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Abstract

This thesis attempts to evaluate the performance of parametric time series models and
RiskMetrics methodology to predict volatility. Range-based price estimators and Model-free
implied volatility are used as a proxy for actual ex-post volatility, with data collected from ten
prominent global volatility indices. To better understand how volatility behaves, different models
from the Generalized Autoregressive Conditional Heteroskedasticity (GARCH) class were
selected with Normal, Student-t and Generalized Error distribution (GED) innovations. A fixed
rolling window methodology was used to estimate the models and predict the movements of
volatility and, subsequently, their forecasting performances were evaluated using loss functions
and regression analysis.

The findings are not clear-cut; there does not seem to be a single best performing
GARCH model. Depending on the indices chosen, for range-based estimator, APARCH (1,1)
model with normal distribution overall outperforms the other models with the noticeable
exception of HSI and KOSPI, where RiskMetrics seems to take the lead. When it comes to
implied volatility prediction, GARCH (1,1) with Student-t performs relative well with the
exception of UKX and SMI indices where GARCH (1,1) with Normal innovations and GED
seem to do well respectively. Moreover, we also find evidence that all volatility forecasts are

somewhat biased but they bear information about the future volatility.

Keywords: Implied Volatility, Range-based Volatility, GARCH, Forecasting Accuracy,

Information Content.
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1. Introduction

Volatility is one of the most studied topics in modern finance. The ability to
correctly forecast future volatility has been the interests of anyone who is involved in the
financial market. In Finance, volatility is defined as the fluctuation of asset prices from its
mean over a specific period of time, which is commonly calculated as standard deviation of
its logarithmic returns.

Although, volatility does not translate the full risk in the market, but it is a good
representation of the significant portion of risk that can be quantified. Therefore forecasting
volatility is crucial in investment decision-making, valuing derivative products, risk
management and portfolio hedging. For example, in the notorious Black-Scholes (1973)
equation based on the option-pricing model, volatility of the underlying asset over the life
of the option is a fundamental input in the determination of the fair value of the derivative
products. However volatility cannot be directly observed, but rather needs to be estimated,
which again highlights the importance of being able to accurately forecasting volatility of
underlying asset.

As aresult, it comes as no surprise that forecasting market volatility has received a
great deal of attention in recent times both in academia and among financial practitioners.
The aim of this thesis is to evaluate the forecasting accuracy of RiskMetrics and various
GARCH-type models against future volatility of ten globally traded equity indices. In this
paper, both range estimators based on daily price information and model-free implied

volatility, which is said to be the market participant’s expected future volatility, are used as



proxies for the actual ex-post volatility in the markets. This paper also investigates the
information content of the most accurate model forecasts from each index to see if they
indeed contain some additional information about future volatility.

Despite the vast amount of literature on the subject of volatility forecasting, it is
rather difficult to draw a unanimous conclusion due to differences in research design in
terms of asset classes, countries, sample period, forecasting techniques, forecasting horizon
and evaluation measures. This thesis attempts to get a clearer picture of the performance of
time series models by incorporating 10 globally traded indices within a common
framework.

Many studies attempt to forecast future realized volatility using model-based
forecasts such as Generalized Autoregressive Conditional Heteroscedasticity (GARCH) and
others attempt to model volatility by using option implied volatility forecasts. The results
are somewhat mixed mainly due to difference in research methodology. Poon and Granger
(2003) compiled a detailed literature review on this subject and concluded that overall
implied volatility seems to contain more information about future volatility than the time
series forecasts and it outperforms all other models. When it comes to time series forecasts,
models that take into account volatility asymmetric response to negative and positive news
tend to outperform others.

In the work of this thesis, a variety of GARCH-type models and RiskMetrics along
with Normal, Student-t and Generalized Error Distribution (GED) innovations are fitted
through a fixed rolling window methodology to capture the movement of range-based and
model-free implied volatility of 10 international equity indices. Afterwards, each individual

model’s out-of-sample predicting performance is evaluated based on a number of



forecasting accuracy metrics to see which model tends to outperform the others. As proxies
for the actual volatility we use range-based Parkinson (1980) estimator, which is said to be
5 times more efficient than the squared returns (Garman & Klass, 1980). We also
considered the implied volatility based on the model-free variance swap concept, which
improves on Black-Scholes implied volatility by addressing the constant volatility
assumption and symmetric Gaussian return assumption (Siripoulos & Fassas, 2009).

Though the results are mixed, but conclusions can be made. In forecasting volatility
using Parkinson (1980) range-based estimator as a proxy, asymmetric GARCH(1,1) model
such as APARCH (1,1) with Normal distribution are able to better capture the dynamics of
volatility with exception of HSI (China) and KOSPI (Korea) where RiskMetrics excel. This
seems to be in line with the conclusion from Poon and Granger (2003) that time series
models that allow asymmetric effects perform well overall. However, when it comes to
forecast volatility using implied volatility as proxy, simple GARCH (1,1) with Student-t
innovation seems to be the one with better performance overall.

The content of this thesis is structured as follows. Section 2 presents relevant
literature review of the volatility forecasting using both model-based and model-free
implied volatility approaches. Theoretical concepts of volatility are presented in section 3
and section 4 elaborates on the methodologies and data used to carry out this research. The
main findings of this research along with analysis are presented in section 5. The main

conclusions and future research suggestions are detailed in section 6.



2. Literature Review

There is a wide variety of literature on the topic of volatility forecasting; in which
some are focused more on model-based forecasting while others attempt to evaluate the
forecasting accuracy of several models with implied volatility.

Earlier studies attempted to capture the dynamics of volatility using the
autoregressive moving average model (ARMA) and Box-Jenkins ARMA yield relatively
low forecasting accuracy due to many of the characteristics of volatility such as the
clustering effect, asymmetric response to shocks, and heteroscedastic nature of the residual
terms. (Tsay, 2010) Later on, ARCH model of Engle (1982) was developed to capture
clustering effects of volatility and its non-linear dynamics. ARCH model estimates
conditional variance as a function using a number of lags of its past squared residuals. One
of the shortcomings of ARCH model is it might require many lags in the conditional
variance equation to better capture the dynamics of volatility, and it also means many
coefficients would have to be estimated. Bollerslev (1986) and Taylor (1986) independently
came up with a generalized version of ARCH called GARCH model, which limits the
number of estimated parameters and it is said to be more parsimonious than the ARCH
model. (Brook, 2008) Subsequently, many variations of ARCH/GARCH models were
developed to capture the other stylized facts of volatility such as asymmetric response to
shocks.

Akgiray (1989), one of the earliest researches to test the predictability of GARCH
model concludes that GARCH consistently outperforms historical volatility and

exponential weighting moving average models. Since then there have been numerous



researches testing the predictability of the GARCH model against other time series and
implied volatilities mostly in major stock indices and foreign exchange rates. Cumby,
Figlewski and Hasbrouck (1993) introduced Exponential GARCH model and concluded
that EGARCH outperforms historical volatility model despite the low R?. Figlewski (1997)
concludes that GARCH model’s adequate performance is mostly restricted to stock market
data and only for short horizon forecasting. There are many other studies that give mixed
conclusions. As the methodology used in conducting research varies, the results could also
be different. There are many factors that can affect the outcome of the study; such as
different loss functions used in the evaluation, different sampling methodology (fixed
rolling window estimation or recursive expanding estimation), or even different sample
period for different asset could lead to rather different conclusion.

In a model-based volatility comparative research, Brownlees et al. (2011) evaluate
the forecast accuracy of the ARCH family models with different horizons and study how
the predictability can be affected by factors such as estimation window length, different
distribution assumptions and re-estimation frequency for the parameters. The authors
include a wide range of asset classes including numerous domestic and international equity
indices as well as exchange rates. The models that the authors include in the study are:
GARCH (1,1), TARCH, EGARCH, NGARCH, and Asymmetric power ARCH. The loss
functions are Quasi-likelihood (QL) and mean square error (MSE) but the authors focused
on QL and argued that QL’s bias is independent of volatility level while MSE’s bias is
proportional to the true variance squared. In addition to the daily dividend adjusted log
return data on S&P 500 index from 1990 to 2008, the authors also use 10 exchange rates, 9

domestic indices and 9 international indices and the out-of-sample forecasting period spans



from 2001 to 2008 covering period of both low volatility and crisis. First, forecasting
performance of S&P 500 is assessed against daily-realized volatility and squared returns
over a range of horizon and subsequently, a direct comparison of forecasts from the
GARCH models during the full sample period with only the crisis period of fall 2008 are
conducted and the results of the out-of-sample QL losses are reported using TARCH (1,1).
The results show that asymmetric models such as TARCH model performs relatively well
across asset classes, methods and sample periods including period of distress. The authors
conclude that use the longest date series available seem to enhance the model performance
and weekly parameter re-estimation is ideal to combat the parameter drifting. Innovation
distribution such as student—t does not yield any improvement in predictability of the
model. For period of extreme high distress such as fall 2008, short horizon forecast such as
1 day ahead forecast is able to capture the dynamic of volatility; the problem lies with long
horizon forecasts (multistep forecasts).

Using implied volatility as a forecast of market’s expectation of future volatility has
also gain popularity. Implied volatility is derived from Black-Scholes’ (1973) option
pricing formula using the backward induction as all the inputs in the formula can be either
observed or computed with the exception of volatility. However, Black-Scholes’ implied
volatility suffers from discrepancy of volatility smile; where implied volatilities computed
from options on the same underlying with the same maturity but different exercise prices
yield different results that violate the theory, which states volatility is assumed constant
over the life of the option. Many researchers decide to use At-the-money option implied
volatility due to its liquidity and large trading volume, which can correct some of the

market microstructure concerns. Despite its shortcomings, many articles claim implied



volatility can better predict realized volatility than their time series counterparts.
(Lamoureux and Lastrapes, 1993; Vasilellis and Meade, 1996) Since then there are
numerous studies on predictability of implied volatility index (original “VIX”, now titled
VXO0) from the Chicago board of Option Exchange (CBOE). Many studies such as Fleming
et al. (1995) use the old CBOE’s “VIX” implied volatility index based on the options of
S&P 100 to forecast true volatility of equity index. Most studies seem to confirm that
implied volatility contains crucial information about the future volatility. Fleming et al
(1995), in addition to confirming that implied volatility performs better when comparing to
first order autoregressive volatility models and also discover the strong inverse and
asymmetric relationship between the VXO implied volatility and its S&P 100 market price.
Blair et al (2001) report the highest explanatory power of VXO implied volatility to the
S&P 100 index and reach the similar conclusion that implied volatility seems to perform
better than the model-based counterparts. In addition to Blair et al. (2001), Lamoureux and
Lastrapes (1993), Canina and Figlewski (1993), and Fleming et al. (1995) all find implied
volatility biases in their forecast of realized volatility.

Despite of its promising results from U.S stock market indices, many international,
smaller indices seem to have mixed results. Frennberg and Hanssan (1996) study the
Swedish market and find that implied volatility in fact, cannot outperform even the simple
autoregressive and random walk model. Australian market study of implied volatility
conducted by Brace and Hodgson (1991) yields very inconsistent forecasting outcomes.
While Doidge and Wei (1998) find combination of GARCH and implied volatility to be

ideal in forecasting the Canadian Toronto index volatility.



Poon and Granger (2003) in a comprehensive volatility forecasting review
summarize 93 studies on the matter of volatility forecasting and conclude that overall with
mixed results, implied volatility seems to outperform other volatility forecasters that
includes historical volatility model, random walk, autoregressive, moving average and
exponential weights as well as GARCH/ARCH family models. Moreover, the authors
report that time series models that take account of asymmetric response in volatility seems
to perform better compared to others, such as EGARCH and TGARCH model.

In a study conducted by Martens and Zein (2004) in which the authors incorporate
high frequency intraday data and long memory models to forecast volatility of 3 different
asset classes: equity, foreign exchange and commodities. Data sample from S&P 500,
Yen/USD, and Sweet crude oil start from beginning of 1994, 1996 and June 1993
respectively span to the end of 2000 from various sources. Implied volatility is calculated
using the weighted average of two nearest at-the-money calls and puts and weights are
selected where the average exercise price matches the underlying future prices. Realized
volatility is calculated using the sum of squared intraday return rather than the standard
squared daily return to avoid possible noise. Autoregressive fractionally integrated moving
average is used to estimate log-realized volatility in addition to the GARCH (1,1) and
recursive expanding rolling estimation method is used with initial in sample period of 500
observations. The loss function of Heteroskedasticity consistent Root Mean Squared Error
is computed to evaluate the forecasting performance of the models. Implied volatility
outperforms GARCH models and in encompassing analysis, implied volatility also

subsumes mostly all the information content. Interestingly, the authors find long memory



model able to compete with implied volatilities and in some cases even outperforms
implied volatilities. Both measures contain information that the other does not possess.

In a more recent study, Ryu (2012) investigates the information content and
forecasting accuracy of the implied volatility index of KOSPI (South Korea) against
RiskMetrics, Black-Scholes’ implied volatility and GJR-GARCH models. He argues that
since option market of KOSPI ranks highest in terms of trading volume and investor’s
interest, therefore the implied volatility index extracted from option prices should contain
predictive information about future volatility. The implied volatility index of KOSPI
(VKOSPI) is computed using the model-free methodology based on the concept of fair
value variance swap and does not rely on any option pricing models; its calculation
resembles the new VIX index from the S&P 500 U.S equity index. The total sample size
contains 2,057 daily observations and using fixed rolling analysis with forecasting horizon
of 1, 5, 10, 21, and 63 trading days and finally the results are evaluated using the Mincer-
Zarnowitz decomposition of Mean Square Error. Ryu (2012) concludes that implied
volatility index (VKOSPI) contains meaningful information about future volatility of
KOSPI and it outperforms all other forecasters in predicting realized volatility. Moreover,
when the forecasting horizon is 5, 10, and 21 trading days, more than half of the changes in
realized volatility can be explained by the VKOSPI index. In studying the relationship
between the volatility index and its underlying equity return, the author confirms the
asymmetric inverse relationship between the two, which is a well documented in the
literature. (French et al., 1987; Schwert, 1989,1990; Fleming 1995)

Shaikh and Padhi (2014) attempt to study the forecasting performance of Indian

volatility index along with RiskMetrics GARCH, and GJR-GARCH (1,1) using both



overlapping and non-overlapping sampling procedure with roughly of 6 years span of daily
data with forecasting horizon of 1, 5, 10, 22, and 66 days. Indian VIX index uses the same
model-free implied volatility methodology as many of the global volatility indices and
realized volatility is computed based on the sum of the squared returns. The performance
measure is based on the loss functions of RMSE, MAE and Theil’s U statistics. For non-
overlapping samples with exception of 1- day and 66-day forecasts, implied volatility
outperforms other models and following by RiskMetrics. GIR-GARCH (1,1) seems to
dominate the overlapping sample methods. Implied volatility also contains more
information about the future volatility than the other forecasts, especially in the case of 10-
day and 22-day horizon showing the highest adjusted R?. Interestingly, the authors
conclude that based on the univariate and encompassing regression, implied volatility
dominates other forecasts and it is unbiased and efficient estimator of the market volatility.
In an international-focused, comparative study of implied, realized and GARCH
volatility forecasts conducted by Kourtis et al. (2016), where the authors use 13 global
indices from 10 countries with different forecasting horizon (1, 5, 22 days) and under
different market conditions (before, during and after crisis of 2008) to study the forecasting
performance and information content of model-free implied volatility, random walk, GJR-
GARCH and Heterogeneous Autoregressive (HAR) model. Daily realized volatility is
calculated using square root of sum of intraday returns collected at 5 min equally spaced
intervals and the data spans for roughly 12 years from 2000 to October 2012. Out-of-
sample evaluation is illustrated by using the loss functions of RMSE and QLIKE and the
results show that for daily horizon forecasts, HAR performs better while for weekly

horizon, MFIV adjusted for risk premium (C-MFIV) and HAR are comparable and finally
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monthly forecasting horizon shows that C-MFIV has the lowest forecasting errors. Separate
out-of-sample evaluation is conducted for pre-crisis, crisis and after crisis period and the
results show that while all models deteriorate during the crisis period, HAR and MFIV-C
are better models compared to the rest in daily and monthly horizon. The authors also find
that HAR has the greatest explanatory power for daily horizon, while C-MIFV contains

more information about future realized volatility for monthly horizon.

3. Theoretical Concepts of Volatility
As volatility cannot be directly observed in the market, but rather needs to be
estimated from market indicators, and as this is the main focus of this thesis, it is instructive

to take a deeper dive into the concepts of volatility and its common features.

3.1 Various Types of Volatility

3.1.1 Historical Volatility

There are many ways of calculating volatility in the financial world. Volatility is a
statistical measure of the variation of the return over time for a given security or equity
index and is usually expressed as the standard deviation of the log returns. Volatility is used
as a form of risk measurement and is calculated using the formula below, where & is the

sample standard deviation (volatility), 7; is the return observed and 7 is the mean return.

6= 5T - (1)
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In this thesis and as it is standard in the financial econometrics literature, the return r; is
calculated under the continuous compounding framework as log difference of price P at

time t and price at the previous period P;_;, which gives the following formula.

r, =In (2 )

Pr_q

3.1.2 Realized Volatility

When evaluating the forecasting accuracy of various potential predictors it is crucial
to select a good proxy for the true ex post volatility. One option is to use historical
volatility, which typically uses daily closing price, but a lot of intraday information could
be lost using historical closing prices (Andersen & Belzoni, 2008). Other options are to use
squared returns or squared residuals from an ARMA model fitted to 7; but it is well known
that these are very noisy estimators for daily variance (Andersen and Bollerslev, 1998). A
frequently used proxy is the realized variance, which is calculated as the sum of the squared
intraday returns sampled at equal time intervals. (Andersen & Bollerslev, 1998) However,
sometimes, intraday price levels could be costly and hard to obtain. As a more viable
alternative, we use the range estimator based on daily price information of Parkinson
(1980) who concluded that a log function of daily high and low price range is also an
unbiased estimator of daily volatility and it is said to be 5 times more efficient than
computing daily volatility using the daily closing price (Shu & Zhang, 2006). For these
reasons, we use Range-based Estimator as a Proxy for Realized Volatility, which are briefly

discussed next.

3.1.3 Range-based Estimator as a Proxy for Actual Volatility

12



As high-frequency intraday prices may not be readily available, one of the
advantages of using price range estimator is that for many assets, daily high, low, opening
and close prices are easy to retrieve. We use Parkinson’s equation (1980) with daily highest
and lowest price, which serves as a proxy for the true volatility in this study and it is

calculated as follows:

0f = ——* (Hy — L;)? 3)

41ln2
where H, and L, are the highest and lowest price of the t-th trading day, respectively.

3.1.4 Option Implied Volatility as a Proxy for Actual Volatility

Option implied volatility is generally defined as the expected market participant’s
assessment of future volatility of the underlying asset during the life of that option. It is
viewed as a forward looking measure of the volatility, due to the fact that it is based on the
prices of the actively traded option observed in the market over the remaining life of that
option.
3.1.4.1 Black-Scholes’ Implied Volatility

The most well-known implied volatility measure is based on the option-pricing
model developed by Black and Scholes (1973). Under Black-Scholes framework, the
behavior of the stock price, denoted as S, follows the following Geometric Brownian
motion where u is the drift term (percentage expected rate of return), o is the diffusion term
(percentage standard deviation) of the stock, both are assumed to be constant. The variable
dt is change in small period of time t and dz follows a Wiener process dz = eV dt with

e~N(0,1). The left side of the equation (4) below represents the return generated by the
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stock for a short period of time and it implies the return of stock is normally distributed

with mean of udt and variance of o2dt (Hull, 2014).
% = pdt + odz (4)

Based on Ito lemma process, the log stock price follows a generalized Wiener process with

the following characteristics:
din(s) = (,u - %02) dt + odz ()

Where the drift rate is 4 — 02 /2 and variance rate is o2. It shows that log stock price has a
normal distribution and it infers that the stock price is lognormally distributed. (Poon &
Granger, 2003)
Using the Ito lemma process along with no-arbitrage argument that return of the stock must
be at the risk-free rate lead to the Black-Scholes (1973) differential equation for pricing
derivatives. The inputs for equation to price a call, C and put, P option are r: Risk free rates;
T: time to mature; S: Stock price; K: strike price and o: Volatility.

C =soN(dy) — Ke""N(d,) (6)

P = Ke""N(=d;) — SoN(—d,) (7)
Where N (d,) is the function of the cumulative probability distribution function under the

assumption of standard normal distribution.

In(32)+ r+6—2
i, <) ©
d, =d; — T 9)

Black-Scholes implied volatility could be extracted through backward induction method

given the price of call or put options can be observed in the marketplace. However, such
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calculations involve a number of assumptions. The key assumptions are: stock price
follows a geometric Brownian motion with constant mean and volatility, short selling is
unrestricted, absence of transaction costs and taxes, absence of arbitrage opportunities and

risk-free rate is constant.

3.1.4.2 Model-Free Implied Volatility (MFIV)

As Black-Scholes option pricing model applies many assumptions in deriving the
fair asset price, implied volatility inevitably suffers from model restrictions and
assumptions as well. Two of the noticeable shortcomings of the model are the assumption
of constant volatility and symmetric Gaussian distribution of the return of the underlying
assets assumptions. Volatility smile is one of the problems that arise from the constant
volatility assumption. Implied volatilities calculated from options on the same underlying
asset with the same maturity with different exercise prices should be the same under the
constant volatility assumption. However, in practice, implied volatilities usually are higher
for In-the-money and Out-of-money options compared to the At-the-money options (Hull,
2014). Model-free implied volatility (MFIV) improves on Black-Scholes model by
addressing the two potential shortcomings. Model-free implied volatility methodology was
adopted by the Chicago Board Option Exchange in 2003 for its VIX (CBOE Volatility
index) derived based on the S&P 500 option market prices by averaging call and put option
prices from a wide range of strike prices. It is constructed to provide market’s expectation
for implied volatility of S & P 500 index over the next 30 calendar (~22 trading) days and

is expressed in annualized percentage format (Chicago Board of Options Exchange, 2003).
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Many global exchanges soon based their volatility index computation on the model-free
VIX methodology such as Deutsche Borse , Euronext, Swiss exchange etc.

The new VIX model — free implied volatility calculation is based on the concept of
over-the-counter variance swaps (Demeterfi et al., 1999a), which are forward contract with
no initial cash required. In a variance swap, both parties enter into a contract to swap the
realized variance rate between the start of contract to the expiration for a pre-determined
variance rate of the underlying asset. According to Hull (2014), computationally, valuing
variance swap is easier than volatility swap due to the ease of replicating the variance rate
between the start of the contract and expiration with a portfolio of call and put options. The
payoff of the swap can be replicated by the payoft strategy of static options portfolio along
with delta hedging the underlying asset. This implies that the fair value of the promised
claim to pay for the future variation of index return is given by the market of the replicating
options portfolio (Neuberger, 1996;Dupire B. 1994, 2004). Since this reasoning does not
depend on any model such as Black-Scholes (1973), it is called model-free implied
variance and its square roots are called Model-free implied volatility.

The new VIX index introduced in 2003 closely approximates one-month swap rate
and is annualized in percentage term. It is calculated based on the quoted prices of a wide
variety of Out-of-money European calls and puts written on the underlying S&P 500 equity

index (CBOE, 2003).

2 v AK; 1.F
VIX =100 \/;ZK—?eRTQ(Ki) —rl T (10)
T: Time to maturity measured in minutes.

T = (Mtoday + MSettlementdayS + MRemainingdayS)/MmUtes In a year
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Moqqy = Minutes remaining till midnight today

Msettiement days Minutes from midnight till settlement day
Mgemaining days — Total minutes from today to settlement day

F: Forward option level from the option prices

F = Strik + e®"x(Call price — put price)

K, : First strike price below the Forward option level

K;: Out-of-money option strike price — For calls, K;>F and for puts, K; < F

AK;: Difference between strike prices. Half the difference of strike price above and below
K;

Kiv1 — Kiq
AK; = — 5
R: risk-free interest rate to maturity of the contract

Q(K;) : The midpoint of bid-ask spread for each option with exercise price K;

In this thesis we use volatility indices computed based on the Model-free variance

swap concept called Model-free implied volatility as a proxy for actual volatility.

3.2 Characteristics of Volatility
In order to effectively model future volatility, it is crucial to take some of the
empirically documented features of volatility into consideration. These common well-
known features are:
* Volatility Clustering — Period with high volatility tends to continue with rather
high volatility while period with low volatility tends to stay the same. This implies

volatility is not constant and it is time varying. All GARCH models capture this
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stylized fact and it is one of the main distinctions of GARCH models from simple
ARMA models. Therefore in this paper, we focus mainly on GARCH variations of
time series forecasts.

Persistence of Volatility/Long Memory Effect - Autocorrelation coefficients of
the variance decays very slowly and persists even after up plenty lags. Poon and
Granger (2005) in an example, illustrate for S&P 500 volatility of series return
during period 1983 — 2003, the autocorrelation coefficient remain significant and
positive after 1,000 lags. This suggests that price shocks tend to have a long lasting
effect on volatility. The partial autocorrelation of variance tends to be long in extent
as well though not nearly as long as the autocorrelation lags. All GARCH models
seem to have the capabilities to model this phenomenon while some might perform
better than others.

Mean Reversion of Volatility - It is believed that after some period of time,
volatility will move back to its average level historically observed.

Asymmetric Response to Price Shocks/Leverage Effect - Volatility tends to
respond stronger to a negative shock than a positive shock of same magnitude. This
phenomenon is also referred to as the leverage effect. As the price of stock drops, it
would increase the debt-to-equity ratio of the company leading to higher leverage of
the firm and as a result it would increase the risk of firm’s equity, which is reflected
by increasing volatility observed in the stock market. In this paper, we include
asymmetric GARCH models such as EGARCH; TGARCH and APARCH to

capture this stylized fact of volatility.
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* Leptokurtic tail and Negatively Skewed of its Return Distribution — Return
series distribution is said to have higher positive Kurtosis (>3) value meaning heavy
tailed with high peak around the mean and a longer left tail compared to its right
tail.

*  Weak/Low Autocorrelation in Return Series — According to the Market
efficiency theory, stock prices should already contain past information, therefore
models such as ARMA using its past lags rarely add any value to the predictability

of the forecasts. Therefore in this thesis, we assume the mean return to be 0.

4. Data and Methodology

4.1 Data Collection and Forecasting Method Description

There are two types of data involved in carrying out this forecasting study. First,
daily price range (High, Low, Opening and Close) of 10 major equity indices were
collected for the sample period spans from 1/1/2005 to 12/31/2016 using Bloomberg, which
roughly equals to 3000 observations with some indices have slightly less observations.
Actual daily volatility is estimated using the range-based estimator of Parkinson’s equation
(3).

Subsequently, the model-free implied volatility levels from 10 indices described in
sections 3.1.3.2 were also retrieved based on the same time span from Bloomberg. This
ensures consistency of the data from which the estimator for daily actual volatility is based.
Model-free implied volatility is based on the prices of the liquid traded options and it

represents the expected market future volatility of underlying equity index over the next 30
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(22 trading) days and annualized in percentage terms. In order to forecast the volatility at

different horizon, rescaling needs to be applied so that it can predict n-day volatility. To

rescale the implied volatility, the following formula is used: MFIV; ) = ( ’% 1v,)/100

where [V, represents daily closing price of volatility index and MFIV, ., is the n day

horizon option model-free implied volatility forecast. As index price is expressed in

percentage terms, we divide it by 100 to convert to decimal format. Table I illustrates the

10 equity indices used in this study, its implied volatility indices, country of origin and

exchanges traded in.

Table I: List of equity indices along with its volatility indices

Equity Index Volatility Region/Country Stock Exchanges
Index

SPX (S&P 500) VIX US New York Stock Exchange
NKY (Nikkei 225) VXJ Japan Tokyo Stock Exchange
UKX (FTSE 100) VFTSE UK London Stock Exchange
DAX VIX Germany Frankfurt Stock Exchange
SMI V3VI Switzerland SIX Swiss Stock Exchange
HSI (Hang Seng) VHSI China Hong Kong Stock Exchange
NDX (NASDAQ) VXN uUsS New York Stock Exchange
SXS5E (EURO STOXX 50) V2V Europe Multiple Exchanges Europe
KOSPI VKOSPI Korea Korea Stock Exchange
CAC VCAC France Euronext Paris

The entire sample from each index is divided into in-sample estimation period and

out-of-sample forecast period. The unknown parameters of the chosen forecasting models

are estimated using the fixed rolling window method of 1,000 in-sample observations at a

time and are subsequently rolled one step forward while excluding the oldest observation to

make new estimation. This procedure is repeated until it goes through the entire sample.

For example, the first forecasted value that corresponds to sample sequence 1,001 is

estimated through in-sample observation from 1 — 1,000, and subsequently, the second
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forecasted value that corresponds to sample sequence 1,002 is estimated by rolling the fixed
window of 1,000 observations one step ahead, which now includes in-sample observations
2 —-1,001 excluding the first observation and including the 1,001 observation. This
procedure is repeated until we reached the last forecasted value for the entire sample.

Hence instead of identifying the time series model for each index with Box-Jenkins
methodology, this thesis takes on a different approach for model selection. A variety of the
most popular GARCH models are selected with various innovation distributions, a fixed
window approach is applied and the goal is to see which GARCH model forecasts the 1-

step ahead volatility best in the period under analysis.

4.2 Volatility Forecasting Models
This section goes in detail to describe the forecasting models used to estimate and
predict true volatility using both Parkinson (1980) Price range estimator and MFIV as

proxies.

4.2.1 GARCH

As briefly mentioned, Engle (1982) developed ARCH to capture the clustering
effect of volatility and its nonlinear nature. ARCH model consists of conditional mean and
conditional variance equation. In the mean equation, y, represents its conditional mean
return at time t and a shock/residual term, &;. In this thesis, the main focus is to model its
conditional variance not its mean return and we assumed that p,=0. It is not unreasonable to
assume the mean return is zero; in fact, many of the considered log-return series have minor

or almost no autocorrelation. Here z, is a series of independent and identically distributed
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random variable takes the mean of 0 and variance of 1 with restriction that ¢y,> 0, a; = 0
fori=1,..,m

R, = us + & ,& = 0,2 ,2~1.1.d (0,1) (11)

0 = ag+ ayef, + -+ apetom (12)

In the variance equation, the ARCH effects come from its dependence on the squared
lagged errors or shocks. It is the shock term that mainly explains the volatility of the asset
return and it’s clear to see that larger past squared shocks infer that the o7 tend to be large
as well (Tsay, 2010). Moreover, variance of the disturbance term is not constant but rather
time varying, which is why ARCH is a good model to explain the heteroscedastic and
clustering features of volatility. However, to fully capture the dynamics of the volatility, it
might need many of its lagged squared residuals in the conditional variance equation and
thus requiring many parameters to estimate.

The GARCH model developed by Bollerslev (1986) and Taylor (1986) overcomes
this limitation and is said to be more parsimonious than ARCH model; it requires fewer
parameters to capture the complete volatility dynamics. The mean equation is the same as
equation (11) and for consistency it is assumed conditional mean return to be zero as well
for this thesis. In the conditional variance equation, the current period variance not only
depends on its previous lagged squared residuals but also its own previous conditional
variance lags. By incorporating its own lagged value into variance calculation it is believed
to capture the volatility persistence characteristics better than ARCH type models. The
GARCH model is described by the following equation:

O'tz =ag+ 05131_?—1 + ﬁ10't2—1 (13)
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Where a; and ; are the ARCH and GARCH parameters respectively and m, and n
represent number of lags of the squared error and its previous conditional variance

respectively. The restriction applied here ¢y >0, a; = 0, §; = 0, Zlflx(m’n)(ai +6;) < 1.
The constraint on parameters a; and f; infers that unconditional and conditional variance

of squared residual is positive finite (Tsay, 2010).

4.2.2 RiskMetrics methodology

J. P. Morgan introduced RiskMetrics ™ methodology to calculate Value-at-risk,
another risk measure. RiskMetrics assumes that the continuous daily return follows a
Normal distribution and it can be shown to be a restricted GARCH (1,1) process without
drift term and a typically around 0.94 (Tsay, 2010). In this thesis we did not fixed the alpha
term and expressed the RiskMetrics in the following way:

U =0, 6l =act,+(1—a)r2,, 1>a>0 (14)

4.2.3 GJR-GARCH/TGARCH

In GARCH and IGARCH model, positive price shocks and negative price shocks
are weighted equally in calculating the conditional variance; however, this does not capture
the asymmetric effects of volatility response to shocks. The GIR-GARCH, also known as
Threshold GARCH, proposed by Glosten, Jagannathan and Runke (1993) overcomes this
shortcoming by introducing a dummy type variable that takes 0 or 1 value when dealing
with non-negative or negative shocks, respectively. The restrictions that «;, y;, and f5; are
non-negative parameters still apply. Mean equation is same as equation (11) mentioned

above and conditional variance equation is:
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of = ap + algtz—l + Y1Dt—1€t2—1 + 310}2—1 (15)

1, E—i <0
O, E—i =0

Where D,_; is an indicator for the negative shocks due to that D,_; = {
It is easy to see that a positive shock leads to a;eZ_; in the squared residual term, whereas a

negative shock leads to a greater impact on the squared residual term with (a; + ;)2 ;.

Hence we include this model to capture volatility asymmetry.

4.2.4 Exponential GARCH
Exponential GARCH developed by Nelson (1991) also captures the asymmetric
response of volatility to positive and negative price shocks. The conditional variance of the

model would always be positive even if the coefficients might be negative.

In(07) = ao + LN 4 g 1y (67 ) (16)

The parameter y; is an indicator that captures the asymmetric effect of the price shocks.
When the price shock is positive, the residual term of the log conditional variance becomes
a;(1 + y)|z,—;|, whereas when the shock is negative, it changes to a;(1 — y;)|z;—;| and y;
is a negative coefficient. This is another popular asymmetric model, which we will use in

modeling the realized volatilities.

4.2.5 APARCH

Asymmetric Power ARCH (APARCH) can also be referred to as APGARCH
introduced by Ding, Granger and Engle (1993) to capture the asymmetric effects. In
addition, it nests other variations of GARCH models. Its free roaming parameters ¢ is able
to flexibly capture the characteristics of volatility compared to other GARCH

specifications.
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0'1.§ =ay + ay(lee—1| — Y15t—1)5 + ﬁlo-ta—l (17)

The power parameter & can either be estimated or imposed, while y can capture the
leverage effect. In this thesis we don’t restrict the power parameter and let Eviews estimate
this parameter based on the maximum likelihood method. APARCH equation can reduce to
the standard GARCH model when restricting the parameters § = 2,y = 0, or becomes

GJR-GARCH when § = 2,0 <y < 1 (Hentschel, 1995).

4.3 Statistical Distributions

Since GARCH type models are not linear in nature, ordinary least square would not
be appropriate when estimating non-linear models; instead. Maximum likelihood (ML)
method is used instead to estimate the parameters of GARCH type models. In order to use
ML method, a likelihood function needs to be stated, which is a joint probability density
function and by maximizing the function with respect to the parameters, it finds the most
likely values of the parameters in question given the data set. Before using the ML method
to estimate parameters, a distributional assumption of the error term needs to be specified.
In the work of this thesis, Normal, Student-t and Generalized Error distribution are used in
estimate the parameters for the various GARCH models. Recall in equation (12), z, the
error term is assumed to be i.i.d with constant mean and variance; the three distribution

assumptions aforementioned apply to that innovation term.

4.3.1 Normal/Gaussian Distribution

Under the Normal/Gaussian distribution, the density function is defined as:

1 _Ew?

e 202 (18)

f(2) =

2o
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Normal distribution is the most common assumption and it is often criticized for its

inability to capture the heavily kurtosis characteristics exhibits in the financial time series.

4.3.2 Student-t Distribution

Student-t innovation is described by the following probability density function:

f) = ﬁj()) (1+5)" (19)

Where v represents the number of degrees of freedom and I' denotes the gamma function
with the following feature I'(x) = |, 000 y*~1e~Ydy. Student-t distribution converges to

normal distribution as the numbers of degree of freedom increase.

4.3.3 Generalized Error Distribution

GED distribution is less restrictive than the normal distribution assumption and it
can take many forms depending on its degrees of freedom.
el

flz)= =

—_— 20
,12(“%)1"(1—17) 20

2
V.

1
Where I' (.) is a gamma function and A = [2( )F(%) / F(%)]Z. The distribution can be

reduced to Gaussian by restricting v = 2 and it has heavy kurtosis when v < 2.

4.4 Forecasting Evaluation

In order to make inference about which forecasting model performs best in
predicting the future actual volatility using range-based estimator and model-free implied
volatility as proxies, standard evaluation criteria will be introduced. These evaluation

criteria will determine the forecasting accuracy of the 1-day ahead out-of-sample forecast
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against the observed value (range-based estimator and MFIV) by measuring the distance of

the observed from the forecasted.

4.4.1 Root Mean Square Error
Root Mean Square Error (RMSE) is used to measure the deviation of the forecasted
value from the observed value. The lower the RMSE, it means the smaller the deviation,

which implies the better forecasting accuracy.

1 ~
RMSE = \/;Z?=1(0't+1 — Ory11t)” 21)

Where n is the total number of out-of-sample volatility forecasts, g;,4 is the actual
volatility at time t+1 and 6,44, is the forecasted volatility for day t+1 with origin at time t.
Recall that we used both range-based estimator and model-free implied volatility as proxies

for the unobserved actual volatility (g;44).

4.4.2 Mean Absolute Error

Mean Absolute Error (MAE) is another loss function used to evaluate the
forecasting accuracy of the predicted model by measuring the average of the absolute
deviation of the predicted value from the realized value. It is said to be less sensitive to

outliers compared to the RMSE (Hyndman & Koehler, 2006).

1 ~
MAE = n ?=1|0't+1 - 0't+1|t| (22)

4.4.3 Mean Absolute Percentage Error
Mean Absolute Percentage Error is another quality measure of the deviation of the

forecasted value from the observed value expressed in percentage term.
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MAPE = 22y,

n

Ot+1~0t+1|t

(23)

Ot+1|t

4.4.4 Theil Inequality Coefficient
Another measure of the forecasting error is called Theil Inequity Coefficient

developed by Henri Theil is known commonly as the Theil-U1 statistics.

1 -
J;2?=1(0t+1—0t+1|t)2

S n 2 lyn 2
n2t=10t+1% |7 Xt=10¢41e

U

(24)

Intuitively, the numerator is the RMSE and the denominator is the sum of individual
forecasted and realized spreads which acts as standardization of RMSE. 0 < U; < 1, where

U;=0 means the best forecast without any forecasting errors.

4.4.5 Information Content Univariate Regression

To further assess the forecasting performance of the chosen time series models, the
“best” forecasting models from each category (Range-based and MFIV) are selected based
on the loss functions and are used in estimating the Mincer-Zarnowitz regression using
OLS for one-day ahead forecasts. This approach was recommended by numerous literatures
for assessing the information content of chosen model and at the same time for testing the
bias of the forecasts. (Poon & Granger, 2003; Prokopczuk & Simen, 2014; Siriopoulos &
Fassas, 2009; Shaikh &Padhi, 2014)

Volpsre = @+ B Frigye + € (25)

Where Vol denotes the range-based estimator or option implied volatility over k day

horizon, while F,, k|t represents k-day ahead forecast from the winning forecasting model,

a is the constant term and &,1s the error term. If the chose model indeed contains some
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information about the future range-based estimator or implied volatility, then its coefficient
f should be different from zero, statistically significant and R?, adjusted R-square should
also be substantial. Using the same equation can also test the biasness of the time series
model; the forecasting model is said to be unbiased estimator of the future volatility if

a = 0 and § = 1 jointly. Finally, to account for the heteroscedastic nature of volatility and
serial correlation problem, Newey and West (1987) procedure is used in the OLS regression

by correcting its standard error. (Kourtis et al., 2016)

5. Empirical Results
5.1 Descriptive Statistics
The asymmetric and negative relationship between the changes in implied volatility index
and its underlying equity index for many stock markets is a well-documented fact in the
literature (Giot, 2005; Fleming et al., 1995). Usually negative price movement follows by a
larger increase in the volatility than the positive price movement of the same magnitude. To
visualize this relationship graphically, daily closing prices of equity index for the full
sample period is plotted along with its volatility index levels for the 10 equity indices in
Appendix, Figure 1. As the graphs clearly show, there seems to be a negative correlation
between the equity index levels and its model-free implied volatility levels and for many of
the indices there also seems to be asymmetric relationship between the two.

Table III illustrates the descriptive statistics of the daily range-based series using the
Parkinson (1980) price range estimator and its daily scaled model-free implied volatility
series of the sample period 1/3/2005 — 12/30/2016 for the 10 stock indices. Across all

indices, the range-based time series and its implied volatility series exhibit positive
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skewness and large excess kurtosis. As a result, Jarque-Bera test of the normality is rejected

for all instances even at 1% significance level.

5.2 Out-of-Sample Forecast Evaluation

Using the 4 loss functions (RMSE, MAE, MAPE and Theil’s U Statistic)
aforementioned, the forecasting accuracy of the various GARCH (1, 1) type models with
Normal, Student-t and GED innovations are scrutinized against range-based estimator and
implied volatility as proxies of ex-post volatility and the findings are summarized in the
table below. More detailed outputs of EViews test results are included in the appendix,
Table IV and V where model with the lowest forecasting errors for each loss function is
highlighted in grey. The model with best 1-day ahead out-of-sample forecasting

performance is assessed with the values of RMSE, MAE, MAPE and Theil’s U Statistics.

Table 1I: Forecasting Performance Summary

Equity Index “Best” Models (Range Volatility) “Best” Models (Implied Volatility)
SPX EGARCH (Normal) GARCH (Student-t)

UKX APARCH (Normal) GARCH (Normal), IGARCH (Normal) - RM
DAX APARCH (Normal) GARCH (Student-t)

HSI IGARCH (Normal) — RM, IGARCH (GED) | GARCH (Student-t), APARCH (Student-t)
KOSPI IGARCH (Normal) - RM GARCH (Student-t)

NDX APARCH (Normal) GARCH (Student-t)

NKY APARCH (Student-t) GARCH (Student-t)

SMI APARCH (Student-t) GARCH (GED)

SXSE APARCH (Normal) GARCH (Student-t)

CAC APARCH (Normal) GARCH (Student-t)

As the 4 loss functions were designed differently in measuring the deviation from
the observed value, it is not common to one model that uniformly beats the others across all
criteria. For instance, RMSE is said to be scale-dependent measure and is more sensitive to

the large deviation than the sum of smaller deviations even if the total deviations are the
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same, while MAE is also scale-dependent, but it is considered to be less sensitive to larger
deviation in comparison to RMSE. The method of selecting the best model(s) of each time
series is based on at least two or more loss functions.

Based on table II, in forecasting range estimator the results are rather mixed;
generally, asymmetric GARCH type model (1,1) such as APARCH (1,1) seem to
adequately capture the dynamic of the future volatilities across 7 of 10 indices. This
coincides with Poon and Granger’s (2003) conclusion that models account for volatility
asymmetry generally performs well. Within these indices, when taking into consideration
of distribution variations, normal distribution can explain 5 of 7 indices while Student-t
innovation explains the other two indices namely NKY (Japan) and SMI (Switzerland).
This result is in line with another research conducted by Brownless et al. (2011), where the
authors found Student-t innovation generally did not yield any improvement in the
performance of the models across a wide variety of asset classes. It seems that NKY and
SMI are the exceptions, which suggests that realized volatility obtained using range-based
estimator exhibits heavier tails compared to the other indices chosen. RiskMetrics
methodology using IGARCH (1,1) normal distribution as a proxy gains competitive edge in
forecasting realized volatility of HSI (Hong Kong) and VOSPI (Korea) indices. On the
other hand, when forecasting realized volatilities using model-free implied volatilities
across 10 indices, simple symmetric GARCH (1,1) seems to perform well overall. This
result suggests that market participants seem to weight positive and negative price
movements symmetrically in their perceived future risk. When drilling down to the
different distribution assumptions, Student-t innovation performs relatively well for 8 of 10

indices, normal and GED are suitable for UKX (U.K) and SMI (Switzerland) respectively.
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5.3 Information Content Regression Result

The best forecasting model from each category (Range-based estimator and MFIV)
of each index is then selected in the univariate regression analysis using ordinary least
square (OLS) method based on equation 25 to see if they also contain some information
about the future volatility in addition to their forecasting accuracy. To account for
heteroscedasticity and autocorrelations of residuals of the regression, Newey West
correction of standard error procedure is used in EViews with automatic selection of lag
length option.

Before running the univariate regression, Augmented Dickey-Fuller Unit Root test
is done on all the time series to eliminate the uncertainty of possible spurious regression
problem with non-stationary time series. All time series presented in the regression are able
to reject the null hypothesis of a unit root at less than 5% with the exceptions of implied
volatility time series of HSI and RiskMetrics model for HSI, where the rejections of unit
root are at 8.5% and 7.2% respectively.

In Appendix, Table VI and VII illustrate the results of the univariate regression
analysis on range-based estimator and model-free implied volatility respectively. Both
constant coefficient (a) and slope coefficient () with its corresponding T-statistics in
parentheses of each model are reported along with R?. It is evident that all slope coefficient
estimates are different from 0 and statistically significant at less than 1%, which provides
evidence that all forecasts bear some information about the future volatility.

Finally, using the same regression can also test the unbiasness of the time series

forecasts through the joint hypothesis a=0 and f=1 using Wald F-statistic in EViews. The
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results show that at every instance, the null hypothesis can be rejected at less than 1%. This
provides statistical evidence that all volatility forecasts presented in this study are
somewhat biased, which is in line with the conclusion from Jiang and Tian (2005) and

Andersen et al. (2007b) that most volatility forecasts seem to be somewhat biased.

6 Conclusions and Future Research

The main purpose of this thesis is to investigate the forecasting performance of
various GARCH models with different innovation assumptions (Normal, Student-t and
GED) against the range-based estimator and implied volatility as proxies for realized
volatilities in a more global context by using 10 frequently traded equity indices and its
volatility indices. In this study, Parkinson (1980) range-based estimator is used to represent
the ex-post “realized” volatility due its unbiasness and it is believed to be 5 times more
efficient as the squared return measure according to Garman and Klass (1980). On the other
hand, model-free implied volatility index from each exchange is used to represent market’s
expected future volatility, which is another proxy for ex-post volatility. As many prior
researches state that implied volatility contains important information about future ex-post
volatility and it is the markets best guess of what will happen in the near future. Model-free
implied volatility does not depend on any econometrics model and it does not subject its
calculation to any distribution assumption of the stock prices and returns unlike the popular
Black-Scholes equation. In order to assess the forecasting error of each model overtime,
fixed rolling window method is employed with 1,000 observations for each in-sample

estimation covering over 10 years of data (1/3/2005 — 12/30/2016) and the accuracy of each
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forecast is evaluated with the four loss functions (RMSE, MAE, MAPE and Theil’s U
statistic).

Although the results are not clear-cut, there are some patterns observed. Depending
on the index, in forecasting the ex-post volatility, overall asymmetric model such as
APARCH (1,1) with Normal innovations is the one with best performance with the
exceptions of NKY (Japan) and SMI (Switzerland) where Student-t innovation performs
better. RiskMetrics methodology excels in forecasting ex-post volatility of HSI (China) and
KOSPI (Korea) index. As volatility has many characteristics, some characteristics might be
more pronounced in one index over the others. For instance, it seems that heavy kurtosis
such as Student-t can describe NKY and SMI relatively well, which implies that realized
volatility from these two indices might be more heavy-tailed comparing to others. The
results from forecasting implied volatility are more consistent in terms of the type of
GARCH model that can capture the market’s expected volatility across 10 indices; a simple
GARCH (1,1) with Student-t innovation seems to perform relatively well with exceptions
of UKX (U.K) and SMI (Switzerland) where Normal and GED seem to perform better.
This result from forecasting implied volatility seems to imply that market participants seem
to weight positive and negative price shocks equally in their perceived future expected risk.
Finally, through univariate regression analysis, it shows that all the winner models bear
some information about future volatility (range-based estimator and MFIV). The regression
analysis also suggests that all the forecasts are somewhat biased, which is in line with many
other prior researches that suggest many volatility forecasts are biased. Fleming (1995)
concludes that while unbiasness is a good property, it is not the most crucial property if the

degree of biasness can be pinpointed and corrected.
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Although this thesis provides a good overview of the forecasting ability of various
GARCH (1,1) models across 10 global equity indices, it can be extended to include higher
order GARCH (m, n) models and long memory time series models proposed in the recent
literature such as the Fractional Integrated GARCH (FIGARCH) and Heterogeneous
Autoregressive Model (HAR) to forecast future volatility. In a study conducted by Martens
and Zein (2004), the authors conclude that long memory models such as the Fractional
Integrated GARCH model dramatically change the result of the contest between time series
model and implied volatilities. Kourtis et al. (2016) report the success of using
Heterogeneous Autoregressive model (HAR) in one-day ahead forecasts for realized
volatilities compared to GJR-GARCH model. In addition of incorporating more variety of
the time series models to forecast the future volatility, the sample period in question could
also be divided into different sub-periods, for example, to analyze how the various model

perform during period of high distress such as late 2008 — 2009.
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Appendices

Figure 1:Graph of equity index level along with its volatility index level (1/3/2005 - 12/30/2016)
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Table I1I: Descriptive Statistics of range estimator and implied volatility

Mean
Median
Maximum
Minimum
Std. Dev.
Skewness
Kurtosis

Jarque-Bera
Probability

Mean
Median
Maximum
Minimum
Std. Dev.
Skewness
Kurtosis

Jarque-Bera
Probability

SPX_VIX
PK_VOL
0.007747
0.005999
0.065486
0.001207
0.006363
3.600757
23.17167

57746.16
0.000000

DAX_V1X
PK_VOL
0.009511
0.007962
0.066910
0.000864
0.006440
2.677921
15.11698

22318.55
0.000000

VIX1
0.012225
0.010381
0.050937
0.006230
0.005907
2.480602
11.13996

11438.57
0.000000

VX1
0.014239
0.012848
0.052639
0.007368
0.005515
2.328785
11.02875

10955.88
0.000000
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ﬁ/mwwwm‘vﬂ
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—— VCAC_PRICE —— PX_LAST
UKX_VFTSE
PK_VOL
Mean 0.008515
Median 0.006875
Maximum 0.064581
Minimum 0.001400
Std. Dev. 0.006027
Skewness 3.025790
Kurtosis 18.36100
Jarque-Bera 34436.20
Probability 0.000000
HSI_VHSI
PK_VOL
Mean 0.008158
Median 0.006526
Maximum 0.105983
Minimum 0.001589
Std. Dev. 0.005973
Skewness 4.346506
Kurtosis 42.82799
Jarque-Bera 204890.6
Probability 0.000000

T
2000

VFTSE1

0.012122
0.010564
0.049768
0.005755
0.005426
2.331841
11.17321

11186.97
0.000000

VHSI
0.014998
0.012478
0.065959
0.006868
0.007104
2.070407
8.436248

5757.614
0.000000



Mean
Median
Maximum
Minimum
Std. Dev.
Skewness
Kurtosis

Jarque-Bera
Probability

Mean
Median
Maximum
Minimum
Std. Dev.
Skewness
Kurtosis

Jarque-Bera
Probability

Mean
Median
Maximum
Minimum
Std. Dev.
Skewness
Kurtosis

Jarque-Bera
Probability

KOSPI_VKOSPI

PK_VOL
0.007844
0.006239
0.095138
0.001462
0.005851
4519293
42.06828

199395.3
0.000000

NKY_VNKY
PK_VOL
0.008067
0.006586
0.082658
0.001389
0.006011
4.100579
32.22934

112974 .4
0.000000

SX5E_V2X
PK_VOL
0.009784
0.008139
0.071425
0.000000
0.006595
2.624952
14.82794

2132345
0.000000

VKOPSI1

0.013310
0.011770
0.056478
0.006457
0.006098
2.599290
12.66749

14940.21
0.000000

VNKY _1
0.015833
0.014753
0.057973
0.006967
0.006207
2563174
12.71043

14780.11
0.000000

V2Xx1
0.014929
0.013751
0.055348
0.007336
0.005776
1.967203
8.897416

6399.656
0.000000

Mean
Median
Maximum
Minimum
Std. Dev.
Skewness
Kurtosis

Jarque-Bera
Probability

Mean
Median
Maximum
Minimum
Std. Dev.
Skewness
Kurtosis

Jarque-Bera
Probability

Mean
Median
Maximum
Minimum
Std. Dev.
Skewness
Kurtosis

Jarque-Bera
Probability

NDX_VXN

PK_VOL

0.008727
0.007150
0.068524
0.001669
0.006115
3.401815
2257394

54054.33
0.000000

SMI_V3VI
PK_VOL
0.007345
0.005951
0.094066
0.001293
0.005201
3.992814
38.73910

165843.6
0.000000

CAC_VCAC
PK_VOL
0.009314
0.007735
0.055616
0.001409
0.006109
2.290436
11.15772

11204.20
0.000000

VXN1
0.013586
0.011751
0.051001
0.007185
0.005554
2.587490
12.12037

13841.41
0.000000

V3VI1
0.011798
0.010398
0.054473
0.005844
0.005043
2.778342
14.22627

19404.02
0.000000

VCACA1
0.014044
0.012924
0.049366
0.005845
0.005320
1.960153
9.115705

6754.642
0.000000



Table 1V: Forecasting performance of GARCH-type models on range estimator.

SPX UKX
Evaluation statistics Evaluation statistics
Forecast RMSE MAE MAPE Theil Forecast RMSE MAE MAPE Theil
F_APARCH_G_SE 0.004803 0003738 70.96408 0234929  F_APARCH_G_SE 0.004321 0.003365 5336247 0.207567
F_APARCH_SE 0.004736 = 0.003704 7112876 0232788  F_APARCH_SE 0.004310 0.003357 53.28851 0.207238
F_APARCH_T_SE 0.004887 0.003793 7146807 0237679  F_APARCH_T_SE 0004331 0003373 5338314 0207923
F_EGARCH_G_SE 0.004771 0.003770 72.48087 0234420 F_EGARCH_G_SE 0.004336 0.003410 5444262 0.208036
F_EGARCH_SE 0.004698 0.003735 7257100 0232067 F_EGARCH_SE 0.004319 0.003395 5421418 0.207520
F_EGARCH_T_SE 0106197 0023428 2849719 00901658  F_EGARCH_T_SE 0.009505 0.003612 56.66408 0.398776
F_GARCH_G_SE 0.005178 0.004018 79.24697 0251206  F_GARCH_G_SE 0.004630 0.003616 58.84426 0.219995
F_GARCH_SE 0.005103 0.003979 78.97213 0248797  F_GARCH_SE 0.004635 0.003615 58.74877 0.220049
F_GARCH_T_SE 0.005291 0.004099 8051506 0.254772  F_GARCH_T_SE 0.004644 0003633 5918373 0.220437
F_IGARCH_G_SE 0.005180 0.003848 72.87652 0253490  F_IGARCH 0.004598 0.003504 54.82557 0.221068
F_IGARCH_SE 0.005245 0.003892 73.67186 0255755  F_IGARCH_G_SE 0.004631 0.003528 5523262 0.222519
F_IGARCH_T_SE 0.005648 0.004202 §1.83659 0271329  F_IGARCH_T_SE 0.005475 0.003996 63.51723 0.254268
F_TGARCH_G_SE 0005041 0003854 7306195 0244311 F_TGARCH_G_SE 0.004378 0.003426 5478423 0.209387
F_TGARCH_SE 0.004972 0.003826 7329110 0.242025  F_TGARCH_SE 0.004362 0.003411 5458697  0.208847
F_TGARCH_T_SE 0.005119 0.003901 73.46773 0246884  F_TGARCH_T_SE 0.004404  0.003447 55.04590 0.210286
DAX HSI
Evaluation statistics Evaluation statistics
Forecast RMSE MAE MAPE Theil Forecast RMSE MAE MAPE Theil
F_APARCH_G_SE 0.005586 0.004567 6543357 0.218612 F_APARCH_G_SE 0.006885 0.005800 100.0192  0.305896
F_APARCH_SE 0.005513 0.004525 65.29828 0.216507 F_APARCH_SE 0.006819  0.005753 99.59236 0.304049
F_APARCH_T_SE 0.005672 0.004621 65.95422 0.221017 F_APARCH_T_SE 0.006947  0.005853 100.7733  0.307633
F_EGARCH_G_SE 0.005577 0.004587 66.15472 0.218785 F_EGARCH_G_SE 0.006804 0.005747 99.33265 0.303446
F_EGARCH_SE 0.005501 0.004540 66.01436 0.216542 F_EGARCH_SE 0.006752 0.005716 99.18518  0.301998
F_EGARCH_T_SE 0.005681 0004659 66.80110 0.221805 F_EGARCH_T_SE 0.011303 0.005992 101.1515  0.445502
F_GARCH_G_SE 0.005934 0.004918 72.88006 0.231761 F_GARCH_G_SE 0.006847 0.005764 100.0569 0.304915
F_GARCH_SE 0.005048 0004898 72.84851 0.230684 F_GARCH_SE 0.006799 0.005734 99.82213 0.303558
F_GARCH_T_SE 0.006046 0.004968 7354837 0.233466 F_GARCH_T_SE 0.006887 0.005810 100.8287  0.305972
F_IGARCH_G_SE 0.005988 0.004781 68.14522 0.232698 F_IGARCH_G_SE 0.006598  0.005420 93.06146 0.298341
F_IGARCH_SE 0.006023 0004832 6930688 0233657 F_IGARCH_SE 0.006594 0.005421 9320645 0.298288
F_IGARCH_T_SE 0007613 0005586 7858917 0281782 F_IGARCH_T_SE 0.007100 0.005713 98.60801 0.315453
F_TGARCH_G_SE 0.005730 0.004636 66.78650 0.223336 F_TGARCH_G_SE 0.006722 0.005679 98.92103 0.301246
F_TGARCH_SE 0.005645 0.004591 66.75282 0.220901 F_TGARCH_SE 0.006672 0.005646 98.65229 0.299775
F_TGARCH_T_SE 0.005831 0.004706 67.45754 0.226259 F_TGARCH_T_SE 0.006778 0.005732 99.74922  0.302910
KOSPI NDX
Evaluation statistics Evaluation statistics
Forecast RMSE MAE MAPE Theil el RMSE MAE MAPE M
F_APARCH_G_SE 0.005421 0004393 8521155 0281303 ' —PARCH G.SE  0.005479 0.004375 "7475826  0.251588
F_APARCH_SE 0.005432 0.004349 7478030 0.250135
F_APARCH_SE 0.005379 0.004358 84.68654 0.280042
F_APARCH_T_SE 0.005547 0.004423 7527582 0.253722
F_APARCH_T_SE 0.005486 0.004446 86.12685 0.283544
F_EGARCH_G_SE 0.005511 0.004442 7670067 0.252359
F_EGARCH_G_SE 0.005515 0.004503 87.45341 0.284836
F_EGARCH_SE 0.005466 0.004417 76.66050 0.250945
F_EGARCH_SE 0.005473 0.004467 86.89817 0.283520
F_EGARCH_T_SE 0.005570 0.004486 77.20785 0.254235
F_EGARCH_T_SE 0.005579 0.004559 88.44587  0.286942
F GARCH G Sk 0005421 0004388 8587131 02983045  F_GARCH_G_SE 0.005737 0.004590 81.08343 0.262247
F GARGH SE 0005495  0.004386 8577831 0283285  F_GARCH_SE 0.005724 0.004582 81.00241 0.261818
- - ’ ' : : F_GARCH_T_SE 0.005792 0.004640 8197644 0.263908
F_GARCH_T_SE 0.005450 0.004420 8655684 0.283969
F_IGARCH_G_SE 0005270 0.004101 7865619 0280123  F-IGARCH G_SE SRSISS  DUMSEe | TA02020  D2RI0IS
F IGARGH SE 0.005273 BT R R EoEs  F|CARCH_SE 0.005730 0.004396 7526207 0.263978
F_IGARCH_T_SE 0006022 0.004499 87.86449 0310363  [-IGARCH T SE 0006262 0.004304 8343897 0.282562
F_TGARCH_G_SE 0005562 0004526 8841332 0286878  -1GARCH G_SE 0.005480 0004407 7644465 0.250683
F TGARCH_SE 0005431 0004445 8691932 0233971  F_TGARCH_SE 0.005436 0.004389 76.65189  0.249305
F_TGARCH_T_SE 0.005583 0.004543 8876145 0287509  F-TGARCH_TSE 0.005549  0.00445¢ 76.97851 0252796
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NKY SMI
R . Evaluation statistics

Evaluation statistics
Forecast RMSE MAE MAPE Theil Forecast RMSE MAE WAPE Theil
F_APGARCH_G_SE 0007879 0006714 1244068 0.331888 E—ﬁggn—ggs‘z g'ggggg ggggggg gg;iggg ggg%gg
F_APGARCH_SE 0.007901 0.006730 1248646 0332645 - - : : : :
F_APGARCH_T_SE | 0.007857 0006696 1240330 0331277  —A"ARCH.T SE 0.004802 RIEIDREEOSEITITY 0.250601
F_EGARCH_G_SE 0007980 0008832 1267469 0334886 —ConncrH-C_SE 0004862 0003505 6628596  0.253560
F_EGARCH_SE 0007983 0006834 1267492 0335080  [-CCARCH.SE B0048TF ORSGIE BA.TESIS 255026
F_EGARCH_T_SE 0007963 0.006815 1265250 0334376 ' -COARCH T SE 0004881 0003507  66.19463 0254250
F GARCH G OF 0008329 0007156 1333491 0344430  F_GARCH_G_SE 0005027 0.003821 7240254 0261004
F GARGH SE 0003340 0007149 1330412 0344585  F_GARCH_SE 0005080 0.003860 73.13406 0262820
F_GARCH_T_SE 0.008296 0.007137 1332114 0343945  F_GARCH_T_SE 0005052 0003842 7278256 0.261841
F_IGARCH_G_SE 0008190 0006861 1252929 0341895  F_IGARCH_G_SE 0.005113  0.003750 6874678 0.266901
F_IGARCH_SE 0.008169 0.006829 1247374 0.341294 F_IGARCH_SE 0.005065 0.003704 68.07788 0.265135
F_IGARCH_T_SE 0.003609 0.007098 1300809 0354575  F_IGARCH_T_SE 0005643 0.004009 73.82555 0.288069
F_TGARCH_G_SE 0.008210  0.006905 127.7522 0.341138 F_TGARCH_G_SE 0.005108 0.003687 67.90392 0.263452
F_TGARCH_SE 0.008212 0.006902 127.6665 0341335  F_TGARCH_SE 0.005156 0.003736 68.89579 0.265170
F_TGARCH_T_SE 0.008197 0006893 127.6338 0340586  F_TGARCH_T_SE 0005108 0.003675 6757256 0.263502

SX5E CAC
Evaluation statistics Evaluation statistics
Forecast RMSE MAE MAPE Theil Forecast RMSE MAE MAPE Theil
F_APARCH_G_SE 0.005965 0004751 NA 0222708 F_APARCH_G_SE 0.005906 0.004811 66.67668 0.229022
F_APARCH_SE 0005939 0004744  NA 0222034 F_APARCH_SE 0.005865 0004791 6671812 0.227862
F_APARCH_T_SE 0.005997 0004767 NA 0223556 F_APARCH_T_SE 0.005950 0.004836 6680292 0230336
F_EGARCH_G_SE 0.006012 0.004797 NA 0.225167 F_EGARCH_G_SE 0.005964 0.004871 67.72136 0.231529
F_EGARCH_SE 0.005057 0004766 NA 0223701 F_EGARCH_SE 0005902 0.004834 67.51065 0229809
F_EGARCH T SE 0007407 0004913 NA 0269686 F_EGARCH_T_SE 0006014 0004891 67.67585 0.232962
F_GARCH_G_SE 0.006596 0.005279 NA 0.243145 F_GARCH_G_SE 0.006474 0.005254 75.53364 0.247611
F_GARCH_SE 0006603 0005282 NA 0243285 F_GARCH_SE 0006480 0.005258 7558284 0247709
F_GARCH_T_SE 0006627 0005310 NA 0243303 F_GARCH_T_SE 0006502 0.005284 7596402 0.248397
FIGARCH_ G, SE 0006616 0005132 NA 0244844 F_IGARCH_G_SE 0.006446 0.005072 70.32019  0.247903
FIGARGH SE 0006627 0005152 NA 0245179 F_IGARCH_SE 0.006453 0.005095 70.91801 0.248177
FIGARGH T SE 0008118 0005968 NA 0286717 F_IGARCH_T_SE 0008133 0.005965 83.66885 0.297587
FTGARCH G SE 0006313 0004957 NA 0.233503 F_TGARCH_G_SE 0.006262 0.004986 68.53332  0.240564
FTGARGH SE oo NA 0232003 F_TGARCH_SE 0.006190 0.004949 6846929 0.238498
FTGARCH T SE 0006353 0004985 s 023sree F_TGARCH_T_SE 0.006306 0005017 6878352 0.241835
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Table V: Forecasting performance of GARCH-type models on model-free implied volatility.

SPX UKX
Evaluation statistics Evaluation statistics
Forecast RMSE MAE MAPE Theil Forecast RMSE MAE MAPE Theil
F_APARCH_G_SE 0.003185 0.002576 21.48193 0.128044 F_APARCH_G_SE 0.004446 0.003415 26.98958 0.183814
F_APARCH_SE 0.003168 0.002557 21.12054 0.127896 F_APARCH_SE 0.004374 0.003362 26.52601 0.180976
F_APARCH_T_SE 0.003164 0.002559 21.49265 0.126605 F_APARCH_T_SE 0.004506 0.003461 27.38814 0.186148
F_EGARCH_G_SE 0.003370 0.002657 21.74147 0.136000 F_EGARCH_G_SE 0.004367 0.003343 26.30035 0.180386
F_EGARCH_SE 0.003337 0.002618 21.22818 0.135257 F_EGARCH_SE 0.004306 0.003294 2586869 0.178056
F_EGARCH_T_SE 0.104872 0.021886 131.8082 0.858129 F_EGARCH_T_SE 0.009444 0.003581 28.13941 0.347089
F_GARCH_G_SE 0.002936 0.002348 19.02746 0.117248 F_GARCH_G_SE 0.003676 0.002802 22.13470 0.150536
F_GARCH_SE 0.002954 0.002359 19.01976 0.118454 F_GARCH_SE 0.003662 0.002795 2210055 0.149857
F_GARCH_T_SE 0.002886 0.002297 18.64333 0.114551 F_GARCH_T_SE 0.003673 0.002799 2212939 0.150283
F_IGARCH_G_SE 0.003320 0.002756 23.35139 0.133529 F_IGARCH 0.003558 0.002894 2364792 0.147187
F_IGARCH_SE 0.003292 0.002721 23.00742 0.132013 F_IGARCH_G_SE 0.003607 0.002923 23.88393 0.149136
F_IGARCH_T_SE 0.003615 0.002945 2550668 0.143175 F_IGARCH_T_SE 0.004274 0.003292 27.81690 0.171593
F_TGARCH_G_SE 0.003391 0.002713 2224385 0.135303 F_TGARCH_G_SE 0.004460 0.003379 26.46730 0.183650
F_TGARCH_SE 0.003355 0.002679 2179327 0.134318 F_TGARCH_SE 0.004400 0.003338 26.10640 0.181362
F_TGARCH_T_SE 0.003398 0.002712 2233296 0.135013 F_TGARCH_T_SE 0.004514 0.003418 26.85023 0.185624
DAX HSI
Evaluation statistics Evaluation statistics
Forecast RMSE MAE MAPE Theil Forecast RMSE MAE MAPE Theil
F_APARCH_G_SE 0.003341 0.002620 17.63310 0.112433 F_APARCH_G_SE 0.002406 0.001748 11.91390 0.083705
F_APARCH_SE 0.003281 0002552 17.07800 0.110745 F_APARCH_SE 0.002462 0.001792 12.06031 0.085880
F_APARCH_T_SE 0.003371 0.002660 17.95924 0.113014 F_APARCH_T_SE 0.002385 0001721 11.79412 0.082766
F_EGARCH_G_SE 0.003378 0.002605 17.39936 0.113902 F_EGARCH_G_SE 0.002456 0.001803 1231630 0.085689
F_EGARCH_SE 0.003283 0.002520 16.73039 0.111030 F_EGARCH_SE 0.002500 0.001824 1229909 0.087417
F_EGARCH_T_SE 0.003449 0.002663 17.86847 0.115813 F_EGARCH_T_SE 0.009076 0.001973 1290468 0287124
F_GARCH_G_SE 0.002645 0.002079 13.87281 0.088222 F_GARCH_G_SE 0.002476 0.001758 11.48286 0.086280
F_GARCH_SE 0.002668 0.002084 13.78608 0.089078 F_GARCH_SE 0.002525 0.001782 11.55542 0.088172
F_GARCH_T_SE 0.002637 0.002073 13.87500 0.087706 F_GARCH_T_SE 0.002431 0.001716 11.17759 0.084572
F_IGARCH_G_SE 0.002861 0.002352 16.54757 0.095690 F_IGARCH_G_SE 0.002723 0.002109 14.56469 0.096042
F_IGARCH_SE 0.002863 0.002348 16.50917 0.095631 F_IGARCH_SE 0.002748 0.002121 1458075 0.096946
F_IGARCH_T_SE 0.004612 0.003044 2150418 0.147931 F_IGARCH_T_SE 0.003210 0.002343 1651137 0.111673
F_TGARCH_G_SE 0.003433 0.002624 17.34402 0.115129 F_TGARCH_G_SE 0.002640 0.001915 1267826 0.092465
F_TGARCH_SE 0.003367 0.002553 16.72545 0.113296 F_TGARCH_SE 0.002678 0.001940 12.74093 0.093991
F_TGARCH_T_SE 0.003480 0.002665 17.69559 0.116248 F_TGARCH_T_SE 0.002622 0.001884 1248810 0.091645
KOSPI NDX
Evaluation statistics Evaluation statistics
Forecast RMSE MAE MAPE Theil Forecast RMSE MAE MAPE Theil
F_APARCH_G_SE 0.003043 0.002115 16.56958 0.126090 F_APARCH_G_SE 0.003196 0.002551 19.18577 0.120656
F_APARCH_SE 0.002969 0.002076 16.30701 0.123314 F_APARCH_SE 0.003130 0.002483 18.56824 0.118434
F_APARCH_T_SE 0.003090 0.002146 16.77697 0.127600 F_APARCH_T_SE 0.003218 0.002577 19.45911 0.121083
F_EGARCH_G_SE 0.002916 0.002057 16.29472 0.120336 F_EGARCH_G_SE 0.003232 0.002531 18.93356 0.121726
F_EGARCH_SE 0.002840 0.002010 1594545 0.117465 F_EGARCH_SE 0.003163 0.002466 18.35347 0.119365
F_EGARCH_T_SE 0.002967 0.002093 16.54467 0.122032 F_EGARCH_T_SE 0.003252 0.002553 19.16289 0.122163
F_GARCH_G_SE 0.002402 0.001800 14.29263 0.099971 F_GARCH_G_SE 0.002736 0.002131 1559969 0.102903
F_GARCH_SE 0.002412 0.001809 14.38195 0.100373 F_GARCH_SE 0.002734 0.002128 15.54855 0.102886
F_GARCH_T_SE 0.002380 0.001776 14.07255 0.098889 F_GARCH_T_SE 0.002707 0.002098 15.34216 0.101537
F_IGARCH_G_SE 0.002780 0002265 19.02148 0.117354 F_IGARCH_G_SE 0.003116 0.002526 19.35355 0.117993
F_IGARCH_SE 0.002743 0.002250 19.02119 0.115657 F_IGARCH_SE 0.003107 0.002514 19.24203 0.117595
F_IGARCH_T_SE 0.003561 0.002560 21.92673 0.146678 F_IGARCH_T_SE 0.003490 0.002742 21.62752 0.129878
F_TGARCH_G_SE 0.003029  0.002087 16.19886  0.124867 F_TGARCH_G_SE 0.003205 0.002502 18.51208 0.120604
F_TGARCH_SE 0.002952  0.002045 15.87485 0.122130 F_TGARCH_SE 0.003127 0.002435 17.89819 0.117911
F_TGARCH_T_SE 0.003051 0.002103 16.29262 0.125617 F:TGARCH:T_SE 0.003216 0.002513 18.66620 0.120623

46



NKY

Evaluation statistics

Forecast RMSE MAE MAPE Theil
F_APGARCH_G_SE 0.003684 0.002841 17.25728 0.118897
F_APGARCH_SE 0.003673 0.002821 17.09375 0.118481
F_APGARCH_T_SE 0.003711  0.002871 17.45755 0.119855
F_EGARCH_G_SE 0.003598 0.002750 16.82612 0.115779
F_EGARCH_SE 0.003593 0.002750 16.82662 0.115636
F_EGARCH_T_SE 0.003625 0.002770 16.94223 0.116718
F_GARCH_G_SE 0.003557 0.002579 15.27099 0.113185
F_GARCH_SE 0.003620 0.002628 15.58227 0.115096
F_GARCH_T_SE 0.003527 0.002549 15.06592 0.112458
F_IGARCH_G_SE 0.003919 0.003074 19.15056 0.125603
F_IGARCH_SE 0.003980 0.003133 1955788 0.127657
F_IGARCH_T_SE 0.004327 0.003178 20.02903 0.137274
F_TGARCH_G_SE 0.003982 0.002966 17.73765 0.127186
F_TGARCH_SE 0.003985 0.002966 17.74262 0.127294
F_TGARCH_T_SE 0.003998 0.002977 17.80650 0.127681
SX5E

Evaluation statistics
Forecast RMSE MAE MAPE Theil
F_APARCH_G_SE 0.004875 0.003867 24.16332 0.155116
F_APARCH_SE 0.004812 0.003806 23.67937 0.153287
F_APARCH_T_SE 0.004900 0.003894 2442200 0.155726
F_EGARCH_G_SE 0.005047 0.003950 24.63841 0.161007
F_EGARCH_SE 0.004949 0.003894 2421353 0.158250
F_EGARCH_T_SE 0.006522 0.004077 2532664 0.203090
F_GARCH_G_SE 0.004225 0.003167 18.91710 0.133019
F_GARCH_SE 0.004257 0.003185 1896538 0.133974
F_GARCH_T_SE 0.004201 0.003140 1879371 0.132068
F_IGARCH_G_SE 0.004391 0.003460 21.43350 0.138669
F_IGARCH_SE 0.004373 0.003449 21.30546 0.138074
F_IGARCH_T_SE 0.005842 0.004179 26.88385 0.177291
F_TGARCH_G_SE 0.005133 0.003909 2428732 0.162029
F_TGARCH_SE 0.005060 0.003852 23.80970 0.160003
F_TGARCH_T_SE 0.005163 0.003933 2451728 0.162718

SMi
Evaluation statistics
Forecast RMSE MAE MAPE Theil
F_APARCH_G_SE 0.004436 0.003238 27.27959 0.199145
F_APARCH_SE 0.004399 0.003205 26.94652 0.197300
F_APARCH_T_SE 0.004498 0.003274 27.64463 0.201746
F_EGARCH_G_SE 0.004611 0.003274 27.67843 0.206619
F_EGARCH_SE 0.004615 0.003254 27.46534 0.206563
F_EGARCH_T_SE 0.004659 0.003301 27.97689 0.208565
F_GARCH_G_SE 0.004372 0.002995 2456663 0.195099
F_GARCH_SE 0.004407 0.003000 2461601 0.196082
F_GARCH_T_SE 0.004380 0.002998 2463792 0.195173
F_IGARCH_G_SE 0.004587 0.003337 28.06720 0.205525
F_IGARCH_SE 0.004578 0.003311 2777933 0.205674
F_IGARCH_T_SE 0.004961 0.003591 3057423 0.218113
F_TGARCH_G_SE 0.004932 0.003426 28.73979 0.218778
F_TGARCH_SE 0.004915 0.003398 28.47260 0.217495
F_TGARCH_T_SE 0.004969 0.003451 28.99560 0.220425
CAC
Evaluation statistics
Forecast RMSE MAE MAPE Theil
F_APARCH_G_SE 0.003585 0.002802 18.82425 0.119715
F_APARCH_SE 0.003517 0.002738 18.29742 0.117639
F_APARCH_T_SE 0.003612 0.002827 19.04592 0.120430
F_EGARCH_G_SE 0.003778 0.002897 19.33995 0.126266
F_EGARCH_SE 0.003697 0.002842 18.93869 0.123889
F_EGARCH_T_SE 0.003833 0.002921 19.51789 0.127883
F_GARCH_G_SE 0.003137 0.002266 1459733 0.103515
F_GARCH_SE 0.003170 0.002278 14.62368 0.104562
F_GARCH_T_SE 0.003111  0.002251 1452978 0.102571
F_IGARCH_G_SE 0.003341 0.002618 17.74350 0.110778
F_IGARCH_SE 0.003341 0.002609 17.62450 0.110787
F_IGARCH_T_SE 0.005103 0.003371 23.53807 0.162092
F_TGARCH_G_SE 0.003944 0.002928 19.33359 0.130645
F_TGARCH_SE 0.003852 0.002855 18.72158 0.127905
F_TGARCH_T_SE 0.003970 0.002954 1957931 0.131325
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Table VI: Univariate regression of Mincer-Zarnowitz to test information content of model on range-based estimator.

APARCH
(Normal)

APARCH
(Student-t)

EGARCH
(Normal)

IGARCH
(Normal) - RM

-0.000 (-0.68)
0.743 (22.04)
0.508

a 9.25E-05 (0.242)

i 0.805 (20.35)
R? 0.423

-0.000 (-0.27)
0.771 (18.63)

a

B

R? 0.438
I

a

B

0.002 (5.32)
0.458 (13.80)
0.261

0.001 (3.16)
0.522 (9.36)
0.307

a 0.000 (0.91)
i 0.661 (15.34)
R? 0.393

-5.56E-05 (-0.10)

0.562 (12.26)
0.230

0.000 (0.47)
0.690 (8.42)
0.357

0.000 (0.823)
0.733 (19.07)
0.403

a 0.000 (1.13)
i 0.693 (17.60)
R? 0.401
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Table VII: Univariate regression of Micer-Zarnowitz to test information content of model on implied volatility.

GARCH GARCH GARCH
(Student-t) (Normal) (GED)
SPX
a 0.003 (7.57)
B 0.855 (19.11)
R? 0.818
UKX
a 0.003 (3.51)
B 0.843 (8.06)
R? 0.529
DAX
a 0.003 (5.88)
B 0.895 (22.52)
R? 0.799
HSI
a 0.001 (2.05)
B 0.980 (16.01)
R? 0.823
KOSPI
a 0.001 (1.58)
B 1.028 (12.52)
R? 0.845
NDX
a 0.003 (4.82)
B 0.892 (16.60)
R? 0.787
NKY
a 0.005 (4.67)
B 0.753 (8.51)
R? 0.572
SMI
a 0.009 (10.55)
B 0.246 (3.31)
R? 0.09
SXS5E
a 0.006 (6.61)
B 0.700 (10.12)
R? 0.499
CAC
a 0.020 (5.59)
B 3.559 (12.81)
R? 0.659
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