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Abstract 

This study aims to analyze various models of portfolio management, underlying the active 

and passive management and its impact on the efficient choice of an optimal portfolio 

composed by assets from Swiss shares index - SMI.  

I chose Swiss market for a couple of reasons. First of all, it would be interesting to analyze 

the behavior of an European market that doesn’t belong to Euro. Another reason was the fact 

of this market have some big international companies such as Nestlé and Swatch. 

Historical portfolio analysis took into account the Markowitz model (mean-variance), the 

Minimum Variance model and the Naïve model (equal weights). The time horizon used in 

this dissertation was 10 years and considers the period between January, 2004 and December, 

2013. The data were obtained from academic database Datastream. 

To compute the weight to invest in each asset, “data window system” for 1 and 2 years will 

be used. 

To conclude, we will be able to see if, for 12 months, there are or not significant differences 

between the types of portfolio management treated throughout the dissertation. Further on, 

we may consider if for higher returns and Sharpe Ratio, the optimal portfolio is the best 

option. 

 

JEL Classification: G11, G15  

Keywords: Markowitz Portfolio Theory, Naïve Portfolio, Minimum-Variance Portfolio, 

Sharpe Index. 
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Resumo 

Esta dissertação tem como objectivo analisar vários modelos de gestão de carteiras, tendo em 

consideração gestão activa e passiva e o seu impacto na escolha eficiente de uma carteira 

ótima composta por activos do índice bolsista Suiço - SMI.  

A minha escolha recaíu sobre a Suiça por várias razões. Em primeiro lugar, seria interessante 

perceber o comportamento de um mercado europeu que não utilizasse a moeda única. Outra 

das razões foi por este mercado incorpora algumas grandes empresas multinacionais, tais 

como a Nestlé e a Swatch. 

A análise histórica das carteiras teve em conta o modelo Markowitz (média-variância), 

modelo Mínima-Variância e o modelo Naïve (pesos iguais). O horizonte temporal utilizado 

neste estudo foi de 10 anos, considerando o período de Janeiro de 2004 a Dezembro de 2013. 

Os dados foram retirados da base de dados académica Datastream. 

Para calcular o peso a investir em cada ativo, foram utilizados os sistemas de “janelas de 

dados” a 1 e 2 anos. 

Por fim, será possível observer se, para 12 meses, existem ou não diferenças significativas 

entre os modelos de gestão de carteiras estudados nesta dissertação. Será também possível 

analisar se, para rendibilidades e rácios de Sharpe mais elevados, a carteira ótima é a melhor 

opção. 

Classificação JEL: G11, G15  

Palavras-Chave: Teoria Carteira Markowitz, Carteira Naïve, Carteira de Mínima Variância, 

Índice Sharpe. 
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1 Introduction 

1.1 Preamble 

The subject of this dissertation builds on the discussion of the various types of portfolios 

composed of financial assets. The focus of this thesis is based on the portfolio management. 

The opinions on what type of management is the best for investment in financial assets 

portfolio, divided between authors and researchers who advocate managing portfolios 

actively and those who, on the other hand, defend the portfolio management passively. This 

study aims to evaluate the historical behavior in terms of return rates, risk and Sharpe ratio, 

the various models of portfolio management as applied to companies that comprise the Swiss 

Index SMI. This analysis also aims to help to understand the models effects from the 

perspective of active and passive management. 

Active management is based on optimal portfolio that arises with Harry Markowitz (1952) 

and the minimum variance portfolio. The discussion on the optimal portfolio introduces the 

concept of efficient frontier that will be addressed in this study. The minimum variance 

portfolio puts the return in the background and is concerned solely with minimizing the risk 

associated with investment in financial assets. On the other hand, a portfolio that is behind 

the passive management is the naïve portfolio, also known as the equally weighted portfolio. 

This portfolio besides being a portfolio whose securities are weighted equally is a portfolio 

of assets that does not change nor is revised over time depending on market developments. 

In the evaluation of the various models of portfolio management is also taken into account 

the investment performance evaluated according to the Sharpe ratio.  
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So it is important to understand how the different models can help individual investors and 

investment funds managing their portfolios and adjusting strategy to economic situation 

experienced during the observed time. 

1.2 Purpose 

The purpose of this dissertation is to analyze Markowitz model, minimum-variance model 

and naïve model and what will be their impact on the choice of a portfolio made up of shares 

belonging to the main Swiss market index – SMI. This analysis will be done through 

observation of historical index data for that considering the performance of portfolios 

managed in several ways. 

1.3 Structure 

This dissertation starts with an introduction to the studied subject. Then literature review, 

resulted from research and analysis of preview studies and written papers, is presented. The 

literature review is divided in two parts: Markowitz and optimal portfolio approach and the 

performance evaluation. In third chapter testing hypotheses are presented. Data and 

methodology are discussed in forth chapter. The fifth chapter shows the obtained results and, 

finally, in sixth chapter conclusions and study limitations are presented. Some suggestions 

are proposed to future investigations about this subject. 
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2 Literature review 

2.1 Markowitz and the Optimal Portfolio 

The discussion about optimal portfolio was started by Harry Markowitz (1952). This model 

allows the creation of portfolios based on formalization and computation of weight to invest 

in each asset according to investors’ expectations. In addition, Markowitz introduced the 

efficient frontier concept, i.e., for each level of volatility, investor is only interested in the 

portfolio that has the highest expected return, or for each level of return, the portfolio with 

lower risk. According to Bodie et al. (2009), a manager who uses this methodology, 

introduced by Markowitz, can satisfy any risk-averse investor. 

Markowitz model had been tested for increasing monotone utility functions. Bawa (1976) 

intended to test the model for all type of investors (averse, neutral and risk lovers), and 

concluded that it could be applied with greater returns and higher volatility. Lezy and 

Markowitz (1984) studied the possibility of maximizing Expected Utility (EU) functions for 

an infinite number of combinations of assets knowing only its mean and variance. They 

concluded that the best mean-variance efficiency portfolio has almost maximum EU when it 

can borrow half of the investment value. This result was not observed due to the normality 

of the data, but the robustness of quadratic approach. The assumption that returns follow a 

normal distribution is commonly assigned to Markowitz model. However, Usmen and 

Markowitz (1996) refuted this assumption, stating that several of the existing distributions, 

the more likely those assets would tend to follow, would be a t-student with 4-5 degrees of 

freedom. Lewis (1988) also concluded that it was possible to apply the Markowitz model to 

non-quadratic utility functions. However, Markowitz (2010) clarifies that never assumed the 
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utility function to be quadratic, but rather an approach to quadratic functions, for these show 

good long-terms results. 

Regarding to EU, Markowitz (2012) also distinguish three types of EU maximization: 

explicit, MV-approximate and implicit. The author refers to it as “explicit” EU maximization 

when a utility function is given and analytical or numerical methods are used to find the 

portfolio that maximizes the expected value of this function. In contrast, “MV-approximate” 

is when a utility function is given and mean-variance approximation to its EU is maximized. 

The author concludes that if some investor picks the MV efficient portfolio which is the best 

for him, then the investor has selected a portfolio with maximum or almost maximum EU. 

This is identified by Markowitz (2012) as “implicit” expected utility maximization.  

According to Rubinstein (2002), one of the most important features developed by Markowitz 

was the demonstration that the most important risk for investor in a portfolio is not the 

individual risk of each asset, which can be reduced by diversification, but the contribution of 

their risk to total risk of portfolio, i.e., the covariance between assets in portfolio. Gaumnitz 

(1969) tested the effect of introducing an asset in a shares portfolio at the level of return and 

risk in order to find an optimal number of assets to diversify the portfolio. To this end, 

different portfolios were analyzed by ANOVA tool (Analysis of Variance) and other 

statistical tests. Concluded that the optimal number of assets per portfolio is less than 20 

assets and portfolios composed by 6 to 11 assets have, on average, a good performance 

comparing to equity funds. Statman (1987) concluded that the average volatility of an asset 

was 49.2%. When increasing the number of assets, the portfolio volatility decreases. At most, 

the risk of a portfolio could decrease up to 19.2%, 30% less than initial risk. 
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Along with the concepts of diversification and efficient frontier, also arises the concept of 

short-selling1. This concept influences the formation of efficient frontier. Despite this, Elton 

et al. (2011) refer that the use of short-selling in investment portfolios formation is not 

common for two reasons: many investors do not short-sell and the existence of many 

investment funds containing restrictions on short-selling. 

Pogue (1970), studied other factors beyond short-selling that may affect the constructions of 

efficient frontier, as transaction costs, liquidity costs, liability and taxes. Regarding 

transactions costs, these require a shift of efficient frontier for lower levels of return. Short-

selling and liability originate shifting efficient frontier to higher levels of return. Thus, this 

efficient frontier dominates the previous that considered only transaction costs. 

According to Baule (2010), the portfolio optimization based on Markowitz model usually 

implies an investment in many assets, which turns difficult for a small investor to optimize 

his portfolio without incurring high transaction costs. Thus, these portfolios can hardly 

eliminate specific risk. Baule analyses the portfolio optimization based on German Stock 

Exchange (XETRA) in a two-year period (January 2nd, 2006 to December 28th, 2007). 

Transaction costs based on six German banks and brokers were used. The author also 

considered other products that can replace direct investment in shares, as ETF’s- (Exchange-

Traded Fund) and Certificates2 . 

                                                           
1 Short selling (or "selling short") is a technique used by investors who try to profit from the falling price of a 

stock. Borrowing a security (or commodity futures contract) from a broker and selling it, with the 

understanding that it must later be bought back (hopefully at a lower price) and returned to the broker. 
2 A physical document that declares a fact and that may be used to prove said fact. One of the most common 

types of certificates is a stock certificate, which gives the person or company listed a portion of ownership in 

a publicly-traded company 
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Horasanli and Fidan (2007) consider that, although widely used, Markowitz model does not 

show the current condition of the market. To cope with the dynamic structure of volatility in 

the market, it is possible to use EWMA3 and GARCH4. To study this hypothesis, 100 

observations of 15 shares of Turkish Stock Exchange, XU30, were considered between 

August 9th, 2005 and December 30th, 2005. The results show that it is possible to use 

exponentially covariance matrices to create lower risk portfolios within a given level of 

return. According to these authors, EWMA is superior to equal weights and GARCH (1,1), 

since the recent performance of shares require larger weights to predict future performance 

and current market conditions are modeled more accurately. 

Elton et al. (1976) via SIM (Single Index Model) applied Markowitz model to determine the 

weights of the assets that would compose the optimal portfolio. The assets were based on 

Treynor ratio. The model became known as EGP (Elton, Gruber and Padberg). 

The EGP model presents better screening ability of assets to be included in the formation of 

the optimal portfolio based on the Markowitz model. However, the EGP leads to the selection 

of a larger number of assets, leading to higher costs for portfolio management and 

transaction. 

Burgess and Bey (1988) studied the combination of the individual risk of each asset, with 

expected return on optimal portfolios, i.e., the process of Markowitz compared to EGP. To 

this end, they used three sets of data from January 1980 until June 1985: random sample of 

100 shares; 100 shares present in S&P100; and all 3047 shares present in PDE Compustat 

Data Base. To compute the β of each asset, linear regressions were performed based on the 

                                                           
3 Exponentially Weighted Moving Average 
4 Generalized AutoRegressive Conditional Heteroskedasticity 
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following indices: S&P100, S&P500 and an index composed by all assets in equal weights5. 

With these data, three portfolios were created: one based on Markowitz, another based on 

EGP and a third combining asset selection of EGP and the formulation of the optimal 

portfolio based on the Markowitz model. It was concluded that comparing return rates, risk 

and performance, there are no major differences between the two models. 

Polson and Tew (2000) tested a third model for portfolio simulation, the Bayes Model (no 

short-selling and investment limits for each asset) to a set of assets of S&P500 index from 

January 1970 to December 1996 and compared the results with the index itself. Concluded 

that the model was well formalized, obtained a higher performance comparing to a 

benchmark. Formalizing optimal portfolios, manager must also consider the investment time 

horizon and other exceptional factors that may occur in the market (periods of rise and fall 

of the market). 

Gunthorpe and Levy (1994) studied the stationarity of returns over time and the impact of 

the time horizon defined in the formation of the optimal portfolio. To this end, used a set of 

15 assets obtained from CRSP6  for the period January 1963 until December 1990, taking 

into account three groups of assets: defensive assets (β<1), neutral stock (β=1) and aggressive 

assets (β>1). Then used the mean-variance model to determine the optimal portfolio with 

daily, weekly, monthly, quarterly, semiannual and annual data. Concluded that the 

composition of the optimal portfolio varies with the time horizon of the used data. 

                                                           
5 Naïve Portfolio 
6 The CRSP Mutual Fund Database is designed to facilitate research on the historical performance of open-

ended mutual funds by using survivor-bias-free data. The CRSP Survivor-Bias-Free US Mutual Fund 

Database includes a history of each mutual fund’s name, investment style, fee structure, holdings, and asset 

allocation. Also included are monthly total returns, monthly total net assets, monthly/daily net asset values, 

and dividends. Additionally, schedules of rear and front load fees, asset class codes, and management 

company contact information are provided. All data items are for publicly traded open-end mutual funds.  
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Chow et al. (1999) analyzed events that may cause outliers to assets returns, variances and 

covariance. Outliers were identified and placed in a variance and covariance matrix that is 

subsequently coupled to the initial optimal portfolio determination matrix to obtain strength 

against the abnormal times in the market. Three portfolios with data from January 1988 until 

September 1998 were formed: one with the total sample (129 months), another with a sample 

of outliers (27 months) and a third based on the combination of variance and covariance 

matrix of the other two portfolios. They were compared in stability and periods of market 

turmoil. The authors concluded that the optimal portfolio composed by outliers has become 

more conservative and has lower risk in turbulent times regarding the portfolio composed by 

the total sample (129 months). 

Campbell et al. (2001) tested the applicability of VaR (Value-at-Risk) to the optimal portfolio 

in order to maximize the conditional expected maximum loss that may exceed the limits of 

VaR at a given confidence level established by the portfolio manager. Resorted to stocks and 

bonds using the VaR constraint for various time periods (daily, bi-weekly and monthly). The 

authors used S&P500, the 10-year benchmark for U.S. bonds and 3 months Treasury Bills as 

risk-free rate, from January 1990 until December 1998. The risk aversion degree is set 

according to VaR limit, hence avoiding the limitations of expected utility theory as to the 

degree of risk aversion, which an investor is thought to exhibit. The results show that the 

introduction of VaR as a risk measure has the benefit of allowing the analysis of trade-off 

risk/return at various levels of confidence. Assuming that the returns follow a normal 

distribution, this model gets the same mean-variance model results. In 2009, Alexander et al. 

studied the applicability of a VaR constraint to optimal portfolios as a way of reducing the 

risk estimation in the presence of short-selling. Concluded that this restriction significantly 
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reduces the errors of estimation of expected return, standard deviation and the VaR of the 

optimal portfolio. Some authors of this measure, as Artzner (1999), claim that VaR does not 

add value to the portfolio. Rockafellar (2000) and Uryasev (2002) support the measure CVaR 

instead of VaR. 

Another model, also often mentioned in the literature, is the minimum variance portfolio. 

This is the portfolio of risky assets that has the lowest possible variance, ie, it is the efficient 

portfolio with lower risk, Bodie et al. (2009). According to Clarke et al. (2006), the only 

feature of this portfolio is based on the fact that its composition is independent of the expected 

return of the assets that compose it. The same authors compared several minimum variance 

portfolios with the market, and they concluded that these portfolios presented lower risk and 

higher return. Jobson et al. (1979) suggest that one should invest only the minimum variance 

and Jorion (1986) concludes that for any utility function, the value investing in each asset 

was that corresponding to the minimum variance portfolio. Kan and Zhou (2007) show that 

the optimal portfolio is overcome by combining this with the minimum variance portfolio. 

Duchin and Levy (2009) compared the portfolio theory developed by Markowitz with the 

simplest diversification strategy, 1/N (equally weighted strategy). The authors resorted to 

monthly returns of 30 industry portfolios of Fama-French, between 1996 and 2007. Short-

selling was not allowed in this study. They concluded that 1/N strategy seems correct for 

small investors who have few assets in their portfolios. For institutional investors, Markowitz 

model dominates 1/N portfolio. 

Uppal et al. (2009) compared the performance of 14 portfolio optimization models with the 

benchmark 1/N. To this end, eight different databases, one simulated and seven real were 

used. The databases are not all the same length, but most starts in July 1963 and ends on 
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November 2004. The chosen assets cover a set of indices such as S&P500, NASDAQ, 

AMEX, NYSE, sectorial indices, industrial and international (Germany, England, France, 

Japan and Canada). 60 to 120 months’ time windows were created and the results were 

compared based on Sharpe ratio, Centainty-Equivalent Return (CEQ) and the turnover of 

each portfolio. At the end, for each strategy was calculated the Return Loss according to 1/N 

model which is the additional needed return for the performance of this strategy was the same 

as model 1/N. The authors concluded that Sharpe ratio estimations for the sample based on 

the mean-variance strategy are much lower than the Sharpe ratio of 1/N strategy, which 

indicates errors in the estimation of the mean and covariance. It was also found that several 

extensions to this model to solve the estimation problem do not exceed the return generated 

by 1/N. Summarizing, the various optimization models found in the literature did not produce 

consistently a higher Sharpe ratio and CEQ Return than 1/N portfolio. To understand the 

poor performance of the optimized models, was analytically derived the estimation period 

required for these models obtain higher returns than 1/N model. To 25 assets would be 

required an estimation window over 3000 months and to 50 would be needed more than 6000 

months (usually is 60 to 120 months). 

Kritzman et al. (2010) have a different point of view. The authors intend to show that 

portfolio optimization, based on simple inputs, can get better performance than naïve 

portfolios (1/N) using longer maturities to show the superiority of portfolio optimization. The 

authors used 13 databases, containing 1028 data series, having built 50.000 stock portfolios, 

between February 1926 and December 2008. Simplest models of expected return, which 

require no foresight, were used. The portfolios were grouped into 3 categories: asset class, 

beta and alpha. Monthly data, except for 500 shares that were used for daily use over shorter 
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periods and make a greater covariance matrix data, were used. To estimate the volatilities 

and correlations, covariance matrices of 5, 10 and 20 years and total period of the sample 

were used. In each data set, was compared the performance of the estimated portfolio, 1/N 

portfolio and the optimized portfolio. The results show that using simple estimates, but 

plausible, expected return, volatility and correlation, applied differently, the portfolio 

optimization can have a higher performance than portfolios that use 1/N strategy. Thus, the 

use of short-time frames investment originates results that are not satisfactory for any 

investor.  

2.2 Performance Evaluation 

According to Elton et al. (2001), apart from making the decision to invest, it is equally 

important to review what to invest in. This performance evaluation essentially consists in 

comparing the return rates of several portfolios. Thus, it is important that the chosen 

portfolios to comparison (benchmark), have the same level of risk and the same restrictions. 

The evaluation process is not complete with only the calculation of the average return of the 

portfolio, taking this to be risk-adjusted for a more accurate comparison. The evaluation 

criteria based on the mean-variance model emerged with the appearance of CAPM (Capital 

Asset Pricing Model), Bodie et al. (2009). Some of the originated ratios linked to CAPM as 

Sharpe ratio (1966), derived from Capital Market Line, the alpha, Jensen (1968), Treynor 

ratio (1966) and Information ratio. 

Sharpe ratio, widely used by portfolio managers, evaluates the return rates achieved by a 

portfolio above the risk free rate, depending on the standard deviation of the portfolio. This 

ratio gives the slope of CML, which is defined by the possibility of investment in the risk-

free asset. The majority of the literature uses as numerator of the ratio, the excess return over 
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risk-free asset. However, according to Sharpe (1994), the original ration suggests the use of 

a benchmark instead of the risk-free asset. Sharpe (1994) still tests the reliability of this ratio 

in two situations: the first assumes an investment in a particular investment fund and in a 

fund composed by risk-free assets, used as benchmark and the second in which invests in a 

particular fund and in a fund used as a benchmark, correlated with the first. The author 

concludes that alternatives to Sharpe ratio lead to results which are relevant for the 

performance evaluation of funds and their choices. 

Cvitanic et al. (2008) analyzed the Sharpe ratio for different investment horizons. Concluded 

that managers are focused on maximizing the ration in the short term rather than the long 

term, which can lead to large losses for investors with longer time horizons. Furthermore, 

this strategy of maximizing the ratio shows manipulation of risk, ie, increased/decreased risk 

at the end of the optimization period after a poor/good performance at the beginning of the 

period. 

Information ratio, also widely used, is based on Sharpe ratio and relates the alpha of the 

portfolio with non-systematic risk called “tracking error”, Bodie et al. (2009). Goodwin 

(1998), tested this ratio for different types of annualized ratio methods (arithmetic mean, 

geometric, and the continuous compounding method and a method that already uses the 

annualized data) during 10 years (1986-1995). Concluded that the methods used do not differ 

significantly, the choice of the benchmark has a significant impact on the computation of the 

ratio and that this information is useful in performance evaluation. Chincarini and Lim (2008) 

argue that this ratio can be interpreted as the square root of R2 regression, finding the best 

explanatory variables or increasing the number of these variables without reducing the 

contribution of each one of them. 
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Jensen’s alpha measures the difference between the observed return of a portfolio and the 

expected return by CAPM, Bodie et al. (2009). Unlike the Sharpe ratio that relates the 

outperformance with the total risk, the Treynor ratio relates the same differential systematic 

or non-diversifiable risk, Bodie et al. (2009). According to these authors each measure of 

performance evaluation should be used in different situations. If an investment fund equals 

the entire portfolio of the investor, then the Sharpe ratio should be used. If on the other hand, 

the investment in the fund is combined with an investment in a market index, you should not 

use the information ratio. In the case of the portfolio is composed by several investment 

funds, both the Treynor ratio and Jensen's alpha are appropriate. However, Hendrik Scholz 

and Marco Wilkens (2005) consider that in practice an investor is rarely found in some of 

these situations. The authors compared the Sharpe ratio and Treynor. Their conclusions aim 

to the use of the Sharpe ratio when a large part of the investment is partitioned between a 

fund and the risk-free asset. Inversely, the Treynor ratio must be used when the investment 

in this combination is small. 

Besides these performance measures, others were created without being connected to CAPM. 

Fama (1972) proposes the decomposition of performance between timing and selection 

abilities while Mazuy and Treynor (1966) and Henriksson and Merton (1981) outlined 

measures for assessing the capacity of market timing. Ferson and Schadt (1996) develop a 

conditional version of these two models. Recently, Modigliani, F. and Modigliani, L. (1997) 

proposed an alternative measure of risk, M2, that redefines the Sharpe ratio by adjusting the 

performance for leveraged portfolios, using the volatility of returns within the CAPM 

environment. 
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Alexandre et al. (2003) studied the feasibility of using VaR as a measure of portfolio 

performance. Concluded that if the manager selects the portfolio with the highest reward-to-

VaR, can be selected a portfolio that does not maximize Sharpe ratio, ie, may be choosing a 

portfolio that has one standard deviation higher than the expected return. 

Another ratio that is gaining popularity in Sortino ratio, can be defined as the difference 

between profitability and the objective return (MAR – Minimal Acceptable Return), 

depending on the downside risk (annualized standard deviation of returns below the goal). 

Thus, this ratio does not penalize the investment then the result of investment when occur 

increases in prices, unlike Sharpe ratio that does not discriminate increases to decreases 

(Sortino and Satchell (2001)). 

Chaudhry and Johnson (2008) studied the application of Sortino ratio, Sharpe Ratio Selection 

(SSR), t-student test and another measure called decay rate to a fixed benchmark. Overall, 

the Sortino ratio proved to be the best performance measure to choose the best fund. Farinelli 

et al. (2008) concluded that Sharpe ratio can’t overcome asymmetric ratios such as Sortino-

Satchell, widespread Rachev and Farinelli-Tibiletti. 

2.3 Conclusion Remarks 

Active and Passive management are part of a subject which has been studied for a long time. 

De Miguel et al. (2009) are some of the authors who have studied the Active Management of 

equity investments. Kritzman et al. (2010) are some of the supporters shed Passive 

Management. Chow et al. (1999) suggest that for better analysis and definition of securities 

held in the investment portfolio, it should take into account the events that occurred during 

the time intervals chosen for the studies under review and not only the time horizon. 



18 

 

To evaluate the performance of the portfolios, the choice was the Sharpe ratio, and the 

variables returns and risk were considered. However, this is not the only way to evaluate the 

performance of a portfolio. Throughout time referrals were made and huge studies on other 

methods of performance assessment, for example, the ratio of Treynor (1966) and Jensen's 

alpha (1968) were published.  
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3 Testing Hypothesis 

In order to reach the goals of the elaboration of this thesis, and taking into account the results 

and findings of the literature review, it should be noted that the study in question will look at 

two types of hypotheses: one based on returns and the other based on the Sharpe index. The 

testing hypotheses will be used based on the two time horizons used in this dissertation - 12 

months. Should be noted also that costs of financial intermediation will not be considered 

and will be used 1 and 2 years data windows. 

The hypotheses that will be considered are: 

H1: Return rates of mean-variance and minimum-variance portfolios are, on average, 

statistically equal to return rates of Naïve portfolio. 

H2: Performance, based on Sharpe index, of mean-variance and minimum-variance 

portfolios is, on average, statistically equal to, based on Sharpe index, Naïve portfolio 

performance. 

The specific hypotheses that will be studied are: 

HA: Optimal portfolio monthly return rate (RA), annualized, is statistically equal to monthly 

return rates, annualized, of a Naïve portfolio (equal weights) (RB). 

HB: Optimal portfolio monthly return rate (RA), annualized, is statistically equal to monthly 

return rates, annualized, of a Minimum Variance portfolio (RC). 

HC: Optimal portfolio monthly return rate (RA), annualized, is statistically equal to monthly 

return rates, annualized, of Market Index (SMI) (RD). 

HD: Naïve portfolio monthly return rate (RB), annualized, is statistically equal to monthly 

return rates, annualized, of a Minimum Variance portfolio (RC). 
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HE: Naïve portfolio monthly return rate (RB), annualized, is statistically equal to monthly 

return rates, annualized, of Market Index (SMI) (RD). 

HF: Minimum Variance portfolio monthly return rate (RC), annualized, is statistically equal 

to monthly return rates, annualized, of Market Index (SMI) (RD). 

HG: Optimal portfolio performance (SHA), computed through Sharpe Index, is statistically 

equal to Naïve portfolio performance (SHB). 

HH: Optimal portfolio performance (SHA), computed through Sharpe Index, is statistically 

equal to Minimum Variance portfolio performance (SHC). 

HI: Optimal portfolio performance (SHA), computed through Sharpe Index, is statistically 

equal to Market Index (SMI) performance (SHD). 

HJ: Naïve portfolio performance (SHB), computed through Sharpe Index, is statistically 

equal to Minimum Variance portfolio performance (SHC). 

HK: Naïve portfolio performance (SHB), computed through Sharpe Index, is statistically 

equal to Market Index (SMI) performance (SHD). 

HL: Minimum Variance portfolio performance (SHC), computed through Sharpe Index, is 

statistically equal to Market Index (SMI) performance (SHD). 

Resuming, it’s important to refer that the use of above hypotheses so as the tests that will be 

computed, will be important to conclude which portfolio management model should be used 

by an investor that wants to invest his money on Swiss Market Index. 
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4 Methodology and Data 

For this study will be necessary to go through several stages. One of these early stages is the 

collection of data, which after worked, will be analyzed and will help to draw some 

conclusions. Shall be observed, all assets – that have been quoting uninterruptedly during the 

reporting period - of Swiss equity index (SMI). The period will be from December 31, 2003 

to December 31, 2013. From 20 assets that represent the SMI only 14 will be used for, as 

aforesaid, interest only securities that have quoted continuously during the period analysis. 

For data collection we used the Datastream data base, from which we extract the closing price 

of the shares (closing price). 

From this data returns, standard deviation and covariance will be compute. The formulas 

used to get these results were the following: 

To compute the returns, 
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Where: 

 ri t the daily return of asset i, at moment t; 

 Pt-1 price of asset on the day before. 

The annualized average return is computed through: 
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 ri the daily return; 

 N number of days that stock market is opened, per year 

To find the standard deviation: 
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To obtain the covariance between two assets 1 and 2, the following formula will be used: 

1, 2,

1

( )( )
(1,2) *

n
t i t i

d

j

r r r r
COV N

N

 
  

Concerning to optimal portfolio weights computation, Markowitz mean-variance model 

without short-selling will be used. This is the chosen method because most of the investors 

do not use this financing way to invest is stocks (Elton et al., 2011). 

So, the model that will be used is the following: 

1

2

1 1

1 1 1

( )
n

i t f
p f i

n N N

p
i j ij

i i i

X R R
R R

Max

X X X




 



  




 





 
 

Subject to: 

1

1
n

i

i

X


  

And 

0iX i   

 



23 

 

Regarding to minimum-variance portfolio, the model that will be used is: 
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To compute the weights of Markowitz portfolio and minimum-variance portfolio, some 

steps must be completed: 

 To compute the returns, standard deviation and covariance, “data windows” of 1 

and 2 years were used; 

 To compute the returns, standard deviation and covariance between the various 

assets; 

 “data window” method was used, including the period after, and not including the 

first period. 

The methodology for calculating the composition of the optimal portfolio will be based on 

the model proposed by Kwan (2001). In this paper the author presents us with a methodology 

for computing the Markowitz model using MS Excel. 
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Obtained, for the time horizon under consideration, 120 observations of 14 assets belonging 

to the Swiss index, for "data windows" to 1 and 2 years. For the computation of the minimum-

variance portfolio the same software was used. However, we had to change the input cells 

when using the Solver function - to obtain the optimal portfolio the target cell was that 

maximization of Sharpe ratio, for obtaining the minimum-variance portfolio this target cell 

became minimizing the standard deviation. 

For the risk free rate of return, 1-month swiss risk free rate was the chosen, since this interest 

rate seems to represent a reasonable proxy of the investment rate, the nearest treasury bills 

assets without risk - risk-free assets reported by some authors Bodie et al. (2009). 

Naïve portfolio – equally weighted – will be composed by 14 assets with equal weights. So, 

the weight of each asset will be around 7,14%. This portfolio will remain, throughout the 

time, unchanged. Sharpe Index will evaluate the performance of these portfolios, this choice 

occurs because this index is present on most of the literature on this topic. 

Finally, hypotheses tests for each “data window”, 1 and 2 years, will be computed, in order 

to let us understand if there is a substantial difference between active and passive portfolio 

management and which of them has better performance. Furthermore, the performance of the 

three portfolios will be compared to the benchmark – SMI –where the main goal of the 

investor is to perform above the benchmark. 
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5 Results Analysis 

5.1 Overview 

Due to the existence of a high correlation between the performances of the main European 

markets with major North American markets, the returns decrease, mentioned above, is not 

surprising due to the fast spread of the crisis to some European countries. In 2009 we were 

witnessing a recovery in index return rates as the markets began to believe that the subprime 

crisis was slowly being overtaken. However, this had not happened yet and there was a 

decline in the index between 2010 and 2011. This setback in the recovery of the index is 

related to the entry of financial aid in countries like Portugal, Ireland, Greece and Spain, and 

despite not directly affect the Swiss index, meant that investors would back down on 

investments primarily in equity market by taking refuge in more defensive and less exposed 

to the economic environment at the time. Examples of these financial instruments are 

government bonds. At the end of the period, already starting to see some recovery index.  

Analyzing the results, taking into account the use of mean-variance and minimum-variance 

models, observed that whether the data window for 1 year as the data window for 2 years, 

both models have better results in terms of returns over Naïve model. Regarding to Sharpe 

ratio the foregoing conclusions are identical. This means that both Markowitz optimal 

portfolio and minimum-variance portfolio have better performance compared to Naïve 

portfolio. 

Gaumnitz (1969) states that diversification helps to reduce the risk which therefore 

minimizes the losses, increasing profitability levels. In this particular case it appears that in 

times of crisis the number of shares to invest suffers an abrupt reduction, with moments in 

which one invests all the capital in a single asset. This contradicts the theory presented above. 
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The reduction in assets to invest also occurs when the model used is the minimum variance 

but on a smaller scale. 

Thus can be concluded that for the period and taking into account the restrictions described 

throughout the dissertation and the time horizon under study, Markowitz portfolio appears to 

be the best investment option given the risk / return. It can be stated that there are no statistical 

evidence that there are differences between the data window to 1 year and the data window 

to two years. 

5.2 Hypotheses Tests Results 

The hypotheses tests that will be presented will be important to understand the studied 

portfolios behave statistically. 

As mentioned before, 1 and 2 years “data window” method was used. Based on Table 1, we 

can conclude that the hypotheses, to 12 months, 

Table 1 – Hypotheses tests, with 1 year “data window” 

Hypotheses Null Hypotheses Alternative Hypotheses tobs tα/2 p-value Conclusion 

H1A H0:RA=RB H1:RA≠RB 3,134713 2,201 0,00216698 Reject H0 

H1B H0:RA=RC H1:RA≠RC 2,87765 2,201 0,00475044 Reject H0 

H1C H0:RA=RD H1:RA≠RD 4,362499 2,201 2,75259E-05 Reject H0 

H1D H0:RB=RC H1:RB≠RC -0,93927 2,201 0,349496005 Not Reject H0 

H1E H0:RB=RD H1:RB≠RD 3,891029 2,201 0,000165032 Reject H0 

H1F H0:RC=RD H1:RC≠RD 6,682896 2,201 7,96997E-10 Reject H0 

H2G H0:SHA=SHB H1:SHA≠SHB -0,65845 2,201 0,511521216 Not Reject H0 

H2H H0:SHA=SHC H1:SHA≠SHC -1,60403 2,201 0,111358258 Not Reject H0 

H2I H0:SHA=SHD H1:SHA≠SHD 2,955922 2,201 0,003759555 Reject H0 

H2J H0:SHB=SHC H1:SHB≠SHC -1,66533 2,201 0,098477365 Not Reject H0 

H2K H0:SHB=SHD H1:SHB≠SHD 3,227027 2,201 0,001615991 Reject H0 

H2L H0:SHC=SHD H1:SHC≠SHD 3,719431 2,201 0,000306047 Reject H0 
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Table 2 – Hypotheses tests, with 2 years “data window 

Hypotheses Null Hypotheses Alternative Hypotheses tobs tα/2 p-value Conclusion 

H1A H0:RA=RB H1:RA≠RB 5,570032 2,069 1,60662E-07 Reject H0 

H1B H0:RA=RC H1:RA≠RC 4,467824 2,069 1,81202E-05 Reject H0 

H1C H0:RA=RD H1:RA≠RD 6,202864 2,069 8,31108E-09 Reject H0 

H1D H0:RB=RC H1:RB≠RC -0,57587 2,069 0,565787155 Not Reject H0 

H1E H0:RB=RD H1:RB≠RD 8,88949 2,069 7,90579E-15 Reject H0 

H1F H0:RC=RD H1:RC≠RD 8,88949 2,069 7,90579E-15 Reject H0 

H2G H0:SHA=SHB H1:SHA≠SHB 0,273904 2,069 0,784633126 Not Reject H0 

H2H H0:SHA=SHC H1:SHA≠SHC -0,84508 2,069 0,399763133 Not Reject H0 

H2I H0:SHA=SHD H1:SHA≠SHD 3,251603 2,069 0,001493068 Reject H0 

H2J H0:SHB=SHC H1:SHB≠SHC -1,70441 2,069 0,090914412 Not Reject H0 

H2K H0:SHB=SHD H1:SHB≠SHD 3,257595 2,069 0,00146445 Reject H0 

H2L H0:SHC=SHD H1:SHC≠SHD 3,708543 2,069 0,000318076 Reject H0 

 

After analyzing Table 2, in opposition to what we’ve observed in Table 1, we can verify that, 

with 2 years “data window”, there are more statistical evidences of differences between 

optimal portfolio, minimum variance portfolio and naïve portfolio, both in return and Sharpe 

Index. 

So, for an investor interested in investing in a portfolio composed by SMI assets, in most of 

the cases there are no statistical evidences saying us that one model is better than the other 

ones. Still, there are some test that should be confirmed by deeper analysis regarding to both 

returns and Sharpe index. 
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6 Conclusions 

6.1 Main Conclusions 

This thesis aimed to investigate how Markowitz, minimum-variance and naïve portfolios, in 

a portfolio management perspective, affect the performance of an investment portfolio. To 

this end, we resorted to the observation of historical data (10 years) of the SMI-index and 

looked up what the differences between the use of several models and the impact of these 

differences on the performance of the investment portfolio, consisting of only actions in 

terms of performance and Sharpe ratio. The second goal of this thesis was to observe if the 

use of different data windows has a statistically significant impact on the study analysis. 

Regarding the first objective we conclude, based on the results obtained, there are some 

statistically significant differences in the use of different models presented. 

In terms of return, the optimal portfolio as expected since it is based on maximizing the return 

/ risk, presents a consistent performance at certain times of the time horizon under 

consideration. The risk associated with this portfolio may have been higher, compared to 

other models used, due to the troubled economic period lived at the time of the study. 

Regarding to minimum-variance model, which emphasizes lower risk at the return, this could 

have been used as a defensive investment for the observed period, considering that it was a 

period of high volatility. 

According Uppal, et al. (2009) portfolios that are based on mean-variance and minimum-

variance models are considerably affected on the calculation of the optimal weights, due to 

the estimation errors that arises from returns, variances and covariance of the assets in 

question. The performance of the optimized portfolios via these two models have found an 
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improvement upon increasing the "data window" for the 1 year "data window" within 2 years, 

which is moreover supported on the statistical tests performed. The period was however, a 

period when the economy was negatively marked by the subprime crisis. This crisis may be 

more plausible explanation for the poor performance of the securities in many moments of 

the analysis. 

6.2 Limitations 

The main limitations of the study are: 

 Time horizon used in this study. Using historical data of only 10 years doesn’t allow 

us to compare the study to other ones with longer time horizon; 

 In opposition to what we learn during our academic life, diversification principle is 

not observed too often when using Excel Solver. 

6.3 Suggestions for future investigations 

As suggestions for future investigations, we can propose: 

 Would be interesting and important to include transaction costs both in return and 

Sharpe Index;  

 Expand the time horizon and analyze which can affect assets performance and risk. 
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8 Appendix 

FIGURE 1 – Markowitz portfolio returns, 1 year “data window” 

 

 

FIGURE 2 – Markowitz portfolio Sharpe Index, 1 year “data window” 
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FIGURE 3 – Minimum variance portfolio returns, 1 year “data window” 

 

 

FIGURE 4 – Minimum variance portfolio Sharpe Index, 1 year “data window” 

 

 

 

 

 

 

 

 

 

 

 

-30,0000%

-20,0000%

-10,0000%

0,0000%

10,0000%

20,0000%

30,0000%

40,0000%

1
Y.

0
1

.2
0

0
4

1
Y.

0
6

.2
0

0
4

1
Y.

1
1

.2
0

0
4

1
Y.

0
4

.2
0

0
5

1
Y.

0
9

.2
0

0
5

1
Y.

0
2

.2
0

0
6

1
Y.

0
7

.2
0

0
6

1
Y.

1
2

.2
0

0
6

1
Y.

0
5

.2
0

0
7

1
Y.

1
0

.2
0

0
7

1
Y.

0
3

.2
0

0
8

1
Y.

0
8

.2
0

0
8

1
Y.

0
1

.2
0

0
9

1
Y.

0
6

.2
0

0
9

1
Y.

1
1

.2
0

0
9

1
Y.

0
4

.2
0

1
0

1
Y.

0
9

.2
0

1
0

1
Y.

0
2

.2
0

1
1

1
Y.

0
7

.2
0

1
1

1
Y.

1
2

.2
0

1
1

1
Y.

0
5

.2
0

1
2

1
Y.

1
0

.2
0

1
2

1
Y.

0
3

.2
0

1
3

1
Y.

0
8

.2
0

1
3

Return

Return

-2,0000

-1,0000

0,0000

1,0000

2,0000

3,0000

4,0000

1
Y.

0
1

.2
0

0
4

1
Y.

0
6

.2
0

0
4

1
Y.

1
1

.2
0

0
4

1
Y.

0
4

.2
0

0
5

1
Y.

0
9

.2
0

0
5

1
Y.

0
2

.2
0

0
6

1
Y.

0
7

.2
0

0
6

1
Y.

1
2

.2
0

0
6

1
Y.

0
5

.2
0

0
7

1
Y.

1
0

.2
0

0
7

1
Y.

0
3

.2
0

0
8

1
Y.

0
8

.2
0

0
8

1
Y.

0
1

.2
0

0
9

1
Y.

0
6

.2
0

0
9

1
Y.

1
1

.2
0

0
9

1
Y.

0
4

.2
0

1
0

1
Y.

0
9

.2
0

1
0

1
Y.

0
2

.2
0

1
1

1
Y.

0
7

.2
0

1
1

1
Y.

1
2

.2
0

1
1

1
Y.

0
5

.2
0

1
2

1
Y.

1
0

.2
0

1
2

1
Y.

0
3

.2
0

1
3

1
Y.

0
8

.2
0

1
3

Sharpe Index

Sharpe Index



37 

 

FIGURE 5 – Naïve portfolio returns, 1 year “data window” 

 

 

FIGURE 6 – Naïve portfolio Sharpe Index, 1 year “data window” 
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FIGURE 7 – Returns comparison of both 3 portfolios, 1 year “data window” 

 

 

FIGURE 8 – Sharpe Index comparison of both 3 portfolios, 1 year “data window” 
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FIGURE 9 – Markowitz portfolio returns, 2 years “data window” 

 

 

FIGURE 10 – Markowitz portfolio Sharpe Index, 2 years “data window” 
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FIGURE 11 - Minimum variance portfolio returns, 2 years “data window” 

 

 

FIGURE 12 – Minimum variance portfolio Sharpe Index, 2 years “data window” 
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FIGURE 13 – Naïve portfolio returns, 2 years “data window” 

 

 

FIGURE 14 – Naïve portfolio Sharpe Index, 2 years “data window” 
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FIGURE 15 – Returns comparison of both 3 portfolios, 2 years “data window” 

 

 

FIGURE 16 – Sharpe Index comparison of both 3 portfolios, 2 years “data window” 
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