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PREFACE 
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estimation of one of the undertaking specific parameters - the reserve risk - for 

two lines of business (LoB): Motor Vehicle Liability and Motor Others. 

I would like to thank Tranquilidade for making my internship possible and for 

providing all the necessary conditions for my work. To João Barata for sharing 
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everything I could need. 

A special thanks to my supervisor in ISEG, João Andrade e Silva, for his help 
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possible to get as far as I did, and his formal corrections were fundamental in 

writing this report.  
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ABSTRACT 

Under Solvency II, insurance undertakings must have, as part of their risk 

management system, a regular practice of assessing their overall solvency 

needs with a view to their specific risk profile, known as 'Own Risk and 

Solvency Assessment' (ORSA). ORSA aims to identify whether the particular 

risk profile of an undertaking deviates from the assumptions underlying the 

regulatory capital calculation (i.e. European Standard Formula). 

In this context, this work aims at estimating the undertaking specific parameters 

(USP) for reserve risk, for Motor Vehicle Liability and Motor Others. In a long 

term perspective, alternative models were applied to the estimation of the 

ultimate reserve risk. For Solvency Capital Requirements, a short-term 

perspective, it is necessary to estimate the one-year reserve risk factors, which 

was done by applying the three different methods presented and allowed by the 

European Insurance and Occupational Pensions Authority (EIOPA). The results 

for the different models and methods in both perspectives were compared and 

the impact of the USP was assessed in terms of capital gains. 

 

KEYWORDS 

Solvency II, ORSA, USP, Solvency Capital Requirement, Reserve Risk, Mack, 

Bootstrap, Munich Chain Ladder, Merz-Wüthrich. 
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LIST OF ACRONYMS AND ABREVIATIONS USED 

BI – Bodily-Injury 

CEIOPS – Committee of European Insurance and Occupational Pensions 

Supervisors 

EIOPA - European Insurance and Occupational Pensions Authority 

EU – European Union 

IBNR – Incurred But Not Reported 

IBNER – Incurred But Not Enough Reported 

IDS – accidents that follow the direct compensation to the policy holder system 

LoB – Line of Business 

MCL – Munich Chain Ladder 

MCR – Minimum Capital Requirement 

MD – Material Damage 

MSEP - Mean Squared Error of Prediction 

ORSA – Own Risk and Solvency Assessment 

SCL – Separate Chain Ladder 

SCR – Solvency Capital Requirement 

SLT – Similar to Life Techniques 

USP – Undertaking Specific Parameter(s) 
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1. INTRODUCTION 
 
 
Solvency II project aims to review the prudential regime for insurance and 

reinsurance undertakings in the European Union (EU), and in particular to 

ensure that they can survive difficult periods, thus protecting policyholders and 

the stability of the financial system as a whole. 

The need for this prudential regime becomes more evident in this new, 

globalized world of closely interdependent economies, where the recent 

financial crisis has affected almost every part of the world and the recovery 

from this global financial crisis remains fragile. 

The Solvency II Directive 2009/138/EC, that codifies and harmonizes the EU 

insurance regulation, introduces a new requirement concerning risk and capital 

management activities. At the core of the Directive, Article 45 requires that: «as 

part of its risk-management system every insurance undertaking and 

reinsurance undertaking shall conduct its own risk and solvency assessment. » 

One of the purposes of the own risk and solvency assessment (ORSA) is to 

identify whether the particular risk profile of an undertaking deviates from the 

assumptions underlying the regulatory capital calculation (e.g. European 

Standard Formula). Its framework leads undertakings towards a better 

understanding and management of their risk profiles, in accordance with their 

strategic choices. 

The ORSA Issues Paper – CEIOPS (2008) - gives a crisp definition:  
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The ORSA can be defined as the entirety of the processes and procedures 

employed to identify, assess, monitor, manage, and report the short and the 

long term risks a (re)insurance undertaking faces or may face and to 

determine the own funds necessary to ensure that the undertakings overall 

solvency needs are met at all times. 

Underlying this definition, one of the aspects that must be taken into 

consideration in the ORSA is the degree to which the undertakings risk profile 

deviates from the assumptions underlying the Solvency Capital Requirement 

(SCR), calculated with the standard formula or with its specific risk parameters 

or internal model. 

Furthermore, in its Article 48, the Directive describes the actuarial role as 

follows: 

1. Insurance and reinsurance companies shall provide for an effective 

actuarial function to: (…) contribute to the effective implementation of the risk-

management system referred to in the article 44, in particular with respect to 

the risk modelling underlying the calculation of the capital requirements set out 

in Chapter VI, Sections 4 and 5, and to the assessment referred to in Article 

45. 

This document will start with a brief framework on Solvency II, the ORSA and 

the role of the undertaking specific parameters, the so-called USP, followed by 

a detailed presentation of the risk reserve parameter, its specificities and its 

interaction with the remaining components of the Standard Formula. 
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To estimate the ultimate reserve risk, a set of methods was selected and 

applied to the Motor data of the company, and their results are analyzed and 

compared. 

A short-term approach for each of the selected methods is then taken in order 

to capture the one-year risk required for SCR purposes. 

 



VÂNIA ISABEL R. ELIAS RESERVE RISK – AN APPLICATION TO ORSA    

 

4 

2. THE SOLVENCY II REGIME 
 
 
Solvency II is not just about capital, but it is rather a comprehensive programme 

based on three pillars: 

 

 

 

Figure 1: Three pillars structures of Solvency II 

 

Pillar I defines the financial resources that a company needs to hold in order to 

be considered solvent, in particular it defines two thresholds: Solvency Capital 

Requirement (SCR) and Minimum Capital Requirement (MCR). SCR is 

calculated using either a standard formula or, with regulatory approval, an 

internal model, while the MCR is calculated as specified in CEIOPS (2009c) 

and it cannot fall below 25% or exceed 45% of the SCR. 

Pillar II deals with the qualitative requirements for the (re)insurers: the system 

of governance and the risk management system, as well as the requirements 

for the effective supervision of (re)insurers. 

Finally, the focus of Pillar III is on disclosure requirements, both to the regulator 

and to the general public. 

 

2.1.  Own Risk Solvency Assessment (ORSA) 
 
The ORSA, introduced in pillar II, is a key element of Solvency II. It is the 

(re)insurer’s own assessment of the capital required to run his business, 
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reflecting the company’s risk profile and tolerances. It must be produced at 

least annually, and will be subject to external assessment, but not public 

disclosure. Likely, it will produce a different result from the regulatory capital 

requirement imposed by pillar I, but a deviation between the ORSA and the 

SCR calculation doesn’t automatically lead to an increase of capital. 

When performing the ORSA exercise, together with many other activities and 

evaluations, the undertaking will evaluate: 

1. How well does the standard formula capture its specific risks? 

2. How sensitive are the results of the standard formula to changes in the mix of 

risks, and the impact of reinsurance and other risk mitigation methods? 

3. How do the results differ between the standard SCR and the SCR calculated 

using Undertaking Specific Parameters (USP)? 

 

2.2. Undertaking Specific Parameters (USP) 
 
Companies using the Solvency II standard formula should consider using 

undertaking specific parameters in calculating their risk capital as they allow for 

better assessment of undertaking specific risk profiles in the standard formula, 

which in turn leads to a more accurate calculation of SCR. Even though USP 

require additional and complex work, for many companies they may be worth 

the extra effort. 
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2.2.1.  Legal background to USP 
 
The Solvency II Directive, in its article 104 (Design of the basic Solvency 

Capital Requirements), states:  

Subject to approval by the supervisory authorities, insurance and 

reinsurance undertakings may, within the design of the standard formula, 

replace a subset of its parameters by parameters specific to the 

undertaking concerned, when calculating the life, non-life and health 

underwriting risk modules. 

Additionally, in article 110 (Significant deviations from the assumptions 

underlying the standard formula calculation), we can read:  

Where it is inappropriate to calculate the Solvency Capital Requirement in 

accordance with the standard formula (...) because the risk profile of the 

insurance or reinsurance undertaking concerned deviates significantly from 

the assumptions underlying the standard formula calculation, the 

supervisory authorities may, by means of a decision stating the reasons, 

require the undertaking concerned to replace a subset of the parameters 

specific to that undertaking when calculating the life, non-life and health 

underwriting risk modules, as set out in Article 104 (7). Those specific 

parameters shall be calculated in such a way to ensure that the undertaking 

complies with Article 101(3). 

The referred article 101(3) defines the following:  

The Solvency Capital Requirement shall be calibrated so as to ensure that all 

quantifiable risks to which an insurance or reinsurance undertaking is exposed 

are taken into account. It shall cover existing business, as well as the new 

business expected to be written over the following 12 months. With regard to 
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existing business it shall cover only unexpected losses. It shall correspond to 

the Value-at-Risk of the basic own funds of an insurance or reinsurance 

undertaking subject to a confidence level of 99,5% over a one-year period. 

 

2.2.2.  Usefulness of USP 
 
There are some reasons for an undertaking to use USP : 

- to better adjust and reflect a company’s risk profile - if historical data or 

appropriate external data show different volatility on premium and reserve risk, 

replacing the market-average parameters with the company-specific 

parameters based on its USP will lead to a lower SCR. 

- if a new (re)insurance programme cannot be adequately reflected in the 

standard formula, an undertaking can use USP. The new structure can be 

applied to the historical gross book on an as-if basis for the reserve risk as well 

as for the premium risk. This way, the company can derive USP which better 

reflect the undertaking’s situation. 

- USP are an input to ORSA: «That assessment shall include (...) the overall 

solvency needs taking into account the specific risk profile, approved risk 

tolerance limits and the business strategy of the undertaking» (Article 45).  

Furthermore, if approval for USP fails, it can be an input for a partial internal 

model or it can form a part of the validation of results emerging from internal 

model. 
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2.2.3.  CEIOPS’ Advice on USP 
 
CEIOPS’ advice on USP - CEIOPS (2010a) - identifies the subset of standard 

parameters that may be replaced by USP. For all other parameters, 

undertakings shall use the values considered for the standard formula. There 

are four sub-modules of the standard formula in which parameters can be 

replaced: 

i. Non-life premium and reserve risk; 

ii. Non-SLT (Similar to Life Techniques) health premium and reserve risk;  

iii. SLT health revision risk; 

iv. Life revision risk. 

The sub-module of interest for this work is the first one, which includes three 

possible USP: standard deviation for premium and for reserve risk and 

adjustment factor for non-proportional reinsurance, being the standard 

deviation for reserve risk the one to be estimated as defined in CEIOPS’ 

advice on the SCR non-life underwriting risk module - CEIOPS (2009a). 

In order to be able to use the USP, undertakings must obtain supervisory 

approval and must demonstrate that standard parameters do not better reflect 

their risk profile. Supervisors must also be satisfied that ”cherry-picking” to give 

the lowest SCR has not taken place. 

A credibility mechanism is required when applying USP. Depending on the 

number of years for which data are available, and in the use solely of internal 

data or the use of external data, more or less weight is given to the undertaking 

versus the standard parameter, by applying a credibility factor (c): 

σ (res,lob) = c×σ (U,res,lob) + (1− c)σ (S,res,lob)  
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where: 

σ(res,lob)=final undertaking specific parameter, after applying the credibility factor; 

σ(U,res,lob)= undertaking specific parameter; 

σ(S,res,lob)= standard parameter; 

 

For the two LoBs of interest, full credibility is only given with fifteen or more 

years of internal historical data for Motor Vehicle Liability and with at least ten 

years for Motor Others. If external data is used, the maximum credibility in both 

cases is 63%. 

CEIOPS (2010a) presents a detailed description of the methods and 

assumptions that undertakings should apply to calculate their USP for reserve 

risk, but it «does not consider one method to be perfect and proposes that 

undertakings apply a variety of methods to estimate their volatility». 

Undertakings will have the onus of explaining how and why they have selected 

the final factor, taking into consideration their risk profile. 
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3. THE STANDARD FORMULA 
 

In Solvency II regime, the SCR is, by definition, the «level of capital that 

enables an insurance undertaking to absorb significant unforeseen losses and 

that gives reasonable assurance to policyholders and beneficiaries» and it shall 

take account of all quantifiable risks and the net impact of all possible risk 

mitigation techniques. 

The standard formula was built in order to provide a harmonized way of 

calculating this level of capital for all the undertakings and it was calibrated to 

achieve the target criteria of 99.5% Value-at-Risk for 1 year of time-horizon. 

It presents a modular structure as shown in the figure bellow: 

 

 

 

 

 

 

Figure 2: SCR modular structure 

 

3.1.  Non-life underwriting risk 
 
The underwriting risk can be defined as «the risk of loss, or of adverse change 

in the value of insurance liabilities, due to inadequate pricing and provisioning.» 
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CEIOPS (2009a) provides advice and guidance on the methods, assumptions 

and standard parameters to be used in the design of the non-life underwriting 

risk module, as required in Article 111(c) of Directive 2009/138/EC and has its 

legal support in Articles 111, 101, 104 and 105 of the Directive. 

Although the risk of interest for the purpose of this report is the reserve risk, the 

calculations for the combined premium risk and reserve risk will be presented in 

order to understand how the two risks interact in the standard formula. Premium 

risk calculations will be detailed only when necessary to understand the reserve 

risk calculations. 

 

3.2. Non-life premium and reserve risk sub-module 
 
The capital charge for premium and reserve risk (NLpr) is given by:  

VNLpr ⋅= )(σρ  

where: 

V = volume measure 

σ  = combined standard deviation, resulting from the combination of the reserve 

and premium risk standard deviations, and 

1
1

))1log(exp(
)(

2

2
995.0 −

+

+⋅
=

σ

σ
σρ

N
 . 

N0.995 = 99.5% quantile of the standard normal distribution 

Note that ρ(σ )  is computed assuming a log-normal distribution of the 

underlying asset and an expected value of 1 in order to be consistent with the 

VaR 99.5%. It can be approximated by: σσρ ⋅≈ 3)( . 
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To calculate the volume measure and the combined standard deviation it is 

necessary to calculate them for each individual LoB and for both premium risk 

and reserve risk, and then aggregate them using the formulae bellow. 

For the volume measure we have 

V = V( prem,LoB)
LoB
∑ + V(res,LoB)

LoB
∑  

V(res,LoB) = PCOlob   

Where: 

V(prem,LoB),V(res,LoB)= volume measure for premium and for reserve risk. 

σ(prem,LoB), σ(res,LoB)=standard deviation for premium and for reserve risk. 

PCOlob  = best estimate for claims outstanding for each LoB. 

As the Advice states, «the standard deviation for premium and reserve risk for 

each LoB is defined by aggregating the standard deviations for both sub-risk 

under the assumption of a correlation coefficient of α=0.5.» 

σ (lob) =
(σ ( prem,lob)V( prem,lob) )

2 + 2ασ ( prem,lob)σ (res,lob)V( prem,lob)V(res,lob) + (σ (res,lob)V(res,lob) )
2 )

V( prem,lob) +V(res,lob)
 

Finally, the overall standard deviation is given by: 

∑
×

⋅⋅⋅⋅⋅=
cr

crcrcr VVCorrLob
V

σσσ ,2

1  

where  

r,c = all indices of the form (LoB) 

CorrLobr,c = the correlation coefficient between LoB r and LoB c 

The correlation matrix CorrLob structure is presented and explained in QIS3 - 

CEIOPS (2007) - which the CEIOPS’ Advice on non-life underwriting risk 

calibration – CEIOPS (2010c) – considers to be «appropriate». The values 

considered are the ones embedded in QIS4 and QIS5 (Annex 1). 
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3.3. Standard Parameter for Reserve Risk 
 
CEIOPS (2010b) explains how the reserve risk calibration was performed, 

identifying the data used, the assumptions considered and detailing the six 

different methods applied to calibrate the reserve risk to each LoB. 

For the LoB Motor, vehicle liability, the data sample included data from 327 

undertakings and from 106 undertakings for LoB Motor, other classes, in both 

cases gross of reinsurance. The different methods were applied to the collected 

data. 

For Motor, vehicle liability methods 1 and 2 provided a relatively poor fit but 

with some credibility in the tail, while method 4 gave significantly lower factors 

than all the other methods. Therefore, the technical factor was chosen as the 

average of methods 1, 2, 3, 5 and 6, leading to the standard parameter for 

reserve risk of 11%. 

For Motor, others methods 1 and 2 provided a relatively poor fit and again 

method 4 gave significantly lower factors than all the other methods. Therefore 

the technical factor was chosen as the average of methods 1, 5 and 6, leading 

to the standard parameter for reserve risk of 20%. 

In the next chapters, different methods will be used to estimate the undertaking 

specific parameters for these two LoB, that would eventually substitute the 11% 

and the 20% in the standard formula, for vehicle liability and other classes, 

respectively. 

In order to do so, the CEIOPS’ Advice on technical provisions – CEIOPS 

(2009b) – was taken into consideration to ensure that data complies with the 
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standards for data quality, in terms of appropriateness, completeness and 

accuracy of data. 

Furthermore, the same applicable assumptions considered for reserve risk 

calibration in CEIOPS (2010b) were applied in this analysis, namely: 

• Expenses are not considered in the run-off triangles used to derive the 

reserve risk standard deviation but are included in the reserve best 

estimate in the standard formula. Expenses are expected to be less 

volatile than the claims and as result applying the estimate for reserve 

risk to both claims and expenses reserves is being conservative; 

• No explicit allowance was made for inflation; it was assumed that 

inflationary experience in the period 2000 to 2012 was representative of 

the inflation that might occur. 

In order to obtain 100% credibility for the parameters estimates, the number of 

years of historical data to be used is at least 15 for vehicle liability and 10 for 

other classes – see CEIOPS (2010a). However, It must be assured that data 

from each year is coherent and comparable; otherwise the results may prove 

meaningless.  

Due to relevant changes in the company’s claims handling and settling 

processes, only the last 13 years of historical data were considered, which 

means that a credibility factor will be applied to the USP for Motor, Vehicle 

Liability, as explained in section 2.2.3.. 
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4. METHODS FOR RESERVE RISK ESTIMATION 
 

When performing the ORSA exercise, (re)insurers are expected to define their 

overall solvency needs, which implies the choice of a relevant time horizon. 

While the quantitative requirements are related to the first pillar of the directive 

and therefore to a 1-year time horizon, the forward looking perspective within 

ORSA requires to look beyond this period. 

Accordingly we can consider: 

• Single-period solvency – in the regulatory sense, having enough own 

funds to avoid economic bankruptcy over 1 year with a 99.5% threshold; 

• Multi-year solvency – having enough own funds to avoid economic 

bankruptcy over the whole time horizon with a p threshold. 

The reserve risk estimation was first approached in a multi-year perspective, by 

applying different stochastic methods to estimate the ultimate reserve risk 

parameter. 

Then the analysis was shortened to the one-year time horizon for the specific 

purpose of obtaining the USP. 

 

4.1. Setting up the model 
 

Let us consider that annual data is available. Different periods of time may be 

considered with the respective adjustments in the notation and formulae. 

Cik – accumulated total claims amount of accident year i, i=1, 2, …, I , either 

paid or incurred up to development year k, k=1, 2, …, I-i+1. 
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The set of available data can be grouped as follows: 

 
Accident 

year 
Development year 

1 2 … k … I-1 I 
1 C11 C12 … C1k … C1,I-1 C1I 
2 C21 C22 … C2k … C1,I-1  
… … … … … …   
i Ci1 Ci2 … Cik    
… … … …     
I-1 CI-1,1 CI-1,2      
I CI1       
Table 1 - Triangle of accumulated claims 

 

For the purpose of estimating the reserve risk, tails in the run-off triangles were 

not considered. It was assumed that the tail has the same estimated variability. 

The chain-ladder method is the basis for the methods that will be considered, 

therefore let us summarize the method for obtaining a deterministic estimation 

of the reserves: 

i. Estimate the chain ladder development factors: 

f̂k =
Ci,k+1i=1

I−k
∑

Ci,ki=1

I−k
∑

 , k=1,…,I-1  

ii. Obtain the estimation for the accumulated claims in the lower triangle of 

the claims data: 

Ĉi,I−i+2 =Ci,I−i+1 f̂I−i+1  , i=2,…,I 

Ĉi,k+1 = Ĉik f̂k  , i=3,…, I and k=I-i+2, I-i+3,…, I-1 

iii. Estimate the outstanding claim reserve for accident year i=2,…,I: 

R̂i = ĈiI −Ci,I+1−i   

iv. The total outstanding claim reserve is given by: 

R̂ = R̂ii=2

I
∑   
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4.2. Stochastic methods for ultimate reserve risk 
 

This chapter presents three stochastic models for claims reserving and reserve 

risk estimation: Mack’s model, Munich Chain Ladder model with an appropriate 

bootstrap simulation technique and the bootstrap simulations for the pure Chain 

Ladder algorithm. 

 

4.2.1. Mack’s Model 
 

Mack (1993) presents a distribution-free formula for the standard error of the 

chain ladder estimates, by considering the first two moments for the cumulative 

payments. 

Mack’s assumptions: 

• E(Ci,k+1 Ci1,...,Ci,k ) =Ci,k fk  , i=1,…,I and k=2,…,I; 

• there is no dependency between accident years; 

• Var(Ci,k+1 Ci1,...,Ci,k ) =Ci,kσ k
2  , i=1,…,I and k=1,…,I-1, where σ k

2  can be 

estimated as follows:  σ̂ k
2 =

1
I − k −1

Cik
Ci,k+1

Cik

− f̂k
"

#
$

%

&
'

2

i=1

I−k

∑  , k=1,…,I-2. 

For the last development year there is not enough data, therefore σ̂ I−1
2  is 

computed in a different way. For the purpose of this work, it was used the 

approximation from Mack (1999). Alternatively, the log-linear regression could 

be used or an appropriate numeric value could be assumed. 
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Under the assumptions above, it can be shown that the mean squared errors 

are: 

mse(R̂i ) = Ĉ
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j=i+1

I

∑
"

#
$$

%

&
''

2σ̂ k
2

f̂k
2

Cnkn=1

I−k
∑k=I+1−i

I−1

∑

"

#

$
$
$
$

%

&

'
'
'
'

)

*
++

,
+
+

-

.
++

/
+
+

i=2

I

∑ . 

 

4.2.2. Bootstrap for Chain Ladder 
 

The Bootstrap technique presented in Efron and Tibshirani (1993), is a simple 

but powerful technique to obtain information from one single sample of data.  

Assuming the observable data to be independent and identically distributed, the 

generated sets of pseudo-data are consistent with the underlying distribution of 

the observed data. Therefore, statistics of interest can be obtained.  

Generically, the methodology consists in sampling with replacement from the 

observed data sample, in order to obtain a sufficient number of sets of pseudo-

data.  

England and Verral (1999) present a relevant application of the bootstrap to 

obtain the estimation error of reserve estimates from the Chain-Ladder model.  

Very often, data are not identically distributed, since the means and/or 

variances may depend on covariates, therefore it is common to resample 

residuals instead, which are usually independent and identically distributed or 

can be adjusted for that purpose. 
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England and Verral (2002) suggest the following bootstrap procedure: 

- Obtain the standard chain-ladder development factors from cumulative 

data; 

- Obtain cumulative fitted value for the past triangle; 

- Obtain incremental fitted values, m̂ik , for the past triangle by differencing; 

- Calculate the unscaled Pearson residuals for the past triangle:  

rik
(P ) =

Cik − m̂ik

m̂ik

  

- Estimate the Pearson scale parameter ϕ, by: 

φ̂ =

rik
(P )( )

2

i,kI−i+1
∑

1
2
I(I +1)− 2I +1

 

- Adjust the Pearson residuals using: 

rik
adj =

I
1
2
I(I +1)− 2I +1

× rik
(P )  

- Begin the iterative loop, to be repeated N times: 

i. Resample the adjusted residuals with replacement, creating a new 

past triangle of residuals; 

ii. For each cell in the past triangle, obtain a set of pseudo-incremental 

data by solving the unscaled Pearson residuals in order to Cij, i.e. 

Cik = m̂ik + rik
(P ). m̂ik ; 

iii. Create the corresponding set of pseudo-cumulative data; 

iv. Apply the standard chain-ladder method to the pseudo-cumulative 

data to obtain a future triangle of cumulative payments; 
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v. Obtain from iv) the future triangle of incremental payments by 

differencing. This values will be used as the mean, mij , when 

simulating the process distribution; 

vi. For each future payment cell (i,j), simulate a payment from the 

process distribution with mean mij  and variance φ̂ mij ; 

vii. Sum the simulated payments in the future triangle by origin year and 

overall to give the origin year and the total reserve estimates 

respectively; 

viii. Store the results, and return to the start of the iterative loop. 

The standard deviation of the stored results gives an estimate of the prediction 

error. 

 

Sometimes, the residuals after adjustment may still have inherited skewness of 

the original data. In these situations the bootstrap procedure presented above 

can be misleading since it uses an approximation to the normal distribution. 

Pinheiro et al. (2003) deal with this situation by introducing an extra step to the 

bootstrap procedure. 

 

4.2.3.  Bootstrap for Munich Chain Ladder 
 

Quarg and Mack (2004) present a new approach to claims reserving 

methodologies, that aims at reducing the gap between IBNR and IBNER 

(Incurred But Not Reported and Incurred But Not Enough Reported, 

respectively) projections based on paid losses and based on incurred losses, 
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which are often far different from each other. For practical reasons, companies 

tend to choose one of the run-off triangles, ignoring the result that would be 

obtained if the other run-off triangle would be used.  

This approach assumes that Mack’s model is applicable to both paid and 

incurred losses triangles and it shows that commonly there are positive 

correlations between paid and incurred losses that are ignored and that should 

be taken into account in the reserving process. 

Instead of performing two separate chain ladder calculations (SCL), the Munich 

Chain Ladder (MCL) combines the paid-loss (P) and incurred-loss (I) data types 

by taking (P/I) and (I/P) ratios into account when doing projections. 

The point of MCL is to estimate individual development factors fik  that are 

different for each origin and development year, as an alternative for a common 

factor for each development year fk . Using the observed correlations between 

the two run-off triangles, the first diagonal is projected for both triangles. The 

next diagonals are projected with the implicit projected correlation of the last 

diagonal and the process is repeated recursively until the last cell of each 

triangle has been projected.  

The application of this method to different data sets, including the data sets 

used for this work, shows evidence that the MCL projections for paid and 

incurred losses result in closer values than the SCL projections, which is to say 

that using MCL we obtain P/I ratios closer to 100% (in the long run we expect to 

pay all and not more than the incurred losses). 

However this method is only applicable if we assume that initial reserves are 

correctly estimated, otherwise the run-off triangle will reflect systematic 
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corrections, either increases in the incurred loss as a result of underestimated 

case reserves or reductions as a result of overestimated case reserves. These 

systematic corrections will inadequately influence the P/I and the I/P ratios, thus 

applying the method will result in meaningless projections. 

 

Steps for MCL application: 

i. As initial data, consider the triangles of paid and incurred data with the 

same structure as presented in Table 1; 

ii. For each run-off triangle, calculate the development factors and the 

standard deviation parameters as in Mack’s Model; 

iii. Calculate for each development year the observed P/I and I/P ratios; 

iv. Adjust the observed paid losses with the observed I/P ratios and the 

incurred losses with the observed P/I ratios, for the respective 

development year and then obtain their standard deviations (ρP and ρI 

respectively); 

v. Compute the conditional residuals for P, I, P/I and I/P, using the 

parameters σP, σI, ρP and ρI; 

vi. Using the residuals of the P and I/P triangles draw the paid residual plot 

and obtain the correlation (λP), similarly, with the I and the P/I triangle 

draw the incurred plot and obtain it’s correlation (λI); 

vii. Recursively, using the estimated correlations, correct the development 

factors for the next development year and project the next diagonal of 

paid and incurred losses, until the ultimate losses are projected for all 

origin years. 
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For detailed explanation and formulae see Quarg and Mack (2004). 

The steps above allow us to obtain deterministic projections for the ultimate 

reserves, using paid and incurred losses. However, for the purpose of the 

present work, it is still necessary to estimate the risk implicit in this method. 

Liu and Verral (2010) present a bootstrap approach to estimate the predictive 

distributions of reserves produced by the MCL, by applying bootstrapping 

methods to dependent data and consequently taking correlations into account. 

Considering the categorization of the models introduced by England and Verral 

(2007) into recursive and non-recursive, since the MCL is a recursive model, 

Liu and Verral follow their approach of bootstrap for recursive models. 

However, since we are dealing with two sets of correlated data, independence 

assumption is not met and therefore the normal bootstrap technique cannot be 

used. The correlation observed in the data represents real dependence 

between the paid and incurred claims and it should remain unchanged within 

any resampling procedure. 

 

Bootstrap Algorithm for MCL 

After applying the MCL method to obtain the residuals for the four data sets, 

adjust the Pearson residual estimates to correct the bootstrap bias and group 

all four adjusted residuals together. 

Then start the iterative loop to be repeated N times (N≥10000), consisting of 

the following steps: 

i. Randomly select from the grouped residuals with replacement, so that a 

pseudo sample of the grouped residuals is created. This is the key step 
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of this bootstrap methodology as it allows to generate pseudo samples of 

the four residuals that reflect the same correlation structure from the 

observed data; 

ii. Calculate the pseudo samples of the four triangles by inverting the 

Pearson residuals; 

iii. Compute the CP
i,j and CI

i,j weighted averages of the bootstrap paid and 

incurred development factors, where CP
i,j  and CI

i,j are the paid and 

incurred losses for origin year i and development year j, respectively; 

iv. Obtain the corresponding correlation coefficient for the resampled data 

using the pseudo residuals; 

v. Calculate the variances for the bootstrap data; 

vi. Compute the bootstrap development factors adjusted by the correlation 

coefficient between the pseudo data for the resampled bootstrap paid 

and incurred run-off triangles; 

vii. Recursively, simulate a future payment for each cell in the lower triangle 

for both paid and incurred claims, from the process distribution with the 

mean and the variance obtained in vi), assuming a normal distribution; 

viii. Sum the simulated payments in the future triangle by origin and overall, 

to obtain the origin year and the total reserve estimates, respectively; 

ix. Store the results and return to the start of the iterative loop; 

The standard deviation of the stored results gives an estimate of the prediction 

error. For detailed explanation and formulae see Liu and Verral (2010). 
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4.3. Methods for one-year reserve risk 
 

For the 1-year reserve risk, CEIOPS (2010a) details the three different methods 

that are currently accepted for purposes of USP estimation. 

 

4.3.1. Method 1 
 

This method assumes that the variance of the best estimate for claims 

outstanding in one year plus the incremental claims paid over the one year is 

proportional to the current best estimate for claims outstanding.  

It essentially consists in reviewing the run-off of the claims reserves based on 

the undertaking’s data of historical claims provisions and payments, requiring at 

least five years of covered data, in order to compare the claims provision at the 

start of a financial year with the sum of the undertaking’s own claims provision 

at the end of the financial year plus claims paid during that same year, and from 

there obtain an estimate for the constant of proportionality. 

Lets first consider the following relationships: 

VY ,lob = PCOlob,i, j
i+ j=Y+1
∑ , 

RY ,lob = PCOlob,i, j
i+ j=Y+2
j≠1

∑ + Ilob,i, j
i+ j=Y+2
j≠1

∑ , 

where: 

VY ,lob = Volume measure by calendar year Y and LoB. 
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PCOlob,i, j = Best estimate for claims outstanding by LoB for accident year i and 

development year j. 

RY ,lob= Best  estimate for outstanding claims and incremental paid claims for the 

exposures covered by the volume measure, but in one year’s time by calendar 

year and LoB. 

Ilob,i, j = Incremental paid claims by LoB, for accident year i and development 

year j. 

The behaviour of losses is formulated as: 

lobYloblobYlobYlobY VVR ,,,, εβ+= , 

where: 

βlob
2 = Constant of proportionality for the variance of the best estimate for claims 

outstanding in one year plus the incremental claims paid over the one year by 

LoB. 

εY ,lob = An unspecified random variable with distribution with mean zero and unit 

variance. 

The estimator forβlob  is then: 

β̂lob =
1

Nlob −1
(RY ,lob −VY ,lob )

2

VY ,lobY
∑ , 

where: 

Nlob = The number of data points available by LoB where there is both a value 

of VY,lob and RY,lob. 

Note that in this formulae RY ,lob  refers to the past observed values. 

Finally, the one-year reserve risk is estimated using: 
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σ (U,res,lob) =
β̂lob
PCOlob

, 

where: 

PCOlob =The best estimate for claims outstanding by LoB. 

 

This method tends to produce a higher USP factor when observed claims run-

off is different from that initially expected. Moreover, it produces a USP factor 

that will be applied to future reserves, therefore it’s only valid if the claims 

reserving methodology (implicit in the historical data use for the estimation) was 

the same along the years used for the estimation and if it remains the same in 

the future. 

 

4.3.2. Method 2 
 

The second method is based on the mean squared error of prediction (MSEP) 

of the claims development result over a one-year time horizon using the Merz-

Wüthrich method presented by Merz and Wüthrich (2008). 

In this method, the reserve risk factor is calculated as the square root of the 

estimated mean squared error, divided by the undertaking’s own claims 

provision: 

σ (U,res,lob) =
MSEP
PCOlob

 

 

Where the MSEP is the one obtained with Merz-Wüthrich method. 
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The use of this method is only possible when the claims triangle is consistent 

with the Merz-Wüthrich model assumptions. 

4.3.3. Method 3 
 

This method is similar to method 2, except that the square root of the estimated 

mean squared error is now divided by the outstanding claims reserve estimated 

using a chain-ladder projection method: 

σ (U,res,lob) =
MSEP

CLPCOlob

 

 

Where CLPCOlob is the best estimate for claims outstanding estimated using the 

chain ladder method applied to paid claim developments. 

Method 3 produces a higher risk factor than method 2 when the undertaking’s 

own claims provision is higher than the provision implied by a chain-ladder 

projection. Conversely, if the undertaking’s own claims provision is lower than 

the provision implied by a chain-ladder projection, then method 2 is the one that 

produces a higher risk factor. 

From a theoretical perspective Method 3 is more adequate then 2, because it 

applies an estimate of the MSEP that was developed specifically for the pure 

chain ladder method, therefore, applying it to a different model might not reflect 

correctly the actual reserve risk. However, the final use of the reserve risk factor 

is to be applied to the best estimate, which usually is not obtained with the pure 

chain ladder. 
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5. APPLICATION TO MOTOR, VEHICLE LIABILITY AND 
MOTOR, OTHERS 

 

The different models and methods presented in the previous chapters were 

applied to the company’s data for these two lines of business. 

Information on claims payments and case reserves, both net of 

reimbursements, by origin and development year, for accidents occurred from 

2000 to 2012, was collected and treated using the software SAS Enterprise 

Guide and Microsoft Excel.  

Due to the different behaviors of sub-lines of business and in order to obtain 

more accurate values to the ultimate reserve risk, data was collected 

separately. LoB Motor, Vehicle Liability was separated in Bodily Injury (BI), 

Material Damages (MD) and IDS – accidents that follow the direct 

compensation to the policy holder system. LoB Motor, others was separated in 

Own Damage and Passengers. 

For the one-year reserve risk, data is to be considered grouped by the two lines 

of business, for consistency with the approach used in CEIOP’s documents.  

The application of the theoretic models present in the previous chapters was 

performed using the statistical software R for Windows GUI front-end. 

Additional calculations and the implementation of the capital charge 

calculations were performed using Microsoft Excel. 

In order to preserve the confidentiality of the data, this chapter will only present 

the final results in terms of reserve risk estimation. 
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5.1. Results: Ultimate Reserve Risk  
 

For the estimation of the ultimate reserve risk, a great use of the R® package 

‘ChainLadder’ was done. 

This package has implemented several functions for claims reserving, namely 

the Mack’ Model, the MCL Model and the Bootstrap for Chain Ladder: 

- MackChainLadder – based on Mack (1993) and Mack (1999); 

- BootChainLadder – based on England and Verral (2002); 

- MunichChainLadder – based on Quarg and Mack (2004). 

The use of these functions is exemplified in Annex 2. 

The bootstrap procedure used for projections obtained via the MCL method 

was fully implemented as can be seen in Annex 3. 

When applying these methods to the data available, two relevant situations 

were detected: 

- Bodily injury: the correlation between payments and incurred claims was 

negative. This is due to prudent case reserve estimates that are later 

reduced, resulting in reduction of claims incurred while payments 

continuously increase. As a consequence, the MCL method is not 

applicable, since it assumes and uses the positive correlation between 

the two data sets to approximate the resulting projections. 

- Own Damage: a couple of cells in the incremental payments, in the last 

developments years are negative due to some reimbursements. 

Whereas there is no problem for Mack and MCL methods, for the Chain 

Ladder Bootstrap it resulted in a very high reserve risk factor.  
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The residuals distribution and the correlations obtained by the MCL method can 

be found in annexes 4 to 8. 

The overall results obtained are presented in the tables bellow. 

 

Reserve Risk (σ%) Mack MCL Bootstrap 
Bodily Injury 13.25% n.a. 15.23% 
Material Damage 12.97% 13.56% 11.28% 
IDS 22.22% 25.05% 18.83% 

Own Damage 18.05% 18.69% 78.51% 

Passengers 36.68% 48.38% 28.26% 
Table 2 - Ultimate reserve risk factors 

 

The Bootstrap procedure shows the lower factors, except for Bodily Injury and 

Own Damage for the reasons mentioned above. 

On the other hand, as expected, the MCL produces higher factors. The MCL 

ultimate projections are usually lower than the ones obtained in the other 

methods and the standard deviation is not lower enough to compensate, so the 

ratio – our reserve risk – is higher. 

The Passengers data has a smaller size therefore the respective run-off triangle 

may not be sound enough to produce meaningful results.  

Furthermore, most of the accidents result in low costs for the company, while 

some result in very high costs, consequently the run-off triangle is expected to 

show more variability. 
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5.2. Results: One-year Reserve Risk 
 

The one-year reserve risk estimation should be performed using the claims 

payments run-off triangles for two data sets: vehicle liability and other.  

Method 1 was computed as indicated in CEIOPS (2010a), using 8 years of 

historical data grouped for the two data sets. An example of the data used is 

illustrated in Annex 9. 

However, for Method 2 and 3 a different approach was taken. 

Given two claims run-off triangles, their chain-ladder projections only add up to 

the projections of the combined triangle under some specific conditions 

discussed by Ajne (1994). Additionally, Ajne (1994) presents sufficient 

conditions for inequality between the combined projection vector and the sum of 

the two original projections vectors. 

For Motor, others, considering the combined run-off results in approximately the 

same reserves as adding up the reserves for Own Damage and Passengers. 

However the same doesn’t apply to Motor, vehicle liability, mainly due to the 

different patterns of Bodily Injury data when compared to Material Damage and 

IDS data. 

Bodily Injury has a longer tail and the payments volume has a smaller weight in 

the first developments years. This is sufficient condition for the chain-ladder 

projections of the combined portfolio to be significantly less than the sum of the 

corresponding projections of the individual data sets (Theorem 2 in Anje (1994)). 

For this reason, calculations were performed separately and correlations for the 

three components of this LoB were estimated in a best approximation possible 

basis, in order to obtain the overall standard deviation. 
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The correlations were estimated from the ultimate reserves for each origin year, 

resulting in correlations of 0.62, 0.07 and -0.43 for BI and MD, BI and IDS and 

MD and IDS, respectively. 

To apply method 2 and 3 it was necessary to calculate the MSEP using the 

Merz-Wüthrich method (see Annex 10). 

While method 3 uses the best estimate for claims outstanding obtained via 

Chain Ladder – which is to say via Mack’s model –, method 2 considers the 

best estimate obtained using other methods, namely the MCL. 

The results follow calculations in section 2.2.3. and are presented below. 

 

Motor, Vehicle Liability Method 1 Method 2 
(MCL) 

Method 3 
(Mack) 

σ(U,res,MotorVehicleLiability)  9.84% 9.41% 9.30% 
credibility factor 0.59 0.92 

σ(res,MotorVehicleLiability) 10.32% 9.54% 9.44% 
Table 3 - One-year reserve risk factors for LoB Motor, Vehicle Liability 

 

Motor, Others Method 1 Method 2 
(MCL) 

Method 3 
(Mack) 

σ(U,res,MotorOthers) 20.40% 16.88% 15.64% 
credibility factor 0.81 1.00 
σ(res,MotorOthers) 20.32% 16.88% 15.64% 

Table 4 - One-year reserve risk factors for LoB Motor, Others 

 
The estimates obtained are to be compared with the standard parameters of 

11% and 20% for Motor, Vehicle Liability and Motor, Others, respectively. Since 

the number of historical data available (8 years for method 1 and 13 for 

methods 2 and 3) is not yet fully met for all methods and LoBs, the respective 

credibility factors in CEIOPS (2009a) must be applied. 
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Method 1 produces higher factors than the other methods, in both cases very 

close to the standard parameters.  

Method 2 and Method 3 origin factors are close and significantly better that the 

standard parameters, being slightly higher when using MCL best estimates. 

As a reference the Portuguese Regulator estimates for the Portuguese 

undertakings 13.2% for Motor Vehicle Liability and 16.9% for Motor Other, 

considering a simple average of the estimates obtained for each undertaking, or 

10.0% and 12.9% respectively, if considering a weighted average. 

In terms of capital requirements (section 3.2.), the impacts are as follows: 

 

Reserve 
Risk M.T.L. 

Reserve Risk 
M.Others 

Capital 
gains 

Standard Parameter 11.00% 20.0% - 
USP - Method 1 10.32% 20.3% 3.3% 
USP - Method 2 (MCL) 9.54% 16.9% 7.7% 
USP - Method 3 (Mack) 9.44% 15.6% 8.4% 

Table 5 - Impact of USP in capital charges for the Non-Life module 

 
USP calculated with method 1 has a smaller impact. The factor for Motor, Other 

is slightly higher than the standard but the one for Motor, Vehicle liability is 

lower than the standard and the best estimate for claims outstanding weights 

more in the total best estimate, resulting in a gain of capital of 3.3%. 

The gains with method 2 and 3 are considerably higher, representing around 

8.4% for method 3 and 7.7% for method 2. 

Different correlations were tested. In a pessimistic scenario (0.8 for BI and MD, 

0.15 for BI and IDS and independence for MD and IDS) the capital gains were 

6.2% and 6.9% for Method 2 and Method 3, respectively. An optimistic scenario 

of independence results in capital gains of 11.2% and 11.8%, respectively. 
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6. CONCLUSIONS AND FURTHER DEVELOPMENTS 
 

The aim of this work was to understand the impact that the undertaking specific 

parameters may have in Solvency II capital requirements for LoBs Motor 

Vehicle Liability and Motor Others. 

The Directive and all the documentation supporting ORSA and the USP 

confirmed the complexity and extent of this project. 

The literature on claims reserving is much diversified but due to time limitations, 

it was necessary to focus on a restrict number of methods. Therefore the 

methods more commonly used and more explored were the ones selected. 

The results obtained seem to support the intuitive idea that using USP actually 

results in capital gains for the company, however the use of an USP has to go 

over an approval process from the regulator. The company must select the 

method that believes to be more adequate to its own data and the selection of a 

particular method has to be explained to the regulator. The regulator needs 

evidence that the USP better reflects the company’s risk profile. 

Across this work some aspects had to be simplified, however they should be 

analysed more carefully in the future. Further developments for this work would 

be: 

1. To consider a tail in the run-off triangles and in the reserve risk estimation. In 

this work, it was assumed that the tail has the same estimated variability; 

2. To develop methodologies similar to Merz-Wüthrich method, but considering 

claims projections with models other than Chain Ladder. 
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ANNEXES 

Annex 1. CorrLob – Matrix of correlations between LoBs 
 

CorrLob 1 2 3 4 5 6 7 8 9 10 11 12 
1: Motor vehicle 
liability 100% 50% 50% 25% 50% 25% 50% 25% 50% 25% 25% 25% 

2: Other motor 50% 100% 25% 25% 25% 25% 50% 50% 50% 25% 25% 25% 

3: MAT 50% 25% 100% 25% 25% 25% 25% 50% 50% 25% 25% 50% 

4: Fire 25% 25% 25% 100% 25% 25% 25% 50% 50% 50% 25% 50% 

5: 3rd party liability 50% 25% 25% 25% 100% 50% 50% 25% 50% 25% 50% 25% 

6: Credit 25% 25% 25% 25% 50% 100% 50% 25% 50% 25% 50% 25% 

7: Legal exp. 50% 50% 25% 25% 50% 50% 100% 25% 50% 25% 50% 25% 

8: Assistance 25% 50% 50% 50% 25% 25% 25% 100% 50% 50% 25% 25% 

9: Miscellaneous. 50% 50% 50% 50% 50% 50% 50% 50% 100% 25% 25% 50% 
10:Np reins. 
(property) 25% 25% 25% 50% 25% 25% 25% 50% 25% 100% 25% 25% 
11:Np reins. 
(casualty) 25% 25% 25% 25% 50% 50% 50% 25% 25% 25% 100% 25% 

12:Np reins. (MAT) 25% 25% 50% 50% 25% 25% 25% 25% 50% 25% 25% 100% 

Source: QIS5 Calibration Paper – CEIOPS (2010c) – page 354/3841 

                                                
1 CEIOPS has also published a calibration paper which includes a description on the derivation of these correlations, 
which is available on CEIOPS’ website under 
http://www.ceiops.eu/media/files/consultations/QIS/QIS3/QIS3CalibrationPapers.pdf 
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Annex 2. Using the R package ‘ChainLadder’ 
 
 
#################### ChainLadder Package######################### 
suppressPackageStartupMessages(library(ChainLadder)) 
#READING PAYMENTS 
#In order to preserve the confidentiality of the data the paid and incurred triangles here 
#presented correspond to the data use by Quarg and Mack (2004) 
PAID=matrix(c(576,1804,1970,2024,2074,2102,2131, 
          866,1948,2162,2232,2284,2348,NA, 
          1412,3758,4252,4416,4494,NA,NA, 
          2286,5292,5724,5850,NA,NA,NA, 
          1868,3778,4648,NA,NA,NA,NA, 
          1442,4010,NA,NA,NA,NA,NA, 
          2044,NA,NA,NA,NA,NA,NA),nrow=7,ncol=7,byrow=TRUE) 
#READING INCURRED COSTS 
INC=matrix(c(978,2104,2134,2144,2174,2182,2174, 
          1844,2552,2466,2480,2508,2454,NA, 
          2904,4354,4698,4600,4644,NA,NA, 
          3502,5958,6070,6142,NA,NA,NA, 
          2812,4882,4852,NA,NA,NA,NA, 
          2642,4406,NA,NA,NA,NA,NA, 
          5022,NA,NA,NA,NA,NA,NA),nrow=7,ncol=7,byrow=TRUE) 
#Mack Model 
Mack <- MackChainLadder(Triangle=PAID, est.sigma="Mack") 
write.table(Mack$FullTriangle , file="MackFullTriangle.csv" , sep=";")  #Ultimate projections 
write.table(Mack$Mack.S.E , file="MackSE.csv",sep=";")    #Standard Error 
plot(Mack, lattice=TRUE)   
#Munich Chain Ladder Model 
MCL <- MunichChainLadder(PAID,INC, est.sigmaP="Mack",est.sigmaI="Mack") 
write.table(MCL$MCLPaid , file="MCLDCPaid.csv" , sep=";")          #Ult. projections Paid 
write.table(MCL$MCLIncurred , file="MCLDCIncurred.csv" , sep=";")    #Ult. projections Incurred 
plot(MCL) #Results and paid/incurred residuals regression 
#Bootstrap for Chain Ladder 
Boot <- BootChainLadder(PAID,R=10000,process.distr=c("od.pois")) 
write.table(Boot$IBNR.Totals , file="BootIBNR.csv" , sep=";")  #IBNR projections 
plot(BootDC)   
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Annex 3. Bootstrap for Munich Chain Ladder 
 

 
#################### Bootstrap for Munich Chain Ladder ######################### 
#Continuing from Annex 2 
nr=nrow(PAID);nc=ncol(PAID) 
#1-period factors, Q and Qinverse 
FP<-matrix(NA,nrow=nr,ncol=nc) 
for(j in 1:nc) FP[,(j-1)]=PAID[,j]/PAID[,(j-1)] 
FI<-matrix(NA,nrow=nr,ncol=nc) 
for(j in 1:nc) FI[,(j-1)]=INC[,j]/INC[,(j-1)] 
Q<-PAID/INC 
QInv<-1/Q 
############## Bootstrap  #################### 
##### 0. Obtaining the 4 residuals ##### 
PRes<-t(matrix(MCL$PaidResiduals,ncol=ncol(PAID),byrow=TRUE)) 
IRes<-t(matrix(MCL$IncurredResiduals,ncol=ncol(PAID),byrow=TRUE)) 
QRes<-t(matrix(MCL$QResiduals,ncol=ncol(PAID),byrow=TRUE)) 
QInvRes<-t(matrix(MCL$QinverseResiduals,ncol=ncol(PAID),byrow=TRUE)) 
##### 1. Adjust the Pearson Residuals ##### 
#Calculating the adjustmet factors 
Adjust <- matrix(0,ncol=nr, nrow=nc) 
for( j in 1:(nr-2) ) Adjust[,j] <- sqrt((nc-j)/(nc-j-1)) 
#Obtaining the adjusted residuals 
AdjPRes <- PRes*Adjust 
AdjIRes <- IRes*Adjust 
AdjQRes <- QRes*Adjust 
AdjQInvRes <- QInvRes*Adjust 
for (i in 1:nr){AdjQRes[i,(nr-i+1)]<-NA ;AdjQInvRes[i,(nr-i+1)]<-NA}    
##### 2. Grouping the residuals ##### 
auxP <-matrix(AdjPRes[(AdjPRes!=0 & !is.na(AdjPRes)) ],ncol=1,byrow=TRUE) 
auxI <-matrix(AdjIRes[(AdjIRes!=0 & !is.na(AdjIRes))],ncol=1,byrow=TRUE) 
auxQ <-matrix(AdjQRes[(AdjQRes!=0 & !is.na(AdjQRes))],ncol=1,byrow=TRUE) 
auxQInv <-matrix(AdjQInvRes[(AdjQInvRes!=0 & !is.na(AdjQInvRes))],ncol=1,byrow=TRUE) 
AllRes<-cbind(auxP,auxI,auxQInv,auxQ)  
##### 3. LOOP #####  
Nboot<-10000 
originP<-matrix(NA,nrow=Nboot,ncol=nc) 
originI<-matrix(NA,nrow=Nboot,ncol=nc) 
totalP<-matrix(NA,nrow=Nboot,ncol=1) 
totalI<-matrix(NA,nrow=Nboot,ncol=1)  
for (N in 1:Nboot){ 
  #Obtaining bootstrap residuals 
 nres <- nrow(AllRes) 
  nsam <- (nc-1)*nc/2 
  auxiliar <- sample(1:nres,nsam,replace=T) 
  ItRes<-matrix(0, nrow=nsam, ncol=4) 
 for(i in 1:nsam){  
  ItRes[i,]<-AllRes[auxiliar[i],] 
  } 
 #transforming bootstrap residuals vectors in matrixs 
  MatResP<-matrix(NA, nrow=nr, ncol=nc) 
  MatResI<-matrix(NA, nrow=nr, ncol=nc) 
  MatResQ<-matrix(NA, nrow=nr, ncol=nc) 
  MatResQInv<-matrix(NA, nrow=nr, ncol=nc) 
  for(j in 1:nc){ 
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  i<-1 
  while(i<=nc-j){ 
  MatResP[i,j]<-ItRes[nsam-((nc+1-j)*(nc-j)/2)+i,1] 
  MatResI[i,j]<-ItRes[nsam-((nc+1-j)*(nc-j)/2)+i,2] 
  MatResQInv[i,j]<-ItRes[nsam-((nc+1-j)*(nc-j)/2)+i,3] 
  MatResQ[i,j]<-ItRes[nsam-((nc+1-j)*(nc-j)/2)+i,4] 
  i<-i+1 
  } 
  } 
  #obtaining boostrap increment ratios  
  MatRatiosP<-matrix(NA, nrow=nr, ncol=nc) 
  MatRatiosI<-matrix(NA, nrow=nr, ncol=nc) 
  MatRatiosQ<-matrix(NA, nrow=nr, ncol=nc) 
  MatRatiosQInv<-matrix(NA, nrow=nr, ncol=nc) 
for(j in 1:(nc-1)){ 
 i<-1 
 while(i<=nc-j){ 
 MatRatiosP[i,j]<-(MatResP[i,j]*Mack$sigma[j])/sqrt(PAID[i,j])+Mack$f[j] 
 MatRatiosI[i,j]<-(MatResI[i,j]*MackInc$sigma[j])/sqrt(INC[i,j])+MackInc$f[j] 
 MatRatiosQ[i,j]<-(MatResQ[i,j]*MCL$rhoI.sigma[j])/sqrt(INC[i,j])+MCL$q.f[j] 
MatRatiosQInv[i,j]<- (MatResQInv[i,j]*MCL$rhoP.sigma[j])/sqrt(PAID[i,j])+MCL$qinverse.f[j] 
 i<-i+1 
 } 
 } 
 #obtaining bootstrap development factors  
BootfP<-rep(0,nc);BootfI<-rep(0,nc);BootfQ<-rep(0,nc); BootfQInv<-rep(0,nc) 
  sumP<-rep(NA,nc);sumI<-rep(NA,nc) 
  for(j in 1:(nc-1)){ 
  sumP[j]<-colSums(PAID,na.rm=TRUE)[j]-PAID[nc-j+1,j] 
  sumI[j]<-colSums(INC,na.rm=TRUE)[j]-INC[nc-j+1,j] 
  i<-1 
  while(i<=nc-j){ 
   BootfP[j]<- BootfP[j]+(PAID[i,j]/sumP[j])*MatRatiosP[i,j] 
   BootfI[j]<- BootfI[j]+(INC[i,j]/sumI[j])*MatRatiosI[i,j] 
   BootfQ[j]<- BootfQ[j]+(INC[i,j]/sumI[j])*MatRatiosQ[i,j] 
   BootfQInv[j]<- BootfQInv[j] + (PAID[i,j]/sumP[j])*MatRatiosQInv[i,j] 
   i<-i+1 
  } 
  }  
#obtaining the bootstrap CORRELATION COEFFICIENTS 
LambdaP<-  sum(MatResQInv*MatResP,na.rm=TRUE)/sum(MatResQInv^2,na.rm=TRUE) 
LambdaI<-sum(MatResQ*MatResI,na.rm=TRUE)/sum(MatResQ^2,na.rm=TRUE) 
  #Obtaining the VARIANCES 
  VarP<-rep(0,nc); VarI<-rep(0,nc);  
 for(j in 1:(nc-2)){ 
  i<-1 
  while(i<=nc-j){ 
   VarP[j]<-VarP[j]+(PAID[i,j]*(MatRatiosP[i,j]-BootfP[j])^2)/(nc-j-1) 
   VarI[j]<-VarI[j]+(INC[i,j]*(MatRatiosI[i,j]-BootfI[j])^2)/(nc-j-1) 
   i<-i+1 
  } 
  } 
  VarQ<-rep(0,nc); VarQInv<-rep(0,nc) 
  for(j in 1:(nc-1)){ 
  i<-1 
  while(i<=nc-j){ 
   VarQ[j]<-VarQ[j]+(INC[i,j]*(MatRatiosQ[i,j]-BootfQ[j])^2)/(nc-j) 
VarQInv[j]<-VarQInv[j]+(PAID[i,j]*(MatRatiosQInv[i,j]-BootfQInv[j])^2)/(nc-j) 
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   i<-i+1 
  } 
  }  
sigmaP<-sqrt(VarP) 
  sigmaI<-sqrt(VarI) 
  tauI<-sqrt(VarQ) 
  tauP<-sqrt(VarQInv) 
  #estimating the last ratio sigma/tau 
sigtauP<-sigmaP/tauP 
  sigtauI<-sigmaI/tauI 
  period<-c(1:nc) 
  fitP<-lm(log(sigtauP) ~ period,na.action=na.exclude) 
  fitI<-lm(log(sigtauI) ~ period,na.action=na.exclude) 
  sigtauP[nc-1]<-exp((nc-1)*fitP$coefficients[2]+fitP$coefficients[1]) 
  sigtauI[nc-1]<-exp((nc-1)*fitI$coefficients[2]+fitI$coefficients[1]) 
  alphaP<-pmax(0,pmin(LambdaP*(sigtauP),0.99)) 
  alphaI<-pmax(0,pmin(LambdaI*(sigtauI),0.99))  
#Obtaining the bootstrap ADJUSTED DEVELOPMENT FACTORS  
  BlambdaP<-matrix(NA, nrow=nr, ncol=nc) 
  BlambdaI<-matrix(NA, nrow=nr, ncol=nc) 
 BPAID<-PAID; BINC<-INC; BRatiosQ<-MatRatiosQ; BRatiosQInv<-MatRatiosQInv 
  for(k in 1:(nc-1)){ 
  j<-k 
  while(j<=(nc-1)){ 
BlambdaP[nr-j+k,j]<-BootfP[j]+alphaP[j]*(BINC[nr-j+k,j]/BPAID[nr-j+k,j]-BootfQInv[j]) 
BlambdaI[nr-j+k,j]<-BootfI[j]+alphaI[j]*(BPAID[nr-j+k,j]/BINC[nr-j+k,j]-BootfQ[j]) 
   BPAID[nr-j+k,j+1]<-BlambdaP[nr-j+k,j]*BPAID[nr-j+k,j] 
   BINC[nr-j+k,j+1]<-BlambdaI[nr-j+k,j]*BINC[nr-j+k,j] 
   j<-j+1 
  }  
  }  
#Obtaining normal distributed observations 
  BPAIDfinal<-PAID; BINCfinal<-INC 
  for(k in 1:(nc-1)){ 
  j<-k 
  while(j<=(nc-1)){ 
           meanP<-BlambdaP[nr-j+k,j]*BPAIDfinal[nr-j+k,j] 
 sdP<-sqrt(VarP[j]*BPAIDfinal[nr-j+k,j]) 
   meanI<-BlambdaI[nr-j+k,j]*BINCfinal[nr-j+k,j] 
   sdI<-sqrt(VarI[j]*BINCfinal[nr-j+k,j]) 
   BPAIDfinal[nr-j+k,j+1]<-rnorm(1,mean=meanP,sd=sdP) 
   BINCfinal[nr-j+k,j+1]<-rnorm(1,mean=meanI,sd=sdI) 
   j<-j+1 
  }  
  }  
#Obtaining the origin year and the total amounts 
  originP[N,]<-BPAIDfinal[,nc] 
originI[N,]<-BINCfinal[,nc] 
totalP[N] <- colSums(BPAIDfinal)[nc] 
  totalI[N] <- colSums(BINCfinal)[nc] 
} 
#averages 
averP<-colMeans(originP) 
averI<-colMeans(originI) 
taverP<-mean(totalP) 
taverI<-mean(totalI) 
#reserves 
reservesP<-averP-c(2131,2348,4494,5850,4648,4010,2044) 
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reservesI<-averI-c(2131,2348,4494,5850,4648,4010,2044) 
totreserveP<-sum(reservesP) 
totreserveI<-sum(reservesI) 
#standard deviations 
stdP<-rep(NA,nrow=1,ncol=(nc-1)) 
for(j in 1:nc-1)stdP[j]=sd(originP[,j+1]) 
stdI<-rep(NA,nrow=1,ncol=(nc-1)) 
for(j in 1:nc-1)stdI[j]=sd(originI[,j+1]) 
totstdP<-sd(totalP) 
totstdI<-sd(totalI)  
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Annex 4. Plots for Bodily Injury 
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Annex 5. Plots for Material Damage 
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Annex 6. Plots for IDS 
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Annex 7. Plots for Own Damage 
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Annex 8. Plots for Passengers 
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Annex 9. Example for Method 1 
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Annex 10. Bootstrap for Merz-Wüthrich 
 
#################### Bootstrap for Merz-Wüthrich ############################## 
diagonal<-function(M){ 
 nc<-ncol(M) 
 diag<-rep(NA,nc) 
 for(j in 1:nc) diag[j]<-M[nc-j+1,j] 
 return(diag) 
} 
nr<-nrow(PAID);nc<-ncol(PAID); last<-diagonal(PAID) 
#Obtaining individual factors and CL Factors 
F<-matrix(NA,nrow=nr,ncol=nc) 
for(j in 1:nc) F[,(j-1)]=PAID[,j]/PAID[,(j-1)] 
sumcol <- colSums(PAID,na.rm=TRUE) 
CLfactor<- rep(NA,(nc-1)) 
for(j in 1:(nc-1)) CLfactor[j]<-sumcol[j+1]/( sumcol[j]-last[j]) 
###Obtaining sigma and beta weights 
nobs<-rep(NA,nc) 
for(j in 1:nc) nobs[j]<-nc-j+1 
auxsigma<-matrix(NA,nrow=nr,ncol=nc) 
for(j in 1:(nc-1)) auxsigma[,j]<-PAID[,j]*(F[,j]-CLfactor[j])^2 
sigma<-sqrt((colSums(auxsigma,na.rm=TRUE))/(nobs-2)) 
sigma[nc-1]<-min(sigma[nc-2],sigma[nc-3],sigma[nc-2]^2/sigma[nc-3]) 
beta<-last/sumcol 
###Obtaining ultimate and reserves 
predPayments<-PAID 
for(j in 2:nc){ 
 i<-nc-j+2 
 while (i <=nc){ 
 predPayments[i,j]<-predPayments[i,j-1]*CLfactor[j-1] 
 i<-i+1 
 } 
} 
ultimate<-predPayments[,nc] 
reserves<-rep(NA,nc) 
for (j in 1:nc) reserves[j]<-ultimate[j]-last[nc-j+1] 
###Obtaining process variance 
auxvar<-matrix(0,nrow=nr,ncol=nc) 
for(j in 2:nc){ 
 i<-nc-j+2 
 while (i <=nc){ 
 auxvar[i,j]<-(sigma[j-1]/CLfactor[j-1])^2/predPayments[i,j-1] 
 i<-i+1 
 } 
} 
proc_var<-sqrt(rowSums(auxvar)*(ultimate^2)) 
proc_var_tot<-sqrt(sum(rowSums(auxvar)*(ultimate^2))) 
###Obtaining estimation total error 
auxerror<-matrix(0,nrow=nr,ncol=nc) 
for(j in 2:nc){ 
 i<-nc-j+2 
 while (i <=nc){ 
 auxerror[i,j]<-(sigma[j-1]/CLfactor[j-1])^2/(sumcol[j-1]-last[j-1]) 
 i<-i+1 
 } 
} 
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auxcov<-matrix(0,nrow=nr,ncol=nc) 
for(j in 3:nc){ 
 i<-2 
 while (i < j){ 
 auxcov[i,j]<-rowSums(auxerror)[i]*ultimate[j]*ultimate[i] 
 i<-i+1 
 } 
} 
sqrtCov<-sqrt(2*sum(auxcov)) 
est_error<-sqrt(rowSums(auxerror))*ultimate 
est_err_tot<-sqrt(sum(est_error^2)+sqrtCov^2) 
###Obtaining mse Mack 
sqrmsep<-sqrt(proc_var^2+est_error^2) 
sqrmseptot<-sqrt(proc_var_tot^2+est_err_tot^2) 
mse<-sqrmsep^2 
msetot<-sqrmseptot^2 
###Obtaining process variance CDR 
auxvarCDR<-matrix(0,nrow=nr,ncol=nc) 
for(j in 2:nc) auxvarCDR[nc-j+2,j]<-auxvar[nc-j+2,j] 
proc_varCDR<-sqrt(rowSums(auxvarCDR)*(ultimate^2)) 
proc_var_totCDR<-sqrt(sum(rowSums(auxvarCDR)*(ultimate^2)))  
###Obtaining estimation total error CDR 
auxerrorCDR<-matrix(0,nrow=nr,ncol=nc) 
for(j in 2:nc) auxerrorCDR[nc-j+2,j]<-auxerror[nc-j+2,j] 
for(j in 3:nc){ 
 i<-nc-j+3 
 while (i <=nc){ 
 auxerrorCDR[i,j]<-auxerror[i,j]*beta[j-1] 
 i<-i+1 
 } 
} 
auxcovCDR<-matrix(0,nrow=nr,ncol=nc) 
for(j in 3:nc){ 
 i<-2 
 while (i < j){ 
 auxcovCDR[i,j]<-rowSums(auxerrorCDR)[i]*ultimate[j]*ultimate[i] 
 i<-i+1 
 } 
} 
sqrtCovCDR<-sqrt(2*sum(auxcovCDR)) 
est_error_CDR<-sqrt(rowSums(auxerrorCDR))*ultimate 
est_err_tot_CDR<-sqrt(sum(est_error_CDR^2)+sqrtCovCDR^2) 
###Obtaining mse_0 
sqrmsep0<-sqrt(proc_varCDR^2+est_error_CDR^2) 
sqrmseptot0<-sqrt(proc_var_totCDR^2+est_err_tot_CDR^2) 
mse0<-sqrmsep0^2;msetot0<-sqrmseptot0^2 
last<-union(last,sum(last)) 
ultimate<-union(ultimate,sum(ultimate)) 
reserves<-union(reserves,sum(reserves)) 
PrVarTot<-union(proc_var,proc_var_tot) 
EsErrorTot<-union(est_error,est_err_tot) 
MSEPTot<-union(sqrmsep,sqrmseptot) 
PrVarCDR<-union(proc_varCDR,proc_var_totCDR) 
EsErrorCDR<-union(est_error_CDR,est_err_tot_CDR) 
MSEPCDR<-union(sqrmsep0,sqrmseptot0) 
output<-
cbind(last,ultimate,reserves,PrVarTot,EsErrorTot,MSEPTot,PrVarCDR,EsErrorCDR,MSEPCDR
) 
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