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Abstract

For financial advisers, the Risk Profile is a crucial component of delivering the best
possible experience to the client. This Risk Profile is composed of Risk Capacity, which
relates to the socio-economic situation that the investor finds themselves in, and Risk
Tolerance, which is associated with the psychological composition of the investor. Risk
Tolerance is vague and of questionable use to the adviser in terms of determining the Risk
Profile. Risk Capacity, conversely, can be measured objectively using data that is easy to
obtain and process. Risk Capacity then, rather than Risk Tolerance, should be both the
focus of academic research and the foundation of the Risk Profile. However, this is not
true in reality. This project attempts to correct this misallocation of attention by quantita-
tively assessing the determinants of Risk Capacity. It measures the effect that investment
horizon, goals, net income, and net assets have on the ability of the investor to take risks
using simulations via Monte Carlo methodology, mathematical derivation utilising prob-
ability theory, and logical analysis. The conclusions of this project are that investors with
a long investment horizon, small and flexible goals, small and stable expenses, and large
and liquid net assets are able to take more risk. These findings have varied implications
for advisers and supply the framework from which a model of Risk Capacity could be

based on.

KEYWORDS: Risk Profile; Risk Tolerance; Risk Capacity; Terminal Value of the Portfo-
lio; Probability of Shortfall, Probability of Withdrawal.
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1 Introduction

This report forms part of my master’s degree in Mathematical Finance at the Lisbon
School of Economics and Management. As part of this degree, I participated in a four-
month internship at Advicefront, a FinTech start-up that provides a platform in which
advisers can manage the relationship they have with their clients. The following report
details my work for Advicefront, which was largely focused on risk. Specifically, how
advisers can represent risk to clients and how they could assess the risk-taking abilities
of these clients. In my work on risk representation, I outlined an explanation of the risks
associated with holding financial assets that advisers could use to educate clients. This
included my “Principles of Risk”, as well as graphical representations of the concepts

contained within this explanatory piece.

Before a description of my work associated with the risk-taking abilities of clients,
some terms must first be defined, as this has been an area in which there is no agreed-
upon terminology. In fact, there has been significant differences surrounding the terms
used which has inevitably stunted progress (Nobre and Grable, 2015). The categorisation
outlined below was used because it allows for the splitting of risk-considerations into
subjective and objective elements. Doing so allows for a quantitative investigation into
the objective elements and provides a clear framework from which an analysis of the area
in it’s totality is possible. However, these terms are not used universally in comparative
literature on this topic. As such, I ask that this is taken into consideration when reading

other works in this sphere.

When assessing the risk-taking abilities of the client, one must build a
of the client. The [RP|represents the catalogue of all the measured information re-
garding how able and willing an investor is to take risks with their portfolio. This profile
has traditionally been composed of [Risk Tolerance (RT)| and [Risk Capacity (RC)| (Kle-
ment, 2015] pg. 3). [RT]is a measure of how willing an investor is to accept the possibility

of negative outcomes, knowing that this typically is accompanied by the possibility of
experiencing positive outcomes. It is based on the psychological composition of the in-
vestor. [RC] by contrast, is a measure of the capacity of the investor to take risks. It is
based on the socio-economic situation that the investor finds themselves in. As there is a
distinct difference between the two (Ananthan et al.l 2017), RT]|should be separated from
RC] (Hanna et al.| 2011).

has been analysed extensively in the academic literature (see Hanna et al., 2001}
Roszkowski et al., 2005; |(Grable and Lytton, [1999); much ink has been spilled on how to

develop supposedly "scientific" methods of measuring However, no strong evidence
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to support its usage currently exists.

The most widely accepted method of assessing is generally acknowledged to be
psychometric testing (Roszkowski et al., 2005). Although these tests are reliable (Grable
and Lytton, |1999; Hallahan et al., 2004; Callan and Johnson, 2002)), their predictive valid-
ity (how [RT] scores correlate to actual behaviour) remains questionable. One of the most
comprehensive attempts to prove the predictive validity of these models was presented by
Kuzniak et al.|(2015), who looked at the model developed by |Grable and Lytton| (1999)).
They regressed several variables against the equity ownership percentage of the partici-
pants in their sample, including anRT|score. They found that[RT|had the largest effect on
equity ownership, with a statistically-significant coefficient of 0.25. This seems to prove
that RT] has predictive validity. However, examining this figure more closely it is under-
stood that this implies that a 1-point increase in the score leads to a 0.25 percentage
point increase in equity holding, ceteris paribus. This means that moving from the min-
imum of the [RT] scores observed, 13, to the maximum, 47, would only result in an 8.5
percentage point increase in equity holding. One potential explanation for this is that this
effect isn’t large only because equity holding is an imperfect proxy for the willingness
of investors to take risk. This seems like a reasonable conclusion as the R-squared for
the regression was only 0.31. Accepting this reasoning implies that this study provides
only weak evidence in support of the predictive validity of An alternative conclusion
would be that their measurement of [RT] doesn’t have a substantial correlation with the

willingness to take risk.

The determinants of RC| can, unlike be quantitatively examined in an objective
manner, allowing one to arrive at robust conclusions. This is what this project seeks to
do.

If one wants to examine the capacity of investors to take risk, it is important to first
arrive at a definition of risk. In the context of financial planning, the definition provided
by Robert Jeffrey can be used:

The real risk in holding a portfolio is that it might not provide its owner, either
during the interim or at some terminal date or both, with the cash he requires to

make essential outlays.

In: Jeftrey| (1984)

This definition is useful in its’ correctness but not in its applicability. How does one

know if an asset or portfolio is risky under this definition? It’s hard to say. Under this
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definition, risk is determined by what I call fluctuation risk and bankruptcy risk. Fluctua-
tion risk is the risk that the value of the asset or portfolio changes so that when it comes
to liquidation it may not provide the investor with adequate “cash he requires to make es-
sential outlays”. Bankruptcy risk is the risk of the asset or portfolio losing all of its value.
Under this scenario, 0% of the cash the investor requires will be available to him. Both
of these types of risk have to be taken into account of and, during risk representation, the
client should be made aware of both of these distinct types of risk to ensure a holistic

understanding of the risk environment as it pertains to capital markets.

The report focuses exclusively on fluctuation risk: when different levels of risk are dis-
cussed this refers exclusively to different levels of volatility of the portfolio. This is done
for analytical purposes; the conclusions of the project would remain broadly the same if
bankruptcy risk was considered. Using fluctuation risk as a proxy for risk, the impact
that different factors have on the investor’s ability to take risk were assessed. Specifi-
cally, investment horizon, goals, net income, and net assets were considered in order to

quantitatively gauge whether or not these factors influence

The project is split into 8 chapters. Chapter[I]- “Introduction”, that you have just read,
outlines my work for Advicefront and gives a brief overview of the project. Chapter 2] -
“Setting the Scene” outlines the current state of affairs pertaining to Chapters
E] and @ are devoted to each of the four determinants of @ (investment horizon, goals,
net income, and net assets) that were analysed. Chapter [/| - "Responding to Criticism:
A Pre-emptive Strike”, outlines some of the potential criticisms of the project as well as
my response to these criticisms. Chapter [§] - "Conclusion" summarises the project and

discusses some of its implications.



2 Setting the Scene

2.1 RC in more detail

[RC| defines how much risk an investor is able to take, given their present socio-
economic situation and what it is likely to look like in the future (Klement, 2015, pg.
3). Given their situation, how able are they to bear the risk of receiving a reduced income
and/or valuation from/of their portfolio? Having a high [RC]is favourable for investors

because, historically in capital markets, taking more risk has led to higher returns .

2.2 Academic approaches

The volume of scientific research as it pertains to pales in comparison to that of
Although the reason for this isn’t immediately obvious, one suspects it is associated
with the fact that is a more complex, elusive concept. [RC|is easier to define and far
more concrete and therefore neglected in the academic community. It is difficult to find
academic material associated with[RC]| (aside from brief mentions in papers on[RT)), but it
does exist.

Some researchers have attempted to describe what levels of risk are observed in popu-
lations differentiated by demographic and socio-economic factors. (Cavezzali and Rigoni
(2012) allude to this general concept, although they differentiate their ideas in two main
ways. Firstly, they observe that the ability of an investor to take risk seems to affect the
amount of cash they hold, rather than their unique mix of risky assets. Secondly, they em-
phasise the influence that socio-economic factors have on this cash holding, rather than

demographic factors.

A few have offered ideas as to what could contribute to determining RC| but mostly
in an informal way in the midst of a paper about|[RT] (Cordell (2001)) gave one of the only

formalised lists that exists in the literature, stating that the following factors influence RC}

* Age

Portfolio goals and constraints
* Income

* Expenses

Balance sheet
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* Financial obligations

¢ Insurance coverages

This is a fairly comprehensive list. Although he didn’t outline a model, he did give hints
as to how one could be developed, proposing the use of a method similar to credit rating

except with an outcome on a continuum rather than pass/fail.

Some researchers have suggested ways to actual model RC| although most have taken
predominantly qualitative approaches. Bosner and Lakehal-Ayat (2008), in their study
of and [RC] amongst college students, used a questionnaire based on factors such as
age, job security, living situation, number of years until retirement, etc. to determine RC|
Cordell (2002}, building on his work from the previous year, suggested advisers judge the
[RC| of their clients by primarily considering “the amount and stability of income relative
to fixed and discretionary expenses.”. He also stated the need to incorporate other factors

that he listed in his 2001 paper. The adviser should assess all of these factors to arrive at

an[RC score.

Grable| (2008)) measured RC| in a similar way, albeit with a slightly higher level of
quantification. He asked a group of advisers what they thought contributed to These
answers were then ranked from one to ten on a scale of importance by the advisers and the
top six factors were taken (positive net worth, positive cash flow, emergency fund ratio,
savings ratio, adequate life insurance and current ratio). These were then used to create

questions with binary answers that would give the investor an[RC|score out of five.

These qualitative approaches are good for a ‘quick and dirty’ analysis: they give a
good initial approximation of the risks an investor is able to take. However, this method of
determining [RC| has several flaws which make it a non-viable long-term solution. Firstly,
these methods often miss a vital variable. For example, the score |Grable (2008) suggests
does not take goals into account. Secondly, these models are often imprecise. It’s better
to be roughly right than precisely wrong, but this doesn’t mean that one should use blunt
instruments. To paraphrase Einsteirﬂ one should be as precise as possible, but no more.

There is scope for more precision than these qualitative models allow for.

Thirdly, these approaches are usually heavily reliant on adviser judgement. Whilst
practitioner judgement often trumps methods proposed by academics, adviser judgement
has been shown to be systematically flawed (Roszkowski et al., 2005). One is also subject
to the judgement of one’s specific adviser under this regime. The practitioners would

make the defence that “that is what they get paid for”. This may be true, but wouldn’t it

'Einstein supposedly said something like “Everything should be as simple as it can be, but not simpler.”
(Sessions,, [1950)
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be better to have a systematic way to determine [RC] rather than being vulnerable to the
specific judgemental capacity of each individual adviser? Overall, qualitative methods
rely on commonly-held beliefs by advisers, in either the factors that determine [RC| or the
actual assessment of RC|itself. Again, it should be emphasised that using the experience
of practitioners isn’t inherently wrong. It’s very likely to be right, in fact. However,

currently-proposed factors require quantitative investigation to determine their efficacy.

Hanna and Chen|(1997) considered what effect RC| (which they called “objective risk
tolerance”) would have on optimal portfolios, using investment horizon and the ratio of
financial assets as a proportion of wealth as a proxy for They simulated across dif-
ferent rates of return, levels of risk aversion and financial assets as a proportion of wealth
over different time horizons and calculated the expected utility of each outcome. Their
conclusion was simple: with a short time horizon and a large ratio of financial assets to

wealth, one cannot afford to take risks.

MES| (2012)) documented one of the most sophisticated quantitative approaches avail-
able. Using Monte Carlo analysis, they simulated portfolio performance over multiple
investors with different characteristics and noted important outputs from each simulated
path. For example, they noted the number of negative periods (in the case of a shortage
scenario before death, the number periods the investor experienced after they ran out of

money was counted). Using this information they formulated the following measure:

New Metric = 100 — MINIMUM((% Negative Periods*(100 — Average % of Target
When Negative)* AVERAGE(Value of the $ based on weighting)/100),100)

Both these pieces of research are valuable and give a useful hint at quantitative methods.
However, there is still room for improvement. The problem with the Hanna and Chen
(1997) paper is obvious: they fail to take into account important factors that affect
The MES|(2012) paper, meanwhile, doesn’t tell the investor what their[RC]is foday based
on objective measures of their present situation. That is to say, they fail to translate
their findings into implications for the risk-taking capacity of investors based on socio-

economic and demographic factors.

2.3 My thoughts

As MES| (2012)) acknowledged, the current approach to [RC|is largely anecdotal. An
objective measure of [RC|is required, based on the current situation of the investor. The
future is fundamentally unknowable and for the measure to remain objective, it can only

take facts about the current situation, both socio-economic and demographic, into account.
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To lay the foundations for the development of a measure for[RC| one must first analyse
the determinants of RC| By assessing the body of research associated with [RC|discussed
in the previous section, as well as via interaction with practitioners, a list of determinants
of [RC] to quantitatively examine was determined. These factors encapsulate essentially
everything that is currently thought to determine [RC|] Although interrelated they are suf-
ficiently separate, allowing one to isolate specifically how each factor influences
Analysing only four factors will allow for clear conclusions and will make later work in

this area easier.

essentially depends on four things:

1. Investment Horizon
2. Goals
3. Net Income
4. Net Assets
These four factors will determine how much risk an investor is able to take. All other

possible contributors are either incorporated into one or more of these factors or do not
significantly contribute to The analysis, therefore, will focus on these four factors.



3 Investment Horizon

[Investment Horizon (IH)|is defined as the length of time between the present date and
the goal date. Two tests were devised in an attempt to illustrate the effects that[[H| has on
one’s ability to take risks. In the first, shortfalls that an investor with a set portfolio risk

experienced with different[THk and different goals were analysed. In the second, different

risk levels were introduced and |IH| was examined more granularly.

3.1 Constant risk

|Geometric Brownian Motion (GBM)| which was outlined by |Black and Scholes| (1973)

in their model for option pricing (based on work from Samuelson (1965)), was used to

simulate the returns of the portfolio, with 1 (a value of 0.05 was assigned) being the rate
of return and o (a value of 0.1 was assigned) being the volatility of the portfolio (see
Appendix [B.3|for R code used and [B.2]and [B. ] for proof of its validity). The evolution of

the portfolio price can be characterised by the following equation:

dXt = IMXtdt + UXtth (1)

With price at any time ¢ being given by:

Xt _ X0€<'u_%2)t+UWt (2)

Where X, is portfolio value at time ¢ and W, refers to a Weiner process at time ¢ where
Wt ~ N(O, t)

Figure [I] shows the output of 100,000 observations of the [Terminal Value of the Port-|
olio (TVP)for a portfolio with the stated statistical characteristics over a 1, 5, 10, 20 and
30 year period. Comparing a 1-year[H|to a 30-year [[H]it is clear that under the longer [H]

an investor is more likely to achieve more favourable investment outcomes.

One must compare these generated returns to goals that the investor has to make the
benefits of @ clearer. To do this, the for each simulation was compared to different
goals. Specifically, goals of £100,000, £200,000, £500,000 and £1,000,000 were exam-
ined, paths for each |[I[H| were simulated and the [Probability of Shortfall (POS)| for each
goal was considered (Figure 2] - see Appendix for R code).

By looking at Figure [2] it’s immediately obvious that the [POS| decreases as [[H] in-
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FIGURE 1: Comparison of TVPs 1-year vs. 30-year IH.

Figure |1| Note: Histogram of 100,000 simulations of the Terminal Value of the Portfolio (TVP) generated
using Geometric Brownian Motion for 1-year (left) and 30-Year (right) Investment Horizons (IHs).

creases. At higher goal levels, the goal is simply not attainable at short[[Hs. What’s more,
the relationship appears to be concave: the more the time horizon increases, the greater
the rate of decrease in the[POS]at higher goal levels. For goal two (doubling the £100,000
portfolio to £200,000), the drop in the[POS|is dramatic and roughly linear. Here, arguably
the most realistic goal scenario, changing the [[H|from 10 to 20 years drastically decreases
the [POS| Turning now towards the goal of maintaining portfolio value (goal one), a con-
vex relationship seems to be emerging. This means that the largest benefits of [[H] occur
over shorter time frames (<10 years) if one simply wants to maintain one’s investment.

Note how the [POS|drops to near 0 in this scenario as the time horizon is extended.

This shows that shortfalls are less likely at longer [[Hk. So, investors with these longer
MHk are able to take more risk with the knowledge that their goal will probably still be hit
anyway. Take goal one, for example. In this scenario, an investor with a 30-year [H| will
be able to take more risk than one with a 10-year [[H] This is because an investor with a
10-year [TH| still has a reasonable chance of not hitting their goal at their current level of
risk, so cannot really afford to take on extra risk. However, because the chance of not
hitting their goal is so low for the investor with the 30-year they can afford to take
more risk, safe in the knowledge that they will probably still hit their goal.

It is also possible to estimate some descriptive statistics for the shortfalls of each com-
bination of [TH] and goal size for 100,000 observations (Table and [[T] - see Appendix
[B.5] and [B.6| for R code). For the maximum shortfalls, the picture remains largely the
same, regardless of [[H} the worst-case scenario is roughly the same for all [Hs. When
looking at the means and medians, the average shortfall decreases as|[H|increases for goal

two, three and four. However, the average shortfall seems to increase as @ increases for

9
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FIGURE 2: POS for different goals and different IHs.

Figure |2| Note: Estimates the Probability of Shortfall (POS) generated by 100,000 observations of the
Terminal Value of the Portfolio of a portfolio with fixed characteristics at different Investment Horizons
(IHs) and different goal sizes.

goal one (but there is not much acceleration after 5 years). This is due to the stochastic
nature of the model: at longer time horizons there are more possible price paths. This
means that when shortfalls are exclusively analysed, as they are here, the mean shortfall
is likely to be slightly greater at longer [Hk, but it is important to bear in mind that the
probability of this shortfall is very low (see Figure [2)).

£100,000  £200,000  £500,000  £1,000,000
1-Year 33,300 135,200 432,100 932,800
5-Year 50,600 150,700 456,900 951,000
10-Year 59,700 160,500 456,100 959,500
20-Year 65,700 166,700 462,100 971,000
30-Year 57,400 163,900 461,200 970,200

TABLE I: MAXIMUM SHORTFALL OBSERVED

TableNote: Maximum shortfall observed over 100,00 simulations for the 4 goal sizes and 5 Investment
Horizons displayed. Shortfall (£) amounts are listed to the nearest £100.

Even in the case of a shortfall (less likely in longer time horizons) the size of the

shortfall that one experiences is likely to be smaller under longer in most scenarios.
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£100,000  £200,000  £500,000  £1,000,000

1-Year 6,300 94,900 394,900 894,900
5-Year 10,600 73,300 371,400 871,600
10-Year 12,500 57,100 335,000 835,200

20-Year 14,700 46,500 248,100 729,800
30-Year 15,400 43,100 190,400 587,600

TABLE II: MEAN SHORTFALL OBSERVED

Table |lI| Note: Mean shortfall observed over 100,00 simulations for the 4 goal sizes and 5 Investment
Horizons displayed. Shortfall (£) amounts are listed to the nearest £100.

£100,000  £200,000  £500,000  £1,000,000
1-Year 5,100 95,400 395,300 895,400
5-Year 8,800 75,500 374,500 874,800
10-Year 10,100 56,100 343,300 843,200
20-Year 12,000 41,700 261,300 754,700
30-Year 12,200 37,300 192,900 625,100

TABLE III: MEDIAN SHORTFALL OBSERVED

Table Note: Median shortfall observed over 100,00 simulations for the 4 goal sizes and 5 Investment
Horizons displayed. Shortfall (£) amounts are listed to the nearest £100.

Investors are therefore more able to take more risks under longer [Hk because they know
that both the [POS|and the size of shortfall are likely to be smaller under these scenarios.

3.2 Varied risk

Now consider [I[H| under three different portfolio scenarios with three different risk
levels. Still using the[GBM|model outlined above, three new portfolios were constructed:

1. No Risk: Portfolio One (P1) with x of 0.01 and ¢ of 0

2. Some Risk: Portfolio Two (P2) with p of 0.05 and o of 0.1

3. High Risk: Portfolio Three (P3) with p of 0.1 and o of 0.2

One can compare the minimum of these portfolios obtained over 1,000,000 observa-

tions against the maximum over different time horizonf] (Figure |3| and 4| - see Appendix

20bviously, for P1 the simulated maximum and minimum would be the same as it is a deterministic process.
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B.7] for R code). The benefits of riskier portfolios are obvious, particularly at long [[Hk;
the difference between minimum portfolios is relatively very small when compared to the
potential maximums. Also note how after 10 years or so, the simulated minimum for each

risk level seems to flatten out whereas the maximum continues to grow.

B Simulated Max (LHS) [ Simulated Min (RHS)

£2,500,000 £80,000
£2,000,000
£60,000
£1,500,000
=9 =9
& £40,000 &
= =
£1,000,000
£20,000
£500,000
£0 £0

1 23 45 6 7 8 9 1011 12 13 14 15 16 17 18 19 20
IH

FIGURE 3: Min vs. Max TVP: Some Risk.

Figure [3| Note: The maximum (left) and minimum (right) value observed of the Terminal Value of the
Portfolio (TVP) over 1,000,000 observations of the "Some Risk" portfolio (Geometric Brownian Motion
with ¢ = 0.05 and o = 0.1).

With a longer [[H] the annual rate of return required to achieve the same total return is
lower than with a short [[H] For example, say two investors both need to return 100% in
some period. An investor with a 10-year [[H| will need to return roughly 7.18% annually
to achieve this goal. However, an investor with a 30-year [[H| will only need to return
2.34%. This investor can invest in higher-risk assets because they only require a low
return. However, the investor with the 10-year horizon requires a higher level of return
and cannot afford to invest in riskier assets because these are more volatile and might not

give the investor the return they require.

Using these portfolios consider again the [POS| comparing against the same four goals
(Figure 3 - see Appendix [B.8|for R code). The conclusion from the low-risk portfolio is
clear: if the goal exceeds £100,000 by a certain amount, invest in riskier assets otherwise
the investor won’t reach it. If, however, it is below some set threshold, one can divert

some funds to riskier assets, safe in the knowledge that one’s goal will be achieved with
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B Simulated Max (LHS) [ Simulated Min (RHS)

£50,000,000 £50,000
£40,000,000 £40,000
£30,000,000 £30,000
=9 =¥
> >
- =
£20,000,000 £20,000
£10,000,000 £10,000
£0 £0

1 2 3 45 6 7 8 9 1011 12 13 14 15 16 17 18 19 20

H

FIGURE 4: Min vs. Max TVP: High Risk.

Figure @ Note: The maximum (left) and minimum (right) value observed of the Terminal Value of the
Portfolio (TVP) over 1,000,000 observations of the "High Risk" portfolio (Geometric Brownian Motion
with 4 = 0.1 and o0 = 0.2).

(theoretical) probability 1, enjoying the upside that riskier assets are accompanied by.

This threshold increases as the|IE| increases. So, investors with low goals are able to
take more risks when their [H] is longer. For the riskier assets, note that increasing the
[H] decreases the [POS] This effect is more pronounced with the high-risk asset. So, to
decrease the [POS] over longer [[Hk for goals exceeding some certain level, it is actually
less risky, in terms of [POS] to invest in risky assets. Again, this shows how investors with

longer THk are more able - if not compelled - to invest in riskier assets.
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P1 P2 P3 P1 P2 P3
I-Year 1.00 0.326 0.345 I-Year 0.00 1.00 0.999
5-Year 1.00 0.263 0.285 5-Year 0.00 1.00 0.970
10-Year 1.00 0.218 0.245 10-Year 0.00 0.999 0.905
20-Year 1.00 0.184 0.212 20-Year 0.00 0.995 0.824
30-Year 1.00 0.157 0.185 30-Year 0.00 0.982 0.744

(a) Goal 1 (£100,000) (b) Goal 2 (£200,000)

Pl P2 P3 Pl P2 P3
I-Year 0.00 1.00 1.00 I-Year 0.00 1.00 1.00
S5-Year 0.00 1.00 1.00 5-Year 0.00 1.00 1.00
10-Year 0.00 1.00 1.00 10-Year 0.00 1.00 1.00
20-Year 0.00 1.00 0.999 20-Year 0.00 1.00 1.00
30-Year 0.00 1.00 0.997 30-Year 0.00 1.00 1.00

(c) Goal 3 (£500,000) (d) Goal 4 (£1,000,000)

FIGURE 5: POS for each of the 4 goals for each risk level.

Figure 5| Note: Estimated Probability of Shortfall (POS) for each of the 4 goal sizes and 5 Investment
Horizons using 100,000 simulations. P1 represents a portfolio based on a Geometric Brownian Motion
with 4 = 0.01 and o = 0, P2 has ¢ = 0.05 and 0 = 0.1 and P3 has ¢ = 0.1 and o0 = 0.2. The Terminal
Value of the Portfolio generated was compared against the goal size and the frequency of shortfall over
100,000 observations was used to generate estimated probabilities.
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4 Goals

Most people invest with some kind of goal in mind. This could be funding retirement,
saving for a holiday, or building a portfolio for future generations. Goals as a concept
in its totality was deconstructed into size and flexibility in order to isolate the effect that
each would have individually onRC|

4.1 Size

Looking again at Figure [5 one can clearly see that the larger the goal, the higher the
probability of not reaching it. This effect is also observable by looking at a fixed time
horizon of 10 years and using, once again, three different portfolios (except this time all

three are stochastic):

1. Low Risk: Portfolio One (P1) with y of 0.025 and o of 0.05
2. Medium Risk: Portfolio Two (P2) with p of 0.05 and ¢ of 0.1

3. High Risk: Portfolio Three (P3) with o of 0.1 and o of 0.2

Returning to an examination of the [POS|in Figure [ one can clearly see the effect
that increasing the goal size has (see Appendix [C.I|for R code). The most striking feature
is the severity of the relationship; the lines are very steep and in the case of P1 almost
vertical. This shows that small changes in goal size can affect the POS|dramatically. The
effect is also apparently concave (although increasingly linear as risk increases): at high
goal sizes, reducing goals by the same amount will not have as significant an effect as at

low goal sizes.

As one moves from very high goals to smaller goals, the benefit of investing in higher-
risk assets grows in the form of reduced[POS| So as goal size reduces, the investor is better
off, in terms of [POS] investing in riskier assets. At very low goal size, the [POS|is very
similar for all levels of risk. This illustrates how an investor with a low goal size can take
more risk, safe in the knowledge that their goal will probably still be achieved anyway,
even if they experiences a negative outcome. Investing in lower-risk assets doesn’t re-
ally benefit the investor, in terms of [POS] So it would seem they would be better served

investing in higher-risk assets, given that these are accompanied by higher upside.

One can also demonstrate the effect of size mathematically by insisting that the goal

of an investor has to be achieved using safe assets. Assume the investor can invest in two
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FIGURE 6: POS for different risk levels as goals increase in size.

FigurelaNote: Terminal Value of the Portfolio for each portfolio type was calculated. This was done using
a Geometric Brownian Motion with ;1 = 0.025 and ¢ = 0.05 for Portfolio 1 (P1), 4 = 0.05 and 0 = 0.1
for Portfolio 2 (P2), and px = 0.1 and o = 0.2 for Portfolio 3 (P3). These TVPs were then compared to the
goal sizes (x-axis) for 1,000,000 observations to estimate the Probability of Shortfall (POS).

assets: asset r, a risky asset, and asset s, a risk-free asset. Let X; denote portfolio value at
time ¢. II,, is the proportion invested in asset n (I, + II; = 1) and [',, is the annual return
of assetn (I', > T')).

So, at year ¢,

Xy = Xo [(L+T,) T, + (1 + Ty 1] (3)

Suppose that the investor can use safe assets only to meet a goal G; and invests the rest in

risky assets:

Gy = (14T, 11, (4)

Imagine two different scenarios (1 and 2) in which the investor has two possible goal sizes
where G} < G?. So,

1
L= (14T) I+ (14D 11 5)
Xo
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X2
YZ =(1+T,) T2+ (1+T,) 112 (6)

Note that, because G} < G?, one must necessarily have IT} < TI2. Additionally, because
II, + I, = 1, II, = 1 — II,. So, (§) - (6) is equal to:

(14+T,) (1= = 1+ T82) + (14T, (11} - 112)
= (1+1)" (T - I) + (14 Ty)" (1T — II) @

This equation is greater than 0 because:

1 (I = 1) = — (11 — 115)

2.1, >T, & (14T,) > (14T,)" (fort > 0)

Therefore, (5) > (6) and X} > X2.

4.2  Flexibility

In reality, some goals matter more than others. For example, one would think that
investors care more about whether they save enough for planned retirement in 10 years
time than if they go on a trip to Hawaii in the summer. Different goals have different real
values; not achieving certain goals will be more painful than not achieving others. All
goals have an absolute size (monetary value) and a real size (how much they are worth to

the investor).

Let X, represent the absolute value of the portfolio and Z; represent real value (at time t).

7 is the importance that the investor places on goal G, (7 € [0, 1]).

X WX, <G
X, if X, > G,

Z = ®)

What is the expectation of the [Real Terminal Value of the Portfolio (RTVP) where period

17
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t is the last period observed? Well, because of the Law of Total Expectation,

EZ] =P (X, <Gy E[Z]+ P (X, > G, - E|Z]

:P(XtSGt).E{lftT}+P(Xt>Gt).E[Xt]

¢ t T) - f f 9
:E[Xt]_[P(X SG)+(11++T) P(X >G)]
:E[Xt]-{1+T'1P_'(_‘)§_t>Gt)

This expression gets smaller as 7 increases because P (X; > G;) < 1. In fact, 7, — X,
as 7 — 0. That is to say, RTVP|approaches [TVP|as the goal of the investor becomes less

and less important.

One can use this formula to analyse the effect that changing 7 has on the RTVP|of a
portfolio with set characteristics. Using a[GBM]model for the portfolio with 1 of 0.05 and
o of 0.1, values of the for goals of £100,000, £200,000, £300,000 and £400,000
were simulated whilst changing 7 incrementally (Figure[7]- see Appendix|C.2|for R code).

150000

—— goal one

[l
> 130000 — goaltwo
—~
a7 —— goal three
—— goal four
110000
90000 . . . . .
0.00 0.25 0.50 0.75 1.00
T

FIGURE 7: POS for different risk levels as goals increase in size.

Figure |7| Note: The Real Terminal Value of the Portfolio (RTVP) was determined using Equation , a
Geometric Brownian Motion with ¢ = 0.05 and o = 0.1, and different values of the importance the
investor places on achieving their goals (7). This calculated for 4 goals (goal one = £100,000, goal two
= £200,000, goal three = £300,000 and goal four = £400,000). The average of 100,000 observations was
calculated to generate an estimate for the RTVP.
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Clearly, as 7 increases and goals become more important to the investor, the simulated
[RTVP| decreases across all goal sizes. This happens in a fairly linear way although there
is some convexity present, indicating that absolute differences in 7 are more impactful at
lower values of 7. At lower values of 7 the RTVP moves closer and closer to the [TVP:
achieving the goal becomes less and less important and the value of the portfolio becomes

more important.

When there is a high degree of flexibility in the goal, investors care more about the
return of the portfolio and less about hitting the goal. So, investors are less concerned with
worst-case scenarios of their portfolio because they are not strongly negatively impacted
by not hitting their goal. They can focus more on the upside and are able to invest in

riskier assets as a result.
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5 Net Income

Net income can be defined as income minus expenses. So, both income and expenses
influence net income. However, one can focus exclusively on expenses because income
and expenses are two sides of the same coin (net income). Any analysis applied to one
can be applied to the other (but the conclusions will be the opposite). For example, if one
were to come to the conclusion that high expenses negatively impactRC|, then low income
would also negatively impact RC| If it is discovered that the number of income sources
positively influences [RC] then the number of expense sources will negatively influence
Additionally, it doesn’t really make sense to look at either income or expenditure
in isolation. How much, exactly, is a high income? Income and expenses need to be

compared to something. The best way to gauge either is via comparison with the other.

5.1 Size

Firstly, the size of expenses (characterised by the fraction|[Expenses/Income (E/I)) was
examined. A simulation of a portfolio using the model with z equal to 0.05 and o
equal to 0.1 was generated, given a 10-year [H| 10 shocks were subsequently generated

by taking numbers from a uniform distribution with lower bound of £1,000 and an upper
bound of £5,000; the location of these shocks were generated by taking observations
from a uniform distribution with an upper bound of 120 and a lower bound of one (here
representing month numbers of the 10-year period, see Appendix [D.I|for the shock values
and locations). Holding income constant at £50,000 per year, expenses were varied to
ensure that the took three values: 1/4, 1/2 and 3/4. These fractions were assigned to
three investors: investor one (/) had an[E/l of 1/4, investor two (I3) had an[E/l|of 1/2 and
investor three (I3) had an [E/lof 3/4 (Table [[V).

]1 .[2 Ig
Monthly Earnings £4,166.67 £4,166.67 £4,166.67
Monthly Expenses £1,041.67 £2,083.33 £3,125.00
Net Income £3,125.00  £2,083.33 £1,041.67
E/l 0.25 0.50 0.75

TABLE IV: NET INCOME OF INVESTORS WITH DIFFERENT E/IS

Table Note: A comparison of the characteristics for the three different investors Iy, I and Is. The
Expenses/Income (E/I) ratios is used to generate a figure for Net Income for all 3. All figures correct to 2
decimal places.
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For each period, if an expense shock occurred it would either be able to be absorbed
by the investor or the investor would have to liquidate some of their portfolio to cover
the expense shock. For example, for the first shock of £2,331, I; would not have to
withdraw from their investment account (because 3,125 > 2,331). However, I5 would
have to withdraw £247.67 and I3 would have to withdraw £1,289.33. Over 10 years, this
can have a significant effect on the [T'VP| In Table [V|a typical price path of the simulated
portfolio is examined - significant differences in the [['VPg are seen. Of particular note
here is the gap between the withdrawal amounts and the difference between the original
portfolio and the for each investor.

Difference with Number of

TvP original portfolio Withdrawals Withdrawal Total
Original Portfolio £139,825 £0 0 £0
Low E/I £133,692 £-6,133 5 £5,219
Med E/I £126,997 £-12,828 7 £10,982
High E/1 £115,042 £-24,782 10 £20,672

TABLE V: EFFECT OF DIFFERENT E/IS ON RANDOM PRICE PATH

Table [V| Note: Price path generated using Geometric Brownian Motion with ¢ = 0.05 and ¢ = 0.1.
Withdrawal occurs if total expenses for each period (indluding the random expense shocks - see Appendix
[D.1)) exceed income for that period. This is observed for 3 investors with different Expenses/Income (E/I)
ratios - Low E/I who has an E/I of 0.25, Med E/I who has an E/I of 0.50 and High E/I who has an E/I
of 0.75. The Terminal Value of the Portfolio (TVP) seen is the result that these withdrawals have on the
portfolio. All figures correct to the nearest whole number.

These same expense shocks were then applied to many different simulations of the
portfolio, utilising Monte Carlo methodology. After 1,000,000 simulations one can roughly
determine some descriptive statistics of the (Table [VI - see Appendix [D.2] for R
code). Clearly, as the fraction increases the minimum and the average de-
crease. One can also detect a hint of non-linearity in the relationship: the jump between

the returns that /; and /> might receive is smaller than that between /5 and 3.

In Figure [ the same random shocks were applied to different values of [E/I] (0 to
1 incremented by 0.05) and the effect this change of had on the for the same
random price path observed earlier in Table [V] was examined (see Appendix [D.3]for R
code). As expected, this line is downward-sloping: as increases, the decreases.
The non-linearity hinted at earlier is clearly visible here: the relationship between
and is concave. This means that the higher the value of the more the same
absolute changes affect the So, it is more important to reduce one’s E/I fraction at
higher absolute levels of [E/I| to prevent unplanned withdrawal. Note that the relationship

becomes linear at very high levels of when the investor is withdrawing from their
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Minimum Mean Median
No E 35,008.86 164,884.20 156,811.90
Low E/I 30,940.70 158,075.80 150,116.90
Med E/l 26,376.32 150,713.80 142,874.20
High E/I 19,353.44 137,735.00 130,163.90

TABLE VI: DESCRIPTIVE STATISTICS OF TVPS FOR DIFFERENT E/IS

Table [VI|Note: Terminal Value of the Portfolio (TVP) generated using Geometric Brownian Motion with
1 = 0.05 and o = 0.1. Withdrawal occurs if total expenses for each period (indluding the random expense
shocks - see Appendix [D.1) exceed income for that period. This is observed for 3 investors with different
Expenses/Income (E/T) ratios - Low E/I who has an E/I of 0.25, Med E/I who has an E/T of 0.50 and High
E/I who has an E/I of 0.75. Simulation occurred 1,000,000 times to generate the figures seen in the table.
All figures in £ and estimated to 2 decimal places.

portfolio with every expense shock.

5.2 Volatility

In reality, expenses vary. No-one spends the same amount each month, no matter
how financially organised and careful one is. Some people’s expenses vary more than
others: investors experience different levels of volatility in their monthly expenses. To
investigate this theoretical framework, expenses were modelled using the log-normal dis-
tribution. The logic behind this being that most expenses can’t go below 0, cluster around
some low mean and have the potential to be significantly higher than the mean. Think of
an investor with typical expenses of £1,000 who goes on a £2,000 holiday, purchases a
£5,000 watch, places a £30,000 deposit down on a house, or has a particularly expensive
trip to the casino. The log-normal distribution will generate mostly low observation with
increasingly-low probability of higher observations. This is similar to expenses: for most
months they are roughly the same but something significant can happen with low prob-
ability that can increase the total expenses for that month significantly. The log-normal
distribution probably doesn’t reflect expenses perfectly (it practically doesn’t allow for
very large expenses, like the purchase of a house outright, for example) but it will serve

perfectly adequately for the purposes of this analysis.
Let monthly income be denoted by a constant /.

Withdrawal occurs if E; ~ lognormal (u,,,o2) > I for any given month. So, the proba-
bility of withdrawal from any month ¢t = P (E; > I).

One can use this simple estimation, as well as R and the knowledge of the relationship

between the mean and variance of a normal distribution with the log-normal distribution
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FIGURE 8: Changes to TVP of random price path as E/I changes.

Table [§| Note: Terminal Value of the Portfolio (TVP) generated using the same price path in Table
Geometric Brownian Motion with ¢ = 0.05 and ¢ = 0.1 with different values of Expenses/Income (E/I)
ratios. Withdrawal occurs if total expenses for each period (indluding the random expense shocks - see
Appendix exceed income for that period.

proved in Appendix to asses the impact that volatility has on the was set
at 1/2, with monthly income to £4,166.67 (annually £50,000) and expenses to £2,083.33
(annually £25,000). Three hypothetical investors were separated by the volatility of their
expenses, the first experiencing a standard deviation of £500, the second of £1,000 and
the third of £1,500. By looking at Figure 9] it is obvious that this has a significant impact
on the distribution of their respective expenses.

Looking now at their descriptive statistics in Table [VIL} it is clear how the expenses of
the high-volatility investor have the potential to go very high but also very low (see Ap-
pendix [D.5]for R code). Reducing volatility has the pleasant effect of effectively eliminat-
ing the probability of a very expensive month: the low-volatility investor has a practically
0 probability of a month of over £10,000 in expenses. Contrast this with the high-volatility
investor, who still has a chance, albeit very small, of a month of over £20,000 in expenses.

Finally, one can see that the probability of withdrawal increases as volatility increases.

These three investors were used to see what affect these different expense volatilities
might have on the investment account. Again using the model, a portfolio was
simulated over 10 years with 4 = 0.05 and 0 = 0.1. As before, when the investor’s

expenses exceed their income for a certain month, they must withdraw from the portfolio
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FIGURE 9: Histograms for the 3 levels of expense volatilites.

Figure |§| Note: Histogram of 100,000 observations for investors with 3 different expense structures - the
Low Volatility has expenses with 0 = 500, the Medium Volatility has expenses with ¢ = 1,000 and the
High Volatility investor has expenses with o = 1, 500. All have the same p = 2, 083.33.

Estimated  Estimated

Mini o Maimum E (Bt > 1) P (E; >10,000) P (E; > 20,000)

Low

W 500 £719.60  £5,730.50  0.00104 0.00000 0.00000
Volatility
Medium 500 075680 £13.045.02  0.04006 0.00012 0.00000
Volatility
High 1500 £101.08  £2926015 008076 0.00298 0.00007
Volatility

TABLE VII: STATISTICS FOR EXPENSES

Table Note: All 3 investors have the same p = 2,083.33. The estimated minima and maxima are
the average of 10,000 observations of the min and max of trials of 100,000 expense occurrences. Figures
accurate to 2 decimal places. Probabilities are calculated using cumulative distribution function for the
log-normal distribution and Z-tables. Figures accurate to 5 decimal places.

to cover this shortfall. This leads to differing price paths, withdrawal amounts and TVPs
(Figure 10} Table[VIII and Table [[X] respectively - see Appendix [D.6]for R code).

Not only do the lower-volatility investors withdraw less on average but their maxi-
mum withdrawal (in the worst-case scenario) is likely to be much less. Now looking at
the [TVP, the statistics are broadly similar for the low-volatility investor and the medium-
volatility investor. This is a trivial conclusion of the fact that if one’s expenses don’t ex-
ceed one’s income very often, one won’t make many withdrawals from one’s portfolio
and one’s [TVP| won’t be too adversely affected. There seems to be some kind of limit
to the volatility of expenses that the investor can add without significant consequences.
Beyond this point, extra volatility seems to start to severely negatively impact the [[' VP

This also means that if the volatility of expenses is low, the investor can afford to increase
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FIGURE 10: Example price path for the 3 different volatility levels.

Figure Note: Example of price path generated using Geometric Brownian Motion with ¢ = 0.05 and
o = 0.1 where 3 different investors have expenses are drawn from a log-normal distribution where Low
Vol has expenses with ¢ = 500, the Med Vol has expenses with ¢ = 1,000 and the High Vol has expenses
with 0 = 1, 500. All have the same ;1 = 2,083.33. If any observation exceeds their income for that period
(£4,166.67) then withdrawal from the portfolio occurs.

it without many negative consequences. The high-volatility investor has been crushed by
their expenses. Both the mean and the maximum of the [TVP|that they are likely to enjoy
are significantly lower. The simulated value of the minimum portfolio has turned nega-
tive. This is obviously not possible in real life and would simply result in their portfolio
evaporating as they withdraw more and more money to cover pricey month after pricey
month. This is the mechanism via which successively expensive months can cripple one’s

returns.

Granulating sigma to a greater extent, Figure[TT] one can derive more insight into its
exact relationship to theTVP|(see Appendix [D.7]for R code). The hunch from earlier ap-
pears to be correct: volatility does not appear to affect expenses before a o of 0.2. Beyond
this point, volatility does has an accelerating negative effect on the becoming fairly
aggressive after o 0.4. The effect is concave: the damage inflicted by more volatility ac-
celerates beyond o 0.2, but seems to become linear after roughly o 0.6. The reason for
this isn’t clear but it could be associated with the non-linear relationship that volatility has
with withdrawals. At some point, increasing volatility more and more may have less and

less of an effect on withdrawal probability and amount.
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Mean Max Min
Low Vol 40.91 3,561.63 0.00
Med Vol 4,400.33 31,454.94 0.00
High Vol 15,992.71 100,682.00 0.00

TABLE VIII: WITHDRAWALS FOR EACH VOLATILITY LEVEL

Table Note: 1,000,000 price paths generated using Geometric Brownian Motion with ¢ = 0.05 and
o = 0.1 where 3 different investors have expenses are drawn from a log-normal distribution where Low
Vol has expenses with o = 500, the Med Vol has expenses with o = 1,000 and the High Vol has expenses
with ¢ = 1, 500. All have the same p = 2,083.33. If any observation exceeds their income for that period
(£4,166.67) then withdrawal from the portfolio occurs. Withdrawal amounts (£) accurate to 2 decimal
places.

Mean Max Min
Low Vol 164,797.00 682,818.50 35,176.30
Med Vol 159,153.30 660,098.90 28,466.71
High Vol 91,435.04 543,745.30 -73,636.65

TABLE IX: TVPS FOR EACH VOLATILITY LEVEL

Table Note: 1,000,000 price paths generated using Geometric Brownian Motion with ¢ = 0.05 and
o = 0.1 where 3 different investors have expenses are drawn from a log-normal distribution where Low
Vol has expenses with o = 500, the Med Vol has expenses with ¢ = 1,000 and the High Vol has expenses
with o = 1, 500. All have the same p = 2,083.33. If any observation exceeds their income for that period
(£4,166.67) then withdrawal from the portfolio occurs. The Terminal Value of the Portfolio (TVP) was
calculated and analysed. TVPs (£) accurate to 2 decimal places.

5.3 Fixed costs

A different way to approach the problem is to look not just at the total of these ex-
penses but also at the composition. Expenses can be split into two categories: fixed costs
and variable costs. Fixed costs are those that are the same, or roughly the same, each
month. Examples include rent, electricity/gas/water, internet connection, food (not in-
cluding restaurants), etc. Variable costs are those which are subject to change and vary,
sometimes dramatically, from month to month. Examples include expenditure in restau-
rants and bars, going to the theatre, trips abroad, etc. Fixed costs are much harder, both
psychologically and logistically, to change and, for the most part, remain the same month

to month. Variable costs, however, can and do change relatively easily.

Fixed costs are important because they cannot be altered in the face of an expense
shock. Variable costs can. For example, say one’s boiler breaks down and a repair is

required. One cannot simply reduce one’s rent payment for that month to provide one with
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FIGURE 11: Effect of 0 on TVP.

Figure [11{ Note: 100,000 price paths generated using Geometric Brownian Motion with ¢ = 0.05 and
o = 0.1 where the volatility of expenses varies with . All have the same 1 = 2,083.33. If any observation
exceeds their income for that period (£4,166.67) then withdrawal from the portfolio occurs. The Terminal
Value of the Portfolio (TVP) was estimated based on an average over the 100,000 observations for each o.

the extra money required to cover this unexpected expense. One can, however, not go to
the bar on Friday and not go out to eat on Saturday. Hence, when one posits that the size
of expenses matter what one should really posit is that the size of fixed expenses matter.
These are the expenses that cannot be changed and result in unplanned withdrawals from

the portfolio.

This can be illustrated by looking at the following three investors with equal E/I ratios
but different fixed costs. The "Low FC" investor’s fraction of total expenses as fixed costs
is 1/4, for the "Med FC" investor it’s 1/3, and for the "High FC" investor it’s 1/2. Note
that each investor has the same monthly expenses - £2,083.33 - and income - £4,166.67,
it’s only the composition of those expenses that is different. Looking at Figure [12] it is
clear that, even though remains constant, withdrawal amounts can differ significantly

for different expense shocks, depending on the fraction of total expenses that are fixed.
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FIGURE 12: The effect of different fixed costs on withdrawal.

FigureNote: Each investor has the same Expenses/Income ratio (income is £4,166,67 and expenses are
£2,083.33) but a different fraction of expenses as fixed costs: Low FC has a fraction of 1/4, Med FC has a
fraction of 1/3 and High FC has a fraction of 1/2. If the expense for each period exceeds non-variable costs
(fixed costs and expense shocks) for a period then withdrawal occurs.

One can also investigate this relationship mathematically. Let income be a constant
Ist. Iy =1, =..= 1, = 1. Expenses in each (non-expense-shock) period ¢ are the
aggregate of two separate components: fixed costs (Cf") and variable costs (C}). Total
costs Cy = CI' + €Y. Fixed costs are constant Cf = C = ... = CI' = CF. Variable

costs are also constant except from periods in which the investor experiences expense
shocks S; in periods j # k # ... # n:

s=1. (10)

In periods in which there is are no expense shock, variable costs are equal to a constant:

cY =Cy =...=C/ =0V ift#jk,...n (11)
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Note that C¥ + CV < [I. This means that in non-shock periods, the investor does
not need to withdraw and there is no uncertainty associated with the situation in this con-
text. Here, periods in which the investor experiences an expense shock will be exclusively
focused on, a far more uncertain proposition. In shock periods, withdrawal may be neces-
sary to cover expenses for that month. To prevent this, the investor can alter their variable
costs in these periods and/or withdraw from their portfolio. Note that even if there is a
shock, it may be absorbed by net income, after variable costs have been altered. Variable
costs are only reduced to prevent, or limit, withdrawals from the investment account. A

full classification of variable costs in shock periods can therefore be represented by the

following:
cv if [ —CF —CV > 8,
CYP=q1-CF -8, fI—CF—CV <8, <I-CF (12)
0 if I —CF < 8,

In shock periods, C; = CF + CY S 4+ S,. A withdrawal occurs if total expenses, C, are
greater than income in that period. Now let X; be a binary random variable, defining
whether or not the investor is forced to withdraw from their investment account in shock
period ¢:

1 ifC,>1
X, = (13)
0 otherwise

How often can the investor expect to withdraw in shock periods? In other words, what is
E [X]? Via the Law of Total Expectation,

E[X]

EX|C>I-P(C>D+E[X|C<I]-P(C<LI)
P(C>1) (14)
P(CT+CY+8>1)

I
N

Now utilising the Law of Total Probability (as well as (12))),

EX]=P(C"+C"+S>I[I-C"'-CV258)-PI-C"-C"=>28)+
PCF+C" +S>1|1-CF-C"<S<I-CF)-P(I-C"-CV<S<I-CF)
+P(CF4+CY+8S>1|1-CF<8S])-P(I-CF<S) (15)
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To simplify this equation one can analyse the three different situations in which S takes

three different values:

I-C¥F-CV>S=CVS=CV
=

PCr+C" 4+ S>T|1-CF -0V >8)-P(I-CF-CV=>S) =

(16)
PCT+CV+S>1|C"+C"+S<I)-PI-C"=CY25)=0

I-CF-CV<S<I-CF=CVS=1I-CF-5§

=

PCF+C" +S>1|1-CF-C"<S<I-CF)-P(I-CF-CV<S<I-CF)

=P(C"+I1-C"=S+5>1|8S<C")-P(5<CY)=0 (17)

I-CF<S=C"S=0

=
P(CF+CVS+8S>T|T1-CF<8])-P(I-CF<S)
=P(CF+S>1|CF+S>1])-P(I-CF<X5) (18)
=P(I-C"<5S)

Using (T8). (T7) and (T8) in (13).

EX]=P(S>1-C") (19)

The probability of withdrawal is dependent on the expense shocks and the size of
both income and fixed costs. As the expense shocks and fixed costs become larger, and
income becomes smaller, the probability of withdrawal increases. Of particular note is

the absence of variable costs in this equation.
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6 Net Assets

Net assets are defined as the total value of assets minus the total value of liabilities.
Note that assets will mostly be discussed. Similarly to the reasons for only focusing on
expenses in Chapter [5] assets and liabilities are two sides of the same coin. What is true
for assets as it pertains to [RC| will be true, but in reverse, for liabilities. Hence, one only
needs to focus on one (here it is assets). Note also that when net assets are discussed,
net assets other than assets contained within the portfolio are what are really being

discussed.

Net assets affect[RC] via the effects they have on other factors already analysed. They
have an indirect effect by impacting the other factors that contribute to RC|

6.1 Assets as a buffer

Assets, subject to liquidity, act as a buffer to expense shocks. Typically, when an
investor experiences monthly expenses above their income, they must withdraw from their
investment account to cover this expense. However, if they have a buffer in the form of
assets (such as an emergency fund), they may not have to withdraw after all. As previously
demonstrated in the analysis of net income, unplanned withdrawal can have disastrous
consequences for the investor and inhibit the investor’s ability to take risk. Considering
the same example as mentioned in Chapter E] (as used in table @, it is obvious to see
that having a buffer can dramatically reduce the amount an investor withdraws from their
portfolio. Liquid assets of £10,000 would have prevented the majority of withdrawals for
all 3 investors in the example discussed. The presence of a buffer increases the by
decreasing both the size and likelihood of withdrawals, allowing the investor to take more

risk.

6.2 Reducing goal size

The second way that assets influence RC|is by effectively reducing the goal size that
investors have. If an investor has a goal size of £1,000,000 but already has £500,000
of assets, this goal has been effectively reduced to one of £500,000. For example, if an
investor wants to move to Australia in 10 years time and calculates they need £500,000
to do it then without any assets they would need to accumulate £500,000. However, if
they own a house with a value of £250,000, they can liquidate this asset to be left with
only £250,000 left to accumulate. They have effectively reduced their goal size! Take

31



HAYDN L. H. MARTIN MFW PROJECT

this to the extreme: if the investor has assets that they are happy to liquidate that have
value greater than all their goals combined, they can take all the risk they want, safe in
the knowledge that their goals will still be achieved no matter what happens in the capital
markets. Goal size has a significant impact on[RC| as was discussed in Chapter [C| Hence,

net assets also have a significant impact on[RC| by influencing effective goal size.

6.3 Extending the IH

Assets act as a realised investment path that has just been liquidated and can be in-
vested again. For example, an investor could have a 20-year [[H| with an original invest-
ment of £100,000. At the 10-year mark, their portfolio is valued at £150,000. So, they
have total assets (including their portfolio) of £150,000 with 10 years remaining on their
Consider now an investor with a 10-year [[H| with an original investment of £100,000.
However, this investor also has liquid assets worth £50,000. So, they have total assets
(including their portfolio) of £150,000 with 10 years remaining on their Exactly the

same position that the first investor found themselves in.

This point may seem purely philosophical, and maybe it is, but there is no accounting
difference between the two investors. Assets can be viewed as realised returns: they can
signify an already-realised investment returns path from the past. This is how net assets
can be seen to be equivalent to extending the time horizon of the investor, which influences
[RC|as has already been demonstrated.
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7 Responding to Criticism: A Pre-emptive Strike

7.1 Other factors

Although the main contributors to[RC| have already been investigated, there are other
factors that have not been mentioned that could have some kind of influence. In this
section, these ideas will be given some attention, before the reasons for their exclusion

from the analysis are briefly outlined.
Income and debt

The most obvious factors that are not present in the analysis are income and debt.
These two factors are included in the list [Cordell (2001)) provided. However, the rea-
sons for not including these factors in detail in their respective sections has already been

discussed earlier in the project and will not be repeated here.
Special factors

Others would argue for the inclusion of what I call specific factors. These factors are
incorporated into already-existing factors but receive special attention in both the aca-
demic literature and in the minds of practitioners. The most prominent of these special
factors are the existence of insurance, the size of one’s emergency fund, and the number
of dependants and the costs of those dependants (Cordell, 2001). These concerns can be
quickly and easily dismissed by stating that they are already incorporated into one of the

four examined factors.
Ratios

There are those who favour the use of ratios, rather than absolute figures. For example,
Hanna and Chen| (1997) use the ratio of financial assets to total wealth in their analysis.
The reasons for this are clear: it provides a relative measure for factors that influence
[RC| making the assessment of RC|easier. This is simply a different, equally valid way of
approaching the problem, although more applicable when constructing a model for [RC|

rather than assessing the determinants of RCl
Future considerations

Some define [RC| as the art of comparing future cash flows. Why, then, are consider-
ations about the future missing from this analysis? Because the future is not objective.
Models that approach the future in a quantitative manner are naive and can lead to mis-
leading results. Models that use qualitative methods, such as asking the investor questions

such as “What is your income likely to be in 10 years time?” are overly-optimistic about
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our ability to forecast. If one desires an objective measure, it cannot include considera-
tions of the future. In this case, it is better to have inputs to the model that are definitely

correct and have a simpler model than to have faulty inputs in a more complicated model.

7.2 The Geometric Brownian Motion model of asset prices is flawed

The model used as a proxy for portfolio returns has been shown to be flawed.
Primarily, the problem with the model is that it assumes that asset returns are normally
distributed. This is demonstrably false, as has been illuminated by Mandelbrot| (1997),
amongst others. Furthermore, Peters| (2011) showed that is non-ergodic. This
means that the ensemble average of an observation may be different from its time av-

erage, making analysis based on average returns () difficult.

These criticisms are valid. is flawed and is not an accurate representation of
asset prices. However, for the purposes of this analysis, this doesn’t really matter. Firstly,
generic portfolios were modelled. No model would fit because each portfolio has dif-
ferent components. Secondly, the outcome from different portfolios were only used for
purposes of comparison. How accurately these portfolios may reflect reality is irrelevant.
The model was only used to generate observations to compare different scenarios,
not to model real-life asset returns. So, does not need to reflect real asset returns

for the analysis to be accurate.

7.3 Lack of empirical analysis

It is customary in these types of quantitative investigations to use empirical data. This
has not been the case in this project, largely due to my scepticism around our ability to
derive meaningful inductive conclusions in uncertain domains. Techniques developed in

domains of risk may not be always applicable in these uncertain domains.

The distinction between domains in which probability, and therefore statistics, can be
freely applied and domains in which one must be more careful is important. When con-
ducting statistical analysis, the obstacle that must be overcome is the “tendency to impose
on inductive thought the conventions and preconceptions appropriate only to deductive
reasoning.” (Fisher, {1956, pg. 109). The two must be kept distinct and separate. This is a

distinction that|/Arrow|ensures that he emphasises:

With some inaccuracy, descriptions of uncertain consequences can be classified into

two major categories, those which use exclusively the language of probability distri-
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butions and those which call for some other principle, either to replace or to supple-

ment.

In: |Arrow, 1951} pg. 410

He states that the main difference between the two types is the ability to apply tech-
niques developed evaluating games, gambling and insurance on general areas of uncer-
tainty. Essentially, what applicability do techniques based in theoretical, fully-understood
environments have on those that are not so well understood? Knight thought not much:
“There is much question as to how far the world is intelligible at all...It is only in the very
special and crucial cases that anything like a mathematical study can be made” (Knight,
1921 pg. 209). He had the similar insight to differentiate between risk, where the generat-
ing function is known, and uncertainty, where it is unknown. Probability, in his view, and
therefore statistics, could only be applied to problems of risk; problems of repeated tri-
als with independent and identically distributed observations. |Keynes| had similar ideas.
In his A Treatise on Probability he argues that probabilities are not always calculable
(Keynes, 1921, Part I). He was also somewhat critical of statistical inference, particularly
the Law of Large Numbers (Keynes, [1921), Part V).

Taleb and Pilpel| repeat the point: “Certainty, risk, and uncertainty differ not merely
in the probabilities (or range of probabilities) one assigns to P, but in the strategies one
must use to make a decision under these different conditions.” (Taleb and Pilpel, 2004,
pg. 5). They go further than others in providing insight into when exactly one may be
operating in an uncertain domain. They come to the conclusion that only distributions
that are bounded or exhibit fast convergence can be dealt with using a risk framework.
Others must be considered under the lens of uncertainty. In these uncertain domains there
are problems with statistical inferences and no solution may be actually possible. So, one

must ensure that one is in a domain of risk, rather than uncertainty.

How, [Taleb| asks, can one know this? The problem of estimating the distribution of
a random variable is that these are self-referential (Talebl, 2007). Naive estimation of
these distributions can be harmful, especially in domains in which small probabilities
can have large impacts because estimation errors are important when the consequences
are severe, such as in the case of the returns of assets in the capital markets. Even if the
distribution is somewhat accurately determined, knowing the distribution and the ability to
make meaningful predictions are not the same thing. Additionally, this distribution may
change over time because often we find ourselves in an open system, in an unbounded

domain.

This is often the case in complex environments, such as asset prices (Mauboussin,
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2002)). This categorisation is accompanied by several problems for the ways that capital
markets have been historically analysed and makes future analysis difficult because of
the attributes of complex adaptive systems (CASs). As|Mauboussin| (2002) states, mar-
kets exhibit aggregation, adaptive decision rules, nonlinearity, feedback loops, and other
characteristics of CASs. This possesses several problems for statisticians. Firstly, the
link between risk and reward is non-linear and non-clear. Secondly, the market can’t be
defined as an entirely stochastic process. Cause and effect is present, just very difficult to
decipher. This is something that Mandelbrot (1997)) discovered too, observing that large
price changes seemed to be able to be explained by causal relationships. He also alluded
to the fact that price records are non-stationary, meaning that descriptive statistics such as

the variance are effectively impossible to obtain.
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8 Conclusion

The aim of this project was to quantitatively asses the determinants of As aresult
of this investigation it was demonstrated that investors with a long investment horizon,
small and flexible goals, small and stable expenses, and large and liquid net assets are

able to take more risk.

As mentioned in the introduction, the purpose of this project was not to propose a
measure for [RC] However, the analysis outlined could provide the foundations for an
objective model to be developed. The task for future researchers will be determining to
what extent each of the outlined factors influence [RC| After this has been established, a

model can be easily constructed.

Ultimately, the purpose of the project was to help financial advisers, who want to
retain clients and add new clients. The best way to do this is performing all the duties of
an adviser in a highly-competent fashion. Although this includes generating acceptable
returns, this is not the only thing that influences the adviser’s ability to retain and attract
clients. In fact, according to The Financial Adviser Client Experience Report published
by Qualtrics (2017)), the primary reason why surveyed investors originally selected their
financial adviser was because they were “Trusted”, not because of investment track record.
Accurately assessing the risks clients can take is both a big part of returns and trust.

Hence, an accurate measure of [RCis vital to the success of advisers.

This is good news for advisers because RClis (should be) an objective measure which
is theoretically easy to calculate. It also has the additional benefit that it is easy to change.
Simply adjusting the goals of the client, their the structure of their expenses, etc.
can make a significant impact on their ability to take risks. In the broader picture, [RC|
forms the cornerstone of the [K_P] of the client. @ difficult to define, conceptualise and
assess, should be viewed with scepticism, regardless of how “scientific” the method of
acquisition is. What advisers really need on the psychological side of the [RP|is some kind
of measure of how much anxiety volatility/uncertainty gives to clients and how likely they
are to panic and force the adviser to sell in difficult periods, deviating from the financial

plan.

Representing risks to clients is also of vital importance. Clients need to be educated
on the risks they are taking and the potential consequences they have for the portfolio.
They also need some kind of way to monitor their progress in terms of risk, to incentivise
risk-control in order to increase their capacity to take risks within their portfolio (or, put

another way, to increase their [RC).
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Returning to the same questions asked by Qualtrics| (2017), only one of the reasons
given by the surveyed clients was associated with the investment track record. All other
factors - such as fees, customer service, introductory offers - were associated with the
business of advisery. These things are much easier to control than investment returns.
Maybe, to attract and retain clients, advisers should first focus on these things and on
managing the expectations of the clients (via accurate risk profiling and representation)
and worry about out-sized returns later. A combination of excellent risk-related practices
and services, quality business operations, and acceptable investment performance is sure

to be a winning combination.
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A  General

Please note that when working in R, unless stated otherwise or evidence to the contrary

is clearly visible:

* 100,000 observations were used for the various Monte Carlo analyses.

¢ The seed was set to 336.

B Investment Horizon

B.1 GBM reformulation for use in R

o2
Xt _ Xoe(,u—T)t—&-UWt (20)

Note that a Weiner process has normally-distributed increments with unit variance:
Wi1—W; ~ N(0, 1). This also means that Wp—Wy ~ N(0,T). Let Wy = V/T-Z where
Z ~ N(0,1). In this scenario, the expectation and variance of W are the following:

E[WT]:E[\/T}-Z:\/T-E[Z]:O 21)
Var (Wy) = Var (\/T) Z=T Var(Z) =1 22)

Hence, in terms of expectation and variance, v 1" - Z is equivalent to W7. One can use

this knowledge, as well as Equation (@[), to formulate an expression for Xr.

XT _ X0€<u_§)T+U\/T.Z (23)

XT _ Xtoe(u—%) (T—to)+ovVT—to-Z (24)

Now introduce N increments. This is the number of time steps that the portfolio will
be modelled over. Now At = § = 15,

(u—%)&-ﬁ-o’\/&z

Xt0+5 = Xtoe (25)

One can use this equation to model a portfolio in R when one needs to examine indi-

vidual time steps.
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B.2

GBM for individual time steps

gbm_all_values <- function(x@, mu, sigma, t@, t, n){
dt <- (t-t0)/n
X <- vector(length = n+l1)
X[1] <- x0@
for(i in 2:(n+1)){

X[i-1] * exp((mu-sigmar2/2)*(dt) + sigma*sqrt(dt)*rnorm(1))}X}

FIGURE 13: Code used for generating a GBM model with all time steps.

B.3  GBM for terminal value

t_valu <- function(x@, mu, sigma, t){
x@ * exp((mu-sigmar2/2)*(t) + sigma*sqrt(t)*rnorm(1))}

FIGURE 14: Code used for generating a GBM model with only the terminal value.

B.4 IH constant risk POS

prob_short <- function(t, goal){

count_g <- 0

for(i in l:obs){t_val_obs <- t_valu(x@, mu, sigma, t)
if(t_val_obs < goal){count_g <- count_g + 1}
1< 1+ 1}

prob_g <- count_g/obs

print(prob_g)}

goals <- matrix(c(100000, 200000, 500000, 1000000))
y <-1
g <- 1
prob_outcome <- matrix(nrow = 30, ncol = 4)
for(g in 1:4){
for(y in 1:30){
prob_outcomely, g] <- prob_short(y, goals[g])}}

FIGURE 15: R code used for generating the POS for different IHs.
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B.5 IH shortfall function

short_dist <- function(t, goal){
s <-1
short <- matrix()
for(i in 1l:obs){t_val_obs <- t_valu(x@, mu, sigma, t)
if(t_val_obs < goal){

short[s] <- (goal - t_val_obs)
s <- s + 1}

i<- 1+ 1}

short}

FIGURE 16: Function for generating shortfalls for different IHs.

B.6 IH shortfall tables generation

goals <- matrix(c(g_one, g_two, g_three, g_four))
years <- matrix(c(l, 5, 10, 20, 30))

y <- 1

g<-1

short_mean <- matrix(nrow = 5, ncol = 4)

for(g in 1:4){for(y in 1:5){short_mean[y, g] <- mean(short_dist(years[y], goals[g]))}}
short_median <- matrix(nrow = 5, ncol = 4)

for(g in 1:4){forCy in 1:5){short_median[y, g] <- median(short_dist(years[y], goals[g]))}}
short_max <- matrix(nrow = 5, ncol = 4)

for(g in 1:4){forCy in 1:5){short_max[y, gl <- max(short_dist(years[y], goals[g]l))}}

FIGURE 17: Generating tables of shortfalls for different I[Hs.
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B.7 Different risk levels max vs. min functions

min_over_t <- function(nt, obs_new){
var_low_risk <- matrix(length(l:nt))
var_med_risk <- matrix(length(l:nt))
var_high_risk <- matrix(length(1l:nt))

med_risk_mat <- matrix(nrow = length(l:nt), ncol = length(l:obs_new))
high_risk_mat <- matrix(nrow = length(l:nt), ncol = length(l:obs_new))

var_matrix <- matrix(nrow = length(l:nt), ncol = 3)
for (i in 1l:nt){for(j in l:obs_new){
med_risk_mat [i, jJ] <- t_valu(x@, mu = 0.05, sigma
high_risk_mat [i, j] <- t_valu(x@, mu = @.1, sigma
j<j+1t
var_low_risk [i] <- t_valu(x@, mu = 0.01, sigma = 0,
var_med_risk [1] <- min(med_risk_mat[i, ])
var_high_risk [i] minChigh_risk_mat[i, 1)
var_matrix [i, 1] var_low_risk [i]
var_matrix [i, 2] var_med_risk [i]
var_matrix [i, 3] var_high_risk [i]
i <=1+ 1}
var_matrix <- as.data.frame(var_matrix)
var_matrix}

(a) Function for generating the minima

max_over_t <- function(nt, obs_new){
var_low_risk <- matrix(length(l:nt))
var_med_risk <- matrix(length(l:nt))
var_high_risk <- matrix(length(1l:nt))

i)

= 1)

med_risk_mat <- matrix(nrow = length(l:nt), ncol = length(l:obs_new))
high_risk_mat <- matrix(nrow = length(l:nt), ncol = length(l:obs_new))

var_matrix <- matrix(nrow = length(l:nt), ncol = 3)
for (1 in 1:nt){for(j in 1l:obs_new){

med_risk_mat [i, j] <- t_valu(x@, mu = 0.05, sigma =

high_risk_mat [i, j] <- t_valu(x@, mu = @.1, sigma
J< 3+ 1}
var_low_risk [1] <- t_valu(x@, mu = 0.01, sigma = 0,
var_med_risk [1] <- max(med_risk_mat[i, )
var_high_risk [i] maxChigh_risk_mat[i, 1)
var_matrix [i, 1] var_low_risk [i]
var_matrix [i, 2] var_med_risk [i]
var_matrix [i, 3] var_high_risk [i]
i< i+ 1}
var_matrix <- as.data.frame(var_matrix)
var_matrix}

(b) Function for generating the maxima

D)
= 1)

FIGURE 18: Functions for generating the different values for the minima and maxima.

45



HAYDN L. H. MARTIN MFW PROJECT

B.8 [IH varied risk POS function

prob_short_med_risk <- function(goal, y, obs_p){
count_g <- 0
for(i in 1l:obs_p){t_val_obs <- t_valu(x@, mu = 0.05, sigma = 0.1, t = y)
if(t_val_obs < goal){count_g <- count_g + 1}
1< 1+ 1}
prob_g <- count_g/obs_p
print(prob_g)}

prob_short_high_risk <- function(goal, y, obs_p){
count_g <- 0@
for(i in 1l:obs_p){t_val_obs <- t_valu(x@, mu = 0.1, sigma
1f(t_val_obs < goal){count_g <- count_g + 1}
i<-1i+ 1}
prob_g <- count_g/obs_p
print(prob_g)}

FIGURE 19: Functions for generating POSs for different IHs under the two different risk
scenarios.

C Goals

C.1 POS for goal size analysis

g_size <- seq(l00000, 500000, 10000)
low_count_g <- vector(length = length(g_size))
med_count_g <- vector(length = length(g_size))
high_count_g <- vector(length = length(g_size))
obs <- 1000000
for (1 in 1:0bs) {
t_val_low <- t_valu(x@, low_mu, low_sigma, t)
t_val_med <- t_valu(x@, med_mu, med_sigma, t)
t_val_high <- t_valu(x@, high_mu, high_sigma, t)
for (j in 1:length(g_size)) {
if(t_val_low < g_size[j]){low_count_g[j] <- low_count_g[j] + 1}
1f(t_val_med < g_size[j]){med_count_g[j] <- med_count_g[j] + 1}
if(t_val_high < g_size[j]){high_count_g[j] <- high_count_g[j] + 1}}
i<- 1+ 1}
low_prob_g <- low_count_g/obs
med_prob_g <- med_count_g/obs
high_prob_g <- high_count_g/obs

FIGURE 20: Code for generating the POSs for the Goal Size analysis.
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C.2 TVP for flexibility analysis

goals <- c(100000, 150000, 200000, 250000)
I <- seq(@ , 1, 0.05)
nsim <- 100000
term_vec_goals <- matrix(nrow = nsim, ncol = length(goals))
real_term_vals <- matrix(nrow = length(I), ncol = length(goals))
for (k in 1:length(I)) {for (i in 1l:nsim) {

term_vec <- vector(length = nsim)

term_vec[i] <- t_valu(x@, mu, sigma, t)

for (j in 1:length(goals)) {if (term_vec[i] <= goals[j]) {

term_vec_goals[i, j] <- (1/(1 + I[k]))*term_vec[i]} else {
term_vec_goals[i, j] <- term_vec[i]}}}
for (j in 1:length(goals)) {
real_term_vals[k, j] <- mean(term_vec_goals[, j1)}}

FIGURE 21: Code for generating the TVPs for the Goal Flexibility analysis.

D Net Income

D.1 Expense shocks

Shock Month Shock Amount (£)

118 3467
75 1410
52 2072
70 3750
65 4873
38 4637
7 2331
22 2042
45 2390
48 4117

TABLE X: EXPENSE SHOCKS
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D.2 Statistics of TVPs code

nsim <- 1000000
nl <-n+1
no_ei <- matrix(nrow = nl, ncol = nsim)
low_ei <- matrix(nrow = nl, ncol = nsim)
med_ei <- matrix(hrow = nl, ncol = nsim)
high_ei <- matrix(nrow = nl, ncol = nsim)
shock_month <- c(118, 75, 52, 70, 65, 38, 7, 22, 45
shock_amount <- c(3467, 1410, 2072, 3750, 4873, 463
G <- matrix(nrow = nl, ncol = nsim)
for (1 in 1l:nsim) {
X <- vector(length = nl)
X[1] <- x0
G[1, i] <- 0
no_ei[1, i] <- X[1]
low_eil[l, 1] <- X[1]
med_ei[1l, i] <- X[1]
high_ei[1, i] <- X[1]
for(l in 2:nl){
X[1] <- X[1-1] * exp((mu-sigmar2/2)*(dt) + sigma*sqrt(dt)*rnorm(1))
G[1, i] <- CX[1] - X[1-11) / X[1-1]
no_ei[l, i] <- no_ei[l-1, i] * (1 + G[1, i)
low_ei[l, i] <- low_ei[l-1, i] * (1 + G[1, il
med_ei[1l, 1] <- med_ei[l-1, i] * (1 + G[1, i])
high_ei[l, i] <- high_ei[l-1, i] * (1 + G[1, il
for(j in 1:10){if(l == shock_month[j]){
if(shock_amount[j] > 3125){low_ei[l, i] <- low_ei[l, i] - (shock_amount[j] - 3125)}
if(shock_amount[j] > 2083.33){med_ei[1l, i] <- med_ei[l, i] - (shock_amount[j] - 2083.33)}
if(shock_amount[j] > 1041.67){high_ei[1l, i] <- high_ei[l, i] - (shock_amount[j] - 1041.67)}

48)
23

’
.
‘s

31, 2042, 2390, 4117)

333}

FIGURE 22: Code for generating the descriptive statistics for the TVPs.

D.3 Incremental E/I code

ratios <- seq(from = 0, to = 1, by = 0.005)
ihcome <- vector(length = length(ratios))
ratio_val <- matrix(nrow = nl, ncol = length(ratios))
for (i in 1:length(ratios)) {
income[i] <- 4166.67 * (1 - ratios[i])
CX <- rand_with [1:121, 2]
GX <- vector(length = nl)

GX[1] <- 0@
ratio_val[1l, i] <- CX[1]
for (1 in 2:nl) {
GX[1] <- (CX[1] - CX[1-11) / CX[1-1]
ratio_val[l, i] <- ratio_val[l-1, i] * (1 + GX[1])
for(j in 1:10){if(l == shock_month[j]){if(shock_amount[j] > income[i]){
ratio_val[l, i] <- ratio_val[l, i] - (shock_amount[j] - income[i])}}}}}

FIGURE 23: Code for generating the TVPs for incremental changes in E/I.
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D.4  Sigma and mew proof

Let the mean of the log-normal distribution be denoted by 1 and the variance 2. Let
the mean of the normal distribution required to produce a log-normal distribution with
mean £ be denoted by 1, and the variance required to produce a log-normal distribution

with variance o2 be denoted by o,,2.

It is known that,

(Tn2
po=emtE (26)
o? = (6‘7"2 - 1> et 27)
From equation (26),
2
On
In(p) = pn + IR (28)
2
On
fin = In(p) — 3 (29)

crn2

o e 1) e "
0? = (e%2 - 1) e2in(s) 31)
o2 = (e""2 _ 1) 1?2 (32)

2
e’ = % +1 (33)

2
0,2 =1In <0—2 =+ 1) (34)

]

Using this in equation (26),
1 0'2

= et s (in(E ) (35)

<—W> G6)

112
n=In| —m— 37
p n( —02+M2> (37
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D.5 Code for descriptive statistics under different expense volatilities

n <- 100000

trials <- 10000

min_mat <- vector(length = trials)

max_mat <- vector(length = trials)

lrnom_vec <- vector(length = n)

for (i in 1:trials) {
lrnom_vec <- rlnorm(n = n, meanlog = mew_500, sdlog = sigma_500)
min_mat[i] <- min(lrnom_vec)
max_mat[i] <- max(lrnom_vec)}

for (1 in 1l:trials) {
lrnom_vec <- rlnorm(n = n, meanlog = mew_100@, sdlog = sigma_l1000)
min_mat[i] <- min(lrnom_vec)
max_mat[1] <- max(lrnom_vec)}

for (i in 1:trials) {
lrnom_vec <- rlnorm(n = n, meanlog = mew_1500, sdlog = sigma_1500)
min_mat[i] <- min(lrhom_vec)
max_mat[i] <- max(lrnom_vec)}

FIGURE 24: Code for the simulations used for generating descriptive statistics of ex-
penses.
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D.6  Price path code

nsim <- 100

nl <-n+1

low_vol_exp <- matrix(nrow = nl, ncol = nsim)
med_vol_exp <- matrix(nrow = nl, ncol = nsim)
high_vol_exp <- matrix(nrow = nl, ncol = nsim)
low_vol_with <- matrix(nrow = nl, ncol = nsim)
med_vol_with <- matrix(nro nl, ncol = nsim)
high_vol_with <- matrix(nrow = nl, ncol = nsim)
low_vol_val <- matrix(nrow = nl, ncol = nsim)
med_vol_val <- matrix(nrow = nl, ncol nsim)
high_vol_val <- matrix(nrow = nl, ncol = nsim)

for (i in l:nsim) {
dt <- (t-t@)/n
X <- vector(length = nl)
X[1] <- 1
low_vol_val[1l, i] <- x@
med_vol_val[l, i] <- x0@
high_vol_val[1l, i] <- x0@

low_vol_exp[, i] <- rlnorm(n = nl, meanlog = mew_500, sdlog = sigma_500)
med_vol_exp[, i] <- rlnorm(n = nl, meanlog new_1000, sdlog = sigma_1000)
high_vol_exp[, <- rlnorm(n = nl, meanlog = mew_1500, sdlog = sigma_1500)

low_vol_with[1, i] <- 0
med_vol_with[1, i] <- 0
high_vol_with[1, i] <- 0

for(l in D{
1 <- exp((mu-sigmaA2/2)*(dt) + sigma*sqrt(dt)*rnorm(1))

low_vol_val[l, i] <- low_vol_val[l-1, i] * X[1]

med_vol_val[l, i] <- med_vol_val[l-1, i] * X[1]
high_vol_val[l, i] high_vol_val[l-1, i] * X[1]

(a) Price path code part one.

if(low_vol_exp[l, i] > incom
low_vol_with[1l, i] <- low_vol_exp[l, i] - income
low_vol_val[l, i] <- low_vol_val[l, i] - low_vol_with[1,

} else {low_vol_with[l, i] <- 0}

if(med_vol_exp[l, i] > income){
med_vol_with[1l, i] <- med_vol_exp[l, i] - income
med_vol_val[l, i] <- med_vol_val[l, i] - med_vol_with[1,
else {med_vol_with[l, i] <- 0}

if(high_vol_exp[l, i] > income){

high_vol_with[1l, i] <- high_vol_exp[l, i] - income

high_vol_val[l, i] <- high_vol_val[l, i] - high_vol_exp[l, i]

} else {high_vol_with[1, i] <- 0}

(b) Price path code part two.

FIGURE 25: Price path code.
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D.7 Incremental sigma code

nsim <- 100000
nt <- n+ 1
sigma_out <- seq(l00, 2000, 100)
mew_in <- log((expenditurer?2) / (sqrt(expenditurerZ + sigma_outA2)))
sigma_in <- sqrt(log(l + (sigma_outA2) / (expenditureArZ)))
expenses_mat <- matrix(hrow = nl, ncol = length(sigma_out))
investment_mat <- matrix(nrow = nl, ncol = length(sigma_out))
terminal_mat <- matrix(nrow = nsim, ncol = length(sigma_out))
for (i in 1:nsim) {for (j in 1l:length(sigma_out)) {

expenses_mat[, j] <- rlnorm(n = nl, meanlog = mew_in[j], sdlog = sigma_in[j])}
dt <- (t-t@)/n
X <- vector(length = nl)
X[1] <- 1
investment_mat[1, ] <- x@
for(l in 2:n1){X[1] <- exp((mu-sigmar2/2)*(dt) + sigma*sqrt(dt)*rnorm(1))

for (k in 1l:length(sigma_out)) {investment_mat[l, k] <- investment_mat[l-1, k] * X[1]
if(expenses_mat[l, k] > income){
investment_mat[l, k] <- investment_mat[l, k] - (expenses_mat[l, k] - income)}}}

terminal_mat[i, ] <- investment_mat[nl, ]}

FIGURE 26: Code for generating TVPs for incremental values of sigma.
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