

MESTRADO

GESTÃO DE SISTEMAS DE INFORMAÇÃO

TRABALHO FINAL DE MESTRADO

TRABALHO DE PROJETO

WEREAD - DESENVOLVIMENTO DE UMA APLICAÇÃO EM

LOW-CODE

DIOGO DIAS MENDES

OUTUBRO - 2019

MESTRADO EM

GESTÃO DE SISTEMAS DE INFORMAÇÃO

TRABALHO FINAL DE MESTRADO

TRABALHO DE PROJETO

WEREAD - DESENVOLVIMENTO DE UMA APLICAÇÃO EM

LOW-CODE

DIOGO DIAS MENDES

ORIENTAÇÃO:

PROFESSORA DOUTORA WINNIE PICOTO

OUTUBRO - 2019

Abstract

The mobile market is constantly growing and evolving, so the

companies must develop new software that is unique and disruptive, pilot

solutions.

The purpose of this work is to present and explain a pilot solution

to perform water and electricity readings with a high degree of automation

that I developed on Deloitte Portugal using OutSystems, a low-code

platform.

To introduce the topics and models that I used to do this project it

is presented a literature review on those same topics. After the literature

review, the solution, and every phase of the project, is presented and

described.

I end this work with a conclusion, where I talk about the difficulties

of the project, the final considerations on working with a low-code

platform and my satisfaction with the project itself.

The project consists of the development and implementation of two

applications, a web portal (BackOffice) and a mobile application, called

WeRead. The mobile application allows the user to read water and

electricity meters with an Optical Character Reader. It offers a simple

UI/UX so that any user with any degree of technological literacy can have

a good experience while using the application. The web platform is

available for management and administration only, where they can

manage every information on the database.

Keywords: low-code platform, outsystems, mobile business

Acknowledgment

I would like to thank teacher Winnie Picoto for being my mentor and

for being always ready to help me.

I would also like to thank to ISEG, and every teacher of the GSI

masters, for all of my knowledge that they passed onto me and the

opportunity that they gave me.

I have yet to thank Deloitte for the opportunity to work with them

and join CoE OutSystems (OutSystems Center of Excellence). Also want

to thank all of my colleagues from the CoE for being always ready to help

and to make me grow both personally and professionally.

Finally, but not least, I would like to thank to my girlfriend, all of

my family and friends for always being there for me and available to help

me at any time.

Index

1. Introduction ... 1

2. Literature Review.. 2

2.1 Mobile Business .. 2

2.2 Low Code Platforms ... 4

2.3 Citizen Developers .. 5

2.4 Accessibility and Usability ... 6

2.4.1 Usability .. 7

2.4.2 Accessibility ... 7

2.4.3 Usability and Accessibility - Conclusion 8

2.5 Interface Design Heuristics ... 8

2.6 Development Methodologies ... 9

2.6.1 Traditional Development Methodology 10

2.6.2 Waterfall Model ... 10

2.6.3 Advantages and Disadvantages ... 11

2.6.4 Agile Development .. 12

2.6.5 SCRUM .. 15

2.7 OutSystems ... 18

3. Project description .. 21

3.1 Introduction and Planning .. 21

3.2 The WeRead Project .. 22

3.2.1 BackOffice – Web Portal ... 23

3.2.2 WeRead – mobile application... 27

4. Conclusion .. 31

 1

1. Introduction

Nowadays companies are interested fast software delivery that can

be custom-made while meeting all of the requirements with ease. That is

why low-code platform are quickly increasing their range of customers,

their quantity of delivers while improving their own software (Richardson

and Rymer, 2016).

Mobility and accessibility are important to most businesses and thus

the mobile software market is steadily growing over the past few years.

Every company wants to have their products always reachable and

available to their customers, at work, at home at the public transports,

everywhere. This is why low-code platforms are creating, developing and

improving their software to accommodate web and mobile business, to

offer to their clients a vast selection of technology so that they can deliver

the product that best meet the requirements in less time.

In this report, it is going to be analyzed the growth of the mobile

business as well as the low-code platforms, specifically OutSystems, and

explain its advantages and disadvantages to the companies and users.

Also it is going to presented a pilot solution to perform water and

electricity readings with a high degree of automation, that I developed as

a part of a project in a six months internship at Deloitte Portugal. It

consists of two applications: one mobile for the regular users and one web

focused for the admin users that works as a management/administration

platform.

 2

2. Literature Review

2.1 Mobile Business

A mobile phone used to be used mainly as a communication device,

nowadays they are one of the most important work tools. It makes the

business always reachable through the various applications, it also allows

the companies and the users to buy or sell their own business as well as

develop it (Sugai et al, 2010).

There are three major concepts that distinguish mobile business

from traditional business: intimacy, time sensitivity and ubiquity

(Paavilanein, 2001). Ubiquity because we have the ability of being

everywhere and anywhere at the same time; Time sensitivity because we

take so little to do things such as use our credit card or send an email or

appoint a meeting; Intimacy because our phone “always knows our

needs”, if we let him to, he can always give us the best restaurant in the

area or the directions to get to certain place (Paavilainen, 2001).

Mobile business can be defined as “The exchange of goods, services

and information using mobile technology” (Paavilainen, 2001, p.1).

Despite nowadays this market focuses on customer services it also values

“business-to-business and employee-to-employee” emphaticizing the

synergy between the costumer and the company’s platform with the

internet as the primary communication channel creating the flux between

the mobile applications and the internet world.

Regarding the mobile internet has three main elements being

“communication, commerce and value added services” (Paavilainen 2001,

p.2). Those can be more specific if we add “vertical target groups” such

as corporate and consumer.

 3

One of the biggest “assets” of mobile business is the capacity to

create value which means that it “subsumes the concept of profit and that

profit oriented viability is a necessity”. It can be distinguished in three

types of value: “utility value, exchange value and essential value”. One

good example on how mobile technologies can create value almost

instantly is that you can “enable a sales force” simply by providing them

with a mobile device where they can make business or create business,

plus it adds “social, ecological and otherwise essential revenue”. It is a

certainty that mobile technologies offer an instant economic as well as

social advantage however, those advantages can only be maintained

when the technology is well thought and “carefully incorporated with a

long-term strategic view in mind” (Unhelkar, 2009).

Mobile business offers the mobility aspect to a business and it

extends to a whole lot of areas of expertise. In addition, it empowers the

business quest for long-term profitability; it also plays a constant

reminder in a business-to-costumer relationship offering a wide variety of

marketing channels (Paavilanein, 2001).

“Does the mobile’s phone limitations (a small screen, limited

memory, etc) make it a different and more appealing marketing and

business platform than a PC?” (Sugai, et al, 2010, p.72). The fact that it

gives the possibility of permanent and constant communication combined

with “anytime, anywhere access” automatically makes it completely

different from a PC. Advanced mobile services help to create and maintain

additional customer loyalty. As Frederick Reichheld stated in his “Harvard

Business Review” articles, there is a direct link between customer loyalty

and long-term profitability which means that “attracting a new customer

costs more than retaining a current one”.

 4

2.2 Low Code Platforms

Low-code Development platforms are visual-based integrated

development environments (IDE) where it is possible to develop

applications through graphical user interfaces, drag & drop, instead of

traditional programming. It reduces the delivery time and reduce both the

time and the cost of the setup, training. It does not require any experience

in programming but requires logical and problem solving thinking skills,

and developing and deployment experience. It expands the barriers of

programming enabling collaboration since multiple people can work on

the same application at the same time.

The term “low-code development” was coined by Clay Richardson

on a Forrester’s article in 2014 (Richardson,2014).

Low-code development platforms have several advantages, being

the most important the cost reduction, since you can develop more in less

time, which means faster delivery speed (Appian, n.d.). Another big

advantage is that the apps can be easily changed and adapted so that it

can meet the new requirements with ease. It is the combination of these

advantages that make low-code platforms highly productive, while

improving the efficiency of a company and its releases and it gives a

better customer experience (OutSystems, n.d.).

There are essentially two disadvantages, that are globally agreed

on, customization and vendor lock-in. Every platform has its types of

customization so before a platform is chosen, it is important to know the

customization limits so that the correct choice is made so that the chosen

platform can accommodate the requirements. Vendor lock-in is when you

choose a platform and develop all your applications there. But you cannot

access them outside the platform, so you are locked to the platform

(OutSystems, 2018.). As Brendar Bank (CTO for MessageBird) once said

 5

“The best low-code solutions are the ones that are flexible and

framework/language/syntax-agnostic. Make sure to look for platforms

that are webhook-based, where the HTTP call back requests are

completely customizable by the customer.” (Harris, 2019), it is the

costumer that needs to search and analyze the market and figure out

what is the best platform that suits his requirements and does not lock

him in.

Despite all those promises “impressive results in speeding

application delivery, and high vendor growth rates.”, low code platforms

have indeed risks, those being “small vendors selling outside of tech

management” and customers with little knowledge about how low-code

platforms will broaden, improve and accelerate their business (Richardson

and Rymer, 2016).

2.3 Citizen Developers

These platforms are creating a new type of developer the “citizen

developer”. A citizen developer is a person that has a developer mentality

without knowing any specific programming language. The citizen

developer thinks like a pro developer but uses drag-and-drop tools.

To evaluate the definition and the impact of this new concept the

analysis it is based on the following works: Everhad (2019), Warren

(2019) and Gartner (n.d).

This new concept of allowing staff to become citizen developer, have

some vast benefits such as cost reduction because the company doesn’t

have the need to recruit and pay more for expensive developers with the

knowledge and experience on building enterprise applications. It allows

the organization to be more agile and flexible regarding its approach to

IT and developing application, it also speeds up the developing time as

 6

Forrester claims that low-code platform can increase software

development up to ten times faster than traditional methods. With that

said, and since everyone can help each other and the company on its

digital transformation productivity will skyrocket.

However, as stated earlier low-code platforms needs

logical/problem solving thinking or a bit of programming experience,

which many workers doesn’t have and need to develop those certain

skills, delaying the start of projects. It will also requires that workers are

always well informed about the changes and upgrades of the platform and

have consistent training and certifications.

2.4 Accessibility and Usability

Despite the continuous rise of the terms usability and accessibility,

they still encounter many issues. All users have, at some point,

encountered obstacles while interacting with a web app or a mobile app,

not knowing the purpose or how it’s operated. Also, there are two types

of users, the real user and the ideal user. The real user is the one that

only knows what was said, transmitted or taught by someone, which

means he only knows what he perceives. The ideal user who just exists

for the designer, knows the answer to all questions, has access in the

ideal conditions to the best technology and information to perform the

functions with the greatest success.

A reflection on usability and accessibility in web/mobile design

becomes in a context in which the designer is unaware of all the current

devices and future user preferences and needs. It should grant the user

the best experience while navigating through the app/site without

questioning himself, “As designer professionals, we should be designing

our content so it is globally accessible and meets the needs of as many

 7

people as possible and practical given our specific circumstances,

regardless of their abilities or the type of device they choose to access the

Web.” (Clarke, 2006, p.14).

2.4.1 Usability

Usability studies and analyses the relationship between the

platforms and the tools with their users. To consider a tool effective it

should allow users to perform the tasks desired in the best possible way.

There are five principal components of usability: 1) Learning Capacity; 2)

Efficiency; 3) Ability to be memorized; 4) Security; 5) Satisfaction

(Nielsen, 2003).

Usability can be defined as “something that works well. That a

person of average (or even below average) ability and experience can use

the thing-whether it's a website, a fighter jet, or a revolving door-for its

intended purpose without getting hopelessly frustrated.” (Krug, 2014,

p.23).

2.4.2 Accessibility

Accessibility is considered a subclass of usability, seeks that any

person, regardless of any possible sensory or motor limitations, can

interact with the system.

The main concern in designing accessible products is to ensure their

universality, making the product more flexible and complete. Accessibility

aims, therefore, make the interfaces perceptible and understandable by

people in various circumstances, environments, and conditions,

“Accessibility makes user interfaces perceivable, operable, and

understandable by people with a wide range of abilities, and people in a

 8

wide range of circumstances, environments, and conditions.” (Henry,

2007).

Accessibility can be defined as “ensuring that a given page on the web is

able to be accessed” (Holzschlag, et al. 2006).

2.4.3 Usability and Accessibility - Conclusion

 Both Usability and Accessibility are very important user wise – it

evaluates the efficiency and the ease of the system – they are also

important developer wise – it evaluates the success or the failure of the

system. “Somehow when a device as simple as a door has to come with

an instruction manual – even a one-word manual- then it is a failure,

poorly designed” (Norman, 1998, p.87), as said previously we need to

connect both concepts and use their good practices to create an interface

and a system that works to every user to the full capacity.

2.5 Interface Design Heuristics

 There are ten principles for the design of interfaces: 1) Visibility of

the system status: the system must always provide users feedback of

their actions and about what is happening; 2) Similarities between the

system and the real world: the system must use familiar words, phrases,

and concepts so that the user can easily understand it; 3) Control and

freedom: the system should be equipped with “Undo”, “Redo”, “Rewind”

and “Forward” buttons, to let the user roam around the interface without

any “chains” on; 4) Consistency and standardization: all of the words,

actions and buttons must be consistent throughout the system without

leaving on the user any confusion; 5) Error Prevention: global help and

examples should be available alongside the user navigation experience;

6) Flexible and efficient use: accelerators, such as shortcuts and macros,

 9

should exist they should not be visible to not experienced users; 7)

Recognize instead of remembering: the effort required to user memory

should be minimized; 8) Aesthetic and minimalist design: the pages

should not contain irrelevant information; 9) Help users recognize and

recover from errors: the errors feedback messages should be displayed

in clear colors and text that every user can comprehend and fix; 10) Help

and documentation: the documentation should be easy to access and to

search, focused on users actions and showing examples (Nielsen, 1994).

2.6 Development Methodologies

The concept of development methodology does not have a one

hundred percent defined concept that all authors and scholars agree with.

Therefore, there are going to be presented two different approaches by

some of the most famous authors on this matter.

Different authors have different approaches to define development

methodologies. Development methodologies can be defined as an

“application model of software engineering practices, which as the specific

objective to provide the necessary means for the development of software

systems” (Ramsin and Paige, 2008). There are more authors with

different approaches for the same concept, defining them as “stages

collection, procedures, rules, techniques, tools, documentation,

management and training used to develop a software system” (Avison

and Fitzgerald, 2003).

For a software developing project be successful it should follow the

principles of a development methodology(ies). It should be aligned with

the project’s needs in order to improve the efficiency of the project and

consequently customer satisfaction, “Using an appropriate software

 10

lifecycle model can improve efficiency and effectiveness of software

development.” (Guntamukkala, et al, 2006)

In the next chapter there is going to be made the analysis and the

comparison between traditional methodologies (waterfall model is going

to be used as example) and Agile ones (SCRUM is going to be used as

example).

2.6.1 Traditional Development Methodology

Traditional methodologies are described as the ones that uses

“extensive planning, coded processes and rigorous reuse to make the

development an efficient and predictable activity” (Guntamukkala, et al,

2006). Establishing rules and different priorities so that the team is always

aligned in all of the development stages until the delivery.

2.6.2 Waterfall Model

It is called “waterfall” because the way that the model works it’s

similar to a waterfall, the development team can only move on to the next

phase when the current phase is over which makes all the work must be

done in a linear way (Avison and Fitzgerald, 2003).

Based on the previous information it is safe to conclude that the

concept of a development methodology using phases for the duration of

the development process has more than sixty years.

The waterfall model has seven phases according to several authors

(Munassar and Govardhan (2010), Avison and Fitzgerald (2003), Sheffield

and Lemétayer (2013), Davis (1988) and Royce (1970)). It is based on

those works that each of the waterfall model phase is described. Being:

(i) System requirements (ii) Software Requirements (iii) Preliminary

Design (iv) Detailed Design (v) Code and Debug (vi) Tests (vii)

 11

Maintenance. The (i) system requirements and (ii) software

requirements phases are similar and it’s where is created the list with all

of the system requirements and the tools that are needed to develop it as

well as the software requirements and the expectations regarding the

functionality of the application. On the third phase, (iii) preliminary

design, the model and structure of the application is defined to meet the

requirements that were defined in the first two phases. (iv) Detailed

design is where it is defined how to implement every single aspect that

was structured and defined on the previous phase. At the code and debug

(v) phase the development of the components detailed previously start

and while some of the elements of the team code, the others are running

debugs. Nevertheless, to ensure that all of the functionalities are properly

working and well implemented there is a need to test (vi) every

requirement. Finally but not least (vii) Maintenance, where the problems

that are left and some new updates or fixes are solved and implemented,

for some authors this phase, besides being part of the “waterfall model”,

exists throughout the entire project. After the project ends, it is made a

global evaluation that involves reviewing whether all the tasks have been

completed with success and the development has achieved the objectives

that set by the team.

2.6.3 Advantages and Disadvantages

Being a widely known and used model, it has its advantages and

disadvantages according to several authors (Kumar et al, (2013),

Alsharamni and Bahattab, (2015)). The advantages and disadvantages

are describred based on those works.

 Regarding the advantages, the waterfall model is simple and

easy to understand, implement and manage; since each phase has

 12

specific deliverables and review process all requirements should be clear

before going to a next phase; phases are processed and completed one

at a time and it is only possible to go to the next phase after the previous

one is finished. At this point is where the authors differ on their opinions

for Narush Kumar, A.S. Zadgaonkar and Abhinav Shukla one of the big

advantages is that the model works well for projects where requirements

are well understood while for Adel Alsharamni and Abdullah Bahattab the

model works well on mature products and provides structure to

inexperienced teams. Some more positive things about this approach

identified by all authors is that the stages are well defined, it’s easier to

understand milestones, it minimizes overhead planning and both

processes and results are well documented, both helping the final review

and knowledge management to adapt and implement in a next project.

The major disadvantage of developing software using the waterfall

model is that it does not allow revision or reflection of what has been

done. It is very difficult to go back and change something that was not

well documented. Also, it does not allow requirements changes as per

clients request, no working software is developed until the late stages of

the life cycle, which means that it’s not ideal for long and ongoing

projects. Additionally sometimes, the client does not get a clear view of

what is being developed and wants to change some functions,

requirements or even the scope of the project, which could kill it. Lastly,

this model is it not a “preferred model for complex and object-oriented

projects” (Alshamrani and Bahattab, 2015).

2.6.4 Agile Development

 13

The agile methods are an answer to traditional ways of developing

and acknowledge the “need for an alternative to documentation driven,

heavyweight software development processes” (Beck, 2001). In the

traditional methods, the kick-off starts with the documentation of a set of

requirements followed by architectural design, development, and

inspection. In the 1990s some people started getting frustrated and tired

of the initial steps so they “joined forces” and started developing

alternative methods (Highsmith, 2002).

Most of the Agile practices are nothing new, they are an evolution

of the traditional processes (Highsmith and Cockburn, 2001).

In 2001, seventeen software developers met at a resort in Utah and

together they published the Manifesto for Agile Software Development

(Beck, et al, 2001). The manifesto has twelve principles: 1) “Our highest

priority is to satisfy the customer through early and continuous delivery

of valuable software”, 2) “Welcome changing requirements, even late I

development. Agile processes harness change for the customer’s

competitive advantage.”, 3) “Deliver working software frequently, from a

couple of weeks to a couple of months, with a preference to the shorter

timescale.”, 4) “Business people a nd developers must work together

daily throughout the project.”, 5) “Build projects around motivated

individuals. Give them the environment and support they need and trust

them to get the job done.”, 6) “The most efficient and effective method

of conveying information to and within a development team is a face-to-

face conversation.”, 7) “Working software if the primary measure of

progress.”, 8)”Agile processes promote sustainable development. The

sponsors, developers, and users should be able to maintain a constant

pace indefinitely.”, 9) “Continuous attention to technical excellence and

good design enhances agility.”, 10) “Simplicity—the art of maximizing the

amount of work not done—is essential.”, 11) “The best architectures,

 14

requirements, and designs emerge from self-organizing teams.”, 12) “At

regular intervals, the team reflects on how to become more effective, then

tunes and adjusts its behavior accordingly.” (Beck, et al, 2001).

The Agile method has four really important ideas attached to it

regarding software development, teamworking, and customer

expectation, “We are uncovering better ways of developing software by

doing it and helping others do it. Through this work we have come to

value: individuals and interaction over process and tools; working

software over comprehensive documentation; customer collaboration

over contract negotiation; responding to change over following a plan.

That is, while there is a value in the items on the right, we value the items

on the left more” (Beck, 2001).

With this method, software development became more dynamic,

practical and responsive while teamwork and communication became

more valued in order to manage the needs and expectations of the

customer.

What does it mean “to be Agile”? So being agile means being able

to “deliver quickly, change quickly and change often” (Highsmith, 2001).

Developing in iterations allows the development team to adapt quickly to

changing requirements. Working in close location, near each other, and

focusing on communication means that teams can make a decision and

act on them immediately. Reducing intermediate artifacts and

documentation that do not add value to the final deliverable means that

the team doesn’t waste time on that a more resources can be added to

the development of the final product and it can be completed sooner, “a

great deal of the agile movement is about what I would call programmer

power” (Glass, 2001). The practices that Agile methods use are not new,

but the idea and the “recognition of people as the primary drivers of

 15

project success” is, plus the focus on effectiveness and maneuverability

(Highsmith and Cockburn, 2001).

Although the agile development has many methods it will only be

discussed one, SCRUM.

2.6.5 SCRUM

Scrum is one of the more used Agile methods. Scrum is described

as a process that “accepts that the development process is

unpredictable”, the term is lent from rugby (Schwaber, 1997).

Scrum hangs all of its practices on an iterative and incremental

process (image 1).

(Image 1)

At the start of an iteration, the team reviews what is must do, it

then identifies what functionalities are they able to finish until the end of

the iteration keeping in mind all of the factors that can influence the

process including their own skills and capabilities.

There are three scrum roles, the Product Owner, the Team and the

ScrumMaster, and all of them have management responsibilities. The

 16

Product Owner is responsible for representing the interests of everyone

involved in the project. He creates the project initial list of requirements

(product backlog) as well as return of investment (ROI) objectives and

release plans. He also needs to make sure that the most valuable

functionality is the first one being developed and built upon. The team is

the developing end of the project and need to make sure that the

functionalities meet the project’s needs. It is self-managed, self-

organized and cross-functional. Finally, the ScrumMaster is the

responsible for the Scrum process, teaching, implementing and adapt the

scrum method so that it fits the within the organization’s culture and

delivers the result that everyone wants (Schwaber, 2004).

The Scrum begins when the project starts, with a vision that will

become clearer as the project advances. All work is done in Sprints

(iterations). Each sprint is initiated with a Sprint Planning Meeting, where

the Product Owner and the team plan what will they do on the next sprint,

they select and sort the requirements from the Product Backlog by priority

creating a development hierarchy. They agree on goals and deadlines.

Sprint planning meetings cannot last longer than eight hours. The Daily

Scrum is another important part of Scrum’s workflow, every day all of the

team’s members get together and have a fifteen-minute meeting. Each

member answers the same three questions: “What have you done on this

project since the last Daily Scrum meeting?”, “What do you plan on doing

on this project between now and the next Daily Scrum meeting?” and

“What impediments stand in the way of you meeting your commitments

to this Sprint and this project”. “The purpose of the meeting is to

synchronize the work of all the team members daily and to schedule any

meetings that the team needs to forward its progress” (Schwaber, 2004).

After a Sprint ends, a Sprint review meeting is held. It’s an informal

meeting where the team presents and discusses the result of the Sprint

 17

to the Product Owner and to all the stakeholders that want to be present.

Before the next Sprint starts the Scrum Master holds a Sprint

retrospective meeting with the team. Together they reflect on the

previous sprint and identify and agrees on actions that can improve the

process (image 2).

(Image 2)

With the appearance of Scrum came the creation of new

documentation, artifacts, that are used throughout the Scrum method.

Being the main ones the Product Backlog and the Sprint Backlog. As said

previously the Product Backlog has an ordered by priority list of

requirements for the product. The common formats are user stories or

use cases but it varies. And it is visible to everyone but it can only be

changed with the approval of the Product Owner. The Sprint Backlog is

the list of work that the team needs to do on the next Sprint. The list is

created by the team with the items out of the Product Backlog and

ordered, again, starting with the most important item (Schwaber, 2004).

Scrum works because “moves control from a central scheduling and

dispatching authority to the individual teams doing the work. The more

 18

complex the project, the more necessary it becomes to delegate decision

making to independent agents who are close to the work” and also

because “shortens the feedback loop between the customer and the

developer” (Schwaber, 2004).

2.7 OutSystems

OutSystems is a Portuguese company based in Atlanta, USA,

founded in 2001. Operates in 52 countries, 22 industries has more than

245 global partners and more than 210 000 members in the community.

Provides a business platform for fast application delivery, through a low

code platform. Its vision is “to fuel the future of digital innovation. A new

world unbounded by traditional software and systems, where the creative

potential in every organization is unleashed. A future with no limits”

(Paulo Rosado, n.d).

This platform has been recognized by several entities. In fact, it was

named leader in the 2017 Gartner’s Magic Quadrant for mobile application

development platforms and also in the 2018 Magic Quadrant for

Enterprise High-Productivity Application Platform as a Service. It won a

wide variety of awards including three times “Best Mobile Application

Development Platform” by CODiE and “Top Rated Low-Code Platform” by

TrustRadius.

Outsystems is a visual low-code platform that comes in two parts a

server and a desktop application (Service Studio) for developers. The

Service Studio is where the developers design and develop their mobile

(iOS and Android) and web applications by drag & drop (visual

programming). It allows the developer to model databases, create

 19

workflows and rules with ease and then deploy them to production server

within minutes.

Because of it being a low-code platform, it does not mean that we

cannot control the source code. We can control HTML, CSS and JavaScript

inside the OutSystems platform (Service Studio). HTML can be controlled

through the “expression” widget, where we can inject our own HTML code

into our pages. CSS can be manipulated in every aspect (create classes,

modify existing CSS or create our own). We can select if we want to

manipulate CSS of the current page or any other pages or the entire app

or module.

JavaScript (JS) has different behaviors for mobile and web

environments. On mobile apps, we can import and/or create our own JS

scripts and then use them on our app. We can also insert scripts directly

into our workflow. On Web apps, we can add JS scripts through the JS

handlers inside every web block and screen, which will run directly on that

page.

It is also possible to use JAVA, C# (C Sharp) and Microsoft .NET

with an OutSystems platform (Integration Studio) where we can create

our own functionalities and then use them on our OutSystems’

applications. For that, we need to create an extension on integration

studio. Integration Studio environment provides several features that

accelerate and automate the development of integration components and

add-ons. It also supports Microsoft SQL Server and Oracle Database.

OutSystems allows the user to reuse code and create modular apps

be making elements of other modules available and ready to be used.

With this practice, elements can be easily managed centrally in the

module which provides them and, in the modules that use them as a

reference, OutSystems can prompt you for changes and update them

 20

automatically at your command. Integrates natively with several of the

major database systems: SQL Server, SQL Azure, Oracle, MySQL, and

DB2 iSeries. It also has a project repository called Forge where users

share and reuse open source software projects like applications,

components, connectors, widgets, themes and sample code.

 21

3. Project description

 3.1 Introduction and Planning

This project was developed in Deloitte Consultores S.A (Deloitte

Portugal) as I joined the OutSystems CoE (Center of Excellence, the only

one in Portugal), a team of OutSystems specialists. The internship started

on March 1 2018 and ended on August 31 2018. The objective was to

develop and implement a pilot solution to take water, electricity and gas

readings with a high degree of automation, named as WeRead.

Within the scope of the internship, six tasks were defined (image

3): 1) Self-training and contextualization, where I did two web courses

certified by OutSystems and received contextualization about the

platform; 2) Requirements specification, where I read the documentation

regarding the project and defined all of the requirements; 3) Application

Design, where I defined what were the elements and how to use them on

the application, all of the graphic and technical design was made on this

phase; 4) Development and implementation, where I develop and

implemented all of the requirements with the designs created on the

application design phase; 5) Testing, where I tested all of the

functionalities and behavior of the application; 6) Elaboration of the

internship report, the report was written after each phase was concluded.

Image 3 illustrates the project planning.

(Image 3)

 22

3.2 The WeRead Project

The project WeRead is a multiplatform application and it has two

components: a mobile application and a web platform. Both were

developed using OutSystems within the scope of this project. The mobile

application allows the user to read the water and electricity meters

through an OCR (Optical Character Reader) and it also gives the possibility

to report any damage that the user sees in their city. It is a pilot solution

in that target market because of its simple UI/UX (user interface and user

experience) that offers the user a clean and simple interface throughout

the whole experience.

It has two types of users, the clients and the agents. Clients are the

users that want their meters read by the agents or by themselves. The

agents are the users who go to the client’s house to do the reading and

report the damages called as “Estragos” (incidents) in the application’s

menus.

The web platform is available for management and administration

only.It is on this platform where the administrator creates and manages

everything in the database, regarding the types of users, the readings

and the damages.

All of the app’s design was created by me and one CoE (Center of

Excellence) designer. Every single aspect of the design was thoroughly

thought so that it could meet both our individual preferences and the

application requirements, but it was thought so that it could provide the

best user experience possible. I think with this design is possible to give

the application to any user and it will always feel comfortable to navigate

around the app and comprehend how it works without any problems at

all (Appendix.III).

 23

It is important to highlight that both the design and the behavior of

the user interface were made to give the user the most comfortable

experience as possible, because the target audience is mainly composed

of people without technological literacy.

This application will be presented according to the view of each type of

user (Agent, Client and Administrator) and after the explanation of the

workflows will be presented the main use cases for those flows followed

by an activity diagram explanation of some of those cases.

3.2.1 BackOffice – Web Portal

It is on the BackOffice (Appendix.I) that all of the information is

managed, readings, users (agents and clients), incidents and images. To

login on this web portal the user must have an account that has the role

of administrator and access the link that was given to him, by the

company. It is the responsibility of the company to give this link to the

users that should have access to this portal.

The key action and navigation flows for the administrator are

described on the Appendix.II.

The navigation on this portal is made by a top menu that has five

links: “Clientes” (Clients), “Técnicos” (Agents), “Contagens” (Readings),

“Estragos” (Incidents) and “Imagens” (Images), which will redirect the

user to the correct screen. All of the navigation flows and screens are

similar since it is an administration portal and the key requirement was

to keep the UI/UX as simple and similar as possible. The administrator

user will have the possibility to create (add), remove, edit and see lists of

the users, agents, readings and incidents.

 24

After the login is completed the user will be redirected to the first

page of the portal “Lista de Clientes” (List of Clients), that corresponds to

the Clients tap on the navigation menu.

On the list of clients page the administrator can see the list of clients

that are registered on the platform and their main information. The

administrator can also do two quick interactions with the table, first he

can search for a client, by introducing his name on the search bar and

click “Pesquisar” (Search) to refresh the table and he can delete the user

through the “trash bin” icon. He can also see the detail page of a specific

client by clicking on the id link. The user will be redirected to a page where

he can see and edit all of the client’s information.

The user can also add more clients to the platform by clicking on

“Adicionar Cliente” (Add Client) and introduce their information on the

form. To introduce the address he has two options, fill the fields manually

or click on the map, it will show a red marker on the clicked location and

the fields will be automatically filled.

The list of agents that are registered on the application can be

accessed through the Agents tab on the navigation menu. Here the

administrator can see the list of agents that are registered on the platform

and their main information. The administrator can also do three quick

interactions with the table, first he can search for an agent, by introducing

his name on the search bar and click “Pesquisar” (Search) to refresh the

table, also can see the photography of agent by clicking on pop-up icon

and he can delete the user through the “trash bin” icon. He can also see

the detail page of a specific agent by clicking on the id link. The user will

be redirected to a page where he can see and edit all of the agent’s

information. He can also see the detail page of a specific agent by clicking

on the id link. The user will be redirected to a page where he can see and

 25

edit all of the agent’s information and see what readings the agent did or

have scheduled and all of its information.

The user can also add more agents to the platform by clicking on

“Adicionar Técnico” (Add Agent) and introduce their information on the

form.

Halfway through the top menu is the “Contagens” (Readings) tab,

this list shows all of the submitted readings on the portal and the mobile

application. It shows the main information, regarding each reading, such

as the date, value, submission date, type, which client and agent it

regards, address and the photography taken. The administrator can

remove the reading through on the trash bin icon. To access the client’s

or agent’s detail page it can be done by clicking on the on the respective

name. To access the reading’s detail page the administrator needs to click

on the reading date. On this screen he can see all of the information

regarding the specific reading, its date, value, type, client name which

has a clickable link to the client detail page, agent name which has a

clickable link to the agent detail page, submission date, photography,

postal code, address (also visually represented by a red marker on the

map). The administrator can edit all of the information and save the

updates by clicking on “Editar” (Edit).

The user can also create readings by clicking on the “Adicionar

Contagem” (Add Reading) link. On this page he needs to choose the date

of the reading, the value, the photography of the meter and the

submission date (if it is an already submitted reading), the type (water or

electricity) and finally it needs to select the client and the agent that did

the reading.

The list of incidents is accessible by the “Estragos” (Incidents) tab

on the navigation menu. On this screen the user will see a list of all the

incidents registered on the platform and all of their main information such

 26

as, id, submission date, type, postal code, address, the agent that

reported the incident and the photography. On this page the user can do

four quick interactions with the table, he can search for an incident by

filling the search input with addresses or submission dates, can see the

incident’s image by clicking on the zoom icon, remove the incident, by

clicking on the trash bin icon, and assign a new status, “Por Resolver”

(Unresolved) and “Resolvido” (Resolved). To access the incident’s detail

page the user needs to click on the link in the submission date column.

On this screen he can see and edit all of the information regarding that

specific incident, he also can change the status between resolved and

unresolved.

The administrator can also report more incidents to the platform by

clicking on “Adicionar Estrago” (Add Incident) and introduce their

information on the form, including an image. To introduce the address he

has two options, fill the fields manually or click on the map, it will show a

red marker on the clicked location and the fields will be automatically

filled, similar to the creation of a new client.

The last tab on the navigation menu is the imagens one. It redirects

the user to the list of every image upload to the portal and application

organized in tabs, “Contagens” (Readings), “Estragos” (Incidents) and

“Técnicos” (Agents). These lists exist so that the administrator can control

the type and content of images that are uploaded and delete the ones

that are not correct or break the rules and conditions, per example

obscene or bad taken images. The user can make two quick interactions

with the table, access the images through a pop-up and delete the image

by clicking on the trash bin icon. To access the page where the image is

located just needs to click on the submission date link and will be

redirected to the specific page, can be a client, agent or incident.

 27

To summarize, the portal is coherent between all the processes and

workflows. All screens are mirrors of each other so that there are not any

obstacles on the user experience and navigation within the portal. This

implementation happened because it was a requirement that the platform

should be as simple and intuitive as possible. It is on this portal that the

administrator can see, edit, add or remove readings, incidents, users

(clients and agents) and images.

3.2.2 WeRead – mobile application

The WeRead it is a mobile application that accommodates two types

of users: agents and clients, where they can manage their readings,

incidents and profiles. The key action and navigation flows for both types

of users are described on the Appendix.IV through activities diagrams.

When any type of user enters on the application the first screen that

he sees is the loading screen, which contains the logo in the middle and

the loading bar on the bottom. After the loading screen is finished the

user is redirected to the login screen.

If the user is already registered, he can login on the application by

introducing the email and password on the correct fields. If the user forgot

about the password, he can recover it by clicking on “Esqueceu-se da

password?” (forgot your password). He will then receive an email with a

code and after a verification he will recover it. On the contrary, if the user

is not yet registered on the application, he can register by clicking on

“Registar” (Sign up) and then fill the form with the correct information.

Returning to the login screen, if both fields are filled with an existing

and matching username and password, the login is successfully made,

and the user is redirected to the homepage. The homepage it varies

according to the user’s type.

 28

If the user is a “client” it will be directed to the client’s homepage

and respective flow. Here the he can see two reporting and summary

areas, one regarding his spending, of water and electricity, and other

regarding his readings, both submitted and scheduled. On the “Gastos”

(Spending) tab he can see useful information regarding his water and

electricity spending, such as, lowest and biggest consumption months and

some statistics comparing his consumption with the national average. On

the “Contagens” (Readings) tab the client can see all of the scheduled and

already submitted readings as well as their detailed information, per

example, date, the agent that did the reading and the value. To

summarize, the client area has the reporting component and the action

component, where the clients can see the most valued information of their

readings.

On the other hand, if the login is made by an agent the flow and

the interaction is completely different. An agent can see information

regarding all of his clients, can report incidents and submit readings.

When an agent logs in on the application, he is redirected to his

homepage screen. This screen is where the agent can see all of the

information regarding his readings. The screen contains by a map, where

the location of that agent readings are shown by red marker, a top menu,

that filters the information shown on the map and a bot menu, that works

as a navigation menu. The top menu has three filters that influences the

information shown on the map, if the filter “Todos” (All) is active, both

water and electricity readings will appear on the map, if the filter with the

water logo is active only water readings will appear on the map, and lastly

if the filter with the electricity logo is active only electricity readings will

be shown on the map.

If the user clicks on the red marker it will be shown a pop-up

containing all of the important information regarding that reading. By

 29

clicking on “Proceder” (Proceed) the agent initiates the processes of

concluding the reading, it will be redirected to the reading page, where

he must take a photography of the meter, with the numbers visible, by

clicking on the imagem that says “Tirar Foto” (Take Photo), introduce a

value, either automatically, with the OCR, just by clicking “Tirar Leitura”

(Read) or manually by clicking “Inserir valor manualmente” (Insert value

manually) and then fill the mandatory field with the correct value.

To access the list of clients the agent must click on “Clientes”

(Clients) on the bottom menu, accessible at all times. The user will be

redirected to clients screen. On this screen the agent can see the most

important information regarding each client but can also see a detailed

page if he clicks on them, where he can also see all of their readings. He

also has the possibility to search for a specific client by typing his name

or surname on the search bar on the lateral menu triggered by a click on

the magnifying glass icon.

The last tab on the navigation menu is the “Estragos” (Incidents)

tab. The screen is similar to the readings one, in here the user can see a

map with red markers that indicate the location of the incidents open by

him. On the top exists a menu that filters the incidents shown on the map

according to its type: collapse, flooding, electricity, vandalism an fallen

trees. These incidents are situations that the agent sees on the street and

reports them on the application so that the administrator on the

BackOffice can report them to the correct entities so they can fix them.

To submit an incident the agent needs to click on the plus icon

located on the right top side of the screen. Here the user needs to take a

photo and submit the incident, he can also fill the input with the correct

location, but it is not obligatory since automatically the application will

send his current location using the GPS of his mobile phone. The objective

of this functionalities is to significantly increase the repair speed of those

 30

incidents by the responsible entities since they have an image and the

precise location of the situation.

To summarize, the agent can see and report incidents, see and

submit readings and access client’s information.

 31

4. Conclusion

Since the development and implementation of the project was

mainly dependently on me, I had the responsibility to organize the

developments the way that suited me and the project needs better. So

this kind of development freedom really helped my growth both

professionally (technically) and personally (soft skills). Because all of the

thinking about how the app should work and look, I could combine the

best technical solutions to accommodate the best design to facilitate the

user’s experience around both applications.

At the beginning I had some difficulties on changing my thinking

and problem approaching mentality from traditional coding to low-code.

Because it was required that I started thinking on a drag & drop

development panorama instead of a traditional coding one.

I think that on the first few phases of the project were where I could

apply the knowledge that this master’s degree gave me. Specially on the

phase 3 (Application Design), where I need to study both the state of the

art of similar applications and the market, both mobile application market

and this type of reading services market.

Regarding the technology, I think that didn’t disappoint me at all,

because with OutSystems the developers can always think logically

speeding their deliveries since it involves less code. Nevertheless, it offers

the ability for you to code whenever you want and enrich your applications

with custom-made extensions created by you. And I think that these low

code platforms can give way more that they are already giving to both

developers and clients/users. Since I started developing without having

no knowledge about the platform I have to say that, for me, two important

advantages of OutSystems are that is an intuitive platform and working

environment that any user can get hold of the concepts fast with the help

 32

of the courses available on the website. The most crucial advantage is the

speed that a developer can create content and implement solutions to the

problem reducing the delivery time considerably.

This application is considered a pilot solution on this kind of market,

particularly in Portugal and will be stated as ground zero for future

applications. Will be also available on the Deloitte’s CoE OutSystems

factory so that it capacities and functionalities can be used for new

applications developed by members of the CoE.

I am extremely grateful for the opportunity that ISEG, in particular

GSI masters, and Deloitte gave me and I am really happy with the final

result. I think that with my previous knowledge of OutSystem, that was

none as referred earlier, and with what I achieved in only six months, the

final result is really satisfiying. Both the mobile and web applications are

doing what they were meant to do and all the requirements were met.

Professionally this internship opened me the doors to the job market

since I’m now going to my 2nd year with Deloitte, on the CoE, and being

promoted to Tech Consultant with two OutSystems certificates (Associate

Web and Mobile developer).

 33

References

 Alshamrani, A. and Bahattab, A. (2015). A Comparison Between

Three SDLC Models Waterfall Model, Spiral Model, and

Incremental/Iterative Model.

 Appian. (n.d.). Benefits of Low-Code Development | Low-Code
Basics, from https://www.appian.com/low-code-basics/benefits/

 Avison, D. E., & Fitzgerald, G. (2003). Where now for development

methodologies?

 Clarke, A. (2006). Transcending CSS: The Fine Art of Web Design.
 Davis, A. M., Bersoff, E. H., & Comer, E. R. (1988). A strategy for

comparing alternative software development life cycle models

 Everhard, J. (2019). The Pros And Cons Of Citizen Development,

from
https://www.forbes.com/sites/johneverhard/2019/01/22/the-

pros-and-cons-of-citizen-development/#4c0577bc84fd

 Gartner (n.d.). Citizen Developer, from

https://www.gartner.com/en/information-

technology/glossary/citizen-developer

 Glass, R. (2001). Agile Versus Traditional: Make Love, Not War

 Govardhan, A & Munassar A. (2010). A Comparison Between Five

Models Of Software Engineering.

 Guntamukkala, V., Wen H. J. and Tarn, J. M. (2006). An empirical
study of selecting software development life cycle models

 Harris, R. (2019). Low code pros and cons, from

https://appdevelopermagazine.com/low-code-pros-and-cons/

 Henry, S. L. (2007). Web Accessibility: Web Standards and

Regulatory Compliance.
 Highsmith, J. and Cockburn, A. (2001) Agile Software

Development: The People Factor

 Highsmith, J.A. (2002). Agile Software Development Ecosystems

 K. Beck, M. Beedle, A. van Bennekum, A. Cockburn, W.

Cunningham, M. Fowler, J. Grenning, J. Highsmith, A. Hunt, R.
Jeffries, J. Kern, B. Marick, R. Martin, S. Mellor, K. Schwaber, J.

Sutherland, and D. T. (2001). Manifesto for Agile Software, from

https://agilemanifesto.org/

 Krug, S. (2014). Don’t make me think!: Web & Mobile Usability: A
Common Sense Approach to Web Usability

 Kumar N., & Zadgaonkar, A. S. (2013). Evolving a New Software

Development Life Cycle Model SDLC-2013 with Client Satisfaction.

 Nielsen, J. (1994). 10 Usability Heuristics for User Interface Design

https://www.appian.com/low-code-basics/benefits/

 34

 Nielsen, J. (2003). Usability 101: Introduction to Usability

 Norman, D. A. (1998). The Design of Everyday Things.

 OutSystems (n.d). What Is Citizen Development and How to Govern
It, from https://www.outsystems.com/blog/posts/citizen-

developer/

 OutSystems. (n.d.). Low-Code Development Platforms |

OutSystems, from https://www.outsystems.com/low-code-

platforms/
 OutSystems. (n.d.). Low-Code Myths, Fears, and Realities: Vendor

Lock-in, from https://www.outsystems.com/blog/posts/vendor-

lock-in/

 Paavilainen, J. (2001). Mobile Business Strategies: Understanding
the Technologies and Opportunities

 Ramsin, R., & Paige, R. F. (2008). Process-centered review of object

oriented software development methodologies.

 Richardson, C. (2014). New Development Platforms Emerge For
Customer-Facing Applications, from

https://www.forrester.com/report/New+Development+Platforms+

Emerge+For+CustomerFacing+Applications/-/E-RES113411

 Richardson, C., & Rymer, J. R. (2016). Vendor Landscape: The
Fractured, Fertile Terrain Of Low-Code Application Platforms The

Landscape Reflects A Market In Its Formative Years.

 Rosado, P. (n.d.). About OutSystems | OutSystems, from

https://www.outsystems.com/company/

 Royce, W.W. (1970). Managing the Development of Large Software

Systems

 Schwaber, K. (1994). SCRUM Development Process

 Schwaber, K. (1997). SCRUM Development Process. In Business

Object Design and Implementation

 Schwaber, K. (2004). Agile Project Management with Scrum

 Sheffield, J. and Lemétayer, J. (2013). Factors Associated with the

Software Development Agility of Successful Projects.

 Sugai, P., Koeder, M. & Ciferri, L. (2010). The Six Immutable Laws
of Mobile Business

 Unhelkar, B. (2009). Handbook of Research in Mobile Business:

Technical, Methodological, and Social Perspectives

 Warren, N. (2019.). What Is Citizen Development and How to
Govern It, from https://www.outsystems.com/blog/posts/citizen-

developer/

https://www.outsystems.com/blog/posts/citizen-developer/
https://www.outsystems.com/blog/posts/citizen-developer/

 35

Appendix

Appendix I – BackOffice

1. Client List

2. Client Detail

 36

3. Add Client

4. Reading List

 37

5. Reading Detail

 38

6. Add Reading

7. Agent List

 39

8. Agent Detail

9. Add Agent

 40

10. Incident List

11.Incident Detail

 41

12. Add Incident

13. Image List

 42

Appendix II – Activity Diagrams - BackOffice

3. Administrator – Incidents Flow

 43

4. Administrator – Readings Flow

5. Administrator – Images Flow

 44

Appendix III – Mobile Application

 45

 46

 47

 48

 49

 50

 51

Appendix IV – Activity Diagrams – Mobile Application

 52

 53

