and sizes. 

 

 

Table I – Stock description 

Number Name Industry 
Market 

Capitalization 

1 AT&T, Inc. Telecommunications 196.89B 

2 The Boeing Company Aircraft 92.62B 

3 Colgate-Palmolive Co. Consumer goods 56.2B 

4 Duke Energy Corporation Energy 48.78B 

5 Ford Motor Co. Automaker 52.24B 

6 DR Horton Inc. Construction 10.78B 

7 Intel Corporation Technology 137.9B 

8 Johnson & Johnson Pharmaceutical 261.4B 

9 Oracle Corporation Technology 153.14B 

10 
The Procter & Gamble 

Company 
Consumer goods 195.02B 

11 
Verizon Communications 

Inc. 
Telecommunications 178.57B 

12 Coca-Cola Enterprises Inc. Beverages 10.7B 

13 The Gap, Inc. Clothing 12.33B 

14 The Hershey Company 
Chocolate 

manufacturing 
20.12B 

15 Mattel, Inc. Toy manufacturing 7.35B 

 Profile of 15 SP500 companies which are part of the simulation. Market capitalization in billion dollars, at the date of 28/09/2015 

 



João M. Cardoso  Robust Mean Variance 
 
 

  12 

Since we want to mitigate idiosyncratic risk as much as possible, 15 stocks should be 

enough to generate diversified portfolios. See, for instance, the comments about a 

diversified portfolio of Reilly (1985): “In terms of overdiversification, several studies 

have shown that it is possible to derive most of the benefits of diversification with a 

portfolio consisting of from 12 to 18 stocks. To be adequately diversified does not 

require 200 stocks in a portfolio” pp.(213).  

Monthly observations from April 1995 to March 2015 were extracted for each stock. 

To minimize estimation error as much as possible, a sample of 240 monthly returns 

was used for each stock, given that according to Jobson and Korkie (1981) 60 to 100 

monthly returns are not enough to eliminate estimation error. The authors also note 

that a sample of at least 200 monthly returns would be needed in order to minimize 

estimation error to a point that it would not bias our estimated tangent portfolio. 

Through classical maximum likelihood estimation of those monthly returns, the 

expected returns and variance-covariance matrix of each security was extracted. 

From this point onwards, we focus our study only on the expected returns and 

variance-covariance matrix estimated from the initial data. Creating a vector   

composed with the annual return of each of the 15 stocks and a       matrix   

composed with the covariances between those same returns. These values are going 

to be the inputs of the simulation process. Additionally, we assume   and   to be 

next year’s realized return and variance-covariance for each stock. It is important to 

understand that   and   are related to next year as the investment horizon of the 

developed portfolios will be equally of one year. 

This data serves as benchmark through the whole study, being more than once 

compared with the simulated data. Having this in to account, these parameters are 

referred to as true expected returns    and true covariance   . Anything else 

referred to as true is assumed to be related with these same parameters. Below we 

can see the true parameters: 

 2.15 9.94 10.62 4.11 2.90 14.16 8.97 9.44 14.40 7.96 3.65 9.05 11.04 10.40 1.36 

(1)
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0.0581 0.0013 0.0007 0.0017 0.0030 0.0025 0.0016 0.0012 0.0015 0.0007 0.0033 0.0008 0.0018 0.0009 0.0018
0.0013 0.0731 0.0012 0.0006 0.0068 0.0047 0.0029 0.0012 0.0021 0.0009 0.0014 0.0037 0.0035 0.0009 0.0031
0.0007 0.0012 0.0400

 

0.0013 0.0021 0.0014 0.0008 0.0015 0.0007 0.0021 0.0009 0.0027 0.0015 0.0008 0.0020
0.0017 0.0006 0.0013 0.0555 0.0021 0.0018 0.0008 0.0017 0.0006 0.0015 0.0014 0.0016 0.0008 0.0013 0.0010
0.0030 0.0068 0.0021 0.0021 0.2344 0.0089 0.0052 0.0019 0.0034 0.0020 0.0031 0.0064 0.0073 0.0012 0.0045
0.0025 0.0047 0.0014 0.0018 0.0089 0.2208 0.0046 0.0016 0.0034 0.0010 0.0021 0.0054 0.0058 0.0019 0.0043
0.0016 0.0029 0.0008 0.0008 0.0052 0.0046 0.1418 0.0011 0.0067 0.0 001 0.0013 0.0021 0.0048 0.0005 0.0025
0.0012 0.0012 0.0015 0.0017 0.0019 0.0016 0.0011 0.0339 0.0007 0.0016 0.0012 0.0019 0.0017 0.0010 0.0017
0.0015 0.0021 0.0007 0.0006 0.0034 0.0034 0.0067 0.0007 0.1751 0.0007 0.0022 0.0004 0.00 37 0.0003 0.0014
0.0007 0.0009 0.0021 0.0015 0.0020 0.0010 0.0001 0.0016 0.0007 0.0512 0.0006 0.0026 0.0012 0.0005 0.0017
0.0033 0.0014 0.0009 0.0014 0.0031 0.0021 0.0013 0.0012 0.0022 0.0006 0.0489 0.0013 0.0017 0.0006 0.0017
0.0


 

008 0.0037 0.0027 0.0016 0.0064 0.0054 0.0021 0.0019 0.0004 0.0026 0.0013 0.1334 0.0043 0.0015 0.0034
0.0018 0.0035 0.0015 0.0008 0.0073 0.0058 0.0048 0.0017 0.0037 0.0012 0.0017 0.0043 0.1566 0.0007 0.0038
0.0009 0.0009 0.0008 0.0013 0.0012 0.0019 0.0005 0.0010 0.0003 0.0005 0.0006 0.0015 0.0007 0.0417 0.0014
0.0018 0.0031 0.0020 0.0010 0.0045 0.0043 0.0025 0.0017 0.0014 0.0017 0.0017 0.0034 0.0038 0.0014 0.1058

 
 
 
 
 
 
 
 
 
 
 
 
 
 


 
 

 

(2) 

3.2 Monte Carlo Simulation 

We use Monte Carlo simulation to set 200 resamples of 10 years of daily correlated 

returns for the 15 securities. This process is repeated on all different scenarios. This 

simulation method consists on a series of repeated random sampling developed by 

Metropolis (1949). We assume each stock’s returns to follow a geometric Brownian 

motion, and therefore, this method results in samples from a multivariate normal 

distribution  ,  . Those samples follow a trend   and are influenced by the 

multivariate effect of  . In our case this repeated sampling creates several datasets of 

hypothetical historical returns. Each resample is used to estimate its own ˆ i  and ˆ
i  

for 1, ,200i  . 

 

3.2.1 Control scenario 

The first scenario is treated as the control scenario. In this case all samples were based 

on a geometric Brownian motion which follows a multivariate normal distribution. This 

results in samples of normally distributed returns on all 15 securities. On Table II we 

can see the descriptive statistics of each stock: 
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Table II – Control Scenario descriptive statistics 

 
Mean annual 

return 

Annualized standard 

deviation 
Skewness Kurtosis 

Normality 

test 

1 -0.61% 24.07% 7.42e-4 3.0085 Normal 

2 6.02% 27.09% 1.94e-4 3.0206 Non-normal 

3 8.76% 20.01% 0.0065 3.0001 Normal 

4 1.52% 23.54% -0.0024 3.0097 Normal 

5 -8.82% 48.42% 0.0011 3.0063 Normal 

6 3.60% 46.98% -0.0040 3.0021 Normal 

7 1.01% 37.69% 1.66e-4 3.0034 Normal 

8 7.57% 18.40% -0.0014 3.0017 Normal 

9 5.95% 41.88% 0.0022 3.0059 Normal 

10 5.67% 22.63% 0.0048 2.9935 Normal 

11 1.40% 22.10% 0.0019 2.9974 Normal 

12 2.25% 36.57% 0.0060 3.0128 Non-normal 

13 3.17% 39.54% 5.31e-4 3.0029 Normal 

14 8.48% 20.42% 0.0105 2.9967 Non-normal 

15 -3.42% 32.53% 0.0029 2.9993 Normal 

  

As we can observe the majority of the stocks follow a normal distribution. Even the 

ones which fail the normality test have skewness very close to 0 and kurtosis close to 3 

which demonstrates that they behave in many ways like a normally distributed sample. 

Consequently, this first simulation does not contain many outlier observations. 

Therefore the main cause of estimation error are the sample size and the high 

standard deviation of stock returns, which by themselves can be enough to cause 

portfolio allocation inefficiencies. This control scenario allows, in particular, to see if 

without extreme observations to bias the inputs of MVT, robust estimators are less 

efficient than classical estimators, and if so, how significantly. It is also important to 

note that the estimated parameters ̂ and ̂   are going to be compared with the 

Descriptive statistics of each stock on the control scenario. Both the return and standard deviation are annualizations of mean daily return 

and standard deviation, respectively. The normality was testes through a Jarque-Bera test with 95% confidence interval. 
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realized risk/return of all securities on the following year, the true parameters   and 

 .  

 

3.2.2 Contamination scenario 

On the contamination scenario, various sets of 200 resamples are produced. However, 

in this case the Monte Carlo simulation does not follow a geometric Brownian motion. 

It includes a multiplicative contamination, which consists in randomly multiplying a 

certain percentage of the standard normally distributed matrix that is on the base of 

the geometric Brownian motion by a certain value, as proposed by Perret-Gentil and 

Victoria-Feser (2005). Through this method, it is possible to test the stability of the 

Mean Variance portfolios against outlier observations and small parameter 

fluctuations. It artificially creates extreme observations typical of financial returns and 

adding “noise” to the sample in order for the estimated parameters to fluctuate. This 

way, we are able to test if a small degree of deviation on the estimated parameters 

seriously affects the composition and performance of the tangent portfolios, as well as 

testing how both types of estimators behave on the presence of extreme observations.  

Nine different contamination scenarios are used on this study, varying in percentage of 

sample contamination and in magnitude of contamination. The percentages of 

contamination are 2.5%, 5% and 10% and the magnitude of contamination, that is, the 

value by which each contaminated return is multiplied, is 2.5, 5 and 10. Each 

percentage of contamination is tested with each magnitude, allowing for nine different 

contamination degrees. On Table III we present the descriptive statistics for the 

scenario with 5% of contaminated observation with a magnitude of 5: 
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Table III – Contamination Scenario descriptive statistics 

 
Mean annual 

return 

Annualized standard 

deviation 
Skewness Kurtosis 

Normality 

test3 

1 -2.04% 35.66% 0.0387 19.7412 Non-normal 

2 6.26% 40.13% 0.0268 19.9605 Non-normal 

3 8.49% 29.67% -0.0091 19.8181 Non-normal 

4 0.41% 34.82% -0.0264 19.7890 Non-normal 

5 -9.09% 71.81% -0.0440 20.0844 Non-normal 

6 1.44% 69.59% -0.0311 20.2157 Non-normal 

7 2.5% 55.60% -0.0398 19.7314 Non-normal 

8 7.48% 27.33% 0.0029 19.7275 Non-normal 

9 7.5% 61.98% -0.0090 20.0146 Non-normal 

10 4.52% 33.53% 0.0211 19.7494 Non-normal 

11 0.13% 32.83% -0.0102 19.8257 Non-normal 

12 1.91% 54.21% 0.0131 20.1279 Non-normal 

13 3.39% 58.78% 0.0346 20.1905 Non-normal 

14 8.51% 30.25% 0.0615 19.6054 Non-normal 

15 -3.88% 48.17% 0.0345 20.0864 Non-normal 

 

On opposition with the control scenario, this scenario is composed by 15 non-normally 

distributed securities. All stocks present fat tails, as we can see by the high kurtosis. 

That means that in this scenario there are many more outlier observations which may 

have a great impact on the estimated parameters. 

3.3 Robust estimator 

On all scenarios, after creating the 200 resamples, there is a need to estimate the 

inputs of MVT  ,  . As already explained, two estimations are applied on each 

sample. A classical estimation based on Maximum Likelihood estimators and a robust 

estimation. The robust estimator chosen is Minimum Covariance Determinant, this is a 

Descriptive statistics of each stock on the control scenario. Both the return and standard deviation are annualizations of mean daily return 

and standard deviation, respectively. The normality was testes through a Jarque-Bera test with 95% confidence interval. 
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multivariate M-estimator which looks into the
2

n
h
 
 
 

 observations (out of  ) whose 

classical covariance matrix has the lowest possible determinant, see Rousseeuw 

(1984). The location estimate is then computed by taking the average of those h  

points and the scatter estimate is the covariance matrix of those h  points. These 

estimates can resist  n h  outliers and so, we can assess the robustness of the 

estimator by looking into 
h

n
  .  In extreme cases, in order to achieve the highest 

resistance against outliers an   of 0.5 could be used. However, in less extreme 

scenarios,   should be set higher than 0.5 in order to improve finite-sample efficiency. 

In our case,   was set to 0.75 on all estimations. That means that the estimations 

produce stable results if the sample contains up to 25% outliers. Moreover, we have 

finite samples and so, in order to achieve a good enough efficiency, an   higher than 

0.5 would be needed. 

 

3.4 Portfolio creation process 

On this study we work with three different types of portfolios: Tangent portfolios, 

average portfolios and, in a lesser extent, naive portfolios. All those portfolios are used 

to compare the performance of both estimation styles.  

First and foremost, it is important to mention that on each scenario, we have two sets 

of portfolios, a set of classically and another of robustly estimated portfolios. After 

computing ˆ i  and ˆ
i  for 1, , 200n   for each estimation type, MVT results in two 

groups of 200 efficient frontiers. An efficient frontier is a set of efficient portfolios 

resulting from MVT. However, we need to find the tangent portfolio for each efficient 

frontier. That portfolio is the most efficient portfolio of a given efficient frontier on the 

presence of a risk free rate. Having a defined efficient frontier and risk free rate are the 

necessary tools to reach the tangent portfolio. The risk-free rate used on this study is 

the 12-month Euribor rate at the date of 25/2/15, 0.24%. Euribor is the rate that is 

behind the majority of interest rates offered by financial institutions. It can be 
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assumed risk-free, following the assumption that the European Central Bank has no 

risk of default. The maturity of 12-months is also the one that makes more sense since 

as we know the parameters   and   for the next year and the investment horizon of 

this simulation is one year. Other assumption of this study was the non-inclusion of 

short selling on the portfolio creation process. This is consistent with many other 

studies on MVT, with the majority of portfolios on the market and it makes the study 

simpler and easier to understand. See for example, Chopra and Ziemba (1993) and 

Goldfarb and Iyengar (2003). 

The second portfolio type is the “average portfolio”. That portfolio is born from the 

average weights of all resamples, following the process developed by Michaud (98), 

like mentioned on section 2.3. This portfolio will then be compared with the so called 

naive portfolio, the portfolio which allocates equal weights for all possible assets. 

All those portfolios may differ greatly in risk and return. That is why we need a 

performance measure to compare any of them with one another. The instrument used 

is the Sharpe Ratio. Developed by William Sharpe, it is a measure of excess return per 

unit of risk. It is commonly used in finance and in this study is the major instrument for 

comparing the efficiency of each portfolio.  
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4. Results 

This chapter starts by presenting a broad view in to the control scenario on section 4.1. 

Subsequently, it presents the results for the different types of portfolios tested on that 

scenario, on subsection 4.1.1 we study the behavior of tangent portfolios and on 

subsection 4.1.2 average and naive portfolios. On section 4.2 the focus is on the 

contaminated scenario, with a major focus on the 5% contamination. Again, on 

subsection 4.2.1 we take a look at how tangent portfolios perform on contaminated 

samples and on subsection 4.2.2 we test how average and naive portfolios perform.  

4.1 Control scenario 

We build 200 classically estimated efficient frontiers and 200 robustly estimated 

efficient frontiers. The resulting efficient frontiers can be observed below, with the 

true efficient frontier represented by the thicker black curve: 
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 Figure 1 – True Efficient Frontier and 200 estimated efficient frontiers 

 

 

Figure 1 shows the great variety of estimated efficient frontiers that MVT created, 

both by classical and robust estimation. As we could observe on Table II of chapter 3, 

the resample process created a huge dispersion of returns on all securities. This, of 

course, led to a great dispersion of efficient frontiers. We can also notice that a great 

part of the frontiers are above the true efficient frontier, which may be an evidence of 

the “estimation error maximizer” effect. By overweighing securities with 

overestimated returns, there is a much greater chance to create efficient frontiers 

above the true efficient frontier. 

Visual representation of estimated efficient frontiers and True efficient frontier, represented by the thicker black curve. On 

(a)  200 classically estimated efficient frontiers and on (b) 200 robustly estimated efficient frontiers 

(a) classical (b)  robust 
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Figure 2 – Tangent Portfolios 

 

 

 

4.1.1 Tangent Portfolios 

The next step is to look at the composition of the classically estimated and robustly 

estimated tangent portfolios on each different sample. On Figure 2 we can see the 

distribution of the estimated tangent portfolios’ risk and return, the red line 

represents the median, the point with the exact number of higher and lower 

observations, the edges of the box represent the  

 

 

 

25% and 75% percentiles and the upper and lower black lines represent the highest 

and lowest observations, respectively. The red crosses represent observations 

considered outliers. Additionally, the true tangent risk and return are represented by 

blue circles. As we can see, classical and robust portfolios present roughly the same 

dispersion of observations, both on risk and return. Moreover, approximately 75% of 

estimated tangent returns are above the true tangent return of 10.71% and range from 

around 2% to almost 25%. The estimated tangent risk level is higher than the true risk 

level of 14.2% on around 90% of the observations, though it has a much smaller range 

of observations, going from 13% to 22%. The great dispersion of tangent returns is 

Dispersion of estimated tangent portfolios’ return and risk, both for classical estimation and robust estimation. True 
optimal return and risk represented by the blue circles. 

 

(a) return (b)  risk 
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associated with the already discussed sampling variability associated with the high 

standard deviations of the 15 securities. The fact that estimated tangent returns 

happen to be much higher than the true tangent return is a reflection of the 

“estimation error maximizer” effect of MVT which causes MVT to allocate a greater 

part of the budget on assets with returns positively affected by estimation error and 

less on assets negatively affected with estimation error.  Therefore, these assets with 

higher estimation error have a higher weight on the estimated portfolio than on the 

true tangent portfolio. This results in estimated tangent portfolios with higher return 

and slightly higher risk than the true tangent portfolio’s risk and return. Concluding, as 

estimation error on returns has a higher effect on tangent portfolio composition, those 

securities with overestimated returns will have more weight on the tangent portfolio 

and consequently its tangent return will be overestimated and to a lesser extent its risk 

will also be overestimated. 

Up to this point, we have been looking at the behavior of the tangent portfolios on 

their own simulated samples. Now we study their performance in “reality”. On this 

empirical study “reality” is represented by the parameters   as in equations (1) 

and (2). By collecting the weights of the estimated tangent portfolios and applying 

them on the true efficient frontier, we are able to know the performance of those 

estimated portfolios for the 1 year investment horizon: 
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Figure 3 – Classical risk/return scatter 

 

 

 

Figure 4 - Robust risk/return scatter 

 

 

 

Figures 3 and 4 show the true position of all tangent portfolios with respect to the 

efficient frontier, using both classical and robust estimation. On both cases the true 

tangent portfolio is represented by an orange circle on the efficient frontier. Looking at 

Scatter of the risk/return of 200 classically estimated tangent portfolios, on the true efficient frontier plus the true tangent 

portfolio, represented by an orange circle. 

Scatter of the risk/return of 200 robustly estimated tangent portfolios, on the true efficient frontier plus the true tangent portfolio, 

represented by an orange circle. 
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the scatter we can notice that all estimated tangent portfolios result in less than 

optimal portfolios on practice. This happens due to the fact that the estimated 

parameters ( ˆˆ i i

j j  ) , ( , ),i classical robust  (1, , 200)j  ) which served has base for 

its computation had an associated estimation error. Combining this with the 

“estimation error maximizer” effect of MVT referred to on section 2.2, lead to tangent 

portfolios which overweighted securities with overestimated returns and 

underestimated standard deviations, and vice versa. As estimation error is positively 

correlated with standard deviation and in this study all 15 securities present high 

standard deviations is easy to understand the cause of the large range of risk/returns 

and consequent inefficiency presented by these estimated portfolios. 

Even if Figure 3 and 4 give us an idea about how estimated tangent portfolios behave 

on the following year, visual inspection is not enough to reach solid conclusions. 

Therefore, there is a need to measure the performance of each portfolio through the 

Sharpe ratio. The true tangent portfolio has a Sharpe Ratio of 0.7373. That portfolio is 

the point of the efficient frontier that maximizes the Sharpe Ratio for the defined risk 

free rate. All the estimated portfolios are under that same efficient frontier. Thus, it 

can be instantly affirmed that all estimated portfolios have a lower Sharpe Ratio than 

the true tangent portfolio. This statement was then confirmed by computing each 

portfolio Sharpe Ratio, see Figure 5. In order to compare both estimation methods 

with each other and with the true tangent portfolio an average of each of the 200 

portfolios Sharpe Ratio was taken. 

Figure 5 – Sharpe Ratio distribution 

 

(a) classical (b)  robust 

Distribution of the Sharpe Ratio of 200 tangent portfolios on the true efficient frontier. (a) is referent to classically 

estimated portfolios and (b) to robustly estimated portfolios 
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 The results show that on average a classically estimated tangent portfolio has a 

Sharpe of 0.5654 and a robustly estimated tangent portfolio has a Sharpe of 0.5643. 

The classical estimation leads to a marginally higher performance measure. This 

confirms the theory of robust statistics, which defines robust estimators as less 

efficient estimators on a well distributed sample, that is, a sample without outlying 

observations as is the case on this first scenario, see Table II. Additionally, classically 

estimated portfolios have a standard deviation of its Sharpe ratio of 0.0852 against 

0.0929 of robustly estimated portfolios. This adds to the point that robustly estimated 

portfolios are less efficient than classically estimated ones. What can be concluded 

from these results is that when building a portfolio through MVT, on a sample without 

any outlying observations, classical estimation is marginally more efficient than robust 

estimation. 

4.1.2 Average and naive portfolio 

On this study we have the opportunity of creating portfolios through the resampling 

method developed in Michaud (1998). Doing an average of the weight each security 

has on the 200 tangent portfolios, both for the classical and robust case, results in two 

average weighted portfolios, one for the classical estimation and another for the 

robust estimation, see Figure 6. 

Figure 6 – Dispersion of tangent portfolios’ allocation 

 

(a) classical 
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 If we apply those two portfolios to the true efficient frontier we can see how those 

average weighted portfolios behave on practice and compare it with the behavior of a 

naively created portfolio. That behavior can be observed below on Figure 7: 

Figure 7 – Average and Naive Portfolios 

 

 Average weighted, naive and true tangent portfolios on the true efficient frontier. The green circle 

represents the true tangent portfolio. The red cross represents the average robust portfolio. The orange 

diamond represents the average classical portfolio and the blue dot represents the naive portfolio. 

(b)  robust 

Dispersion of the tangent portfolio weights of each asset on the 200 resamples, both for classical estimation (a) and robust 

estimation (b). The blue circle represents the average weight which will be used below. 
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The orange diamond represents the average weighted classical portfolio and the red 

cross inside it represents the average weighted robust portfolio. Additionally, the 

green circle on top of the true efficient frontier is the true tangent portfolio and the 

blue dot on the bottom is the naive portfolio, with an equally weighted allocation 

between the 15 securities. As we can see, both classical and robust portfolios are 

below the efficient frontier, though having a higher return and lower risk than the 

naive portfolio. Also, they present roughly the same risk and return, which shows that 

robust estimators are as good as classical estimators in an environment where they 

were expected to be less efficient. Looking at each portfolio’s Sharpe ratio, we can 

confirm that both estimators result in equally efficient portfolios as they have exactly 

the same Sharpe ratio of 0.6848, not too far from the Sharpe ratio of the true tangent 

portfolio of 0.7373. Another fact worth considering is that a Sharpe ratio of 0.6848 is 

way higher than the average Sharpe calculated beforehand for the 200 classically 

estimated portfolios (0.5403) and 200 robustly estimated portfolios (0.5354). This 

happens because by doing the average of the weights of the 200 portfolios, we are 

mitigating the error maximization effect caused by estimation error. If in some 

portfolios certain assets’ weights were overestimated, on other portfolios the same 

assets’ weights might have been underestimated, assuming that there is the same 

chance of happening positive and negative estimation errors. So, by doing the average 

of those weights we are nullifying the overestimations with the underestimations and 

reaching closer to the true tangent portfolio performance. 

 

4.2 Contamination Scenario 

On a second stage, the resampling process was repeated for the contamination 

scenario. Again, two methods of evaluating the performance of both estimators are 

developed. Firstly we put each of the 400 estimated tangent portfolios (200 classical 

and 200 robust) on the true efficient frontier and study its Sharpe ratio. Secondly we 

do an average of the weights of the 200 classically and 200 robustly estimated tangent 
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portfolios, apply those portfolios on the true efficient frontier and then look at its 

Sharpe ratio. In this part the focus is on the contaminations of 5% of observations by 

the three magnitudes of contamination of 2.5, 5 and 10. On annex the same results for 

the 2.5% and 10% contaminations can be observed. 

4.2.1 Tangent portfolios 

Let’s start by looking at the distribution of risk/return of both classical and robust 

estimated tangent portfolios for the three magnitudes of contamination on Figures 8, 

9 and 10: 

Figure 8 - Dispersion of estimated tangent portfolios (5% contamination 2.5 

magnitude) 

 

 

 

Figure 9 - Dispersion of estimated tangent portfolios (5% contamination 5 

magnitude) 

 

Dispersion of tangent portfolios’ return (a) and risk (b) on the 5% contamination, 2.5 magnitude scenario. 

The blue circles represent the true tangent portfolio return and risk, respectively   

(a) return                                                       (b)  risk 

(a) return                                                       (b)  risk 

Dispersion of tangent portfolios’ return (a) and risk (b) on the 5% contamination, 5 magnitude scenario. The 

blue circles represent the true tangent portfolio return and risk, respectively   
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Figure 10 - Dispersion of estimated tangent portfolios (5% contamination 10 

magnitude) 

 

 

The red line represents the median, which is the observation that has the same 

number of higher and lower observations, the top and bottom blue lines represent the 

75% and 25% percentiles, respectively. The black line on top represents the higher 

observation and the bottom black line the lower observation. Additionally the red 

crosses are observations treated as outliers and the blue circle represents the 

expected return and risk of the true tangent portfolio. Identically to the base scenario 

the estimated expected returns of the three contaminations are around 75% to 80% of 

the times higher than the true expected return and the risk almost always higher than 

the true risk. On the 2.5 magnitude contamination there are no noticeable differences 

between the classical and the robust estimator, which tells us that a magnitude of 2.5 

is not enough to produce extreme enough observations on these samples. However, as 

the magnitude of contamination increases we can identify a pattern of growth and 

dispersion of the classically estimated portfolios, both on expected return and risk. In 

opposition robustly estimated portfolios maintain roughly the same distribution of 

risk/return on all magnitudes. This is a proof of the ability of robust estimators to 

produce stable results even in situations where the sample is not a good source of 

information for the parameters needed due to the presence of outlying observations 

or in situations when some securities parameters fluctuate. 

(a) return                                                       (b)  risk 

Dispersion of tangent portfolios’ return (a) and risk (b) on the 5% contamination, 10 magnitude scenario. 

The blue circles represent the true tangent portfolio return and risk, respectively   
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Now it is important to apply the weights of each portfolio to the true efficient frontier 

in order to observe how they will perform on the next year. On the following table we 

can see the average of the Sharpe ratios of the classically and robustly estimated 

portfolios with 2.5%, 5% and 10% contamination under the three different 

magnitudes. 

Table IV – Sharpe Ratio of tangent portfolios on the true efficient frontier 

Sharpe Ratio – 2.5% contamination 

Magnitude 

Classical Robust 

Mean 
Standard 

deviation 
Mean 

Standard 

deviation 

2.5 0.5566 0.0963 0.5499 0.1058 

5 0.5342 0.0919 0.5494 0.0851 

10 0.5055 0.1055 0.5338 0.0966 

Sharpe Ratio – 5% contamination 

Magnitude 

Classical Robust 

Mean 
Standard 

deviation 
Mean 

Standard 

deviation 

2.5 0.5587 0.0881 0.5525 0.0864 

5 0.5217 0.1152 0.5370 0.1047 

10 0.4823 0.1061 0.5262 0.1078 

Sharpe Ratio – 10% contamination 

Magnitude 

Classical Robust 

Mean 
Standard 

deviation 
Mean 

Standard 

deviation 

2.5 0.5395 0.0965 0.5337 0.1025 

5 0.4958 0.1025 0.5034 0.1042 

10 0.4520 0.1058 0.4823 0.1068 

 

 

Mean and standard deviation of the Sharpe ratio of estimated tangent portfolios on the true efficient frontier for classical 

estimation and robust estimation and for all contamination scenarios 
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To start, is important to note that again all the estimated portfolios are below the true 

efficient frontier and so, none of them presents a Sharpe ratio equal or higher than the 

ratio of the true tangent portfolio (0.7373). Looking at Table IV, we can see that for the 

lower magnitude classically estimated portfolios present a higher Sharpe ratio than 

robustly estimated portfolios. That difference is marginal and confirms that this lower 

magnitude is not enough to create extreme enough observations in order for robust 

estimators to perform better than classical estimators. However, as the magnitude 

increases we can see that the average Sharpe ratio of classically estimated portfolios 

decreases much more than the Sharpe of robustly estimated portfolios which proves 

that on the 5 and 10 magnitudes of contamination robust estimation is a much more 

viable tool to create mean variance portfolios on an environment without a well 

distributed sample. On the 2.5% contamination the pattern of decline of Sharpe ratio 

as the magnitude increases is common with the 5% contamination. Again, on the 2.5 

magnitude classically estimated portfolios present a slightly higher Sharpe ratio but on 

the two higher magnitudes robustly estimated portfolios have a higher Sharpe ratio, 

which remains stable as the magnitude increases. On the 10% contamination we can 

observe that once more on the 2.5 magnitude classically estimated portfolios have a 

marginally higher Sharpe ratio but on the other two magnitudes robustly estimated 

portfolios have a higher Sharpe. However, on this higher percentage of contamination 

we can see that the robustly estimated portfolios’ average Sharpe ratio is not stable. 

As the magnitude of contamination increases, the average Sharpe ratio decreases 

considerably, perhaps due to the inability of the robust estimator to deal with the total 

amount of outlying observations present on that extreme scenario of contamination. 

4.2.2 Average and naive portfolio 

Repeating the same process of averaging the weights of the various estimated 

portfolios on the 5% contaminated samples and for all three magnitudes, we produce 

one average weighted classical portfolio and one average weighted robust portfolio for 

each magnitude. Once more, on Figure 11 we have the true efficient frontier, the true 

tangent portfolio represented by a green circle, the average weighted classical 

portfolio represented by an orange diamond, the average weighted robust portfolio 

represented by an orange cross and the naive portfolio represented by a blue dot. 
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Figure 11 - Average and Naive Portfolios 

  

 

 

 

(a) 

(b) 

(c) 

Average weighted, naive and true tangent portfolios on the true efficient frontier for the 5% contamination scenario. The 

green circle represents the true tangent portfolio. The red cross represents the average robust portfolio. The orange 

diamond represents the average classical portfolio and the blue dot represents the naive portfolio. On (a) is represented 

the 2.5 magnitude, on (b) the 5 magnitude and on (c) the 10 magnitude. 
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On the 2.5 magnitude the two average weighted portfolios seem to have roughtly the 

same risk/return, though the classically estimated portfolio has a Sharpe ratio of 0.673 

compared with a Sharpe ratio of 0.6693 of the robustly estimated portfolio. This fact is 

consistent with the previous considerations taken, namely that a magnitude of 2.5 is 

not enough to create significant outlying observations which would create “noise” on 

the sample. On the opposite side, the 5 and 10 magnitudes displays a decrease in 

performance by the average weighted classical portfolio. As the magnitude increases 

the classical portfolio’s Sharpe ratio decreases considerably, as can be observed on 

Table V: 

Table V – Sharpe Ratio of average portfolios 

Sharpe Ratio 

Magnitude 
2.5% contamination 5% contamination 10% contamination 

Classical Robust Classical Robust Classical Robust 

2.5 0.679 0.6726 0.673 0.6693 0.6585 0.6533 

5 0.6499 0.6743 0.6329 0.6475 0.5995 0.6061 

10 0.6017 0.6483 0.5713 0.6553 0.5382 0.5728 

 

Once again, averaging the weights of the different estimated portfolios provides 

portfolios with a much higher performance than the average Sharpe of each estimated 

portfolio. Additionally the average weighted robust portfolio remains stable with an 

increase in magnitude, as opposed to the average weighted classical portfolio. Another 

proof of the stability of robust methods of estimation to outlying observations and 

distancing of the sample from the realized risk/return. On the 2.5% and 10% 

contaminations the pattern remains. On the 2.5% contamination, average weighted 

classical portfolios decrease as the magnitude increases, when average weighted 

robust portfolios remain stable. On 10% contamination both classes of portfolios 

decrease as the magnitude increases, though the decline on average weighted classical 

portfolios Sharpe ratio is higher than the decline on average weighted robust 

portfolios. 

Sharpe ratio of average weighted portfolios on the true efficient frontier for all contamination scenarios. 
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5. Conclusion 

Mean Variance Theory is based on the assumption that expected returns and 

covariances between securities are the only necessary inputs in to create efficient 

portfolios. These inputs are not known, have to be estimated and are therefore subject 

to estimation error. This puts a great importance on the estimation process. This study 

tests the ability that two possible estimators (classical maximum likelihood estimators 

and robust estimators) have to withstand outlying observations which may have a 

higher than desired effect on the parameter estimation, and to withstand small 

parameter deviations and still remain stable. With the meaning of stable being: to 

produce close to efficient portfolios on majority of the possible scenarios. It can be 

stated that on scenarios of uncertainty, where the sample may not be a perfect source 

of information for the estimation of the parameters needed for MVT, robust 

estimators produce closer to optimal results than classical estimators. Only on the 

scenarios where the sample is a close to perfect reflection of the true parameters do 

classical estimators produce better results than robust estimators. However, the 

results that classical estimators produce on these situations are only marginally 

superior, whereas on the extreme contamination scenarios, where the sample doesn’t 

exactly represent the true parameters and contains many outlying observations, 

robust estimators have a much higher performance. Which makes robust estimation a 

good tool of risk mitigation, as it produces close to efficient results even on the worst 

case scenario. In comparison, classical estimation produces slightly more efficient 

results but only on the best case scenario. Future research might study the 

performance of different types of robust estimators against on another, try to study 

which contamination percentage and magnitude would be a better reflection of the 

uncertainty observable on financial data. Other possible developments would be to 

repeat the simulation process with another distribution or apply a different weight to 

positive and negative contaminations. 
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