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Abstract 

In the pursuit of assuring the financial soundness of an insurance undertaking, a 

fundamental step is to make sure that the Technical Provisions and Solvency 

Capital Requirement calculated by the undertaking correspond properly to the 

obligations and risks it is subjected to.  

The new European solvency regime, Solvency II, brought new challenges and 

implied a deep analysis to the values hold by the undertakings. 

This report follows an internship at the Portuguese Insurance and Pension Funds 

Supervisory Authority whose main objective was to create a tool capable of 

calculating the amount of Technical Provisions and Solvency Capital Requirement 

related to the most representative types of Life insurance products. The chosen 

types are annuity contracts, whole life and term insurance and finally endowment 

policies. The necessary background studies for each one were made. Noteworthy is 

the study made for endowment contracts including profit-sharing clauses. Given its 

inherent relationship with the undertaking’s investments and thus with the 

financial market, economic scenarios were simulated to reproduce the possible 

behaviour of such investments. A hybrid Heston-Gaussian two-factor model was 

used to reproduce the behaviour of the interest rate and a stock index. 

  



 
 

 
 

Resumo 

Na prossecução do objetivo de garantir a solidez financeira de uma empresa de 

seguros, é um passo fundamental assegurar que as Provisões Técnicas e o 

Requisito de Capital de Solvência calculados pela seguradora correspondem 

adequadamente às suas obrigações e riscos a que se encontra exposta. 

O novo regime Europeu de solvência, Solvência II, trouxe novos desafios e implicou 

uma análise profunda aos valores detidos pelas seguradoras. 

Este relatório decorre de um estágio na Autoridade de Supervisão de Seguros e 

Fundos de Pensões cujo objetivo principal foi a criação de uma ferramenta capaz 

de calcular o valor das Provisões Técnicas e do Requisito de Capital de Solvência 

correspondente aos produtos do ramo Vida mais relevantes. Os tipos de produtos 

escolhidos foram as anuidades, os seguros de vida inteira e temporários e ainda os 

capitais diferidos. Os estudos de base necessários para cada um dos referidos tipos 

foram feitos. Um caso relevante é o estudo efetuado para os produtos com 

participação de resultados. Dada a sua inerente relação com os investimentos da 

seguradora e portanto com o mercado financeiro, foram simulados cenários 

financeiros na tentativa de reproduzir o possível comportamento dos referidos 

investimentos. Um modelo híbrido Heston-Gaussian dois fatores foi utilizado para 

reproduzir o comportamento da taxa de juro e de um índice acionista.  
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1-Introduction 

This work was developed during an internship at the Risk Analysis and Solvency 

Department (DRS) of the Portuguese Insurance and Pension Funds Supervisory 

Authority (ASF). 

DRS, whose responsibilities include monitoring of the solvency and financial 

solidity of the insurance and pension funds market, on a macroprudential 

perspective, always working in alignment with the European Insurance and 

Occupational Pensions Authority (EIOPA), plays a prominent role in what concerns 

the implementation of the new European solvency regime, Solvency II. 

Of great relevance under any regime is assuring that both technical provisions and 

capital requirements are being adequately calculated and covered by the insurance 

undertakings, this is the motivation behind this work. I was requested to develop a 

tool that would be capable of calculating the amount of Technical Provisions (TP) 

as well as Solvency Capital Requirement (SCR) for the main types of Life insurance 

products. This tool would also allow users to perform sensitivity analysis by 

testing different assumptions and evaluating its impact on TP and SCR. 

The main program that comprises the deterministic calculations for each type of 

product considered in this work was built in Microsoft Excel using Visual Basic for 

Applications (VBA) to allow for more flexibility with regard to the inputs that can 

be introduced by the users. As outputs, the program not only computes the main 

results in terms of TP and SCR, but also makes cash flows projections, allowing 

users to analyse the liabilities profile and make the necessary comparisons. 

As referred above, assumptions, such as mortality tables, financial variables and 

others, are needed as inputs for this program. The estimations for some of these 

assumptions were based on previous projects, namely Pateiro (2013), applied with 

the purpose of updating dynamic mortality tables for the Portuguese pension 

funds’ population to the most recent available data using the software R. These 

tables are taken as reference for the annuitants’ population. For participating 

insurance, Frederico (2010) and Barker (2015) were taken as reference in order to
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create economic scenarios that would enable the projection of the investment 

returns for a portfolio composed of bonds and stocks. This was achieved through 

the use of GNU Octave.  

In chapter 2, a brief introduction to the main specifications of Solvency II in what 

concerns the valuation of TP and SCR, with focus on Life insurance business, is 

given. Following this, in chapter 3 a description of the types of Life insurance 

products that were considered and the main assumptions and calculations made 

by the program is presented. This being done, in chapter 4 the chosen method to 

generate economic scenarios is explained, the need to create such tool to simulate 

the behaviour of financial variables is justified later in this report. In chapter 5 the 

application of the previously described techniques is presented along with its 

numerical results. Finally a brief conclusion of this work is done in chapter 6. 
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2-Solvency II framework 

Now a brief introduction to the relevant Solvency II concepts will be made. It can 

be found, as a main principle of this regime, the fact that assets and liabilities 

should be valued based on economic principles. From this we reach the definition 

of TP, the current amount the undertakings would have to pay if they were to 

transfer their insurance obligations to another undertaking. This being stated, 

valuation should rely as much as possible on market information. When the 

valuation of TP as a whole is not applicable (i.e. when the future cash-flows 

associated with insurance obligations cannot be reliably replicated using financial 

instruments), insurance undertakings should separately calculate a Best Estimate 

(BE) and a Risk Margin (RM). The calculations for TP should take account for the 

time value of the money, considering for that effect the relevant risk-free interest 

rate term structure. 

BE, defined as the average of all possible outcomes weighted by the respective 

probabilities, should be calculated using a market consistent approach and 

applying the appropriate actuarial and statistical methods, including stochastic, 

deterministic and analytical techniques. 

As explained in Baldvisnsdóttir & Palmborg (2011) an appropriate management of 

financial guarantees by the insurance undertakings has earned extra importance 

with the fall in the return rates obtained by the undertakings. This problem is still 

affecting undertakings today in the context of the low interest rate environment. 

Keeping this in mind, the use of simulation methods for contracts where cash-

flows depend of investment returns, such as participating contracts that give rise 

to discretionary benefits usually leads to more robust results. 

Under this approach, economic scenario generators play a key role in modelling 

the behaviour of financial variables, namely interest rate and equity indexes. For a 

market consistent valuation, scenarios are generally projected under a risk neutral 

probability measure. 
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With regard to the valuation of BE, also noteworthy is the concept of contract 

boundaries, that defines which cash flows should be included in this calculation. As 

a general rule, all obligations relating to the existing contracts should be included 

in it. However, after some defined points in time, as referred in article 18 of the 

Commission Delegated Regulation (EU) 2015/35, of 10 of October 2014, premiums 

do not belong to the contract, excluding obligations related to the referred 

premiums. Those points in time correspond to the dates when the undertaking has 

the possibility of exercising unilateral rights that would allow it not to assume 

future risks. This is based in the concept that if the undertaking can avoid incoming 

cash-flows, outgoing cash-flows will also not occur, preventing the undertaking’s 

exposure to any related risks. 

Now for the second part of TP, RM has the aim to ensure that TP represents the 

amount another undertaking would be expected to require to accept and meet the 

existing insurance obligations. It is defined as the cost of providing eligible own 

funds that would match the necessary SCR. This is achieved through the Cost-of-

Capital approach. 

SCR is the amount of capital necessary to ensure that the undertaking can 

withstand a relevant volume of unexpected losses. It is calculated under a 99,5% 

confidence level and a 1 year time horizon. This calculation can be done using the 

standard formula or internal models developed by the undertaking itself, which 

require the approval of the supervisor.  

The standard formula comprises individual risk modules which are aggregated 

using correlation matrices. The calculation of the SCR should also reflect, when 

applicable, the adjustment for the loss absorbing capacity of TP. This adjustment 

takes into account the potential compensation of unexpected losses by a 

concurrent reduction in TP. The referred adjustment accounts for the risk 

mitigating effect of future discretionary benefits, benefits subject to a potential 

reduction by the undertaking as a mean to cover unexpected losses.  

Given the scope of this work the main focus falls on the life underwriting risk 

module (SCR Life). According to the Commission Delegated Regulation (EU) 

2015/35, of 10 of October 2014, in the standard formula the shocks for each of the 

SCR Life sub-modules are:  
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 Mortality risk- it will be the loss in own funds, as for all the categories, 

resulting from a permanent increase of 15% in mortality rates, used for the 

calculations of BE. 

 Longevity risk- it is calculated for a decrease of 20% in mortality rates. 

 Disability/morbidity risk- it is calculated based on a combination of 

events, an increase of 35% of the disability/morbidity rates for the 

following 12 months, an increase of 25% of the rates after those 12 months, 

accompanied by a permanent decrease of 20% of the recovery rates from 

disability/morbidity status. 

 Life-expense risk- the calculations are based on a scenario of a 10% 

increase in the amount of the considered expenses combined with a 1% 

increase on the accounted inflation rates. 

 Revision risk- applying only for annuities where the benefits can increase 

as a result of a change in the legal environment or in the health status of the 

insured person, this SCR is computed considering a permanent 3% increase 

in those benefits. 

 Lapse risk- lapse risk is divided into three scenarios, SCR Lapse is the 

largest of the three. The first and second are opposite scenarios, a 

permanent increase or decrease of 50% in the options exercise rates for the 

relevant options. The third scenario is the mass lapse risk, with exception of 

some situations not considered in this work, is calculated with a 

discontinuance of 40% of the insured people. 

 Life-catastrophe risk- for this final component SCR is reached through a 

scenario where an increase of 0,15 percentage points in the considered 

mortality rates for the next 12 months occurs. 
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3-Implementation of the calculation tool 

In this chapter a description of the calculation methods and associated hypothesis 

will be presented. As written above, a tool was developed in Excel to evaluate the 

TP and SCR. Easily comprehendible is the fact that, in the perfect scenario, all 

calculations should be done policy per policy or at least by homogeneous risk 

groups. This statement is backed up by the Solvency II general valuation principles. 

However, when combining the complexity and diversity of the Life insurance 

contracts that can be found in the market with the scope and granularity of 

information that is available to supervisors, one is forced to assume some 

simplifying hypothesis, such as aggregating the contracts into more standardized 

types of insurance or using average inputs. Logically, this limitation has to be taken 

into account in the interpretation of the results.  

Three broad groups were considered in this work: annuity contracts, whole life 

and term insurance (in this category a separate approach was taken for annual 

renewable term contracts) and endowment insurance (participating and non-

participating). Away from this works’ scope are the unit-linked contracts. 

The following figure provides an overview of the weight of each of these categories 

in the Portuguese Life insurance market. 

  

 

Figure 1: Portuguese Life insurance market (2015) 
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In what concerns the Life insurance market, non-linked insurance represented, in 

2015, 75% of the total life insurance premiums. This compares to a share of close 

to 80% in 2014, showing an increase of the weight of unit-linked contracts during 

2015. 

Within the category of term insurance, annual renewable term contracts 

corresponded to 88% of premiums. The profitability of this line of business has 

remained stable over the years due to a continuous increase in pricing that 

compensated the decline in the number of insured persons and capital sums.  

Regarding financial insurance, the uncertainty in financial markets has been 

causing a significant volatility in the financial profitability of the assets underlying 

these contracts. In recent years, life insurance undertakings have been offering 

lower guaranteed rates in new products as response to the current low interest 

rate environment. But due to the limited representativeness of these products in 

the overall portfolio of existing contracts, the global average guaranteed rate has 

not decrease significantly. Therefore, it is predictable that this sector will continue 

to face difficulties in the next years. 

BE is calculated as the expected present value of all future cash-flows and, for each 

risk, SCR as the difference between an hypothetical BE applying each specific SCR’s 

shock to the relevant assumptions and the real BE. Provided that Life insurance is 

being analysed, the main focus is on the calculation of SCR Life. Keeping this in 

mind, only RM based on SCR Life is calculated. From the formula of the RM one can 

conclude that the calculation of future SCRs is necessary. The value for such capital 

requirements for future moments is obtained assuming that all variables behave 

according to the assumptions made for the calculation of the BE until the point in 

time when the SCR is being calculated considering the relevant shocks from that 

moment on. 

Due to the importance of the discount effect on the value of the BE, the capital 

requirement for the interest rate risk, considering the up and down scenarios in 

the standard formula, is also calculated. Although interest rate risk affects both 

assets and liabilities, only the effect on the liabilities side is considered, as on the 

valuation of assets is outside of the scope of this work.   
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This internship had the goal to create a tool, as flexible as possible, that could be 

used in practice to analyse the impact of different assumptions and with that gain 

some additional insight on how outputs such as TP or the risk profile would vary 

under different scenarios. Bearing that in mind, all the values that one could think 

of as inputs instead of fixed constants were indeed left as open variables. Some 

obvious examples of these inputs are discount rates, mortality tables, age of the 

insured person, benefits, premiums, expenses, term of the contract, SCRs’ shocks, 

among others. 

Although each group of contracts has its own specifications, some general 

assumptions were made. 

 Unit of time – in this work the unit of time considered is always the year. 

 Expenses – expenses were assumed to be a cash-out-flow at the beginning 

of the year, at the same time premiums are received (when applicable). 

With the way the program is constructed, an average expense per insured 

person is considered as an input. 

 Disability/Morbidity – the wide variety of complementary coverages 

offered in the market combined with the available information makes it 

complicated to model this type of benefits. So it was decided to exclude this 

segment. However, one can comprehend its relevance for some of the types 

of contracts considered, as these benefits are often part of whole life, term 

and participating insurance. Consequently, the disability/morbidity sub-

module of the standard formula is also not applicable. 

 Revision risk – this risk is not applicable for the products that are being 

considered. 

 

3.1-Annuities 

The existence of several variants of annuities makes it challenging to analyse every 

possible contract. Taking that into consideration, some simplifying assumptions 

were made. A fixed individual annuity is considered, though the possibility of 

growth of benefits is included in the program. Also noteworthy is the fact that no 
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future premiums are considered, which implies the assumption that the contract is 

fully paid by the annuitant. The previous assumption eliminates the concern with 

the way the annuity was sold, i.e. lump-sum or regular payments, which is a 

reasonable assumption as there are no premium payments for annuities already in 

force. For the sake of flexibility, the user is given the option to choose between 

lifelong and temporary annuity and also between immediate and deferred.  

In what concerns SCR Life, the longevity risk pointedly stands out. The reason for 

this is the fact that the longer the life of beneficiaries the larger the number of 

payments made by the insurer and so if the mortality is lower than the one 

predicted by the mortality table it can cause long-term financing problems. Apart 

from this risk, only expense risk is relevant, provided that the remaining 

components are either not considered or not applicable to these products.  

As referred above, the user is given the choice of which mortality table to use. 

However, when dealing with annuities, an additional option is given, dynamic 

mortality tables. The reason behind this possibility only being available for this 

type of contract is the importance of reflecting future evolutions in mortality on 

the calculation of the best estimate for these products. 

3.1.1-Dynamic mortality tables 

In accordance with what was written in the introduction, in Pateiro (2013) 

dynamic mortality tables for the Portuguese pension funds’ population were built. 

As can be read in the paper, the use of these tables allows the calculation of TP 

considering a future trend on mortality. It is stated in Pateiro (2013) that the best 

way to achieve longevity increments in the tables is to use models that would 

extrapolate mortality tendencies. The previous sentence implies that substantial 

historical data is required to apply such models, this is why at first general 

population is analysed and afterwards a relational model is applied to obtain the 

results for the pension funds’ population. The fact that these tables are built for the 

pension funds’ population is not deterrent of using them to the studied annuities 

due to the similarity between the mortality profile of the annuitant of the studied 

contracts and the pension funds’ beneficiaries. 
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The work’s main model was Poisson-Lee-Carter. However, given the shortage of 

data for ages above 90, a different approach was required. The choice fell on the 

Denuit and Goderniaux method (Denuit & Goderniaux 2005).  

Stating the base hypothesis to be the assumption that all forces of mortality are 

constant between time and age intervals, in accordance with the primary model, 

     : force of mortality of an individual aged x at year t. 

(1)                             for       and       . 

From here one can arrive to the conclusion that forces of mortality of individual 

aged x year t can be obtained by the ratio of the number of deaths of individuals 

aged x at year t and the number of individuals aged x exposed at year t. 

The main model, Poisson-Lee-Carter (Brouhns et al. 2002a) results of the original 

Lee-Carter Model (Lee & Carter 1992),  

(2)                                   

for                and               , where       is the random part of the 

model              
  ). 

Parameter estimation from observed mortality is done with singular value 

decomposition method, thus obtaining a minimum squares solution. 

Once the parameters are obtained, ARIMA models can be used to project the time 

trend   . 

The innovation of the used model was introduced in Brouhns et al. (2002), 

claiming that the number of deaths can be accurately represented by a Poisson 

random variable. The authors replace the random term       by a random 

variation derived from the inclusion of a Poisson regression, 

(3)                                                                  . 

Now the parameters are estimated by maximizing the logarithm of the likelihood 

function. 

As stated in Pateiro (2013), an alternative method had to be chosen to extrapolate 

death probabilities of ages above 90. This method needed to be adequate taking 

into consideration the characteristics of this age group that exhibits a deceleration 

in the growth of death probabilities. Now a brief description of the chosen method 

will be made. 
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The Denuit and Goderniaux method (Denuit & Goderniaux 2005) is based on a log 

quadratic regression,  

(4)                                
                              

this model will demand that the user decides a value for the limit of the human age, 

both in Pateiro (2013) and in this work the decision was to consider 125 as the 

maximum value. 

Finally the relational method, to adjust the results to the pension funds’ 

population, two different models were used, Brass relational model (Brass 1974) 

and a relational model based on Cox proportional hazards model (Cox 1972). 

The first type of models relates the two populations using a function      , 

(5)                     
               

    . 

This relationship is assumed to hold in time and for all ages. 

Again the decision of which function to use was the same in Pateiro (2013) and in 

this work, the choice fell on the logarithmic function. 

Using the alternative, Cox proportional hazards, a base assumption will be that the 

force of mortality of the study group is proportional to the one of the reference 

population,  

(6)                  
          

       

as it can be observed, the proportionality factor,    is independent of age. 

Therefore, the relationship will hold for all ages and in time. 

 

3.2-Whole life and term insurance 

This type of contract is purely life protection insurance, with a lump-sum being 

paid in case of death of the insured person. When considering term insurance, 

logically, the payment is only made if the death occurs during the term. Given the 

structure of these products, the relevant SCR’s components are different. Mortality 

risk is now important, which implies the addition of the life catastrophe risk. It was 

decided to separate the group and to analyse annual renewable term contracts in a 

different worksheet. These contracts have a higher relevance in the current market 

(in 2015 they represented around 88% of the total premiums for term insurance) 

and require a distinct programming code. 
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3.2.1-Classical whole-life and term insurance 

For this group of contract the user can first choose whether it is a whole-life or 

term insurance, in which case the remaining years until maturity is needed as 

input. Similarly to what was done for the annuity contracts, the hypothesis that all 

premiums are already paid was established. Thus, there is no need to calculate 

premiums. 

3.2.2-Annual renewable term insurance 

As the denomination implies these are annual independent contracts, which in the 

Portuguese market are commonly associated with mortgages. This justifies the 

choice to leave an input that defines the variation of the insured capital over time. 

For these products, BE may be negative, due to the way the products are 

constructed.  

 Premiums- there is a need to calculate the premiums for these contracts. 

They are computed in such a way that the insured capital, amount to be 

paid in case of death, is included as an input and the program returns the 

pure premium. To this pure premium, calculated as the present value of the 

mortality benefit, a load is applied, resulting in the commercial premium, 

which is assumed to be paid as a lump sum in the beginning of each year. 

The option of using mortality assumptions and discount rates to calculate 

the premiums different from the ones applied to calculate BE is included.  

 Lapse- in this case it is also relevant to consider the possibility that the 

policyholder ceases to pay the premiums, implying that the contract will not 

be renewed. If, in particular, the premiums beyond the next renewal date is 

included in the calculation of the BE, there is exposure to lapse risk. 

Whether these future premiums and the associated obligations can be 

considered in practice by insurance undertakings, it will depend on the 

application of the contract boundaries.  
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3.3-Endowment 

This type of contract, also commonly named deferred capital, consists, as easily 

interpreted by the second denomination, on the payment of a lump-sum at 

maturity, corresponding to the accumulated invested capital, if the beneficiary is 

alive. However, there is a lot more than what meets the eye, there are multiple 

variations of these products that complicates its analysis. A particular case of these 

products are the retirement saving schemes, which have some specific 

characteristics such as longer maturity and withdrawal conditions defined by law. 

These products are closer to a financial investment, they are many times preferred 

because they are perceived as safer than other kinds of investments, namely direct 

equity investments. One very common variant of this type of product is the 

participating or with-profits insurance, where part of the interest rate used to 

accumulate the capital every year depends on the results of the company. In this 

work, for simplification purposes, the profit sharing mechanism considered 

depends only on financial results. Although these are mainly contracts of a 

financial nature, endowment insurance frequently offers life protection too, as well 

as a withdrawal option. 

For the calculation of the SCR, the capital requirements for all the risks that are 

within the scope of this work are computed, although mortality and longevity risks 

are not simultaneously applicable. 

 Premiums- left as inputs there are two variables that will define how much 

the policyholder will invest, which can also be considered as the previously 

accumulated amount, the initial capital, and the annual premiums. The 

number of premiums is left open for input. 

 Guaranteed rate- the minimum rate at which the capital will be 

accumulated each year is also left as an input and it can vary with time. 

 Profit-sharing- as introduced above, profit-sharing will depend on the 

financial results of the insurance company. A participating rate is left as an 

input for each year, corresponding to the percentage of the results that will 

be distributed to policyholders. The extra return rate, in addition to the 

guaranteed rate, is defined as the participating rate multiplying for the 
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difference between the profit rate of the company’s investments and the 

guaranteed rate.  

(7)                         
 
    

Where    is the profit sharing rate for year t,   is the participating rate,   is 

the return rate of the company’s investments underlying these contracts 

and   the guaranteed rate. The resulting rate will then be multiplied by the 

accumulated capital, it is assumed in this work that these computations are 

made at the end of each contract year. Logically, if    is negative the value 

of the profit-sharing in that year will be 0. 

To calculate BE and SCR for moment 0, the program uses simulations to find 

     but given the complexity of SCR projections, necessary to obtain the RM, 

values for BE and SCR for future moments are calculated under a central 

scenario, according to which investments’ return would follow the relevant 

risk free interest rate term structure. 

As the profit-sharing mechanism only depends on financial results, the SCR 

Life shocks will not have an impact on the amount that is distributed to 

policyholders. This is also based on the hypothesis that the participation 

rate   is the minimum percentage that is contractually defined and 

therefore cannot be reduced following a shock scenario.   

In what concerns the interest rate risk, changes to the relevant risk free 

interest rate term structure would have an impact on future investments’ 

return. However, as this in an additional sensitivity analysis, only the net 

calculation is performed, taking into account the impact of the scenarios in 

the future profit sharing.  

 Options and financial guarantees evaluation- the time value of options 

and financial guarantees is calculated. The method behind it was inspired 

by what is done in the industry and by the CFO Forum Market Consistent 

Embedded Value Principles, according to which the time value is the 

difference between the BE calculated using stochastic scenarios and the BE 

calculated based on the central scenario.  

 Death Benefits- a very usual feature of this type of contract is the inclusion 

of a death clause, according to which, in case of death during the contract, a 

benefit is paid to a beneficiary. To model this benefit, inspiration was again 
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found on what is done in the market. It is assumed that the lump-sum paid 

in case of death is the accumulated capital itself. It is accumulated until the 

end of the year of death as it was assumed that the benefit is paid at the end 

of the referred year. An also important assumption is that this benefit is 

calculated right before profit-sharing amount is added to the account. The 

provision for this situation is calculated adding for each contract year the 

present value of the total death benefits paid in that year. Logically, this 

total is reached calculating the total number of deaths in each year. To find 

that number one has not only to consider the mortality rates but also 

withdrawal rates, to be explained shortly. 

 Withdrawal benefits- being investment type insurance, these products 

include the possibility of withdrawing the capital before reaching the term 

of the contract, although insurance companies commonly apply a penalty. In 

this work, this penalty was only applied to the return of the year of 

withdrawal. Again, the hypothesis that the payment is made at the end of 

the year, right before profit-sharing is calculated, is followed. From that it 

can be concluded that the penalty will only affect the guaranteed return. 

With a similar process to the one followed to obtain total deaths in each 

year, total annual withdrawals are found and used to reach the best 

estimate for the withdrawal benefits provision.  

As inputs for this specific part annual withdrawal rates and the annual 

return penalty are required. 
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4-Economic Scenario Generator 

As previously explained, the use of an economic scenario generator is a key 

element for the valuation of participating contracts. From here it was decided to 

use an economic scenario generator to simulate the behaviour of bonds and stocks. 

The main inspiration for this work was Barker (2015), where hybrid models are 

used to perform such simulations. In concrete, a Heston Gaussian two-factor 

interest rate model is analysed. In this approach the two models are calibrated 

separately and several simulation schemes are attempted, one of them is the 

Quadratic Exponential (QE) scheme. The main innovation in this approach is 

considering the correlation between the interest rate and the stock processes.  

 

4.1-Heston model 

The choice fell on this model as it is one of the most common stochastic volatility 

models and it was decided to follow the stochastic volatility approach. In addition, 

the referred model also allows us to price European options using semi-analytical 

formulas. Under a risk neutral probability measure this model can be represented 

by the following system of equations, 

(8)             

         

        

    .21

2

1

dtρtWdtWd

tWdtvξdttvθκtvd

tWdtStvdttSrtSd

HE





 

From   0: ttS  and   0: ttv  is found, respectively, the representation of the 

evolution of the price and volatility of a given stock or index,  21,WW  is a bi-

dimensional Brownian motion with an instant correlation HEρ . The parameter r 

represents the risk free interest rate, with the volatility of the asset price being 

given by  tv . From the equations one can see that  tv  follows a mean reverting 

process, θ  is the long term mean and κ defines the reversion speed and the
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volatility clustering. The volatility of volatility or the strength of the volatility smile 

is given by .ξ  

Bearing in mind the concerns with the speed and accuracy of the computations, the 

pricing of financial options is done based on the Fast Fourier Transform (FFT). 

Using the characteristic function of the model this technique obtains an analytic 

expression for the option price inverting the Fourier transform. The formula for 

the price of an European call with maturity T  and strike price K  as well as the 

explanation and description of its components can be found in Frederico (2010), 

(9)             
     dxfeeekC TT

k

kxrT

T
T


 

 

where  TT Slogx  , keK  and  xfT  is the density function of x  under a risk 

neutral probability measure. 

To calibrate the Heston model one can use several objective functions. In Barker 

(2015) it can be found the justification to use a quadratic norm. Bearing that in 

mind it was decided to minimize the Mean Square Error (MSE) in accordance to 

what was done in Frederico (2010). The model is calibrated to call options of the 

Eurostoxx 50 Index at the 29th of December of 2015. An aspect to take into 

consideration is to find instruments with a relevant maturity date. As this work is 

related to Life insurance, longer maturities are more critical. 

 

4.2-Gaussian two-factor model 

Being an arbitrage free model, it is designed to exactly match the relevant interest 

rate term structure, which is one of the main conditions for a market consistent 

valuation.  

This model also has the advantage of presenting analytical formulas to price bonds 

and interest rate derivatives, making it an attractive option to price swaptions. It is 

a two-factor model, which allows the modelling of the slope of the interest rate 

term structure as it can capture more information from the swap volatility. Under 

a risk neutral probability measure the short rate’s dynamics can be represented by 

(10)         
          .rrttytxtr 00,  
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The processes   0: ttx  and   0: tty  satisfy the equations 

(11) 
       

        00,

00,

y

x





ytηdWdttbytdy

xtσdWdttaxtdx
 

where  yx ,WW  is a bi-dimensional Brownian motion with instant correlation 2Gρ , 

    .2yx dtρtdWtdW G  The parameters ,0r ,a ,b ,σ η  are positive constants. The final 

parameter  t  is the term which fits the term structure, meaning   .r00   

Provided that the G2++ model does not have an exact solution to price swaptions 

an alternative approximated formula is used in Frederico (2010), assuming that 

under the model the swap rate follows a Normal distribution. The formula for a 

payer swaption is the following,  

(12)     
   
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00
00)0(   

where the formulas for all the components can be found in Frederico (2010), 

)(],[ 0
tS

nTT  is the forward swap rate over time t for a payer interest rate swap with 

maturity in 0T  and payments in )(... 101 TTTT n  , K  is the strike price, Φ and 

are respectively the cumulative distribution function and the probability 

distribution function of a standard normal variable and 
NTTσ ,0

is the square root of 

the average integrated variance of the swap rates 
N,TTS

0
in the interval  00,T .  

In accordance to the procedure for the Heston model the objective is to minimize 

the differences between the market prices of a derivative and the ones produces by 

the model. The model was calibrated to swaption prices calculated by the normal 

model, the pricing formula for a payer swaption with strike K  at time 0 was found 

in a research report from Milliman1, 

(13)      ),0(ˆˆˆ
1

1110, i

n

i
NNpayer TPddΦdTP



  , 

(14) 
0

],[ )0(
ˆ 0

1

T

KS
d

N

TT n




 , 

                                                             
1 The new normal – Using the right volatility quote in times of low interest rates for Solvency II risk 
factor modelling, September 2015 
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(15) 
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




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Where ),( TtP is the value of a zero-coupon bond with nominal 1, maturity at time 

T  and the parameter
N is the normal volatility, obtained from the market 

observed implied volatility matrices. 

The previously stated choice is justified by the low interest rates environment that 

emerged after the 2008 financial crisis extending itself for almost 10 years so far, it 

is driven by both cuts to the base rates and the use of Quantitative Easing by 

central banks. Rates have approached, in some cases even crossed, the zero line, 

this is a major obstruction to the use of the usual Black volatilities. Black’s formula, 

assuming that the rates follow a lognormal distribution, becomes infinitely 

sensitive to price changes as rates approach zero, calculations are impossible for 

negative strikes or forward rates. 

 

4.3-Correlation between interest rate and equity 

As explained in Barker (2015) a Monte Carlo approach is needed to combine the 

two previous models. Since this is being done the correlation between interest and 

equity models Sr,ρ  has to be considered, it’s found from historical estimation. A 2 

year rolling window of the 10 years correlation between the returns from 

Eurostoxx 50 and a proxy for the short term interest rate, EURIBOR 3M was 

chosen. 

 

Figure 2: Rolling correlations between the first difference of EURIBOR 3M and log Eurostoxx 50 
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4.4-Monte Carlo simulation   

Considering now the hybrid Heston Gaussian two-factor model, the stock price is a 

function of both the interest rate and the volatility, from that one needs to find a 

separate discretization scheme for the interest rate and volatility before 

considering the asset process. In addition to the stock the behaviour of bonds 

needs also to be simulated. 

First, the interest rate model, from the Cholesky decomposition applied to the 

correlation matrix in accordance with Barker (2015), a formula to simulate the 

paths of x and y is obtained, 

(16) 

     
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From here one can reach the simulated prices for zero-coupon bonds, priced under 

the following formula, in accordance to Barker (2015),  

(17) 
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(18) 
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where  tPM 0,  denotes the market zero discount factor maturing at time t . 

For the volatility process a moment matching approximation is done in order to 

approximate )( dttv  by a Gaussian variable, a QE scheme was followed,  

(19) 
2)()( vZbadttv   
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where 
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An alternative function is also proposed for small values of )(tv because the 

moment matching will not work in this situation,  

(20) 
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 and u is a uniform random number. 

Finally, the asset prices are simulated combining both processes, formulas for the 

simulation can be found in Barker (2015). 
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Where the values above are also defined in Barker (2015), and 
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5-Results 

This is a more practical chapter where the application of the theory will be made, 

considering the reference date the end of 2015. We will first present the model 

calibration whose results will enable the simulation of the representative 

investments of the undertakings in what concerns profit-sharing contracts. 

 

5.1-Model Calibration  

5.1.1-Heston model 

To obtain the model parameters, the model needs to be calibrated to market 

information. In this case, the implied volatilities associated to options over the 

Eurostoxx 50 index are used. Given that we are comparing prices, a theoretical one 

is obtained from the implied volatilities. In conformity to what was done in 

Frederico (2010) these prices are determined by the Black-Scholes formula. 

In contemplation of performing a wide analysis without making the calculation too 

much time consuming, 7 different strikes, representing between 90% and 110% of 

the stock price at the valuation date, were chosen. Concerning maturity, given the 

small liquidity of options with high maturities and given our concern with those 

longer maturities, implied volatilities were extrapolated for maturities until 9 

years by the following formula that can be found in Baldvisnsdóttir & Palmborg 

(2011), 

(23) ))(1(
1 22
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where all the parameters, 22

0 , IVIV  and a  are obtained using Excel’s Solver to 

minimize the Root Mean Square Errors (RMSE) between the values obtained by the 

formula and the market observed values. 
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As stated in the previous chapter the calibration was done by minimizing the MSE. 

In order to ensure that the optimization procedure would not return a local 

minimum, one applied a global minimum search procedure, Simulated Annealing, 

which is implemented in Octave through the function “samin”. The results were the 

following, 

 

Table 1: HE model parameters 

5.1.2-G2++ model 

The calibration of the G2++ model was based on the relevant risk free interest rate 

term structure and on swaptions implied volatility, recalculating as explained 

before, a theoretical price based on Normal volatilities, collected from at-the-

money swaptions.  

Again, the logical goal is to minimize the differences between the model prices and 

the prices obtained from the implied volatility, the objective function is the 

following, 

(24) 











 N

i i

ii

priceltheoretica

priceltheoreticapricemodel
min

1

2

,  

with N as the total number of observations. 

A similar procedure to the one used for the Heston model was followed to calibrate 

this model. The table below expresses the result of the calibration. The swaptions 

with shorter, until 4 years, expiries and tenors were disregarded as its inclusion 

affected the calibration for longer expiries and tenors. As this work is focused in 

Life Insurance, longer maturities emerge as more relevant. 

29-12-2015

 0,03948

 0,45078

v 0 0,04334

 0,52852

 HE -0,25788

MSE 214,41
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Table 2: G2++ model parameters 

This being done, and to evaluate the quality of the adjustment the relative 

differences between the two prices were calculated, the results are presented in 

the figure below. 

 

 

Figure 3: Adjustment errors for the G2++ model 

 

5.2-Portfolio simulation 

Regarding the simulation it was decided to consider a portfolio with 75% of the 

investment in bonds with non-relevant credit risk and 25% in stocks. This 

conservative approach was defined considering the typical undertaking’s 

investments. 

The evolution of the portfolio’s value is assumed to have the following behavior, in 

accordance with Andreatta & Corradin (2003), 

(25)         10  p,tGp1tpAtF , 

where p is the proportion of the investment in the stock component, whose value 

is represented by  tA .  tG  has a similar meaning but for the bond index. 

30-12-2015

a 0,499019

b 0,056903

 0,028109

 0,013509

 G2 -0,954405



5-Results  

25 
 

It is considered that the bond index value at any point in time is the accumulated 

results considering a negotiation strategy of zero coupon bonds with duration D  

strategy with a fixed transaction horizon  . 

Hereafter the percentiles of the simulated evolution of the portfolio of assets are 

presented. The parameters obtained for each model as well as 0,25δ  and 5D

were used as inputs. 

 

Figure 4: Simulated evolution of a portfolio investing 25% in stocks and 75% in bonds 

 

 Table 3: Percentiles for the simulated return rates of the portfolio 

  

5.3-Application of the calculation tool 

For each of the types of contract considered, a case study was developed to 

exemplify the application of the calculation tool.  Whenever possible, average 

market values were taken into account as inputs (e.g. average age of insured 

persons, average benefit per insured person). For other inputs, additional 

assumptions were made. For each case, an initial population of 1000 individuals 

was specified. With regard to the projection of expenses, due to data limitation 

Percentiles

1 2 3 4 5 6 7 8 9 10

10% -4,715% -2,936% -2,599% -1,739% -1,513% -0,854% -0,642% -0,067% 0,254% 0,867%

20% -2,510% -1,338% -1,336% -0,966% -0,502% -0,252% -0,142% 0,312% 0,240% 0,545%

30% -1,403% -0,780% -0,659% -0,231% -0,227% 0,274% 0,242% 0,694% 0,992% 0,795%

40% -0,641% -0,499% -0,320% 0,124% 0,227% 0,504% 0,792% 0,936% 1,197% 1,293%

50% -0,041% -0,211% 0,012% 0,172% 0,537% 0,841% 1,096% 1,152% 1,465% 1,613%

60% 0,518% 0,029% 0,234% 0,419% 0,678% 1,048% 1,404% 1,404% 1,695% 1,750%

70% 1,095% 0,301% 0,415% 0,667% 0,943% 1,251% 1,583% 1,710% 1,945% 2,042%

80% 1,824% 0,567% 0,674% 0,940% 1,272% 1,423% 1,868% 2,025% 2,350% 2,707%

90% 3,039% 1,295% 0,978% 1,242% 1,653% 1,684% 2,303% 2,578% 2,677% 3,215%
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issues, an amount of 10 euros per insured person was introduced as input. This 

estimation, based on market average, was obtained by allocating the total 

administrative expenses per main type of product and then per insured person. It 

is also worth to remind that the SCR Interest rate indicated in the following tables 

only reflects the variation of the BE. 

5.3.1-Annuities 

For this type of contract, two sub-cases of a lifelong immediate annuity were 

analysed, in order to compare the results between the use of static and dynamic 

mortality tables. For the static table the choice fell on TV 88/90, as it is quite used 

for longevity products in the Portuguese market. On the other hand, the male 

dynamic table 2012 was applied. 

  

Table 4: Results for annuity contracts 

From the table above one can conclude, for instance, that the use of the dynamic 

table leads to an increase of 7,15% in the BE and a higher SCR as well as RM.  

In what concerns the composition of SCR Life, for this type of contract longevity 

risk represents almost the total of the SCR Life. The fact that longevity risk is so 

relevant for these products reinforces the importance of using the most 

appropriate mortality tables. 

Nº of annuitants 1.000,00

Average annuity 2.971,33

Average age 74

Mortality table TV 88/90 Male Dynamic Table 2012

Best Estimate 33.546.352,94 35.946.022,72

Risk Margin 2.062.106,26 2.325.701,32

RM/BE 6,15% 6,47%

SCR Life/TP 9,68% 9,73%

SCR Life 3.447.483,41 3.725.136,29

SCR Longevity 3.441.288,97 3.718.165,37

SCR Life-Expense 24.452,53 27.502,94

SCR Interest rate (down) 746.448,11 936.538,10
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Figure 5: SCR Life composition for annuity contracts 

 

5.3.2-Whole life and term insurance 

5.3.2.1-Classical whole life and term insurance 

For this case study it was decided to compare the results for a whole life contract 

and a term contract with a remaining maturity of 11 years, maintaining all the 

other assumptions equal. 

  

Table 5: Results for whole life and term contracts 

From this analysis some noteworthy observations emerge related to the length of 

the contract and the risk profile reflected in the SCR Life. In fact, as shown in the 

figure below, for shorter term contracts the SCR Life tends to be more diversified 

and the Life catastrophe risk represents a higher proportion of the total SCR Life. It 

is also worth to highlight the large dimension of the SCR Interest Rate for the 

whole life contract when compared to the SCR Life.  

Insured people 1.000,00

Average death benefit 14.432,69

Average age 46

Mortality table 50% GKM 95

Term Whole life 11

Best Estimate 6.210.977,68 487.241,29

Risk Margin 549.197,71 31.508,14

RM/BE 8,84% 6,47%

SCR Life/TP 5,10% 13,71%

SCR Life 344.600,08 71.127,19

SCR Mortality 298.224,94 55.406,42

SCR Life-Expense 106.297,16 17.387,41

SCR Life-Catastrophe 12.399,93 20.998,23

SCR Interest rate (down) 1.422.652,48 6.888,41
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Figure 6: SCR Life composition for whole life and term contracts 

 

5.3.2.2-Annual renewable term insurance 

 

 Table 6: Results for annual renewable term contracts  

 

For this type of contracts a relevant analysis is the impact of the application of 

contract boundaries, by comparing the results between the projection until the 

next date of renewal (assumed to be one year) and the projection for a longer 

period of time. As it could be expected, for these contracts a negative BE emerges. 

This value results from the fact that higher mortality values are being used for 

premia calculations than for BE calculations. In addition, a charge is applied to the 

resulting pure premium. Both the previous assumptions are common in the 

insurance market. 

For a 14 year projection, the SCR Life composition is quite diverse. One of the main 

risk components for these contracts is the Lapse risk, which plays no role in the 

Insured people 1.000,00 Average age 46

Average death benefit 31.464,14 Premia mortality 70% GKM 95

Mortality table 50% GKM 95 Pure premium charge 10%

Term 14 1

Best Estimate -299.069,80 -15.138,50

Risk Margin 82.744,78 2.990,52

RM/BE -27,67% -19,75%

SCR Life/TP -87,34% -409,65%

SCR Life 188.948,55 49.763,68

SCR Mortality 109.852,59 6.982,92

SCR Life-Expense 15.097,49 1.000,00

SCR Lapse (mass) 113.572,52 -

SCR Life-Catastrophe 47.696,95 47.270,42

SCR Interest rate (up) 13.260,96 -
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one year contract. In this latter case, the Life-Catastrophe risk arises as the most 

important risk due to the short term of the contract.  

 

 Figure 7: SCR Life composition for annual renewable term contracts   

 

5.3.3-Endowment 

 

 Table 7: Results for endowment contracts  

 

Comparing the results for the two sub-cases (i.e. with and without profit sharing), 

one can conclude from both the table above and the figure below that, for the 

assumptions made, no relevant structural differences emerge from the addition of 

a profit-sharing clause. Indeed, for the entire projection horizon, the guaranteed 

rate assumption is higher than the annual returns implicit in the relevant risk free 

interest rate term structure (i.e. in the central scenario no profit-sharing will 

occur) and also higher than the average simulated return rates for each year. It 

Insured people 1.000,00 Average age 54

Average initial capital 13.049,03 Average term 8

Average premium 662 Mortality table 50% GKM 95

Average guaranteed rate 2,74%

Profit-sharing % 85% 0%

Best Estimate 15.383.461,97 15.065.199,57

Risk Margin 62.023,97 62.023,97

RM/BE 0,40% 0,41%

SCR Life/TP 2,89% 2,35%

Profit-sharing component 318.262,40 -                         

Cost of options and guarantees 318.262,40 -                         

COG/BE 2,07% -                         

SCR Life 446.088,76 355.745,25

SCR Longevity 5.261,20 3.914,10

SCR Life-Expense 7.947,79 7.947,79

SCR Lapse (decrease) 439.967,69 350.077,22

SCR Life-Catastrophe 2.899,24 2.420,30

SCR Interest rate (down) 226.364,39 226.364,39
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means that, on average, the portfolio’s return would not even be sufficient to cover 

the guaranteed rates. 

In both sub-cases Lapse risk represents the SCR Life almost entirely. The fact that 

the value for such component results from a decrease in the withdrawal rates may 

indicate that these are not profitable contracts. In fact, as referred above, the 

guaranteed rate assumption is on average higher than the return rates, indicating 

that the previous conclusion is not unreasonable.  

 

Figure 8: SCR Life composition for endowment contract 
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6-Conclusion 

The internship behind this report has the goal, as stated before, of creating a tool 

capable of calculating TP and SCR for the main types of Life insurance products. 

Provided that the referred tool is meant to be used in practice, it is of great 

importance to follow a flexible approach and allow for the most recent economic 

and demographic conditions to be considered. 

Following the previous paragraph, the chosen approach implied the update of 

previously developed work accompanied by the incorporation of some features 

that fitted the current situation better. This thought was behind the choice of the 

main types of contracts, as explained above, and the decision of leaving open 

inputs so that the user can adjust the calculations to the context of the time when 

the calculations are made. That is, for instance, why the dynamic mortality tables 

used were updated to the most recent data. In the future, this procedure can be 

repeated to make sure that the tables considered always include the most 

appropriate mortality expectations.  

In what concerns the economic situation, the importance of simulating the future 

economic scenarios was already made clear. For this procedure, starting from the 

work that had been previously developed in Frederico (2010) an improvement has 

been introduced by incorporating the correlation between interest rate and stock 

behaviour. In the previous work, model limitations justify the fact that correlation 

between the short term interest rate and the net return of the stock index had not 

been considered before, thus this became a critical feature made possible by the 

incorporation of the approach followed in Barker (2015) in this work. 

Another difference is the use of Normal implied volatilities instead of the most 

common Black volatilities. This is a temporary issue, justified by the low interest 

rate environment, thus becoming critical for the current market, where negative 

interest rates have a relevant probability. 
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Indeed, the market conditions have a significant impact on the calibration of an 

economic scenario generator. Taking into consideration that for some market 

conditions, when 12 Gρ , the use of the two factor model for the interest rate, as 

it is the case of the G2++,  will be a prohibiting condition for the use of the chosen 

simulation procedure, a possible complement to this work would be creating the 

option of using a one factor interest rate model, a possible option would be the 

Hull-White model. This change would not be unrealistic given the fact that the 

referred value of 2Gρ  is an indicator that the interest rate process could be defined 

by a one factor model. 

In order to show the applicability of the created tool several examples were 

created. Bearing in mind the concern of making these examples relevant for 

analysis in the current market, average hypothesis about the specifications of the 

main types of products and its beneficiaries were assumed. 

Finally, as a conclusion, it is my personal opinion that this internship can be seen 

as a success, not only for reaching the set objectives but also for the opportunity it 

gave me to apply my academic skills and develop them in the professional world.   
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A-Appendix 

A.1- Dynamic mortality tables estimated 

parameters 

A.1.1- Estimated parameters of the Poisson-Lee-Carter model 

 

Table 8: Estimated Poison-Lee-Carter parameters for male and female populations based on 1970-2012 data 

x x t

0 -4,465693896 0,040617346 46 -5,344634711 0,005777231 1970 41,57716

1 -6,787376899 0,040786721 47 -5,257565685 0,006254884 1971 41,94014

2 -7,161957484 0,031292082 48 -5,157671292 0,00616208 1972 33,08041

3 -7,458314016 0,02993835 49 -5,093208712 0,006243808 1973 35,31969

4 -7,593324873 0,026932403 50 -5,011073762 0,006685453 1974 33,10525

5 -7,728506394 0,026196496 51 -4,949106739 0,006253296 1975 33,96641

6 -7,883170743 0,028104798 52 -4,873789205 0,00700293 1976 32,73712

7 -7,799676381 0,022965176 53 -4,771072936 0,006581352 1977 28,22098

8 -7,940531722 0,022274291 54 -4,713314573 0,007065458 1978 25,40292

9 -7,933891657 0,022690457 55 -4,633505464 0,007104311 1979 21,43656

10 -7,917723261 0,021034095 56 -4,567381563 0,007880694 1980 21,28489

11 -7,897300849 0,01873777 57 -4,472398483 0,007799669 1981 19,05345

12 -7,890882842 0,017773601 58 -4,40105111 0,008091019 1982 15,22381

13 -7,768502633 0,018717881 59 -4,318563679 0,008597389 1983 15,07086

14 -7,594888629 0,017955114 60 -4,223981549 0,008886133 1984 14,14198

15 -7,306141259 0,015010848 61 -4,147176187 0,008619951 1985 12,99295

16 -6,994131274 0,015004103 62 -4,05787496 0,009271925 1986 9,233307

17 -6,770974355 0,01374758 63 -3,964134219 0,009612783 1987 6,369743

18 -6,576390881 0,012304231 64 -3,892403138 0,009628237 1988 6,484576

19 -6,492357986 0,013652199 65 -3,78362347 0,009136956 1989 2,425178

20 -6,460463914 0,011999527 66 -3,705564963 0,009259239 1990 4,855987

21 -6,437738678 0,011185642 67 -3,604331695 0,009509084 1991 5,170994

22 -6,453216104 0,008651137 68 -3,508184056 0,010141386 1992 0,440481

23 -6,452506705 0,009948945 69 -3,414666538 0,009962101 1993 2,176949

24 -6,439549882 0,009679136 70 -3,306018173 0,010207831 1994 -5,85023

25 -6,419308226 0,009325385 71 -3,216518745 0,009721254 1995 -4,87214

26 -6,405604586 0,008073277 72 -3,109490572 0,010388571 1996 -3,68492

27 -6,387294409 0,00697731 73 -3,00361027 0,010056832 1997 -8,11312

28 -6,360852587 0,007170943 74 -2,899936309 0,010046869 1998 -9,03094

29 -6,352119938 0,006755409 75 -2,794175748 0,009937124 1999 -10,4853

30 -6,290117504 0,006695495 76 -2,684207284 0,009956992 2000 -14,6925

31 -6,271437294 0,006234042 77 -2,579778905 0,00991769 2001 -17,8214

32 -6,233931848 0,006844731 78 -2,46904674 0,009662187 2002 -19,2842

33 -6,18701907 0,005898781 79 -2,363721488 0,009367962 2003 -21,2989

34 -6,131977903 0,005572156 80 -2,312974485 0,007969583 2004 -28,2226

35 -6,088600762 0,005713248 81 -2,21553259 0,007164344 2005 -27,1972

36 -6,037373813 0,005289334 82 -2,114544029 0,007093316 2006 -33,0861

37 -5,979728133 0,005694617 83 -2,010194144 0,006807176 2007 -36,33

38 -5,91954648 0,006165663 84 -1,911928138 0,006563217 2008 -38,7521

39 -5,854267323 0,005756036 85 -1,824125103 0,006225247 2009 -41,7344

40 -5,773400052 0,005696781 86 -1,72243934 0,005509463 2010 -43,7175

41 -5,715291918 0,005725634 87 -1,627806198 0,005754573 2011 -49,0837

42 -5,62666058 0,0058547 88 -1,539809747 0,005273349 2012 -48,4547

43 -5,553561389 0,006076122 89 -1,448306718 0,005005953

44 -5,482689227 0,005922588 90 -1,372256949 0,004584887

45 -5,407979163 0,006616033

Male

x x t

0 -4,651463475 0,033136232 46 -6,114214391 0,008052852 1970 50,52255

1 -6,948687626 0,036090477 47 -6,040117779 0,006949227 1971 50,34294

2 -7,441452734 0,029399207 48 -5,947210643 0,007716377 1972 40,59595

3 -7,712674524 0,026625284 49 -5,909919573 0,00768473 1973 43,96526

4 -7,92636046 0,024167089 50 -5,809463662 0,008440875 1974 40,56473

5 -8,041579215 0,02133466 51 -5,737199305 0,007223791 1975 38,91795

6 -8,102094135 0,02028953 52 -5,657662801 0,00814518 1976 38,18311

7 -8,218699675 0,017909022 53 -5,591934964 0,008518655 1977 31,35393

8 -8,279250962 0,015976004 54 -5,538087951 0,008238399 1978 30,49522

9 -8,358085303 0,017864579 55 -5,456034367 0,008450981 1979 25,61436

10 -8,351853905 0,013376449 56 -5,368305186 0,008847246 1980 23,90436

11 -8,303077135 0,015106166 57 -5,305753759 0,008365548 1981 22,07418

12 -8,364174623 0,013826606 58 -5,192663357 0,009313501 1982 16,75448

13 -8,323397725 0,014917002 59 -5,122070015 0,009045371 1983 17,72186

14 -8,086610246 0,012569347 60 -5,017163375 0,009598391 1984 14,96016

15 -7,983747574 0,010360383 61 -4,941741688 0,009438626 1985 13,00356

16 -7,888076382 0,010538162 62 -4,848774402 0,010072626 1986 10,34815

17 -7,886759595 0,011815787 63 -4,747404358 0,010568161 1987 6,661865

18 -7,804730451 0,010481083 64 -4,64027069 0,010447367 1988 6,021713

19 -7,725669165 0,009667283 65 -4,540775875 0,010212225 1989 1,238734

20 -7,690185271 0,007483047 66 -4,439188869 0,010706592 1990 5,52395

21 -7,655792409 0,010324006 67 -4,326758647 0,010819231 1991 4,310826

22 -7,691489234 0,009763686 68 -4,203132049 0,011070093 1992 -2,13649

23 -7,643914818 0,009502736 69 -4,089969155 0,011359696 1993 -0,03784

24 -7,561674006 0,009068446 70 -3,947163189 0,011185937 1994 -8,48836

25 -7,598246112 0,009402562 71 -3,837888139 0,011115798 1995 -7,19334

26 -7,525893783 0,010660358 72 -3,707298072 0,011357321 1996 -7,75259

27 -7,472398662 0,010192209 73 -3,580686553 0,011371133 1997 -11,0067

28 -7,479577847 0,010385199 74 -3,430161298 0,011556968 1998 -12,8113

29 -7,409273947 0,009715872 75 -3,305874184 0,011781255 1999 -13,4557

30 -7,337210104 0,008851745 76 -3,174258817 0,011292506 2000 -17,9576

31 -7,250458455 0,009197451 77 -3,047409155 0,010835577 2001 -21,2984

32 -7,222705642 0,009311172 78 -2,908193678 0,011188453 2002 -23,0519

33 -7,104933849 0,008316259 79 -2,775917399 0,010581409 2003 -22,4947

34 -7,067868753 0,008664614 80 -2,699480764 0,00885952 2004 -32,8106

35 -6,964378758 0,007742308 81 -2,587633347 0,008040603 2005 -30,0296

36 -6,927058415 0,008546452 82 -2,455481271 0,00792159 2006 -40,5111

37 -6,861437721 0,008221562 83 -2,336923802 0,007412302 2007 -40,327

38 -6,757015572 0,009175068 84 -2,218602585 0,007175184 2008 -42,92

39 -6,660859655 0,008075518 85 -2,104882045 0,00660786 2009 -45,1135

40 -6,571913563 0,007597423 86 -1,985434917 0,006674895 2010 -48,0502

41 -6,530833303 0,007691431 87 -1,882951393 0,006155026 2011 -53,5999

42 -6,432146752 0,007042 88 -1,778658173 0,006312747 2012 -52,0331

43 -6,376502524 0,008196352 89 -1,671456424 0,005548594

44 -6,299698697 0,00699033 90 -1,575649224 0,005350443

45 -6,205855578 0,006820976

Female
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A.1.2- Forecasted    values of the Poisson-Lee-Carter model 

 

Table 9:    forecasts of the Poisson-Lee-Carter model for male and female populations 

 

A.1.3- Cox proportional hazards  

 

Table 10: Estimated parameters of the relational model based on Cox proportional hazards based on 1970-

2012 data 

 

t*   * t*   * t*   *

2013 -50,5983 2055 -140,63 2097 -230,662

2014 -52,7419 2056 -142,774 2098 -232,806

2015 -54,8855 2057 -144,917 2099 -234,949

2016 -57,0291 2058 -147,061 2100 -237,093

2017 -59,1727 2059 -149,205 2101 -239,236

2018 -61,3163 2060 -151,348 2102 -241,38

2019 -63,46 2061 -153,492 2103 -243,524

2020 -65,6036 2062 -155,635 2104 -245,667

2021 -67,7472 2063 -157,779 2105 -247,811

2022 -69,8908 2064 -159,923 2106 -249,954

2023 -72,0344 2065 -162,066 2107 -252,098

2024 -74,178 2066 -164,21 2108 -254,242

2025 -76,3216 2067 -166,353 2109 -256,385

2026 -78,4653 2068 -168,497 2110 -258,529

2027 -80,6089 2069 -170,641 2111 -260,672

2028 -82,7525 2070 -172,784 2112 -262,816

2029 -84,8961 2071 -174,928 2113 -264,96

2030 -87,0397 2072 -177,072 2114 -267,103

2031 -89,1833 2073 -179,215 2115 -269,247

2032 -91,3269 2074 -181,359 2116 -271,391

2033 -93,4706 2075 -183,502 2117 -273,534

2034 -95,6142 2076 -185,646 2118 -275,678

2035 -97,7578 2077 -187,79 2119 -277,821

2036 -99,9014 2078 -189,933 2120 -279,965

2037 -102,045 2079 -192,077 2121 -282,109

2038 -104,189 2080 -194,22 2122 -284,252

2039 -106,332 2081 -196,364 2123 -286,396

2040 -108,476 2082 -198,508 2124 -288,539

2041 -110,619 2083 -200,651 2125 -290,683

2042 -112,763 2084 -202,795 2126 -292,827

2043 -114,907 2085 -204,939 2127 -294,97

2044 -117,05 2086 -207,082 2128 -297,114

2045 -119,194 2087 -209,226 2129 -299,258

2046 -121,338 2088 -211,369 2130 -301,401

2047 -123,481 2089 -213,513 2131 -303,545

2048 -125,625 2090 -215,657 2132 -305,688

2049 -127,768 2091 -217,8 2133 -307,832

2050 -129,912 2092 -219,944 2134 -309,976

2051 -132,056 2093 -222,087 2135 -312,119

2052 -134,199 2094 -224,231 2136 -314,263

2053 -136,343 2095 -226,375 2137 -316,406

2054 -138,486 2096 -228,518

Male

t*   * t*   * t*   *

2013 -54,47491202 2055 -157,0305724 2097 -259,5862328

2014 -56,91671346 2056 -159,4723739 2098 -262,0280343

2015 -59,3585149 2057 -161,9141753 2099 -264,4698357

2016 -61,80031634 2058 -164,3559767 2100 -266,9116372

2017 -64,24211778 2059 -166,7977782 2101 -269,3534386

2018 -66,68391922 2060 -169,2395796 2102 -271,79524

2019 -69,12572065 2061 -171,6813811 2103 -274,2370415

2020 -71,56752209 2062 -174,1231825 2104 -276,6788429

2021 -74,00932353 2063 -176,5649839 2105 -279,1206443

2022 -76,45112497 2064 -179,0067854 2106 -281,5624458

2023 -78,89292641 2065 -181,4485868 2107 -284,0042472

2024 -81,33472785 2066 -183,8903883 2108 -286,4460487

2025 -83,77652928 2067 -186,3321897 2109 -288,8878501

2026 -86,21833072 2068 -188,7739911 2110 -291,3296515

2027 -88,66013216 2069 -191,2157926 2111 -293,771453

2028 -91,1019336 2070 -193,657594 2112 -296,2132544

2029 -93,54373504 2071 -196,0993954 2113 -298,6550559

2030 -95,98553648 2072 -198,5411969 2114 -301,0968573

2031 -98,42733791 2073 -200,9829983 2115 -303,5386587

2032 -100,8691394 2074 -203,4247998 2116 -305,9804602

2033 -103,3109408 2075 -205,8666012 2117 -308,4222616

2034 -105,7527422 2076 -208,3084026 2118 -310,864063

2035 -108,1945437 2077 -210,7502041 2119 -313,3058645

2036 -110,6363451 2078 -213,1920055 2120 -315,7476659

2037 -113,0781465 2079 -215,633807 2121 -318,1894674

2038 -115,519948 2080 -218,0756084 2122 -320,6312688

2039 -117,9617494 2081 -220,5174098 2123 -323,0730702

2040 -120,4035509 2082 -222,9592113 2124 -325,5148717

2041 -122,8453523 2083 -225,4010127 2125 -327,9566731

2042 -125,2871537 2084 -227,8428141 2126 -330,3984746

2043 -127,7289552 2085 -230,2846156 2127 -332,840276

2044 -130,1707566 2086 -232,726417 2128 -335,2820774

2045 -132,612558 2087 -235,1682185 2129 -337,7238789

2046 -135,0543595 2088 -237,6100199 2130 -340,1656803

2047 -137,4961609 2089 -240,0518213 2131 -342,6074817

2048 -139,9379624 2090 -242,4936228 2132 -345,0492832

2049 -142,3797638 2091 -244,9354242 2133 -347,4910846

2050 -144,8215652 2092 -247,3772256 2134 -349,9328861

2051 -147,2633667 2093 -249,8190271 2135 -352,3746875

2052 -149,7051681 2094 -252,2608285 2136 -354,8164889

2053 -152,1469696 2095 -254,70263 2137 -357,2582904

2054 -154,588771 2096 -257,1444314

Female

Male Female

0,735572353 0,78056607

Standard Error 0,012817216 0,017276901
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 A.2- Data used for financial models calibration 

 

Table 11: Implied volatilities of options over Eurostoxx 50 index (29-12-2015) 

 

 

Table 12: Prices of options over Eurostoxx 50 index calculated by the Black-Scholes formula 

 

 

Table 13: Swaptions Normal implied volatilities (30-12-2015) 

 

Maturity 16-12-2016 15-12-2017 21-12-2018 20-12-2019 18-12-2020 17-12-2021 27-12-2022 15-12-2023 20-12-2024

T 0,963888889 1,961111111 2,977777778 3,975 4,969444444 5,966666667 7 7,961111111 8,975

r -0,157% -0,131% -0,040% 0,093% 0,228% 0,376% 0,526% 0,662% 0,798%

3000 23,03% 22,09% 21,69% 21,37% 21,19% 21,07% 20,98% 20,91% 20,86%

3100 22,28% 21,70% 21,33% 20,74% 20,27% 19,82% 19,37% 18,97% 18,56%

3200 21,49% 21,24% 20,99% 20,77% 20,59% 20,44% 20,30% 20,19% 20,08%

3300 20,85% 20,79% 20,68% 20,67% 20,63% 20,59% 20,55% 20,51% 20,47%

3400 20,23% 20,38% 20,39% 20,41% 20,42% 20,43% 20,43% 20,44% 20,44%

3500 19,65% 20,00% 20,11% 20,16% 20,19% 20,21% 20,23% 20,24% 20,25%

3600 19,12% 19,65% 19,86% 19,94% 19,99% 20,03% 20,06% 20,08% 20,09%

Source: Bloomberg

Maturity 16-12-2016 15-12-2017 21-12-2018 20-12-2019 18-12-2020 17-12-2021 27-12-2022 15-12-2023 20-12-2024

T 0,963888889 1,961111111 2,977777778 3,975 4,969444444 5,966666667 7 7,961111111 8,975

r -0,157% -0,131% -0,040% 0,093% 0,228% 0,376% 0,526% 0,662% 0,798%

3000 465,51 560,68 640,22 709,69 776,19 842,11 909,46 971,66 1036,69

3100 396,66 499,55 581,25 644,61 703,04 758,43 813,15 862,62 913,67

3200 332,04 440,82 525,70 598,66 666,19 731,89 798,31 859,34 923,07

3300 274,50 386,21 473,79 552,15 624,05 693,97 764,50 829,05 896,16

3400 222,75 336,02 425,49 504,42 577,58 648,88 720,98 787,11 855,98

3500 177,39 290,38 380,73 459,46 532,72 604,08 676,28 742,52 811,58

3600 138,63 249,21 339,42 417,95 491,12 562,42 634,61 700,89 770,05

1 2 3 4 5 6 7 8 9 10

1 0,10% 12,84% 33,35% 40,20% 43,67% 49,13% 53,38% 56,38% 59,52% 62,62%

2 29,83% 40,63% 47,01% 49,19% 53,71% 56,87% 60,18% 62,59% 64,95% 67,83%

3 56,36% 53,22% 54,68% 58,61% 60,99% 63,19% 65,59% 67,27% 69,44% 70,57%

4 61,25% 59,49% 62,34% 64,19% 66,35% 67,96% 69,51% 71,22% 71,78% 72,77%

5 64,13% 64,85% 65,94% 67,43% 69,16% 70,26% 71,96% 72,00% 72,49% 73,38%

6 73,92% 69,44% 69,96% 70,72% 71,89% 72,45% 72,70% 72,93% 73,23% 73,21%

7 72,54% 69,56% 70,23% 70,99% 72,48% 71,93% 71,97% 72,59% 72,10% 72,09%

8 74,99% 72,16% 71,88% 72,46% 72,87% 72,37% 72,49% 72,39% 72,20% 72,42%

9 75,20% 73,16% 72,86% 72,29% 72,72% 72,46% 71,91% 71,85% 71,97% 72,46%

10 73,21% 73,40% 71,64% 71,52% 72,16% 71,15% 70,91% 70,99% 71,44% 72,21%

Source: Bloomberg

Tenor

Ex
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ry



A-Appendix 

36 
 

 

Table 14: Swaptions prices calculated by the Normal model 

 

A.3- Financial models calibration results 

 

Table 15: Relative differences between model and theoretical prices of options over Eurostoxx 50 index 

 

 

Table 16: Relative differences between model and theoretical swaptions prices 

 

 

1 2 3 4 5 6 7 8 9 10

1 0,04 10,26 39,91 63,96 86,51 116,22 146,46 175,62 207,06 240,16

2 16,85 45,78 79,19 109,99 149,30 188,50 231,07 272,53 315,54 362,98

3 38,79 72,98 111,92 158,99 205,40 253,44 304,40 353,72 407,08 455,38

4 48,31 93,31 145,72 198,60 254,54 310,17 366,79 425,49 477,79 532,89

5 55,92 112,30 169,96 229,76 291,93 352,56 417,21 472,33 529,57 589,58

6 69,62 129,74 194,32 259,46 326,50 390,94 453,01 513,98 574,59 631,73

7 72,59 137,92 206,85 276,03 348,70 410,94 474,64 541,36 598,65 658,32

8 78,73 150,02 221,89 295,16 367,11 432,81 500,39 565,12 627,61 692,42

9 82,08 158,07 233,66 305,77 380,31 449,84 515,35 582,44 649,72 719,50

10 82,50 163,67 236,99 311,97 389,18 455,62 524,33 593,86 665,55 739,85

Ex
pi
ry

Tenor

Maturity 16-12-2016 15-12-2017 21-12-2018 20-12-2019 18-12-2020 17-12-2021 27-12-2022 15-12-2023 20-12-2024

T 0,963888889 1,961111111 2,977777778 3,975 4,969444444 5,966666667 7 7,961111111 8,975

3000 -2,20% -5,23% -9,13% -7,21% -11,77% -7,96% -2,08% -2,94% -5,80%

3100 -9,00% -7,96% -11,31% -9,57% -7,04% -3,13% -5,20% -7,64% -6,90%

3200 -9,52% -8,40% -6,86% -3,33% -3,70% -6,68% -6,64% -8,60% -7,59%

3300 -6,40% -4,02% -2,81% -6,30% -6,70% -8,29% -7,38% -6,38% -5,36%

3400 -2,63% -6,76% -7,54% -8,90% -8,06% -7,20% -7,58% -3,41% -8,26%

3500 -9,35% -10,58% -9,84% -9,12% -23,76% -19,83% -25,05% -26,57% -28,20%

3600 -28,16% -28,16% -27,68% -23,00% -28,63% -30,24% -31,80% -31,82% -31,91%

1 2 3 4 5 6 7 8 9 10

1 - - - 0,49% 2,67% 0,23% -1,12% -1,76% -3,90% -6,76%

2 - - -1,46% 2,22% 1,51% 1,96% 0,54% -0,59% -2,56% -5,88%

3 - -0,73% 0,62% -0,01% 1,39% 1,71% 0,52% -0,50% -2,91% -4,35%

4 -0,63% 0,16% -0,90% 0,56% 0,77% 0,79% -0,01% -1,74% -2,43% -4,10%

5 1,95% -0,07% 0,92% 1,70% 1,47% 1,37% -0,30% -0,24% -1,25% -3,06%

6 -6,80% -1,44% -0,36% 0,60% 0,45% 0,50% 0,37% -0,20% -1,19% -1,97%

7 -1,62% 1,84% 2,08% 2,37% 1,18% 2,31% 2,13% 0,76% 0,68% -0,29%

8 -2,73% 0,17% 1,28% 1,33% 1,24% 1,97% 1,44% 0,92% 0,27% -1,16%

9 -1,89% -0,22% 0,53% 1,80% 1,38% 1,56% 1,81% 1,08% -0,16% -2,10%

10 1,18% -0,28% 2,23% 2,61% 1,67% 2,75% 2,42% 1,33% -0,52% -2,97%

Tenor

Ex
p
ir
y



A-Appendix 

37 
 

A.4- Octave code 

A.4.1- Price determining algorithm for an European call option 

under the Heston model 

function value=HE_Call_Price(kappa,theta,v0,psi,rho_HE,s0,strike,T) 

global Dados_FD; 

%Dados_FD=xlsread('Dados_FD.xls'); 

r=0 

x0 = log(s0); 

alpha = 0.75; 

N = 4096; 

c = 512; 

eta_Fft = c/N; 

b_Fft = pi/eta_Fft; 

u = [0:N-1]*eta_Fft; 

lamda = 2*b_Fft/N; 

position = (log(strike) + b_Fft)/lamda + 1; 

% For in-the-money and at-the-money options 

if strike<=s0 

v = u - (alpha+1)*1i; 

zeta = -.5*(v.^2 +1i*v); 

gamma = kappa - rho_HE*psi*v*1i; 

PHI = sqrt(gamma.^2 - 2*psi^2*zeta); 

%r=0; 

A = 1i*v*(x0 + r*T); 

B = v0*((2*zeta.*(1-exp(-PHI.*T)))./(2*PHI - (PHI-gamma).*(1-exp(-PHI*T)))); 

C = -(kappa*theta)/(psi^2)*(2*log((2*PHI - (PHI-gamma).*(1-exp(-PHI*T)))./ ... 

(2*PHI)) + (PHI-gamma)*T); 

 

charFunc = exp(A + B + C); 

% Substitution of exp(-r*T) for P_0T 
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ModifiedCharFunc = charFunc* Dados_FD(round(T*360),1)./(alpha^2 + alpha - 

u.^2 + ... 

1i*(2*alpha +1)*u); 

SimpsonW = 1/3*(3 + (-1).^[1:N] - [1, zeros(1,N-1)]); 

FftFunc = exp(1i*b_Fft*u).*ModifiedCharFunc*eta_Fft.*SimpsonW; 

payoff = real(fft(FftFunc)); 

CallValueM = exp(-log(strike)*alpha)*payoff/pi; 

value = CallValueM(round(position)); 

% For out-of-the-money options 

else 

w1 = u-1i*alpha; 

w2 = u+1i*alpha; 

v1 = u-1i*alpha -1i; 

v2 = u+1i*alpha -1i; 

zeta1 = -.5*(v1.^2 +1i*v1); 

gamma1 = kappa - rho_HE*psi*v1*1i; 

PHI1 = sqrt(gamma1.^2 - 2*psi^2*zeta1); 

% r=0; 

A1 = 1i*v1*(x0 + r*T); 

B1 = v0*((2*zeta1.*(1-exp(-PHI1.*T)))./(2*PHI1 - (PHI1-gamma1).*(1-exp(-

PHI1*T)))); 

C1 = -(kappa*theta)/(psi^2)*(2*log((2*PHI1 - (PHI1-gamma1).*(1-exp(-

PHI1*T)))./(2*PHI1)) ... 

+ (PHI1-gamma1)*T); 

charFunc1 = exp(A1 + B1 + C1); 

% Substitution of  exp(-r*T) for P_0T 

ModifiedCharFunc1 = Dados_FD(round(T*360),1)*(1./(1+1i*w1) - ... 

Dados_FD(round(T*360),1)./(1i*w1) - charFunc1./(w1.^2 - 1i*w1)); 

zeta2 = -.5*(v2.^2 +1i*v2); 

gamma2 = kappa - rho_HE*psi*v2*1i; 

PHI2 = sqrt(gamma2.^2 - 2*psi^2*zeta2); 

 

% r=0; 
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A2 = 1i*v2*(x0 + r*T); 

B2 = v0*((2*zeta2.*(1-exp(-PHI2.*T)))./(2*PHI2 - (PHI2-gamma2).*(1-exp(-

PHI2*T)))); 

C2 = -(kappa*theta)/(psi^2)*(2*log((2*PHI2 - (PHI2-gamma2).*(1-exp(-

PHI2*T)))./(2*PHI2)) ... 

+ (PHI2-gamma2)*T); 

charFunc2 = exp(A2 + B2 + C2); 

% Substitution of  exp(-r*T) for P_0T 

ModifiedCharFunc2 = Dados_FD(round(T*360),1)*(1./(1+1i*w2) - ... 

Dados_FD(round(T*360),1)./(1i*w2) - charFunc2./(w2.^2 - 1i*w2)); 

ModifiedCharFuncCombo = (ModifiedCharFunc1 - ModifiedCharFunc2)/2 ; 

SimpsonW = 1/3*(3 + (-1).^[1:N] - [1, zeros(1,N-1)]); 

FftFunc = exp(1i*b_Fft*u).*ModifiedCharFuncCombo*eta_Fft.*SimpsonW; 

payoff = real(fft(FftFunc)); 

CallValueM = payoff/pi/sinh(alpha*log(strike)); 

value = CallValueM(round(position)); 

endif 

endfunction 

 

 

A.4.2- Optimization algorithm for the calibration of the Heston 

model 

global Dados; 

global Dados_FD; 

global N_Obs; 

global P_Call; 

global Error; 

% Dados [T s0 strike price] 

% Dados_FD <- P(0,T) 

Dados=xlsread('Dados_HEG2_2015.xlsx'); 

Dados_FD=xlsread('Dados_FD_2015.xlsx'); 

% Number of observations 
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Dim=size(Dados); 

N_Obs=Dim(1); 

input=[0.04;0.04;0.04;0.04;0.04]; 

lb=[0;0;0;0;-1]; 

ub=[5;5;1;1;1]; 

nt=10; 

ns=5; 

rt=0.75; 

maxevals=1e10; 

neps=5; 

functol=1e-10; 

paramtol=1e-3; 

verbosity=2; 

minarg=1; 

control={lb,ub,nt,ns,rt,maxevals,neps,functol,paramtol,verbosity,minarg}; 

[x,obj,convergence,details]=samin(“HE_Cost_Global”,{input},control); 

% Error calculation 

x=[0.03948;0.45078;0.52852;-0.25788]; 

for i=1:N_Obs 

P_Call(i)=HE_Call_Price(x(1),x(2),x(3),x(4),x(5),... 

Dados(i,2),Dados(i,3),Dados(i,1)); 

Error(i)=(P_Call(i)-Dados(i,4))/Dados(i,4); 

endfor 

 

A.4.3- Price determining algorithm for a payer Swaption under 

the G2++ model 

function value=Swaptions_Price(a,b,s,eta,rho,expiry,tenor,strike) 

Vol=(s^2*(Func_C(a,expiry,tenor,strike))^2*((exp(2*a*expiry)-1)/(2*a))+... 

eta^2*(Func_C(b,expiry,tenor,strike))^2*((exp(2*b*expiry)-1)/(2*b))+... 

2*rho*s*eta*Func_C(a,expiry,tenor,strike)*... 

Func_C(b,expiry,tenor,strike)*((exp((a+b)*expiry)-1)/(a+b)))^0.5; 
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Price=(Vol*Func_Sum_P0T(expiry,tenor))/(2*pi)^0.5; 

value=Price; 

endfunction 

function value=Func_C(p,expiry,tenor,strike) 

% Dados_P0T <- P(0,T) 

global Dados_P0T; 

% Dados_P0T=xlsread('Dados_Swap_P0T.xls'); 

value=(exp(-p*expiry)*(Dados_P0T(expiry,1)/Func_Sum_P0T(expiry,tenor)) ... 

-exp(-p*tenor)*... 

(Dados_P0T(tenor,1)/Func_Sum_P0T(expiry,tenor)) ... 

-strike*Func_Sum(p,expiry,tenor))/p; 

endfunction 

function value=Func_Sum(x,expiry,tenor) 

% Dados_P0T <- P(0,T) 

global Dados_P0T; 

% Dados_P0T=xlsread('Dados_Swap_P0T.xls'); 

sum=0; 

for i=expiry+1:tenor 

sum=sum+exp(-x*i)*(Dados_P0T(i,1)/Func_Sum_P0T(expiry,tenor)); 

endfor 

value=sum; 

endfunction 

function value=Func_Sum_P0T(expiry,tenor) 

% Dados_P0T <- P(0,T) 

global Dados_P0T; 

% Dados_P0T=xlsread('Dados_Swap_P0T.xls'); 

sum=0; 

for i=expiry+1:tenor 

sum=sum+Dados_P0T(i,1); 

endfor 

value=sum; 

endfunction 
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A.4.4- Optimization algorithm for the calibration of the G2++ 

model 

global Dados; 

global Dados_P0T; 

global N_Obs; 

global P_Swaptions; 

global Error;  

% Data [expiry tenor price strike  

Dados=xlsread('Dados_Swaptions_2015.xlsx'); 

Dados_P0T=xlsread('Dados_P(0,T)_2015.xlsx'); 

]  

% Dados_P0T <- P(0,T)  

% Number of observations 

Dim=size(Dados); 

N_Obs=Dim(1); 

input=[0.9;0.9;0.9;0.9;0.9]; 

lb=[0;0;0;0;-1]; 

ub=[5;5;1;1;1]; 

nt=10; 

ns=5; 

rt=0.75; 

maxevals=1e10; 

neps=5; 

functol=1e-10; 

paramtol=1e-3; 

verbosity=2; 

minarg=1;  

control={lb,ub,nt,ns,rt,maxevals,neps,functol,paramtol,verbosity,minarg};  

[x,obj,convergence,details]=samin(“Swaptions_Cost_Global”,{input},control) 

% Error calculation 

fori=1:N_Obs 

P_Swaptions(i)=Swaptions_Price(x(1),x(2),x(3),x(4),x(5),... 
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Dados(i,1),Dados(i,2),Dados(i,4));  

Error(i)=(P_Swaptions(i)-Dados(i,3))/Dados(i,3);  

endfor 

  

A.4.5- Algorithm for the simulation of the portfolio’s evolution 

function value=V_tT(a,b,sigma,eta,rho_G2,t,T) 

value=((sigma^2)/(a^2))*((T-t)+(2/a)*exp(-a*(T-t))-(1/(2*a))*exp(-2*a*(T-t))-

3/(2*a))+... 

((eta^2)/(b^2))*((T-t)+(2/b)*exp(-b*(T-t))-(1/(2*b))*exp(-2*b*(T-t))-

(3/(2*b)))+... 

(2*rho_G2*((sigma*eta)/(a*b))*((T-t)+((exp(-a*(T-t))-1)/a)+((exp(-b*(T-t))-

1)/b)-... 

((exp(-(a+b)*(T-t))-1)/(a+b)))); 

endfunction 

% Heston parameters; 

kappa=xlsread('HE_Optimizar_Global_2015_Resumo.xlsx','Parametros','E5'); 

theta=xlsread('HE_Optimizar_Global_2015_Resumo.xlsx', 'Parametros','E6'); 

v0=xlsread('HE_Optimizar_Global_2015_Resumo.xlsx', 'Parametros','E7'); 

psi=xlsread('HE_Optimizar_Global_2015_Resumo.xlsx', 'Parametros','E8'); 

rho_HE=xlsread('HE_Optimizar_Global_2015_Resumo.xlsx', 'Parametros','E9'); 

% G2++ parameters; 

a=xlsread('G2_Optimizar_Global_2015_Resumo.xlsx','Parametros','E5'); 

b=xlsread('G2_Optimizar_Global_2015_Resumo.xlsx', 'Parametros','E6'); 

sigma=xlsread('G2_Optimizar_Global_2015_Resumo.xlsx', 'Parametros','E7'); 

eta=xlsread('G2_Optimizar_Global_2015_Resumo.xlsx', 'Parametros','E8'); 

rho_G2=xlsread('G2_Optimizar_Global_2015_Resumo.xlsx', 'Parametros','E9'); 

% Correlation between interest rate and index return; 

rho_rs=xlsread('Analise_correlacoes.xlsx', 'Calculos','Q7'); 

%global Dados_FD; 

Dados_FD=xlsread('Dados_FD_2015.xlsx'); 

T=10; 

N_Simul=4000; 
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Steps=360; 

F0=10000; 

prop_a=0.25; 

D=5; 

delta=0.25; 

S0=3314 

dt=1/Steps; 

N_Steps=T*Steps; 

phi_c=1.5; 

% Calculation of factors independent of t 

sigma_xt=sigma*((1/(2*a))*(1-exp(-2*a*dt)))^0.5; 

sigma_yt=eta*((1/(2*b))*(1-exp(-2*b*dt)))^0.5; 

K0=-dt*(rho_HE*kappa*theta)/psi; 

K1=(dt/2)*(rho_HE*kappa/psi-0.5)-rho_HE/psi; 

K2=(dt/2)*(rho_HE*kappa/psi-0.5)+rho_HE/psi; 

%% Correlations and Cholesky decompositions 

sigma1 = sqrt(sigma^2 + eta^2 + 2*rho_G2*sigma*eta); 

sigma2 = eta*(a-b); 

rhorv = (sigma*rho_G2+eta)/sigma1; 

rho_sx = (sigma1*rho_rs)/sqrt(sigma1^2 + sigma2^2/((a-b)^2) + ... 

        2*rhorv*sigma1*sigma2/(b-a)); 

rho_sy = 0.01; 

% Vectors and matrices 

xt=zeros(1,N_Steps+1); 

yt=zeros(1,N_Steps+1); 

Rt_v=zeros(1,N_Steps+1); 

vt=zeros(1,N_Steps+1); 

Log_St=zeros(1,N_Steps+1); 

St=zeros(N_Simul,N_Steps+1); 

Pt_v=zeros(N_Simul,T*delta+1); 

Pt=zeros(N_Simul,N_Steps+1); 

Bt=zeros(N_Simul,N_Steps+1); 

Ft=zeros(N_Simul,N_Steps+1); 
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Ft(:,1)=F0; 

S0=F0*prop_a; 

B0=F0*(1-prop_a); 

Z1=randn(N_Simul,N_Steps); 

Z2=randn(N_Simul,N_Steps); 

Z3=randn(N_Simul,N_Steps); 

Z4=randn(N_Simul,N_Steps); 

sum_v=zeros(N_Simul,1); 

sum1_v=zeros(N_Simul,1); 

perct_St=zeros(9,N_Steps+1); 

perct_Bt=zeros(9,N_Steps+1); 

perct_Ft=zeros(9,N_Steps+1); 

% Simulation 

for i=1:N_Simul 

xt(1)=0; 

yt(1)=0; 

vt(1)=v0; 

Log_St(1)=log(S0); 

St(i,1)=S0; 

for t=2:N_Steps+1 

Zx=randn(); 

Zy=randn(); 

Mxt=((sigma^2)/(a^2)+rho_G2*((sigma*eta)/(a*b)))*(1-exp(-a*((t-1)*dt-(t-

2)*dt)))-... 

((sigma^2)/(2*(a^2)))*(exp(-a*(T-(t-1)*dt))-exp(-a*(T+(t-1)*dt-2*(t-2)*dt)))-... 

((rho_G2*sigma*eta)/(b*(a+b)))*(exp(-b*(T-(t-1)*dt))-exp(-b*T-a*(t-

1)*dt+(a+b)*(t-2)*dt)); 

Myt=((eta^2)/(b^2)+rho_G2*((sigma*eta)/(a*b)))*(1-exp(-b*((t-1)*dt-(t-2)*dt)))-

... 

((eta^2)/(2*(b^2)))*(exp(-b*(T-(t-1)*dt))-exp(-b*(T+(t-1)*dt-2*(t-2)*dt)))-... 

((rho_G2*sigma*eta)/(b*(a+b)))*(exp(-b*(T-(t-1)*dt))-exp(-b*T-a*(t-

1)*dt+(a+b)*(t-2)*dt)); 

xt(t)=xt(t-1)*exp(-a*dt) +sigma_xt*Zx; 
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yt(t)=yt(t-1)*exp(-b*dt)+sigma_yt*... 

(rho_G2*Zx+((1-rho_G2^2)^0.5)*Zy); 

integ_r(t)=(dt/2)*(xt(t)+xt(t-1)+yt(t)+yt(t-1))+log(Dados_FD(t-1,1))-

log(Dados_FD(t,1))+ ... 

0.5*(V_tT(a,b,sigma,eta,rho_G2,0,t*dt)- V_tT(a,b,sigma,eta,rho_G2,0,(t-1)*dt)); 

m=theta+(vt(t-1)-theta)*exp(-kappa*dt); 

s2=((vt(t-1)*psi^2*exp(-kappa*dt))/kappa)*(1-exp(-kappa*dt))+... 

((theta*(psi^2))/(2*kappa))*(1-exp(-kappa*dt))^2; 

phi=s2/m^2; 

z=2*(phi^(-1)); 

if phi<=phi_c 

b2=z-1+z^(0.5)*(z-1)^(0.5); 

aa=(m/(1+b2)); 

Zv=randn(); 

vt(t)=aa*(b2^0.5+Zv)^2; 

else 

p=(phi-1)/(phi+1); 

beta=(1-p)/m; 

Uv=rand(); 

if Uv<=p 

vt(t)=0; 

else 

vt(t)=(beta^-1)*log((1-p)/(1-Uv)); 

endif 

endif 

K=(dt/2)*(vt(t-1)+vt(t)); 

Zs=randn(); 

Log_St(t)=Log_St(t-1)+integ_r(t)+K0+K1*vt(t-1)+K2*vt(t)+rho_sx*sqrt(K)*Zx+... 

(rho_sy-rho_sx*rho_G2)/sqrt(1-rho_G2^2)*sqrt(K)*Zy+... 

sqrt(1-rho_HE^2-rho_sx^2-(rho_sy-rho_sx*rho_G2)/sqrt(1-rho_G2^2))*K*Zs; 

St(i,t)=exp(Log_St(t)); 

endfor 

Pt_v(i,1)=B0/Dados_FD(D*360,1); 
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Pt(i,1)=Dados_FD(D*360,1); 

Bt(i,1)=Pt_v(i,1)*Pt(i,1); 

for j=1:T*(1/delta) 

for t=(j-1)*(360*delta)+1:j*(360*delta) 

Pt(i,t+1)=((Dados_FD(round((D+(j-1)*delta)*360),1)/Dados_FD(t,1))*exp((1/2)*... 

(V_tT(a,b,sigma,eta,rho_G2,t*dt,D+(j-1)*delta)-... 

V_tT(a,b,sigma,eta,rho_G2,0,D+(j-1)*delta)+... 

V_tT(a,b,sigma,eta,rho_G2,0,t*dt)-... 

((1-exp(-a*(D+(j-1)*delta-t*dt)))/a)*xt(t+1)-... 

((1-exp(-b*(D+(j-1)*delta-t*dt)))/b)*yt(t+1)))); 

endfor 

for t=(j-1)*(360*delta)+1:j*(360*delta) 

Bt(i,t+1)=Pt_v(i,j)*Pt(i,t+1); 

endfor 

Pt_v(i,j+1)=Bt(i,j*(360*delta)+1)/...    

((Dados_FD(round((D+(j*delta))*360),1)/Dados_FD(j*(360*delta),1))*exp((1/2)*..

. 

(V_tT(a,b,sigma,eta,rho_G2,j*(360*delta)*dt,D+(j*delta))-... 

V_tT(a,b,sigma,eta,rho_G2,0,D+(j*delta))+... 

V_tT(a,b,sigma,eta,rho_G2,0,j*(360*delta)*dt)-... 

((1-exp(-a*(D+(j*delta)-j*(360*delta)*dt)))/a)*xt(j*(360*delta)+1)-... 

((1-exp(-b*(D+(j*delta)-j*(360*delta)*dt)))/b)*yt(j*(360*delta)+1)))); 

endfor 

sum=0; 

for t=1:N_Steps 

sum=sum+Rt_v(1,t+1); 

endfor 

sum_v(i)=exp(-sum); 

sum1_v(i)=St(i,N_Steps+1)*exp(-sum); 

for t=2: + N_Steps+1 

if prop_a==0 

Ft(i,t)=Bt(i,t); 

else 
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if prop_a==1 

Ft(i,t)=St(i,t); 

else 

Ft(i,t)=St(i,t)+Bt(i,t); 

endif 

endif 

endfor 

endfor 

 

sum1=0; 

sum2=0; 

for i=1:N_Simul 

sum1=sum1+sum_v(i); 

sum2=sum2+sum1_v(i); 

endfor 

for t=1:N_Steps+1 

perct_St(:,t)=prctile(St(:,t),[10 20 30 40 50 60 70 80 90]); 

perct_Bt(:,t)=prctile(Bt(:,t),[10 20 30 40 50 60 70 80 90]); 

perct_Ft(:,t)=prctile(Ft(:,t),[10 20 30 40 50 60 70 80 90]); 

endfor  
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