
 

 

 

 

 
MASTER 

MATHEMATICAL FINANCE 
 
 
 

MASTER´S FINAL WORK 

DISSERTATION 
 
 
 
 
COMPARING THE CLUSTER EFFICIENCY OF FRAGMENTED-
PERIODOGRAM AND FRAGMENTED-ACF 

 
 
 
 
ANDREIA FILIPA MARTINS ALBINO 
 
 
 

 
 
 
 
 

OCTOBER 2021 



 

 

 

 
MASTER 

MATHEMATICAL FINANCE 
 
 
 

MASTER´S FINAL WORK 
DISSERTATION 

 
 
 
 
COMPARING THE CLUSTER EFFICIENCY OF FRAGMENTED-
PERIODOGRAM AND FRAGMENTED-ACF 

 
 
 
ANDREIA FILIPA MARTINS ALBINO  
 
 
 
SUPERVISION: 
PROFESSOR DOUTOR NUNO PAULO DE SOUSA ARROBAS CRATO 

 
 
 
 
 

OCTOBER 2021 
 



Glossary

ACF - Autocorrelation Function

AR - Autoregressive model

ARIMA - Autoregressive Integrated Moving Average model

DFT - Discrete Fourier Transform

JEL - Journal of Economic Literature



Resumo

Big data faz, cada vez mais, parte do nosso dia a dia e tem um impacto cada vez maior na

nossa sociedade. Tem entusiasmado os investigadores para encontrarem novos métodos para

lidar com conjuntos de dados muito grandes. Na análise das séries temporais, a mesma ne-

cessidade surge. Há algumas décadas, os investigadores batalhavam para encontrar séries de

dados longas o suficiente para as analisar; hoje em dia, estão frequentemente sobrecarregados

com conjuntos de dados que são demasiado grandes para lidar com métodos tradicionais.

O objetivo deste trabalho é estudar e propor métodos para medir as semelhanças e difer-

enças entre diferentes séries temporais. Esses métodos devem ser computacionalmente sim-

ples e perdem, naturalmente, algumas informações, mas devem ser capazes de fornecer métri-

cas que são adequadas para agrupar grandes conjuntos para extensas séries temporais.

Para ser mais específica, estudo um método muito recente chamado periodograma frag-

mentado e confirmo por simulação, a sua utilidade para fornecer uma medida simples que

leva ao agrupamento correto das séries temporais em consideração. Esta replicação dá al-

gum conforto quanto à correção do exercício e leva a uma descoberta interessante sobre as

regras de fragmentação. Portanto, proponho um método equivalente no domínio do tempo,

o ACF fragmentado, e confirmo por simulação a sua utilidade. Finalmente, comparo os dois

métodos e concluo que o ACF fragmentado tem um desempenho comparável, senão superior.

As simulações são, naturalmente, limitadas a classes particulares de modelos, o que abre

espaço para pesquisas futuras, como discuto na secção final.

Palavras chave: Big Data; Séries Temporais; Agrupamento de séries temporais; peri-

odograma fragmentado; ACF fragmentado

JEL CODES: C32; C38; C63
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Abstract

Big data is increasingly having a large impact on our society and prompting researchers

to find novel methods to deal with very large data sets. In time series analysis, the same

need arises. A few decades ago, researchers were struggling to find long enough data series

for their analysis; nowadays, they are often overwhelmed with data sets that are too large to

handle with traditional methods.

The aim of this work is to study and propose methods for measuring the similarities and

dissimilarities among different time series. These methods should be computationally simple

and naturally lose some information, but they should be able to provide metrics that are

suitable for clustering large sets on long time series.

To be more specific, I study a very recent method called fragmented periodogram and

confirm by simulation its usefulness to provide a simple measure that leads to correct clus-

tering of the time series under consideration. This replication gives some comfort as to the

correctness of the exercise and leads to an interesting finding regarding the fragmenting rules.

Then, I propose an equivalent method in time domain, the fragmented ACF and confirm by

simulation its usefulness. Finally, I compare the two methods and conclude that the frag-

mented ACF has a comparable if not superior performance.

The simulations are naturally limited to particular classes of models, which opens room

for further research, as I discuss in the final section.

Keywords: Big Data; Time Series; Time Series Clustering; Fragmented-periodogram;

Fragmented-ACF

JEL CODES: C32; C38; C63
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1 Introduction

Nowadays, there is an increasing need to automate statistical estimation methods mini-

mizing the loss of information. Furthermore, it is essential to make these methods as auto-

matic as possible, fast and efficient.

Data analysis has gained increasing weight in society and is still a topic of great focus

when it comes to business and scientific levels. It is crucial that all data are as well analyzed

as possible, which has raised many challenges for researchers. Fortunately, this is an increas-

ingly talked about and improved topic. Therefore, in addition to the fact that data analysis is

well performed, it is also necessary that it be performed in the shortest possible time.

In this work, I will deal with a problem of big data analysis by studying a particular prob-

lem which has recently received much attention. I will compare two methods of grouping or

clustering time series. The first will be a particular spectral method, the so-called fragmented-

periodogram clustering suggested in Caiado, Crato, and Poncela (2020). This method does

not imply the computation of the full periodograms but only of the periodogram components

around the frequencies of interest. It then compares the periodogram ordinates for the various

time series and groups them with common clustering methods.

The second method will be using the Autocorrelation Function (ACF). As with the spec-

tral method, this method does not perform the computation of the full ACF, but only of the

ACF components around the lags of interest. It then compares the selected ACF values for

the various time series and groups them by using common clustering methods. Thus, I call it

a fragmented-ACF approach.

A survey on time series clustering can be seen in Caiado, Crato, and Poncela (2020) and

references therein, and it was somehow my inspiration for this work. The first method has

been suggested and studied. However, as far as I know, the corresponding idea for the ACF

has not been yet suggested and studied.

In this context, I will compare the first method, the fragmented-periodogram, with the

second method, the fragmented-ACF. Then, I will compare the efficiency of grouping data

with the fragmented-periodogram and with the fragmented-ACF.
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1 Introduction

The plan for the rest of the work is as follows. Section 2 reviews the relevant literature

including the definition of the periodogram, and the ACF, and its evolution, as well as the

research regarding fragmented and big data approaches. Section 3 seeks to present and fully

specify the methodology and data used in this work. It includes a descriptive analysis, in

which some technical features and statistics of the series will be analyzed. Section 4 compares

the models within each method and, after choosing the best options, make a comparison

between them and report the corresponding results. It will be presented an explanation of the

Python script used. Section 5 concludes discussing the limitations of the methods used and

referring to possible further investigations in the field.

2



2 Literature Review

2 Literature Review

2.1 The problem of clustering big data time series

Enterprises and public organizations collect very large data sets, which can be structured,

semistructured and unstructured. This immense combination of data is known as big data.

Such data is often used in several advanced analytic applications, forecasts and is also used

in machine learning projects.

Laney et al. (2001) identified three main characteristics of big data, known for three V’s

as described below:

1. the volume regarding the size of data;

2. the variety as different types of data from several sources;

3. the velocity at which the data collected is processed.

After that, a lot of other V’s were added to these three standard V’s such as, value, vari-

ability and veracity.

Companies use big data to improve operations, provide better customer service, create

personalized marketing campaigns and take other actions that, ultimately, can increase rev-

enue and profits. As a result, businesses that use it effectively hold a potential competitive

advantage over those that don’t because they can take faster and more informed business

decisions.

There are several examples where organizations use big data. First example, in the energy

industry, in which big data helps identify potential drilling locations and monitor pipeline

operations; likewise, utilities use it to track electrical grids. Second, financial services firms

use big data systems for risk management and real-time analysis of market data. Third,

manufacturers and transportation companies rely on big data to manage their supply chains

and optimize delivery routes and, many other examples can be given.

The term "big data" is relatively recent. It will undoubtedly be an intense journey in the

scientific for understanding how to treat extensive data, and their characteristics so that they

3



2.1 The problem of clustering big data time series

can be treated.

Big data problems require making several tradeoffs among desired scalability, availability,

performance, and security. For some problems, precise solutions are intractable and may

require faster and approximated algorithms that run the risk of decreasing the quality of the

solution.

Kirlić et al. (2017) showed that there are several ways to deal with big data and there is

even a wide range of literature with various methods. I will cover in more detail and technique

a procedure to compare and group big data time series.

There are considerable time series research efforts to find a solution to various types of

problems in this type of data. One of the several problems is finding and extracting similari-

ties from the extensive big data repositories, in order to overcome the well-known challenges

of big data management. For this problem, Agrawal et al. (1993) proposed an indexing

method for time sequences for processing similarity queries by using the Discrete Fourier

Transform (DFT), taking into account the most substantial first frequencies of the frequency

domain. Furthermore, they highlight Parseval’s theorem, which describes the Fourier trans-

form preserving the Euclidean distance in the time or frequency domain. After having the

map sequence, they used R∗-trees to index the sequences and efficiently answer similarity

queries.

Another interesting study still within the topic of finding similarities or patterns in time

series with spectral methods can be found on Chan et al. (2003), Haar Wavelets for Efficient

Similarity Search of Time-Series: With and Without Time Warping, where they focused on two

metrics, namely, Euclidean distance and time warping distance. A traditional method uses

the means of DFT, reducing the dimension of the sample. The authors used a technique called

Haar Wavelet Transform and proposed the use of proper normalization in order to guarantee

no cut for Euclidean distance. They found that this technique has competitive performance for

their experiments. Furthermore, time warping distance can handle the time shifts of patterns,

unlike Euclidean distance. Since this time warping distance is not metric and is very complex

to compute, they suggested a Haar wavelet-based approximation function for time warping

distance, called Low Resolution Time Warping, which trades off a small amount of accuracy

4



2.1 The problem of clustering big data time series

in fewer computations. This research helped define a similarity measurement during the

matching process to depict the similarity between two time series.

A lot of other studies can be seen around this topic of identifying similarities in time

series (see, Bettini et al. (1998), Berndt et al. (1996))

Moving forward, another fundamental issue in time series is subsequence searching in

time series. In this topic Fancoua et al. (1996) introduced a new technique for the com-

petitive identification of piecewise stationary time series were quoting, " A neighborhood

map of one step predictors competes for the data during training. The winner is granted the

largest parameter update, while other predictors are allowed smaller updates, decreasing with

distance from the winner on the neighborhood map. In addition to performing piecewise

segmentation and identification, the technique maps similar segments of the time series as

neighbors on the neighborhood map." The simplicity of this approach is that the predictors

operate in parallel and can be trained in their usual way.

When comparing more than two time series, one may want to group them according to

the similarity or dissimilarity revealed with the chosen metric. Various methods of clustering

have been extensively discussed in the literature.

Cuzzocrea (2020) provides a recent review of clustering methods. One of the most used is

the k-mean clustering reported by Jancey (1966). The global k-means algorithm is described

as follow:

Suppose a data set X = x1, ...,xN ,xN ∈ Rd . The M-clustering problem aims at partitioning

this data set into M disjoint subsets (clusters) C1, ...,CM, such that a clustering criterion is

optimized. The most widely used clustering criterion is the sum of the Euclidean distances

between each data point xi and centroid mk (cluster center) of the the subset Ck which contains

xi. This criterion is called clustering error and depends on cluster centers m1, ...,mM:

E(m1, ...,mM) =
N

∑
i=1

M

∑
k=1

I(xi ∈Ck)‖xi−mk‖2,

where I(X) = 1 if xi ∈Ck is true and 0 otherwise.

The k-means algorithm finds locally optimal solutions for the clustering error. It is a fast
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2.2 Metric definition to data cluster

iterative algorithm that has been used in many clustering applications. It is a point-based

clustering method that starts with the cluster centers initially placed at arbitrary positions and

proceeds by moving at each step of the cluster centers to minimize the clustering error. The

main disadvantage of the method lies in its sensitivity to the initial positions of the cluster

centers. Therefore, in order to obtain near optimal solutions using the k-means algorithm,

several runs must be scheduled differing in the initial positions of the cluster centers.

Caiado, Crato, and Poncela (2020) proposed a new method for comparing and clustering

long and varied time series, the so-called fragmented-periodogram approach. These authors

develop and study a new frequency-domain procedure for characterizing and comparing large

sets of extensive time series. Instead of using all the information of the data, which would be

computationally very expensive, they propose some regularization rules to select and sum-

marize the most relevant information for clustering purposes. The authors proposed to use a

fragmented periodogram computed around the driving cyclical components of interest and to

compare the various estimates. This procedure is computationally simple and straightforward

to summarize relevant information of the time series. These authors also provide a simula-

tion exercise which shows that a smoothed fragmented periodogram works better than the

nonsmoothed one and not worse than the complete periodogram for medium to large sample

sizes.

2.2 Metric definition to data cluster

To do any clustering in time series, I must define measures of similarity of dissimilarity.

It is essential to understand that not every distance measure is a metric. To certify as a metric,

a function d must satisfy the following conditions:

Let x and y be any two objects in a set and d(x,y) be the distance between x and y.

1. The distance between any two points must be non-negative, that is, d(x,y)≥ 0.

2. The distance between two objects must be zero if and only if the two objects are iden-

tical, that is, d(x,y) = 0 is and only if x = y.
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2.2 Metric definition to data cluster

3. Distance must be symmetric, that is, distance from x and y is the same as the distance

from y to x, that is, d(x,y) = d(y,x)

4. The measure must satisfy the triangle inequality, which is d(x,z)≤ d(x,y)+d(y,z).

A metric often used is the Euclidean distance. Euclidean distance is a standard metric

for geometrical problems. It is the ordinary distance between two points and can be easily

measured with a ruler in two- or three-dimensional space. Euclidean distance is widely used

in clustering problems1. It satisfies all the above four conditions and therefore is a valid

metric. It is also the default distance measure used with the K-means algorithm. In R the

Euclidean distance between two vectors x = (x1, ...,xn) and y = (y1, ...,yn) is always defined.

It can be calculated as:

d(x,y) =

√
n

∑
i=1

(xi− yi)2

Most vector spaces in machine learning belong to this category. When we conduct ma-

chine learning tasks, we can usually measure Euclidean distances in a dataset during prelim-

inary data analysis.

Another metric often used is cosine similarity. Cosine similarity between two vectors

is the cosine of the angle they form in an inner product space and corresponds to their dot

product divided by the product of their magnitudes. For example, if x and y are vectors, the

cosine similarity is:

cos(θ) =
x · y
‖x‖‖y‖

The first of this type of metrics was introduced in time series by Piccolo (1990). His

proposal is simply the Euclidean distance between the coefficients of the autoregressive (AR)

representation of the time series under consideration. Taking into account two time series

allowing AR representations, xt and yt , with t integer, i.e.,

xt = φ1,xxt−1 +φ2,xxt−2 +φ3,xxt−3 + ...+ εt

1Chauhan et al. (2013)
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2.2 Metric definition to data cluster

yt = φ1,yyt−1 +φ2,yyt−2 +φ3,yyt−3 + ...+ εt

Therefore, the distance showed by Piccolo (1990) is as follow,

d(x,y) =

√
∞

∑
j=1

(φ j,x−φ j,y)2 (1)

If the autoregressive coefficients are square summable, then this distance exists. Nonethe-

less, even if the series are not stationary, it is possible to use truncated AR representations,

which are always possible for empirical time series. Piccolo’s method requires the estimation

of a model and the computation of its AR coefficients. The definition of a distance between

time series models immediately allows applications to clustering algorithms.

Later, Diggle et al. (1991) proposed a non-parametric approach to compare the spec-

trum of two time series based on the underlying cumulative periodograms. They suggested

normalized cumulative periodograms, as they wanted to detect only shape differences be-

tween the two underlying spectra. Let Ix(ω) and Iy(ω) denote the periodogram ordinates of

xt : t = 1, ...,n and yt : t = 1, ...,n respectively, each evaluated at frequencies ω of the form

ω j = 2π j/n, where j = 1, ...,m and m = [(n−1)/2], i.e,

Ix(ω) = (2πn)−1

∣∣∣∣∣ n

∑
t=1

xte−iωt

∣∣∣∣∣
2

analogous expression for Iy(ω). For x, the normalized cumulative periodogram is

Fx(ω j) =
j

∑
i=1

Ix(ωi)/
m

∑
i=1

Ix(ωi)

and similarly for Fy(ω j).

As already discussed, in 2020, Caiado, Crato, and Poncela (2020) proposed fragmented-

periodogram. For the fragmented-periodogram definition, let us consider an s as the fre-

quencies of a periodogram, and let us keep the notation used by the authors. The proposal

was computing the periodogram but only around the frequencies s of interest. As the authors

explain, it is not possible to choose symmetric intervals both in the time domain and in the

8



2.2 Metric definition to data cluster

frequency-domain. Willing to use symmetry in the time domain, it is not possible to simply

construct an interval of amplitude 2h around the desired frequency. This would make the

time-domain interval asymmetrical. The issue, can be perfectly described by figure 1.

Figure 1: Illustration of limits for fragmented periodogram frequencies with two windows: frequency-domain
symmetric (top) and time-domain symmetric (bottom). It is clear that symmetry in one domain implies asym-
metry in the other domain, where T is the sample size of the series in study (Caiado, Crato, and Poncela, 2020)

In their paper, they proposed a lower and an upper bounds, l and u, respectively, as

l =
⌊

T
s+hs

⌋
(2)

and

u =

⌈
T

s−hs

⌉
(3)

where b c represents the floor function, d e the ceiling function, T , the series sample

size, s, the seasonal periods desired to be analyzed, and hs = [ s
4 ]. Considering these bounds,

it will be possible to create acceptable ranges to fragment the periodogram and in this way

to get the main goal of the paper which was creating a method that works in the frequency

domain, uses a computationally simple and very parsimonious approach.

9



2.2 Metric definition to data cluster

Within the topic of methods for clustering time series, a different metric was proposed by

Galeano et al. (2001). This metric is based on the estimated autocorrelation function (ACF).

Admitting that I have a set of time series X = (x1,t , ...,xk,t)
′ and ρ̂ = (ρ̂i,1, ..., ρ̂i,m) is the

vector of the estimated autocorrelation coefficients of the time series i for some m, s.t, ρ̂ j ∼= 0

for j > m. The distance between x and y time series is described by

dACF(x,y) =
√
(ρ̂x− ρ̂y)′Ω(ρ̂x− ρ̂y), (4)

where Ω is a diagonal matrix of positive elements. When Ω = I (identity matrix) the distance

between the ACF coefficients of the time series x and y is equal to the Euclidean distance.

On the other, when Ω = [cov(ρ̂)]−1 is the inverse covariance matrix of the autocorrelations,

obtains the Mahalanobis distance between the autocorrelations. To use weights that decrease

with the autocorrelation lag is very common as well.

After that, Caiado, Crato, and Peña (2006) suggested to use the frequency domain. They

demonstrated their approach in different contexts. First, they found the similarities and dis-

similarities in every pair of time series using 7 different metrics. The second step was group-

ing time series into two different clusters, depending on stationary or nonstationary time

series, using good agglomerative hierarchical clustering algorithm as the single linkage, com-

plete linkage, or the average linkage, i.e, maximizes the minimum distance between objects

in the same group, minimizes the maximum distance between objects in the same group and

averages the distance between objects in different groups, respectively). They thought of a

different approach also using a non-hierarchical clustering procedure, such as the k-means

algorithm. This implementation of the k-means clustering algorithm was based on Euclidean

distances between standardized observations, autoregressive weights, autocorrelation coeffi-

cients, partial autocorrelation coefficient, inverse autocorrelation coefficients, and normalized

periodogram ordinates in the logarithm scale.

The spectrum and ACF coefficients are often defined for stationary processes, although

the definitions can be extended for integrated processes (Peña et al., 2006).

Following Caiado, Crato, and Peña (2006) and Caiado, Crato, and Poncela (2020),

10



2.2 Metric definition to data cluster

spectral methods handling the periodogram described for each frequency w j =
2π j
T , j =

1, ..., [T/2]

Ix(w j) = T−1

∣∣∣∣∣ T

∑
t=1

xteitw j

∣∣∣∣∣
2

(5)

and figure out distance among time series x and y, described as follow

d(x,y) =

√√√√[T/2]

∑
j=1

(Px(ω j)−Py(ω j))2, (6)

where P may represent the periodogram, I, the normalized periodogram γ
−1
0 I where γ0 is the

variance of the series, or the log-normalized periodogram ln(γ−1
0 I).

Caiado, Crato, and Peña (2006) showed that using the normalized periodogram works

very well to discriminate nonstationary and near-stationary time series.

Later, Caiado, Crato, and Poncela (2020) proposed to work with specific characteristics

of the series dynamics that define the fundamental fluctuations. This way, they intended sig-

nificantly to cut down the computations when there is a considerable number of observations.

Instead of computing and working with the whole periodogram, they propose to fragment

that periodogram, computing the periodogram only around the frequencies s of interest.

After suggesting the fragmented the periodogram, the authors also questioned themselves

of "how can periodogram smoothing contribute to better results?". And the question was

positively answered by smoothing the fragmented periodogram, which can really improve

the results. They showed that for both the periodogram and the log-periodogram, smoothing

reduces the variance of the differences. This established an argument in favour of smoothing

the fragmented periodogram. The whole suggested procedure is as follows.

1. Compute the periodogram, normalized periodogram or log normalized periodogram

only for the ordinates in the intervals

[
2π

s+hs
;

2π

s−hs

]

11



2.3 New proposal

where hs depends on the frequencies s of interest.

2. Smooth the fragmented periodogram, normalized periodogram, or log normalized pe-

riodogram P f rag. They suggested the two most popular smoothers, the Bartlett and the

rectangular, and noted that any other smoother could be used.

Bartlett smoother:

P̂k
j =

1
M

M

∑
i=−M

(
1− |i|

M

)
P f rag

j−i (7)

Rectangular smoother:

P̂k
j =

1
2M+1

M

∑
i=−M

P f rag
j−i

where k = 2M+1

2.3 New proposal

The idea of only computing and using part of the periodogram can be easily translated in

the time domain analysis. We can also compute part or parts of the ACF sample function and

use the pointwise comparison to define a measure of similarity.

To be specific, consider as before that we are interested in particular points or areas of the

autocorrelation. We may, for instance, suspect that the series under comparison are driven by

seasonal factors of similar lags, e.g., weekly or monthly lags.

Then, we can compute the sample ACF functions of the series under consideration only

around the lags of interest and arrive at the following2 measure of similarity:

Considering a stationary process Zt , its mean E(Zt) = µ and the variance Var(Zt) =

E(Zt − µ)2 = σ2, which are constant and the covariance Cov(Zt ,Zs), which are functions

only of the time difference |t− s|. For this specific case, the covariance between Zt and Zt+k

is as follow,

γk =Cov(Zt ,Zt+k) = E(Zt−µ)(Zt+k−µ)

2Wei (2006)

12
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and the correlation between Zt and Zt+k as

ρk =
Cov(Zt ,Zt+k)√

Var(Zt)
√

Var(Zt+k)
=

γk

γ0
(8)

Then, for a stationary process, the autocovariance function γk and the autocorrelation function

ρk have the following properties:

1. γ0 =Var(Zt);ρ0 = 1

2. |γk| ≤ γ0; |ρk| ≤ 1

3. γk = γ−k and ρk = ρ−k ∀k, i.e., γk and ρk are even functions and for those reasons,

symmetric about the lag k = 0. Basically, the time difference between Zt and Zt+k and

Zt and Zt−k are the same.

4. The autocovariance function γk and the autocorrelation function ρk are positive

semidefinite
n

∑
i=1

n

∑
j=1

αiα jγ|ti−t j| ≥ 0

and
n

∑
i=1

n

∑
j=1

αiα jρ|ti− t j| ≥ 0

∀t1, t2, ..., tn and ∀α1,α2, ...,αn.

After computing the ACF, to find and extract the similarities of two times series, x and y,

only around s of interest, we figure out the distance between parts of autocorrelation in study,

as follow

d f ragmented−ACF(x,y) =
√

∑
i∈s

(ρi,x−ρi,y)2

13



3 Assessment of the fragmentation methods by simulation

3 Assessment of the fragmentation methods by simulation

After reading the existing literature review and directing the topics to our work of interest,

I follow as main references Piccolo (1990), Caiado, Crato, and Peña (2006), and Caiado,

Crato, and Poncela (2020).

3.1 First Simulation Exercise: Testing for periodogram

In this subsection I will study the first clustering method approach of this work by doing

simply what was proposed in Caiado, Crato, and Poncela (2020).

In this context, I have performed several simulations. For N = 4000, where N is the

number of replications of time series, I have simulated the following model

yt = φwyt−w +φmyt−m +φayt−a + εt

where φw is the AR parameter associated to the weekly cycle, φm is the AR parameter as-

sociated to the monthly cycle, φa the AR parameter associated to the annual cycle, and εt is

white noise. In each run, the N = 4000 time series were divided into 2 groups considering

two different data generating processes. For the first group of series the lags associated to the

weekly, monthly, and annual seasonal cycles were 5, 21, and 252, respectively, while for the

second group, the lags associated with the weekly, monthly, and annual seasonal cycles were

4, 25 and 300. Then, I obtained the first set of simulations data as follow

yt = φwyt−5 +φmyt−21 +φayt−252 + εt (9)

which will be compared with the second set of data generated by

yt = φwyt−4 +φmyt−25 +φayt−300 + εt (10)

After this, it was computed the periodogram by following the equation (5) and then, log

normalized the periodogram (ln(γ−1
0 I)). All the work was performed in a log normalized

14



3.1 First Simulation Exercise: Testing for periodogram

periodogram, and, for that reason, from now on, the log normalized periodogram will be

called just periodogram.

There will be two other versions: the fragmented and the smoothed fragmented peri-

odogram. For the smoothed version, I decided to use the Bartlett filter since it worked very

well in Caiado, Crato, and Poncela (2020), and this filter can be computed by equation (7)

with M = u−l
2 , u and l as defined in equation (2) and (3), respectively. For hs I considered

0.5, 3 and 45 for annual, monthly and weekly cycles, respectively. Using these values for

hs I guarantee that the same percentage of ordinates are used in fragmented versions of the

periodogram. Finally, I have clustered the time series, computing the Euclidean distance of

each pair, choosing the minimum distance from all the combinations of each 2 groups of

each data process (9) and (10), of the three approaches (for all periodogram, fragmented-

periodogram and smoothed fragmented-periodogram). I have considered sample sizes of

T = 500,1000,2000,5000 and 10000 with 1000 replications of each data generated process.

Tables of this clustering method will be shown below. These tables can be read in the

same way. The first column (T, p, f ) shows as T the sample size, p the number of ordinates of

the periodogram, and f as the number of ordinates that I use in the fragmented and smoothed

fragmented periodograms, which are the same. Then the table shows other columns, each one

of them, where I show the percentage of times that the N time series are correctly clustered for

each sample size T when using the entire periodogram, fragmented and smoothed fragmented

versions. By correctly clustered, I mean that the minimum Euclidean distance described

above comes from the two series of the same model.

I want to check if using only a small fraction of the information (ordinates in the pe-

riodogram), I could get classification results comparable to those obtained when using the

whole periodogram. I would also like to see the effect of smoothing the fragmented peri-

odogram before clustering. The overall effect of smoothing the periodogram is to reduce the

variance of the spectral estimates differences as the number of ordinates used for smoothing

increases. The effect of smoothing should be larger; the larger the interval I use for smooth-

ing. In this sense, I would like to point out that the number of ordinates associated to the

weekly cycle in the fragmented periodogram is larger than that related to the monthly cycle
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3.1 First Simulation Exercise: Testing for periodogram

and both larger than that used in the annual cycle.

Table 1 shows the results of simulation when I assign the same value to the autoregressive

parameters associated to each one of the seasonal cycles, so all the cycles rely on the exact

value of the parameters and it is not the difference in the value of the parameters what drives

the good or bad performance of the method. I decided to group by sets as authors of Caiado,

Crato, and Poncela (2020) did. So, the first column shows the sample size and information

regarding the number of ordinates used, as explained above. From column 2 to 4, 5 to 7 and 8

to 10, the percentage of correctly classified for each set of parameters used in the simulation.

As expected, results improve as we move down, that is when I increase the sample size

T . Moreover, for a given sample size, the best results are always given when using the

whole periodogram. Although the smoothed periodogram, which uses a small percentage

of information, follows closely the outcome of the full periodogram for moderate to large

sample sizes. The fragmented periodogram gives the worst results of all the procedures but it

works pretty well from T = 2000. As smoothing decreases the variance of the periodogram,

it could detect differences in periodograms more efficiently using the smoothed version than

just the fragmented version.

As expected, the results presented in columns 2 to 4 are better than 5 to 7 and even better

than 8 to 10. Let’s give a little attention to the numbers from the last set of simulations

(columns from 8 to 10) where for each of the models, the coefficients are assigned to 0.1.

The results are less satisfactory since the processes are close to white noise.

Moving on to table 2, for a given set of parameters, the results continually improve with

the sample size T . Similarly, to table 1 there exists the same scenario; working with the

whole periodogram, I got better results in classifying time series, followed by smoothed

periodogram and finally by the fragmented-periodogram.

Another interesting simulation is to see how could be the results if I directly choose the

lags to consider in fragmented-periodogram, and so not considered the boundaries (2) and

(3). In this way, the number of ordinates will be the same, whatever the sample size T . Table

3 and Appendix A.1 are the results of this new simulation to test for specific boundaries

around the s. Notice that, since the simulation is around of s of interest does not make sense
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Table 1: Percentage of times that the N = 4000 series were correctly clustered when the 2 sets of series are
different in the lags of weekly, monthly, and annual cycles. Simulations for the periodogram when φw = φm =
φa = .3, φw = φm = φa = .2 and φw = φm = φa = .1

(T, f , p)

φw = .3
φm = .3
φa = .3

φw = .2
φm = .2
φa = .2

φw = .1
φm = .1
φa = .1

All Frag Smth. All Frag Smth. All Frag Smth.
(500,250,29) 95.9 56.3 79.7 72.9 43.2 63.5 45.1 36.1 44.9
(1000,500,56) 99.9 76.1 91.2 90.5 54.0 75.0 52.4 38.2 45.9

(2000,1000,112) 100.0 91.0 99.8 98.6 65.2 93.1 59.7 43.0 59.0
(5000,2500,279) 100.0 99.3 100.0 100.0 83.8 100.0 77.7 49.0 78.6
(10000,5000,558) 100.0 100.0 100.0 100.0 96.1 100.0 91.8 54.5 93.6

First group, lags = 5, 21 and 252; second group, lags = 4, 25 and 300

Table 2: Percentage of times that the N = 4000 series were correctly clustered when the 2 sets of series are
different in the lags of weekly, monthly, and annual cycles. Simulations for the periodogram when φw = .4,φm =
.3,φa =−.2, φw = .4,φm =−.3,φa = .2 and φw =−.4,φm = .3,φa = .2

(T, f , p)

φw = .4
φm = .3

φa =−.2

φw = .4
φm =−.3
φa = .2

φw =−.4
φm = .3
φa = .2

All Frag Smth. All Frag Smth. All Frag Smth.
(500,250,29) 99.5 60.9 85.1 99.2 60.1 87.3 99.8 66.4 94.2
(1000,500,56) 100.0 74.1 94.0 100.0 68.5 96.2 100.0 82.3 97.8
(2000,1000,112) 100.0 86.3 99.6 100.0 78.9 99.8 100.0 92.4 100.0
(5000,2500,279) 100.0 97.6 100.0 100.0 94.7 100.0 100.0 99.2 100.0
(10000,5000,558) 100.0 99.9 100.0 100.0 99.1 100.0 100.0 100.0 100.0

First group, lags = 5, 21 and 252; second group, lags = 4, 25 and 300
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3.1 First Simulation Exercise: Testing for periodogram

to compute the "All" periodogram, as studied before. I find it interest to see what will be the

results when it joins the annual cycle of the model (9) and the annual cycle of the other model

(10) in one interval. So, this can be seen from column 2 to 3, and the weekly and monthly

cycles are also represented in this simulation. From column 4 to 5 are represented the weekly,

monthly cycles, and the annual cycle; this last cycle is divided into two intervals, one around

the s = 252 and the other around the s = 300 of interest. It will also be interesting to see the

differences in the efficiency of the cluster among these two approaches. Finally, from 6 to 7

are represented the results when we consider only the weekly and monthly cycles to realize

how the annual cycles can influence the efficiency of the cluster. From column 8 to 9, the

simulation considers only the annual cycles of both models (model (9) and model (10)).

Analyzing these new simulations, table 3 and tables presented in appendix A.1, show that

the smoothed fragmented periodogram has a better performance when comparing only with

the fragmented-periodogram. The results are reasonable because the smoothed periodogram

has less variance comparing with no-smoothed. In the end, in the first simulation when used

the boundaries represented in 2 and 3, the results were much better than this new one.

Other simulations for other coefficients values were made and can be seen in Appendix

A.1.

Table 3: Percentage of times that the N = 4000 series were correctly clustered when the 2 sets of series are
different in the lags of weekly, monthly, and annual cycles. Simulations for the periodogram when φw = φm =
φa = .3

φw = φm = φa = .3
Frag Smth. Frag Smth. Frag Smth. Frag Smth.

T
[I4, I5]
[I20, I26]
[I250, I302]

[I4, I5]
[I20, I26]
[I250, I254]
[I297, I301]

[I4, I5]
[I20, I26]

[I250, I254]
[I297, I301]

500 40.6 60.5 40.6 60.5 44.4 47.7 36.3 60.3
1000 72.5 79.0 61.5 71.8 39.8 40.7 64.1 75.0
2000 72.9 95.8 62.4 88.1 50.4 60.8 59.2 85.0
5000 79.4 98.8 53.4 87.6 53.2 80.7 39.8 63.2
10000 74.1 98.8 65.8 90.6 38.5 51.8 69.8 93.8

First group, lags = 5, 21 and 252; second group, lags = 4, 25 and 300

18



3.2 Second Simulation Exercise: Testing for ACF

3.2 Second Simulation Exercise: Testing for ACF

In the next set of simulations, I will test the ACF method to finally compare both methods,

spectral method and ACF method, to see which of them are more efficient by cluster the data

with Euclidean Distance as did for the periodogram.

To be able to compare both estimators (spectral and ACF), my Supervisor and I thought

of a fragmented-ACF approach, which is precisely the Autocorrelation function, as defined

in (8), but fragmented into the lags k of interest for the specific study.

Going forward on the simulations, the so-called method of ACF was run similarly to the

previous method (the spectral); N = 4000 time series were divided into 2 groups considering

two different data generating processes, one set by model (9) and another set by model (10).

For a better comparison, the same data were generated throw this method and the spectral.

After this, it was computed the Autocorrelation Function of each time series by following

equation (8) and another version of the fragmented-ACF, which is to consider the lags s of

interest. Finally, I have clustered the time series computing the Euclidean distance of each

pair choosing the minimum distance from all the combinations of each 2 groups of each data

process (9) and (10) of the two approaches (ACF and fragmented-ACF).

Notice that for the periodogram was used the frequency-domain and now, I propose an

equivalent method in the time domain for the fragmented-ACF. For that reason, we thought

of a heuristic method and decided to guarantee only that the number of ordinates used in

the spectral method would also be used the same number in this method of ACF. Bartlett’s

filter will not be used in this method since it only makes sense to filter on Bartlett in the

periodogram.

Following, I will present some results regarding this new method fragmented-ACF. Tables

4 and 5 next presented can be read in the same way. The first column shows (T, p), T the

sample size, and p the number of values used in fragmented-ACF. Next to the sample size,

there are other columns, each one of them, where I show the percentage of times that N

time series are correctly clustered for each sample size T when using the number of lags

of p. Looking at tables 4 and 5, there are common things between them. Interestingly,
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the efficiency of the cluster is better when considering only values around the s of interest,

rather than considering compute the distance using the entire ACF. Nonetheless, similar to

the spectral method, when the sample size increased, the results also improved.

Table 4: Percentage of times that the N = 4000 series were correctly clustered when the 2 sets of series are
different in the lags of weekly, monthly, and annual cycles. Simulations for the ACF when φw = φm = φa = .3,
φw = φm = φa = .2 and φw = φm = φa = .1

(T, p)

φw = .3
φm = .3
φa = .3

φw = .2
φm = .2
φa = .2

φw = .1
φm = .1
φa = .1

All Frag All Frag All Frag
(500,29) 93.7 99.8 84.9 97.0 55.0 70.9
(1000,56) 96.3 100.0 95.2 99.9 63.7 91.0
(2000,112) 97.9 100.0 99.2 100.0 81.3 98.4
(5000,279) 98.2 100.0 100.0 100.0 95.5 100.0
(10000,558) 99.3 100.0 100.0 100.0 99.0 100.0

First group, lags = 5, 21 and 252; second group, lags = 4, 25 and 300

Table 5: Percentage of times that the N = 4000 series were correctly clustered when the 2 sets of series are
different in the lags of weekly, monthly, and annual cycles. Simulations for ACF when φw = .4,φm = .3,φa =
−.2, φw = .4,φm =−.3,φa = .2 and φw =−.4,φm = .3,φa = .2

(T, p)

φw =−.4
φm = .3
φa = .2

φw = .4
φm =−.3
φa = .2

φw = .4
φm = .3

φa =−.2
All Frag All Frag All Frag

(500,29) 99.1 100.0 94.6 99.7 93.6 99.5
(1000,56) 99.2 100.0 96.4 100.0 93.8 99.8
(2000,112) 99.5 100.0 98.2 100.0 95.0 100.0
(5000,279) 99.9 100.0 99.8 100.0 97.7 100.0
(10000,558) 100.0 100.0 100.0 100.0 99.7 100.0

First group, lags = 5, 21 and 252; second group, lags = 4, 25 and 300

Now, consider another simulation approach for fragmented-ACF, similarly what was

made for the spectral method, where this approach is to fragment the ACF around the s

of interest, narrowing the range of the fragments and maintain the number of values used

throughout the simulation, even if I increase the sample size. The tables 6, 7, 8, 9, 10, 11 and
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12 next presented can be read in the same way and are related to this new simulation. The first

column shows T , the sample size. Next to the sample size, there are other columns, each one

of them, where it showed the percentage of times that N time series are correctly clustered

for each sample size T when using the lags showed in the second row. These position lags

are the same used in the spectral method but are now adapted to ACF lags.

As seen in table 6, the percentage of times that N series are correctly clustered is relatively

high. An overall, the event is cross-cutting in all columns; when the sample size increase,

the event of correctly clustering the series is 100% effective. Nonetheless, when focusing

on the sample size T = 500, I obtained the worst scenario on the distant lags (considering

only the annual cycle, column 5) compared with the closer lags (considering the weekly and

monthly cycles, column 4). When joining all the cycles, the weekly, monthly, and annual in a

simulation, I got better results when I split the range of the annual cycle by a window around

252 lag and 300 lag (column 3) compared to the range where these annual cycles are merged

(column 2). This can be explained by the specificity of the simulation, taking into account

the lags of the models.

Looking at table 7, the results continue with a large percentage of successes. However, a

slight decrease can be seen. Similar to table 6 the rate of efficiency of cluster series increase

when the sample size increase. The worst scenario is noted in the last column when I consider

only the annual cycle in the simulation. The best scenario remains where I include all cycles,

but the annual cycle is split in two.

Analyzing table 8, this is the case where I want to check the results of the simulations

when the coefficients of both models are small and, therefore, close to the case of white

noise. As expected, the results are worst than in table 7 and table 6 due to the proximity to

white noise. Nonetheless, the results are pretty surprising because I obtained results quite

high, and I even got 100% of success in some cases and sample sizes.

For the next group of tables, I will test the case when each coefficient of the models is

going to have different weights for each cycle.

In this scenario, the percentage of success for efficiently cluster data is excellent. We

obtained 100% of data correctly clustered, approximately in all cases, when the data size
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starts from 1000. However, in table 9, 10, 11 and 12, I got a worse scenario when considering

only s around of the annual cycles 252 and 300 when the range of the data sample is small,

which makes me believe that the annual part is not yet outlined when I consider small sample

sizes.

Table 6: Percentage of times that the N = 4000 series were correctly clustered when the 2 sets of series are
different in the lags of weekly, monthly, and annual cycles. Simulations for ACF when φw = φm = φa = 0.3

φw = φm = φa = 0.3

T
[ρ4,ρ5]

[ρ20,ρ26]
[ρ250,ρ302]

[ρ4,ρ5]
[ρ20,ρ26]

[ρ250,ρ254]
[ρ297,ρ301]

[ρ4,ρ5]
[ρ20,ρ26]

[ρ250,ρ254]
[ρ297,ρ301]

500 99.6 99.9 99.9 97.8
1000 100.0 100.0 100.0 100.0
2000 100.0 100.0 100.0 100.0
5000 100.0 100.0 100.0 100.0

10000 100.0 100.0 100.0 100.0

First group, lags = 5, 21 and 252; second group, lags = 4, 25 and 300

Table 7: Percentage of times that the N = 4000 series were correctly clustered when the 2 sets of series are
different in the lags of weekly, monthly, and annual cycles. Simulations for ACF when φw = φm = φa = 0.2

φw = φm = φa = 0.2

T
[ρ4,ρ5]

[ρ20,ρ26]
[ρ250,ρ302]

[ρ4,ρ5]
[ρ20,ρ26]

[ρ250,ρ254]
[ρ297,ρ301]

[ρ4,ρ5]
[ρ20,ρ26]

[ρ250,ρ254]
[ρ297,ρ301]

500 98.1 99.4 98.9 83.0
1000 99.8 100.0 100.0 99.2
2000 100.0 100.0 100.0 100.0
5000 100.0 100.0 100.0 100.0

10000 100.0 100.0 100.0 100.0

First group, lags = 5, 21 and 252; second group, lags = 4, 25 and 300
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Table 8: Percentage of times that the N = 4000 series were correctly clustered when the 2 sets of series are
different in the lags of weekly, monthly, and annual cycles. Simulations for ACF when φw = φm = φa = 0.1

φw = φm = φa = 0.1

T
[ρ4,ρ5]

[ρ20,ρ26]
[ρ250,ρ302]

[ρ4,ρ5]
[ρ20,ρ26]

[ρ250,ρ254]
[ρ297,ρ301]

[ρ4,ρ5]
[ρ20,ρ26]

[ρ250,ρ254]
[ρ297,ρ301]

500 70.6 79.1 76.2 51.6
1000 91.0 96.3 93.7 76.7
2000 99.8 100.0 99.5 95.6
5000 100.0 100.0 100.0 100.0

10000 100.0 100.0 100.0 100.0

First group, lags = 5, 21 and 252; second group, lags = 4, 25 and 300

Table 9: Percentage of times that the N = 4000 series were correctly clustered when the 2 sets of series are
different in the lags of weekly, monthly, and annual cycles. Simulations for ACF when φw = 0.4,φm = 0.3,φa =
−0.2

φw = 0.4,φm = 0.3,φa =−0.2

T
[ρ4,ρ5]

[ρ20,ρ26]
[ρ250,ρ302]

[ρ4,ρ5]
[ρ20,ρ26]

[ρ250,ρ254]
[ρ297,ρ301]

[ρ4,ρ5]
[ρ20,ρ26]

[ρ250,ρ254]
[ρ297,ρ301]

500 98.2 99.8 99.8 81.3
1000 99.5 100.0 100.0 98.5
2000 99.8 100.0 100.0 99.9
5000 100.0 100.0 100.0 100.0

10000 100.0 100.0 100.0 100.0

First group, lags = 5, 21 and 252; second group, lags = 4, 25 and 300
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Table 10: Percentage of times that the N = 4000 series were correctly clustered when the 2 sets of series
are different in the lags of weekly, monthly, and annual cycles. Simulations for ACF when φw = 0.4,φm =
−0.3,φa = 0.2

φw = 0.4,φm =−0.3,φa = 0.2

T
[ρ4,ρ5]

[ρ20,ρ26]
[ρ250,ρ302]

[ρ4,ρ5]
[ρ20,ρ26]

[ρ250,ρ254]
[ρ297,ρ301]

[ρ4,ρ5]
[ρ20,ρ26]

[ρ250,ρ254]
[ρ297,ρ301]

500 99.5 99.9 99.8 83.2
1000 99.9 100.0 100.0 99.3
2000 100.0 100.0 100.0 100.0
5000 100.0 100.0 100.0 100.0

10000 100.0 100.0 100.0 100.0

First group, lags = 5, 21 and 252; second group, lags = 4, 25 and 300

Table 11: Percentage of times that the N = 4000 series were correctly clustered when the 2 sets of series
are different in the lags of weekly, monthly, and annual cycles. Simulations for ACF when φw = −0.4,φm =
0.3,φa = 0.2

φw =−0.4,φm = 0.3,φa = 0.2

T
[ρ4,ρ5]

[ρ20,ρ26]
[ρ250,ρ302]

[ρ4,ρ5]
[ρ20,ρ26]

[ρ250,ρ254]
[ρ297,ρ301]

[ρ4,ρ5]
[ρ20,ρ26]

[ρ250,ρ254]
[ρ297,ρ301]

500 100.0 100.0 100.0 83.5
1000 100.0 100.0 100.0 99.6
2000 100.0 100.0 100.0 99.9
5000 100.0 100.0 100.0 100.0

10000 100.0 100.0 100.0 100.0

First group, lags = 5, 21 and 252; second group, lags = 4, 25 and 300
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3.2 Second Simulation Exercise: Testing for ACF

Table 12: Percentage of times that the N = 4000 series were correctly clustered when the 2 sets of series
are different in the lags of weekly, monthly, and annual cycles. Simulations for ACF when φw = 0.4,φm =
−0.3,φa =−0.2

φw = 0.4,φm =−0.3,φa =−0.2

T
[ρ4,ρ5]

[ρ20,ρ26]
[ρ250,ρ302]

[ρ4,ρ5]
[ρ20,ρ26]

[ρ250,ρ254]
[ρ297,ρ301]

[ρ4,ρ5]
[ρ20,ρ26]

[ρ250,ρ254]
[ρ297,ρ301]

500 99.7 100.0 99.9 82.2
1000 99.9 100.0 100.0 99.1
2000 100.0 100.0 100.0 100.0
5000 100.0 100.0 100.0 100.0

10000 100.0 100.0 100.0 100.0

First group, lags = 5, 21 and 252; second group, lags = 4, 25 and 300
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4 Discussion

4 Discussion

After describing the simulations made in section 3, it is time to deepen knowledge on

the topic further and somehow to complete and give a different perspective to the analysis

previously done.

The tool used to generate and to do the entire simulation was in Python language, and

part of the code that is used to compute the percentage of times that N series were correctly

clustered can be found in Appendix B3

Let me first compare both methods, fragmented-periodogram and fragmented-ACF, using

the lower and upper bounds that were used in Caiado, Crato, and Poncela (2020) to create

a method that works for frequency-domain and time-domain, this method is showed in ta-

ble 1 and 2 for the fragmented-periodogram and for the fragmented-ACF, this method is

heuristically represented in table 4 and table 5. When comparing both cases, using the whole

periodogram works better than using the entire ACF. However, since the intent is to reduce

computational work, we are more interested in this study to have a promising approach for

cutting data. Moreover, in this case, using these upper and lower boundaries approach rep-

resented in equation 2 and equation 3, fragmenting the ACF will give us the most success in

terms of clustering data. If looking from a spectral data perspective, and as seen in Caiado,

Crato, and Poncela (2020) paper, doing the smooth will still bring the best results since we

reduce the variance of the data.

It is interesting to analyze in a more targeted way to our point of seasonality question.

Since I know precisely the seasonality points I want to study, I found it interest to see what it

would be like to test for specific boundaries around the s, highlighting the fact that the number

of ordinates of periodogram and values of ACF will be the same, whatever the sample size

T . The choice of these boundaries are presented in tables 3 and the remaining in appendix

A.1, for the periodogram case, and tables 6, 7, 8, 9, 10, 11, 12 for the ACF case. For this

approach, it is evident that it worked pretty well and better for the fragmented-ACF.

The main comment is that results are pretty aligned with those in (Caiado, Crato, and

3Part of code used to compute the periodogram and smoothed periodogram has the contribution of a GitHub
page: Gates et al. (2021)
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4 Discussion

Poncela, 2020) regarding fragmented-periodogram, which gives us certain confidence for

this new approach of the fragmented-ACF.
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5 Conclusions and future work

5 Conclusions and future work

Through the literature review, it is clear that nowadays, there are many different ways

to assess time series similarities and dissimilarities, as well as consequently cluster them. It

is also clear that different methods work well for some purposes and others for some other

purposes.

One type of problem that has recently received much attention is the comparison and

clustering of time series that are not correlated or may even come from different realms. One

typical example is the analysis of heartbeat rhythms from different people in different parts

of the globe and at different times. The comparison of the rhythms may give some valuable

insight for medical diagnostic. Another example of this type of problem is the analysis of

financial market assets that may be uncorrelated but have common stochastic features useful

for general market analysis.

There are a few methods available for this the comparison and clustering of this type

of problems. A very recent one is the fragmented periodogram approach, which has the

additional characteristic of being computationally simple and thus appropriate to condensate

information of large sets of long time series.

The main contribution of this work is the proposal and assessment of a similar method but

in the time domain. This method uses the sample Auto Correlation Function (ACF) for each

series under study, computes the ACF at specific lags only, and compares the series through

the values obtained for the calculated lags.

A simulation exercise showed that this method works as well or even better than the

fragmented periodogram. So, the proposed method is competitive, and it can be used for the

type of problems described above.

A by-product of this work that is of interest by itself is the following. When assessing the

method for choosing the window lengths for fragmenting the periodogram, simulations show

that there is no consistency for a fixed number of periodogram ordinates. Thus, when using

this method, it is important to adapt the window length to the number of observations of each

time series.
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5 Conclusions and future work

It should be clear from the previous sections that the fragmented ACF method has been

tried on specific classes of time series for which the driving components are few and known.

Furthermore, only stationary autoregressive models were studied.

This observation leads to a couple of suggestions for future work. Firstly, the type of

series under comparison should be extended in order to include other types of models, namely

nonstationary. Secondly, it will be useful to further study the chosen ACF components and

whether they could be smoothed by a process similar to the spectral one. Thirdly, it would

be interesting to find whether an automatic exploratory search could find the main driving

components of models with unknown structure. This is a difficult task, but the research

could start by computing regular spaced ACF lags and then narrowing the computation on

the more relevant ones. Fourthly, it will be interesting to compare both time-domain and

spectral-domain fragmented methods with non-fragmented procedures.

29



Appendices

A Appendix

A.1 Tables of periodogram simulation

Percentage of times that the N = 4000 series were correctly clustered when the 2 sets of series are different in
the lags of weekly, monthly, and annual cycles

φw = φm = φa = .2
Frag Smth. Frag Smth. Frag Smth. Frag Smth.

T
[I4, I5]
[I20, I26]
[I250, I302]

[I4, I5]
[I20, I26]
[I250, I254]
[I297, I301]

[I4, I5]
[I20, I26]

[I250, I254]
[I297, I301]

500 35.8 44.7 35.8 44.7 35.2 40.3 35.8 43.3
1000 50.6 53.6 41.9 46.0 34.8 34.9 40.7 49.3
2000 55.5 80.4 48.3 69.0 39.9 46.4 47.4 68.8
5000 55.1 85.0 40.6 54.6 41.6 50.4 34.5 46.6
10000 54.4 83.6 48.0 68.9 34.0 38.6 51.3 73.1

First group, lags = 5, 21 and 252; second group, lags = 4, 25 and 300

Percentage of times that the N = 4000 series were correctly clustered when the 2 sets of series are different in
the lags of weekly, monthly, and annual cycles

φw = .4,φm = .3,φa =−.2
Frag Smth. Frag Smth. Frag Smth. Frag Smth.

T
[I4, I5]
[I20, I26]
[I250, I302]

[I4, I5]
[I20, I26]
[I250, I254]
[I297, I301]

[I4, I5]
[I20, I26]

[I250, I254]
[I297, I301]

500 56.4 77.6 56.4 77.6 39.1 48.9 58.2 78.1
1000 71.9 94.2 69.5 90.8 37.1 38.2 75.4 93.3
2000 62.4 90.3 59.3 82.8 45.9 52.1 57.9 82.0
5000 53.2 88.5 45.8 72.0 48.7 67.5 37.6 54.7
10000 60.6 90.9 47.8 73.8 49.3 71.6 37.0 45.8

First group, lags = 5, 21 and 252; second group, lags = 4, 25 and 300

30



A.1 Tables of periodogram simulation

Percentage of times that the N = 4000 series were correctly clustered when the 2 sets of series are different in
the lags of weekly, monthly, and annual cycles

φw = .4,φm =−.3,φa = .2
Frag Smth. Frag Smth. Frag Smth. Frag Smth.

T
[I4, I5]
[I20, I26]
[I250, I302]

[I4, I5]
[I20, I26]
[I250, I254]
[I297, I301]

[I4, I5]
[I20, I26]

[I250, I254]
[I297, I301]

500 40.2 57.7 40.2 57.7 36.4 48.4 33.6 51.6
1000 72.4 94.3 50.3 67.4 38.9 39.6 49.1 69.6
2000 58.4 86.0 50.6 71.3 43.1 53.7 48.2 67.1
5000 90.6 100.0 63.4 91.6 37.3 42.4 69.0 92.2
10000 73.5 96.5 35.9 46.8 32.8 35.4 36.5 48.1

First group, lags = 5, 21 and 252; second group, lags = 4, 25 and 300

Percentage of times that the N = 4000 series were correctly clustered when the 2 sets of series are different in
the lags of weekly, monthly, and annual cycles

φw =−.4,φm = .3,φa = .2
Frag Smth. Frag Smth. Frag Smth. Frag Smth.

T
[I4, I5]
[I20, I26]
[I250, I302]

[I4, I5]
[I20, I26]
[I250, I254]
[I297, I301]

[I4, I5]
[I20, I26]

[I250, I254]
[I297, I301]

500 52.9 76.5 52.9 76.5 37.5 43.6 59.7 79.5
1000 49.3 62.8 42.3 53.7 34.1 34.2 41.7 59.8
2000 95.6 100.0 65.3 96.1 37.1 41.1 72.0 96.9
5000 78.7 99.2 47.2 73.2 36.6 42.2 50.3 74.9
10000 39.8 51.7 37.9 47.5 32.1 33.7 39.0 49.6

First group, lags = 5, 21 and 252; second group, lags = 4, 25 and 300
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B Python Code

Percentage of times that the N = 4000 series were correctly clustered when the 2 sets of series are different in
the lags of weekly, monthly, and annual cycles

φw = .4,φm =−.3,φa =−.2
Frag Smth. Frag Smth. Frag Smth. Frag Smth.

T
[I4, I5]
[I20, I26]
[I250, I302]

[I4, I5]
[I20, I26]
[I250, I254]
[I297, I301]

[I4, I5]
[I20, I26]

[I250, I254]
[I297, I301]

500 44.7 59.8 44.7 59.8 38.9 50.9 41.7 52.2
1000 71.6 93.3 51.1 64.8 43.1 45.3 50.4 69.0
2000 58.5 86.3 50.5 73.4 45.9 53.0 48.0 69.0
5000 89.9 99.8 47.1 74.3 37.0 43.4 45.9 75.5
10000 85.2 99.9 60.6 89.9 35.3 38.0 66.5 92.3

First group, lags = 5, 21 and 252; second group, lags = 4, 25 and 300

B Python Code
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