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Abstract 

This thesis attempts to evaluate the performance of parametric time series models and 

RiskMetrics methodology to predict volatility. Range-based price estimators and Model-free 

implied volatility are used as a proxy for actual ex-post volatility, with data collected from ten 

prominent global volatility indices. To better understand how volatility behaves, different models 

from the Generalized Autoregressive Conditional Heteroskedasticity (GARCH) class were 

selected with Normal, Student-t and Generalized Error distribution (GED) innovations. A fixed 

rolling window methodology was used to estimate the models and predict the movements of 

volatility and, subsequently, their forecasting performances were evaluated using loss functions 

and regression analysis.  

The findings are not clear-cut; there does not seem to be a single best performing 

GARCH model. Depending on the indices chosen, for range-based estimator, APARCH (1,1) 

model with normal distribution overall outperforms the other models with the noticeable 

exception of HSI and KOSPI, where RiskMetrics seems to take the lead. When it comes to 

implied volatility prediction, GARCH (1,1) with Student-t performs relative well with the 

exception of UKX and SMI indices where GARCH (1,1) with Normal innovations and GED 

seem to do well respectively. Moreover, we also find evidence that all volatility forecasts are 

somewhat biased but they bear information about the future volatility.  

 

Keywords: Implied Volatility, Range-based Volatility, GARCH, Forecasting Accuracy, 

Information Content. 

JEL Classifications: C22, C52, C53, C58, C87  
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1. Introduction 

Volatility is one of the most studied topics in modern finance. The ability to 

correctly forecast future volatility has been the interests of anyone who is involved in the 

financial market. In Finance, volatility is defined as the fluctuation of asset prices from its 

mean over a specific period of time, which is commonly calculated as standard deviation of 

its logarithmic returns.  

Although, volatility does not translate the full risk in the market, but it is a good 

representation of the significant portion of risk that can be quantified. Therefore forecasting 

volatility is crucial in investment decision-making, valuing derivative products, risk 

management and portfolio hedging. For example, in the notorious Black-Scholes (1973) 

equation based on the option-pricing model, volatility of the underlying asset over the life 

of the option is a fundamental input in the determination of the fair value of the derivative 

products. However volatility cannot be directly observed, but rather needs to be estimated, 

which again highlights the importance of being able to accurately forecasting volatility of 

underlying asset. 

As a result, it comes as no surprise that forecasting market volatility has received a 

great deal of attention in recent times both in academia and among financial practitioners.  

The aim of this thesis is to evaluate the forecasting accuracy of RiskMetrics and various 

GARCH-type models against future volatility of ten globally traded equity indices. In this 

paper, both range estimators based on daily price information and model-free implied 

volatility, which is said to be the market participant’s expected future volatility, are used as 



	
	

	 2	

proxies for the actual ex-post volatility in the markets. This paper also investigates the 

information content of the most accurate model forecasts from each index to see if they 

indeed contain some additional information about future volatility. 

Despite the vast amount of literature on the subject of volatility forecasting, it is 

rather difficult to draw a unanimous conclusion due to differences in research design in 

terms of asset classes, countries, sample period, forecasting techniques, forecasting horizon 

and evaluation measures. This thesis attempts to get a clearer picture of the performance of 

time series models by incorporating 10 globally traded indices within a common 

framework. 

Many studies attempt to forecast future realized volatility using model-based 

forecasts such as Generalized Autoregressive Conditional Heteroscedasticity (GARCH) and 

others attempt to model volatility by using option implied volatility forecasts. The results 

are somewhat mixed mainly due to difference in research methodology. Poon and Granger 

(2003) compiled a detailed literature review on this subject and concluded that overall 

implied volatility seems to contain more information about future volatility than the time 

series forecasts and it outperforms all other models. When it comes to time series forecasts, 

models that take into account volatility asymmetric response to negative and positive news 

tend to outperform others.   

In the work of this thesis, a variety of GARCH-type models and RiskMetrics along 

with Normal, Student-t and Generalized Error Distribution (GED) innovations are fitted 

through a fixed rolling window methodology to capture the movement of range-based and 

model-free implied volatility of 10 international equity indices. Afterwards, each individual 

model’s out-of-sample predicting performance is evaluated based on a number of 
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forecasting accuracy metrics to see which model tends to outperform the others. As proxies 

for the actual volatility we use range-based Parkinson (1980) estimator, which is said to be 

5 times more efficient than the squared returns (Garman & Klass, 1980). We also 

considered the implied volatility based on the model-free variance swap concept, which 

improves on Black-Scholes implied volatility by addressing the constant volatility 

assumption and symmetric Gaussian return assumption (Siripoulos & Fassas, 2009). 

Though the results are mixed, but conclusions can be made. In forecasting volatility 

using Parkinson (1980) range-based estimator as a proxy, asymmetric GARCH(1,1)  model 

such as APARCH (1,1) with Normal distribution are able to better capture the dynamics of 

volatility with exception of HSI (China) and KOSPI (Korea) where RiskMetrics excel. This 

seems to be in line with the conclusion from Poon and Granger (2003) that time series 

models that allow asymmetric effects perform well overall. However, when it comes to 

forecast volatility using implied volatility as proxy, simple GARCH (1,1) with Student-t 

innovation seems to be the one with better performance overall.  

The content of this thesis is structured as follows. Section 2 presents relevant 

literature review of the volatility forecasting using both model-based and model-free 

implied volatility approaches. Theoretical concepts of volatility are presented in section 3 

and section 4 elaborates on the methodologies and data used to carry out this research. The 

main findings of this research along with analysis are presented in section 5. The main 

conclusions and future research suggestions are detailed in section 6. 
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2. Literature Review 

 There is a wide variety of literature on the topic of volatility forecasting; in which 

some are focused more on model-based forecasting while others attempt to evaluate the 

forecasting accuracy of several models with implied volatility.  

Earlier studies attempted to capture the dynamics of volatility using the 

autoregressive moving average model (ARMA) and Box-Jenkins ARMA yield relatively 

low forecasting accuracy due to many of the characteristics of volatility such as the 

clustering effect, asymmetric response to shocks, and heteroscedastic nature of the residual 

terms. (Tsay, 2010) Later on, ARCH model of Engle (1982) was developed to capture 

clustering effects of volatility and its non-linear dynamics. ARCH model estimates 

conditional variance as a function using a number of lags of its past squared residuals. One 

of the shortcomings of ARCH model is it might require many lags in the conditional 

variance equation to better capture the dynamics of volatility, and it also means many 

coefficients would have to be estimated. Bollerslev (1986) and Taylor (1986) independently 

came up with a generalized version of ARCH called GARCH model, which limits the 

number of estimated parameters and it is said to be more parsimonious than the ARCH 

model. (Brook, 2008) Subsequently, many variations of ARCH/GARCH models were 

developed to capture the other stylized facts of volatility such as asymmetric response to 

shocks.  

Akgiray (1989), one of the earliest researches to test the predictability of GARCH 

model concludes that GARCH consistently outperforms historical volatility and 

exponential weighting moving average models. Since then there have been numerous 
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researches testing the predictability of the GARCH model against other time series and 

implied volatilities mostly in major stock indices and foreign exchange rates. Cumby, 

Figlewski and Hasbrouck (1993) introduced Exponential GARCH model and concluded 

that EGARCH outperforms historical volatility model despite the low 𝑅!. Figlewski (1997) 

concludes that GARCH model’s adequate performance is mostly restricted to stock market 

data and only for short horizon forecasting. There are many other studies that give mixed 

conclusions. As the methodology used in conducting research varies, the results could also 

be different. There are many factors that can affect the outcome of the study; such as 

different loss functions used in the evaluation, different sampling methodology (fixed 

rolling window estimation or recursive expanding estimation), or even different sample 

period for different asset could lead to rather different conclusion.  

In a model-based volatility comparative research, Brownlees et al. (2011) evaluate 

the forecast accuracy of the ARCH family models with different horizons and study how 

the predictability can be affected by factors such as estimation window length, different 

distribution assumptions and re-estimation frequency for the parameters. The authors 

include a wide range of asset classes including numerous domestic and international equity 

indices as well as exchange rates. The models that the authors include in the study are: 

GARCH (1,1), TARCH, EGARCH, NGARCH, and Asymmetric power ARCH. The loss 

functions are Quasi-likelihood (QL) and mean square error (MSE) but the authors focused 

on QL and argued that QL’s bias is independent of volatility level while MSE’s bias is 

proportional to the true variance squared.  In addition to the daily dividend adjusted log 

return data on S&P 500 index from 1990 to 2008, the authors also use 10 exchange rates, 9 

domestic indices and 9 international indices and the out-of-sample forecasting period spans 
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from 2001 to 2008 covering period of both low volatility and crisis. First, forecasting 

performance of S&P 500 is assessed against daily-realized volatility and squared returns 

over a range of horizon and subsequently, a direct comparison of forecasts from the 

GARCH models during the full sample period with only the crisis period of fall 2008 are 

conducted and the results of the out-of-sample QL losses are reported using TARCH (1,1). 

The results show that asymmetric models such as TARCH model performs relatively well 

across asset classes, methods and sample periods including period of distress. The authors 

conclude that use the longest date series available seem to enhance the model performance 

and weekly parameter re-estimation is ideal to combat the parameter drifting. Innovation 

distribution such as student–t does not yield any improvement in predictability of the 

model. For period of extreme high distress such as fall 2008, short horizon forecast such as 

1 day ahead forecast is able to capture the dynamic of volatility; the problem lies with long 

horizon forecasts (multistep forecasts). 

Using implied volatility as a forecast of market’s expectation of future volatility has 

also gain popularity. Implied volatility is derived from Black-Scholes’ (1973) option 

pricing formula using the backward induction as all the inputs in the formula can be either 

observed or computed with the exception of volatility. However, Black-Scholes’ implied 

volatility suffers from discrepancy of volatility smile; where implied volatilities computed 

from options on the same underlying with the same maturity but different exercise prices 

yield different results that violate the theory, which states volatility is assumed constant 

over the life of the option. Many researchers decide to use At-the-money option implied 

volatility due to its liquidity and large trading volume, which can correct some of the 

market microstructure concerns. Despite its shortcomings, many articles claim implied 
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volatility can better predict realized volatility than their time series counterparts. 

(Lamoureux and Lastrapes, 1993; Vasilellis and Meade, 1996) Since then there are 

numerous studies on predictability of implied volatility index (original “VIX”, now titled 

VXO) from the Chicago board of Option Exchange (CBOE). Many studies such as Fleming 

et al. (1995) use the old CBOE’s “VIX” implied volatility index based on the options of 

S&P 100 to forecast true volatility of equity index. Most studies seem to confirm that 

implied volatility contains crucial information about the future volatility.  Fleming et al 

(1995), in addition to confirming that implied volatility performs better when comparing to 

first order autoregressive volatility models and also discover the strong inverse and 

asymmetric relationship between the VXO implied volatility and its S&P 100 market price. 

Blair et al (2001) report the highest explanatory power of VXO implied volatility to the 

S&P 100 index and reach the similar conclusion that implied volatility seems to perform 

better than the model-based counterparts. In addition to Blair et al. (2001), Lamoureux and 

Lastrapes (1993), Canina and Figlewski (1993), and Fleming et al. (1995) all find implied 

volatility biases in their forecast of realized volatility.  

Despite of its promising results from U.S stock market indices, many international, 

smaller indices seem to have mixed results. Frennberg and Hanssan (1996) study the 

Swedish market and find that implied volatility in fact, cannot outperform even the simple 

autoregressive and random walk model. Australian market study of implied volatility 

conducted by Brace and Hodgson (1991) yields very inconsistent forecasting outcomes. 

While Doidge and Wei (1998) find combination of GARCH and implied volatility to be 

ideal in forecasting the Canadian Toronto index volatility.  
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Poon and Granger (2003) in a comprehensive volatility forecasting review 

summarize 93 studies on the matter of volatility forecasting and conclude that overall with 

mixed results, implied volatility seems to outperform other volatility forecasters that 

includes historical volatility model, random walk, autoregressive, moving average and 

exponential weights as well as GARCH/ARCH family models. Moreover, the authors 

report that time series models that take account of asymmetric response in volatility seems 

to perform better compared to others, such as EGARCH and TGARCH model.  

In a study conducted by Martens and Zein (2004) in which the authors incorporate 

high frequency intraday data and long memory models to forecast volatility of 3 different 

asset classes: equity, foreign exchange and commodities. Data sample from S&P 500, 

Yen/USD, and Sweet crude oil start from beginning of 1994, 1996 and June 1993 

respectively span to the end of 2000 from various sources. Implied volatility is calculated 

using the weighted average of two nearest at-the-money calls and puts and weights are 

selected where the average exercise price matches the underlying future prices. Realized 

volatility is calculated using the sum of squared intraday return rather than the standard 

squared daily return to avoid possible noise. Autoregressive fractionally integrated moving 

average is used to estimate log-realized volatility in addition to the GARCH (1,1) and 

recursive expanding rolling estimation method is used with initial in sample period of 500 

observations. The loss function of Heteroskedasticity consistent Root Mean Squared Error 

is computed to evaluate the forecasting performance of the models. Implied volatility 

outperforms GARCH models and in encompassing analysis, implied volatility also 

subsumes mostly all the information content. Interestingly, the authors find long memory 
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model able to compete with implied volatilities and in some cases even outperforms 

implied volatilities. Both measures contain information that the other does not possess.  

In a more recent study, Ryu (2012) investigates the information content and 

forecasting accuracy of the implied volatility index of KOSPI (South Korea) against 

RiskMetrics, Black-Scholes’ implied volatility and GJR-GARCH models. He argues that 

since option market of KOSPI ranks highest in terms of trading volume and investor’s 

interest, therefore the implied volatility index extracted from option prices should contain 

predictive information about future volatility. The implied volatility index of KOSPI 

(VKOSPI) is computed using the model-free methodology based on the concept of fair 

value variance swap and does not rely on any option pricing models; its calculation 

resembles the new VIX index from the S&P 500 U.S equity index. The total sample size 

contains 2,057 daily observations and using fixed rolling analysis with forecasting horizon 

of 1, 5, 10, 21, and 63 trading days and finally the results are evaluated using the Mincer-

Zarnowitz decomposition of Mean Square Error. Ryu (2012) concludes that implied 

volatility index (VKOSPI) contains meaningful information about future volatility of 

KOSPI and it outperforms all other forecasters in predicting realized volatility. Moreover, 

when the forecasting horizon is 5, 10, and 21 trading days, more than half of the changes in 

realized volatility can be explained by the VKOSPI index. In studying the relationship 

between the volatility index and its underlying equity return, the author confirms the 

asymmetric inverse relationship between the two, which is a well documented in the 

literature. (French et al., 1987; Schwert, 1989,1990; Fleming 1995)  

Shaikh and Padhi (2014) attempt to study the forecasting performance of Indian 

volatility index along with RiskMetrics GARCH, and GJR-GARCH (1,1) using both 
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overlapping and non-overlapping sampling procedure with roughly of 6 years span of daily 

data with forecasting horizon of 1, 5, 10, 22, and 66 days. Indian VIX index uses the same 

model-free implied volatility methodology as many of the global volatility indices and 

realized volatility is computed based on the sum of the squared returns. The performance 

measure is based on the loss functions of RMSE, MAE and Theil’s U statistics. For non-

overlapping samples with exception of 1- day and 66-day forecasts, implied volatility 

outperforms other models and following by RiskMetrics. GJR-GARCH (1,1) seems to 

dominate the overlapping sample methods. Implied volatility also contains more 

information about the future volatility than the other forecasts, especially in the case of 10-

day and 22-day horizon showing the highest adjusted 𝑅!. Interestingly, the authors 

conclude that based on the univariate and encompassing regression, implied volatility 

dominates other forecasts and it is unbiased and efficient estimator of the market volatility.  

In an international-focused, comparative study of implied, realized and GARCH 

volatility forecasts conducted by Kourtis et al. (2016), where the authors use 13 global 

indices from 10 countries with different forecasting horizon (1, 5, 22 days) and under 

different market conditions (before, during and after crisis of 2008) to study the forecasting 

performance and information content of model-free implied volatility, random walk, GJR-

GARCH and Heterogeneous Autoregressive (HAR) model. Daily realized volatility is 

calculated using square root of sum of intraday returns collected at 5 min equally spaced 

intervals and the data spans for roughly 12 years from 2000 to October 2012. Out-of-

sample evaluation is illustrated by using the loss functions of RMSE and QLIKE and the 

results show that for daily horizon forecasts, HAR performs better while for weekly 

horizon, MFIV adjusted for risk premium (C-MFIV) and HAR are comparable and finally 
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monthly forecasting horizon shows that C-MFIV has the lowest forecasting errors. Separate 

out-of-sample evaluation is conducted for pre-crisis, crisis and after crisis period and the 

results show that while all models deteriorate during the crisis period, HAR and MFIV-C 

are better models compared to the rest in daily and monthly horizon. The authors also find 

that HAR has the greatest explanatory power for daily horizon, while C-MIFV contains 

more information about future realized volatility for monthly horizon.  

3. Theoretical Concepts of Volatility 
	

As volatility cannot be directly observed in the market, but rather needs to be 

estimated from market indicators, and as this is the main focus of this thesis, it is instructive 

to take a deeper dive into the concepts of volatility and its common features.  

3.1 Various Types of Volatility 

3.1.1 Historical Volatility 

There are many ways of calculating volatility in the financial world. Volatility is a 

statistical measure of the variation of the return over time for a given security or equity 

index and is usually expressed as the standard deviation of the log returns. Volatility is used 

as a form of risk measurement and is calculated using the formula below, where 𝜎 is the 

sample standard deviation (volatility), 𝑟! is the return observed and 𝑟 is the mean return.  

    𝜎 = !
!!!

𝑟! − 𝑟 !!
!!!     (1)  
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In this thesis and as it is standard in the financial econometrics literature, the return 𝑟! is 

calculated under the continuous compounding framework as log difference of price P at 

time t and price at the previous period 𝑃!!!, which gives the following formula. 

     𝑟! = ln ( !!
!!!!

)     (2) 

3.1.2 Realized Volatility 
 

When evaluating the forecasting accuracy of various potential predictors it is crucial 

to select a good proxy for the true ex post volatility. One option is to use historical 

volatility, which typically uses daily closing price, but a lot of intraday information could 

be lost using historical closing prices (Andersen & Belzoni, 2008). Other options are to use 

squared returns or squared residuals from an ARMA model fitted to 𝑟! but it is well known 

that these are very noisy estimators for daily variance (Andersen and Bollerslev, 1998). A 

frequently used proxy is the realized variance, which is calculated as the sum of the squared 

intraday returns sampled at equal time intervals. (Andersen & Bollerslev, 1998) However, 

sometimes, intraday price levels could be costly and hard to obtain. As a more viable 

alternative, we use the range estimator based on daily price information of Parkinson 

(1980) who concluded that a log function of daily high and low price range is also an 

unbiased estimator of daily volatility and it is said to be 5 times more efficient than 

computing daily volatility using the daily closing price (Shu & Zhang, 2006). For these 

reasons, we use Range-based Estimator as a Proxy for Realized Volatility, which are briefly 

discussed next.   

3.1.3 Range-based Estimator as a Proxy for Actual Volatility 
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As high-frequency intraday prices may not be readily available, one of the 

advantages of using price range estimator is that for many assets, daily high, low, opening 

and close prices are easy to retrieve. We use Parkinson’s equation (1980) with daily highest 

and lowest price, which serves as a proxy for the true volatility in this study and it is 

calculated as follows: 

    𝜎!! =  !
! !" !

∗ 𝐻! − 𝐿! !    (3) 

where 𝐻! and 𝐿! are the highest and lowest price of the t-th trading day, respectively. 

3.1.4 Option Implied Volatility as a Proxy for Actual Volatility   
	

Option implied volatility is generally defined as the expected market participant’s 

assessment of future volatility of the underlying asset during the life of that option. It is 

viewed as a forward looking measure of the volatility, due to the fact that it is based on the 

prices of the actively traded option observed in the market over the remaining life of that 

option.  

3.1.4.1 Black-Scholes’ Implied Volatility  
	
 The most well-known implied volatility measure is based on the option-pricing 

model developed by Black and Scholes (1973). Under Black-Scholes framework, the 

behavior of the stock price, denoted as S, follows the following Geometric Brownian 

motion where 𝜇 is the drift term (percentage expected rate of return), 𝜎 is the diffusion term 

(percentage standard deviation) of the stock, both are assumed to be constant. The variable 

dt is change in small period of time t and dz follows a Wiener process 𝑑𝑧 = 𝜖 𝑑𝑡 with 

𝜖~𝑁(0,1). The left side of the equation (4) below represents the return generated by the 
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stock for a short period of time and it implies the return of stock is normally distributed 

with mean of 𝜇𝑑𝑡 and variance of 𝜎!𝑑𝑡 (Hull, 2014). 

    !"
!
=  𝜇𝑑𝑡 +  𝜎𝑑𝑧     (4) 

Based on Ito lemma process, the log stock price follows a generalized Wiener process with 

the following characteristics: 

    𝑑𝑙𝑛 𝑠 = 𝜇 − !
!
𝜎! 𝑑𝑡 + 𝜎𝑑𝑧   (5) 

Where the drift rate is 𝜇 − 𝜎!/2 and variance rate is 𝜎!. It shows that log stock price has a 

normal distribution and it infers that the stock price is lognormally distributed. (Poon & 

Granger, 2003)  

Using the Ito lemma process along with no-arbitrage argument that return of the stock must 

be at the risk-free rate lead to the Black-Scholes (1973) differential equation for pricing 

derivatives. The inputs for equation to price a call, C and put, P option are r: Risk free rates; 

T: time to mature; S: Stock price; K: strike price and 𝜎: Volatility. 

    𝐶 = 𝑠!𝑁 𝑑! −  𝐾𝑒!!"𝑁 𝑑!    (6) 

    𝑃 = 𝐾𝑒!!"𝑁 −𝑑! − 𝑆!𝑁 −𝑑!    (7) 

Where 𝑁(𝑑!) is the function of the cumulative probability distribution function under the 

assumption of standard normal distribution. 

    𝑑! =
!" !!

! ! !!!
!

! !

! !
     (8) 

    𝑑! = 𝑑! − 𝜎 𝑇     (9) 

Black-Scholes implied volatility could be extracted through backward induction method 

given the price of call or put options can be observed in the marketplace. However, such 
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calculations involve a number of assumptions. The key assumptions are: stock price 

follows a geometric Brownian motion with constant mean and volatility, short selling is 

unrestricted, absence of transaction costs and taxes, absence of arbitrage opportunities and 

risk-free rate is constant.  

3.1.4.2 Model-Free Implied Volatility (MFIV) 
	
 As Black-Scholes option pricing model applies many assumptions in deriving the 

fair asset price, implied volatility inevitably suffers from model restrictions and 

assumptions as well. Two of the noticeable shortcomings of the model are the assumption 

of constant volatility and symmetric Gaussian distribution of the return of the underlying 

assets assumptions. Volatility smile is one of the problems that arise from the constant 

volatility assumption. Implied volatilities calculated from options on the same underlying 

asset with the same maturity with different exercise prices should be the same under the 

constant volatility assumption. However, in practice, implied volatilities usually are higher 

for In-the-money and Out-of-money options compared to the At-the-money options (Hull, 

2014). Model-free implied volatility (MFIV) improves on Black-Scholes model by 

addressing the two potential shortcomings. Model-free implied volatility methodology was 

adopted by the Chicago Board Option Exchange in 2003 for its VIX (CBOE Volatility 

index) derived based on the S&P 500 option market prices by averaging call and put option 

prices from a wide range of strike prices. It is constructed to provide market’s expectation 

for implied volatility of S & P 500 index over the next 30 calendar (~22 trading) days and 

is expressed in annualized percentage format (Chicago Board of Options Exchange, 2003). 



	
	

	 16	

Many global exchanges soon based their volatility index computation on the model-free 

VIX methodology such as Deutsche Borse , Euronext, Swiss exchange etc.  

The new VIX model – free implied volatility calculation is based on the concept of 

over-the-counter variance swaps (Demeterfi et al., 1999a), which are forward contract with 

no initial cash required.  In a variance swap, both parties enter into a contract to swap the 

realized variance rate between the start of contract to the expiration for a pre-determined 

variance rate of the underlying asset. According to Hull (2014), computationally, valuing 

variance swap is easier than volatility swap due to the ease of replicating the variance rate 

between the start of the contract and expiration with a portfolio of call and put options. The 

payoff of the swap can be replicated by the payoff strategy of static options portfolio along 

with delta hedging the underlying asset. This implies that the fair value of the promised 

claim to pay for the future variation of index return is given by the market of the replicating 

options portfolio (Neuberger, 1996;Dupire B. 1994, 2004). Since this reasoning does not 

depend on any model such as Black-Scholes (1973), it is called model-free implied 

variance and its square roots are called Model-free implied volatility. 

The new VIX index introduced in 2003 closely approximates one-month swap rate 

and is annualized in percentage term. It is calculated based on the quoted prices of a wide 

variety of Out-of-money European calls and puts written on the underlying S&P 500 equity 

index (CBOE, 2003). 

  𝑉𝐼𝑋 = 100 ∗ !
!

∆!!
!!
! 𝑒!"𝑄 𝐾! − !

!
{ !
!!
− 1}!  (10) 

T: Time to maturity measured in minutes. 

𝑇 = (𝑀!"#$% +𝑀!"##$"%"&!!"#$ +𝑀!"#$%&%&!!"#$)/Minutes in a year 
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𝑀!"#$% = Minutes remaining till midnight today 

𝑀!"##$"%"&!!"#$ = Minutes from midnight till settlement day 

𝑀!"#$%&%&!!"#$ = Total minutes from today to settlement day 

F: Forward option level from the option prices 

𝐹 = 𝑆𝑡𝑟𝑖𝑘 + 𝑒!"× 𝐶𝑎𝑙𝑙 𝑝𝑟𝑖𝑐𝑒 − 𝑝𝑢𝑡 𝑝𝑟𝑖𝑐𝑒  

𝐾! : First strike price below the Forward option level 

𝐾!: Out-of-money option strike price – For calls, 𝐾!>F and for puts, 𝐾! < 𝐹 

∆𝐾!: Difference between strike prices. Half the difference of strike price above and below 

𝐾! 

∆𝐾! =
𝐾!!! − 𝐾!!!

2  

R: risk-free interest rate to maturity of the contract 

𝑄(𝐾!) : The midpoint of bid-ask spread for each option with exercise price 𝐾! 

 
 In this thesis we use volatility indices computed based on the Model-free variance 

swap concept called Model-free implied volatility as a proxy for actual volatility. 

3.2	Characteristics	of	Volatility	
	
 In order to effectively model future volatility, it is crucial to take some of the 

empirically documented features of volatility into consideration. These common well-

known features are: 

• Volatility Clustering – Period with high volatility tends to continue with rather 

high volatility while period with low volatility tends to stay the same. This implies 

volatility is not constant and it is time varying. All GARCH models capture this 
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stylized fact and it is one of the main distinctions of GARCH models from simple 

ARMA models. Therefore in this paper, we focus mainly on GARCH variations of 

time series forecasts. 

• Persistence of Volatility/Long Memory Effect - Autocorrelation coefficients of 

the variance decays very slowly and persists even after up plenty lags. Poon and 

Granger (2005) in an example, illustrate for S&P 500 volatility of series return 

during period 1983 – 2003, the autocorrelation coefficient remain significant and 

positive after 1,000 lags. This suggests that price shocks tend to have a long lasting 

effect on volatility. The partial autocorrelation of variance tends to be long in extent 

as well though not nearly as long as the autocorrelation lags. All GARCH models 

seem to have the capabilities to model this phenomenon while some might perform 

better than others.  

• Mean Reversion of Volatility - It is believed that after some period of time, 

volatility will move back to its average level historically observed.  

• Asymmetric Response to Price Shocks/Leverage Effect - Volatility tends to 

respond stronger to a negative shock than a positive shock of same magnitude. This 

phenomenon is also referred to as the leverage effect. As the price of stock drops, it 

would increase the debt-to-equity ratio of the company leading to higher leverage of 

the firm and as a result it would increase the risk of firm’s equity, which is reflected 

by increasing volatility observed in the stock market. In this paper, we include 

asymmetric GARCH models such as EGARCH; TGARCH and APARCH to 

capture this stylized fact of volatility. 
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• Leptokurtic tail and Negatively Skewed of its Return Distribution – Return 

series distribution is said to have higher positive Kurtosis (>3) value meaning heavy 

tailed with high peak around the mean and a longer left tail compared to its right 

tail.  

• Weak/Low Autocorrelation in Return Series – According to the Market 

efficiency theory, stock prices should already contain past information, therefore 

models such as ARMA using its past lags rarely add any value to the predictability 

of the forecasts. Therefore in this thesis, we assume the mean return to be 0.  

4. Data and Methodology 
	

4.1 Data Collection and Forecasting Method Description 
	
 There are two types of data involved in carrying out this forecasting study. First, 

daily price range (High, Low, Opening and Close) of 10 major equity indices were 

collected for the sample period spans from 1/1/2005 to 12/31/2016 using Bloomberg, which 

roughly equals to 3000 observations with some indices have slightly less observations. 

Actual daily volatility is estimated using the range-based estimator of Parkinson’s equation 

(3). 

Subsequently, the model-free implied volatility levels from 10 indices described in 

sections 3.1.3.2 were also retrieved based on the same time span from Bloomberg. This 

ensures consistency of the data from which the estimator for daily actual volatility is based. 

Model-free implied volatility is based on the prices of the liquid traded options and it 

represents the expected market future volatility of underlying equity index over the next 30 
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(22 trading) days and annualized in percentage terms. In order to forecast the volatility at 

different horizon, rescaling needs to be applied so that it can predict n-day volatility. To 

rescale the implied volatility, the following formula is used: 𝑀𝐹𝐼𝑉!!!|! = ( !
!"#

𝐼𝑉!)/100 

where 𝐼𝑉! represents daily closing price of volatility index and 𝑀𝐹𝐼𝑉!!!|! is the n day 

horizon option model-free implied volatility forecast. As index price is expressed in 

percentage terms, we divide it by 100 to convert to decimal format. Table I illustrates the 

10 equity indices used in this study, its implied volatility indices, country of origin and 

exchanges traded in.  

Table	I:	List	of	equity	indices	along	with	its	volatility	indices 

Equity Index Volatility 
Index 

Region/Country Stock Exchanges 
 

SPX (S&P 500) VIX US New York Stock Exchange 
NKY (Nikkei 225) VXJ Japan Tokyo Stock Exchange 
UKX (FTSE 100) VFTSE UK London Stock Exchange 
DAX V1X Germany Frankfurt Stock Exchange 
SMI V3VI Switzerland SIX Swiss Stock Exchange 
HSI (Hang Seng) VHSI China Hong Kong Stock Exchange 
NDX (NASDAQ) VXN US New York Stock Exchange 
SX5E (EURO STOXX 50) V2V Europe Multiple Exchanges Europe 
KOSPI VKOSPI Korea Korea Stock Exchange 
CAC VCAC France Euronext Paris 

 

The entire sample from each index is divided into in-sample estimation period and 

out-of-sample forecast period. The unknown parameters of the chosen forecasting models 

are estimated using the fixed rolling window method of 1,000 in-sample observations at a 

time and are subsequently rolled one step forward while excluding the oldest observation to 

make new estimation. This procedure is repeated until it goes through the entire sample. 

For example, the first forecasted value that corresponds to sample sequence 1,001 is 

estimated through in-sample observation from 1 – 1,000, and subsequently, the second 
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forecasted value that corresponds to sample sequence 1,002 is estimated by rolling the fixed 

window of 1,000 observations one step ahead, which now includes in-sample observations 

2 – 1,001 excluding the first observation and including the 1,001 observation. This 

procedure is repeated until we reached the last forecasted value for the entire sample. 

Hence instead of identifying the time series model for each index with Box-Jenkins 

methodology, this thesis takes on a different approach for model selection. A variety of the 

most popular GARCH models are selected with various innovation distributions, a fixed 

window approach is applied and the goal is to see which GARCH model forecasts the 1-

step ahead volatility best in the period under analysis. 

4.2 Volatility Forecasting Models 
	
 This section goes in detail to describe the forecasting models used to estimate and 

predict true volatility using both Parkinson (1980) Price range estimator and MFIV as 

proxies.  

4.2.1 GARCH 
	
 As briefly mentioned, Engle (1982) developed ARCH to capture the clustering 

effect of volatility and its nonlinear nature. ARCH model consists of conditional mean and 

conditional variance equation. In the mean equation, 𝜇! represents its conditional mean 

return at time t and a shock/residual term, 𝜀!. In this thesis, the main focus is to model its 

conditional variance not its mean return and we assumed that 𝜇!=0. It is not unreasonable to 

assume the mean return is zero; in fact, many of the considered log-return series have minor 

or almost no autocorrelation. Here 𝑧! is a series of independent and identically distributed 
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random variable takes the mean of 0 and variance of 1 with restriction that 𝛼!> 0, 𝛼! ≥ 0 

for 𝑖 = 1,… ,𝑚. 

   𝑅! =  𝜇! + 𝜀! , 𝜀! = 𝜎!𝑧! , 𝑧!~i.i.d (0,1)   (11) 

                                              𝜎!! = 𝛼! + 𝛼!𝜀!!!! +⋯+ 𝛼!𝜀!!!!    (12) 

In the variance equation, the ARCH effects come from its dependence on the squared 

lagged errors or shocks. It is the shock term that mainly explains the volatility of the asset 

return and it’s clear to see that larger past squared shocks infer that the 𝜎!! tend to be large 

as well (Tsay, 2010). Moreover, variance of the disturbance term is not constant but rather 

time varying, which is why ARCH is a good model to explain the heteroscedastic and 

clustering features of volatility. However, to fully capture the dynamics of the volatility, it 

might need many of its lagged squared residuals in the conditional variance equation and 

thus requiring many parameters to estimate.  

The GARCH model developed by Bollerslev (1986) and Taylor (1986) overcomes 

this limitation and is said to be more parsimonious than ARCH model; it requires fewer 

parameters to capture the complete volatility dynamics. The mean equation is the same as 

equation (11) and for consistency it is assumed conditional mean return to be zero as well 

for this thesis. In the conditional variance equation, the current period variance not only 

depends on its previous lagged squared residuals but also its own previous conditional 

variance lags. By incorporating its own lagged value into variance calculation it is believed 

to capture the volatility persistence characteristics better than ARCH type models. The 

GARCH model is described by the following equation:  

                                          𝜎!! = 𝛼! + 𝛼!𝜀!!!! + 𝛽!𝜎!!!!      (13) 
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Where 𝛼! and 𝛽! are the ARCH and GARCH parameters respectively and m, and n 

represent number of lags of the squared error and its previous conditional variance 

respectively. The restriction applied here 𝛼! > 0, 𝛼! ≥ 0, 𝛽! ≥ 0, 𝛼! + 𝛽! < 1!"#(!,!)
!!! . 

The constraint on parameters 𝛼!  𝑎𝑛𝑑 𝛽! infers that unconditional and conditional variance 

of squared residual is positive finite (Tsay, 2010).  

4.2.2 RiskMetrics methodology 
	
 J. P. Morgan introduced RiskMetrics ™ methodology to calculate Value-at-risk, 

another risk measure. RiskMetrics assumes that the continuous daily return follows a 

Normal distribution and it can be shown to be a restricted GARCH (1,1) process without 

drift term and 𝛼 typically around 0.94 (Tsay, 2010). In this thesis we did not fixed the alpha 

term and expressed the RiskMetrics in the following way: 

   𝜇! = 0, 𝜎!! = 𝛼𝜎!!!! + 1− 𝛼 𝑟!!!! ,    1 > 𝛼 > 0   (14) 

4.2.3 GJR-GARCH/TGARCH 
	
 In GARCH and IGARCH model, positive price shocks and negative price shocks 

are weighted equally in calculating the conditional variance; however, this does not capture 

the asymmetric effects of volatility response to shocks. The GJR-GARCH, also known as 

Threshold GARCH, proposed by Glosten, Jagannathan and Runke (1993) overcomes this 

shortcoming by introducing a dummy type variable that takes 0 or 1 value when dealing 

with non-negative or negative shocks, respectively. The restrictions that 𝛼! , 𝛾! , and 𝛽! are 

non-negative parameters still apply. Mean equation is same as equation (11) mentioned 

above and conditional variance equation is: 
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                                       𝜎!! = 𝛼! + 𝛼!𝜀!!!! + 𝛾!𝐷!!!𝜀!!!! + 𝛽!𝜎!!!!   (15) 

Where 𝐷!!! is an indicator for the negative shocks due to that 𝐷!!! =
1, 𝜀!!! < 0
0, 𝜀!!! ≥ 0  

It is easy to see that a positive shock leads to 𝛼!𝜀!!!!  in the squared residual term, whereas a 

negative shock leads to a greater impact on the squared residual term with (𝛼! + 𝛾!)𝜀!!!! . 

Hence we include this model to capture volatility asymmetry.  

4.2.4 Exponential GARCH 
	
 Exponential GARCH developed by Nelson (1991) also captures the asymmetric 

response of volatility to positive and negative price shocks. The conditional variance of the 

model would always be positive even if the coefficients might be negative.  

                             ln 𝜎!! = 𝛼! +
!! !!!! !!!!!!!

!!!!
+ 𝛽!ln (𝜎!!!! )   (16) 

The parameter 𝛾! is an indicator that captures the asymmetric effect of the price shocks. 

When the price shock is positive, the residual term of the log conditional variance becomes 

𝛼!(1+ 𝛾!) 𝑧!!! , whereas when the shock is negative, it changes to 𝛼!(1− 𝛾!) 𝑧!!!  and 𝛾! 

is a negative coefficient. This is another popular asymmetric model, which we will use in 

modeling the realized volatilities.  

4.2.5 APARCH 
	
 Asymmetric Power ARCH (APARCH) can also be referred to as APGARCH 

introduced by Ding, Granger and Engle (1993) to capture the asymmetric effects. In 

addition, it nests other variations of GARCH models. Its free roaming parameters 𝛿 is able 

to flexibly capture the characteristics of volatility compared to other GARCH 

specifications.  
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   𝜎!! = 𝛼! + 𝛼!( 𝜀!!! − 𝛾!𝜀!!!)! + 𝛽!𝜎!!!!     (17) 

The power parameter 𝛿 can either be estimated or imposed, while 𝛾 can capture the 

leverage effect. In this thesis we don’t restrict the power parameter and let Eviews estimate 

this parameter based on the maximum likelihood method. APARCH equation can reduce to 

the standard GARCH model when restricting the parameters 𝛿 = 2, 𝛾 = 0, or becomes 

GJR-GARCH when 𝛿 = 2, 0 ≤ 𝛾 ≤ 1 (Hentschel, 1995).  

4.3 Statistical Distributions 
	
 Since GARCH type models are not linear in nature, ordinary least square would not 

be appropriate when estimating non-linear models; instead. Maximum likelihood (ML) 

method is used instead to estimate the parameters of GARCH type models. In order to use 

ML method, a likelihood function needs to be stated, which is a joint probability density 

function and by maximizing the function with respect to the parameters, it finds the most 

likely values of the parameters in question given the data set. Before using the ML method 

to estimate parameters, a distributional assumption of the error term needs to be specified. 

In the work of this thesis, Normal, Student-t and Generalized Error distribution are used in 

estimate the parameters for the various GARCH models. Recall in equation (12), 𝑧!, the 

error term is assumed to be i.i.d with constant mean and variance; the three distribution 

assumptions aforementioned apply to that innovation term.  

4.3.1 Normal/Gaussian Distribution 
	
 Under the Normal/Gaussian distribution, the density function is defined as: 

     𝑓 𝑧 = !
!!!

𝑒!
(!!!)!

!!!     (18) 
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Normal distribution is the most common assumption and it is often criticized for its 

inability to capture the heavily kurtosis characteristics exhibits in the financial time series. 

4.3.2 Student-t Distribution 
	
 Student-t innovation is described by the following probability density function:    

    𝑓 𝑧 =
! !!!

!

!"! !
!
(1+ !!

!
)!(

!!!
! )   (19) 

Where v represents the number of degrees of freedom and Γ denotes the gamma function 

with the following feature Γ 𝑥 = 𝑦!!!𝑒!!𝑑𝑦!
! . Student-t distribution converges to 

normal distribution as the numbers of degree of freedom increase.  

4.3.3 Generalized Error Distribution 
	
 GED distribution is less restrictive than the normal distribution assumption and it 

can take many forms depending on its degrees of freedom.   

    𝑓 𝑧 =  !!
!!!

!!!
!

!

!! !!!! !(!!)
     (20) 

Where Γ (.) is a gamma function and 𝜆 = 2 !!! Γ(!
!
)/Γ(!

!
)

!
!
. The distribution can be 

reduced to Gaussian by restricting 𝑣 = 2 and it has heavy kurtosis when 𝑣 < 2. 

4.4 Forecasting Evaluation 
	
 In order to make inference about which forecasting model performs best in 

predicting the future actual volatility using range-based estimator and model-free implied 

volatility as proxies, standard evaluation criteria will be introduced. These evaluation 

criteria will determine the forecasting accuracy of the 1-day ahead out-of-sample forecast 
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against the observed value (range-based estimator and MFIV) by measuring the distance of 

the observed from the forecasted. 

4.4.1 Root Mean Square Error 
	
 Root Mean Square Error (RMSE) is used to measure the deviation of the forecasted 

value from the observed value. The lower the RMSE, it means the smaller the deviation, 

which implies the better forecasting accuracy.   

   𝑅𝑀𝑆𝐸 = !
!

(𝜎!!! − 𝜎!!!|!)!!
!!!     (21) 

Where n is the total number of out-of-sample volatility forecasts, 𝜎!!! is the actual 

volatility at time t+1 and 𝜎!!!|! is the forecasted volatility for day t+1 with origin at time t. 

Recall that we used both range-based estimator and model-free implied volatility as proxies 

for the unobserved actual volatility (𝜎!!!). 

4.4.2 Mean Absolute Error 
	
 Mean Absolute Error (MAE) is another loss function used to evaluate the 

forecasting accuracy of the predicted model by measuring the average of the absolute 

deviation of the predicted value from the realized value. It is said to be less sensitive to 

outliers compared to the RMSE (Hyndman & Koehler, 2006). 

    𝑀𝐴𝐸 = !
!

𝜎!!! − 𝜎!!!|!!
!!!    (22) 

4.4.3 Mean Absolute Percentage Error 
	
 Mean Absolute Percentage Error is another quality measure of the deviation of the 

forecasted value from the observed value expressed in percentage term. 
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    𝑀𝐴𝑃𝐸 = !""
!

!!!!!!!!!|!
!!!!|!

!
!!!    (23) 

4.4.4 Theil Inequality Coefficient 
	
 Another measure of the forecasting error is called Theil Inequity Coefficient 

developed by Henri Theil is known commonly as the Theil-U1 statistics.    

    𝑈! =
!
! (!!!!!!!!!|!)!!

!!!

!
! !!!!!!

!!! ! !
! !!!!|!

!!
!!!

   (24) 

Intuitively, the numerator is the RMSE and the denominator is the sum of individual 

forecasted and realized spreads which acts as standardization of RMSE. 0 ≤ 𝑈! ≤ 1, where 

𝑈!=0 means the best forecast without any forecasting errors.  

4.4.5 Information Content Univariate Regression  
	
 To further assess the forecasting performance of the chosen time series models, the 

“best” forecasting models from each category (Range-based and MFIV) are selected based 

on the loss functions and are used in estimating the Mincer-Zarnowitz regression using 

OLS for one-day ahead forecasts. This approach was recommended by numerous literatures 

for assessing the information content of chosen model and at the same time for testing the 

bias of the forecasts. (Poon & Granger, 2003; Prokopczuk & Simen, 2014; Siriopoulos & 

Fassas, 2009; Shaikh &Padhi, 2014) 

    𝑉𝑜𝑙!!!|! = 𝛼 + 𝛽 𝐹!!!|! + 𝑒!		 	 	 (25)	

Where	𝑉𝑜𝑙!!!|! denotes the range-based estimator or option implied volatility over k day 

horizon, while 𝐹!!!|! represents k-day ahead forecast from the winning forecasting model, 

𝛼 is the constant term and 𝜀!is the error term. If the chose model indeed contains some 
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information about the future range-based estimator or implied volatility, then its coefficient 

𝛽 should be different from zero, statistically significant and 𝑅!, adjusted R-square should 

also be substantial.  Using the same equation can also test the biasness of the time series 

model; the forecasting model is said to be unbiased estimator of the future volatility if 

𝛼 = 0 and 𝛽 = 1 jointly. Finally, to account for the heteroscedastic nature of volatility and 

serial correlation problem, Newey and West (1987) procedure is used in the OLS regression 

by correcting its standard error. (Kourtis et al., 2016) 

5. Empirical Results 

5.1 Descriptive Statistics 
	
The asymmetric and negative relationship between the changes in implied volatility index 

and its underlying equity index for many stock markets is a well-documented fact in the 

literature (Giot, 2005; Fleming et al., 1995). Usually negative price movement follows by a 

larger increase in the volatility than the positive price movement of the same magnitude. To 

visualize this relationship graphically, daily closing prices of equity index for the full 

sample period is plotted along with its volatility index levels for the 10 equity indices in 

Appendix, Figure 1. As the graphs clearly show, there seems to be a negative correlation 

between the equity index levels and its model-free implied volatility levels and for many of 

the indices there also seems to be asymmetric relationship between the two.  

 Table III illustrates the descriptive statistics of the daily range-based series using the 

Parkinson (1980) price range estimator and its daily scaled model-free implied volatility 

series of the sample period 1/3/2005 – 12/30/2016 for the 10 stock indices. Across all 

indices, the range-based time series and its implied volatility series exhibit positive 
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skewness and large excess kurtosis. As a result, Jarque-Bera test of the normality is rejected 

for all instances even at 1% significance level. 

5.2 Out-of-Sample Forecast Evaluation 
	
 Using the 4 loss functions (RMSE, MAE, MAPE and Theil’s U Statistic) 

aforementioned, the forecasting accuracy of the various GARCH (1, 1) type models with 

Normal, Student-t and GED innovations are scrutinized against range-based estimator and 

implied volatility as proxies of ex-post volatility and the findings are summarized in the 

table below. More detailed outputs of EViews test results are included in the appendix, 

Table IV and V where model with the lowest forecasting errors for each loss function is 

highlighted in grey. The model with best 1-day ahead out-of-sample forecasting 

performance is assessed with the values of RMSE, MAE, MAPE and Theil’s U Statistics.  

Table	II:	Forecasting	Performance	Summary	

Equity Index “Best” Models (Range Volatility) “Best” Models (Implied Volatility) 

SPX EGARCH (Normal) GARCH (Student-t) 
UKX APARCH (Normal) GARCH (Normal), IGARCH (Normal) – RM 
DAX APARCH (Normal) GARCH (Student-t) 
HSI IGARCH (Normal) – RM, IGARCH (GED) GARCH (Student-t), APARCH (Student-t) 
KOSPI IGARCH (Normal) – RM GARCH (Student-t) 
NDX APARCH (Normal) GARCH (Student-t) 
NKY APARCH (Student-t) GARCH (Student-t) 
SMI APARCH (Student-t) GARCH (GED) 
SX5E APARCH (Normal) GARCH (Student-t) 
CAC APARCH (Normal) GARCH (Student-t) 

As the 4 loss functions were designed differently in measuring the deviation from 

the observed value, it is not common to one model that uniformly beats the others across all 

criteria. For instance, RMSE is said to be scale-dependent measure and is more sensitive to 

the large deviation than the sum of smaller deviations even if the total deviations are the 
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same, while MAE is also scale-dependent, but it is considered to be less sensitive to larger 

deviation in comparison to RMSE. The method of selecting the best model(s) of each time 

series is based on at least two or more loss functions.  

Based on table II, in forecasting range estimator the results are rather mixed; 

generally, asymmetric GARCH type model (1,1) such as APARCH (1,1) seem to 

adequately capture the dynamic of the future volatilities across 7 of 10 indices. This 

coincides with Poon and Granger’s (2003) conclusion that models account for volatility 

asymmetry generally performs well. Within these indices, when taking into consideration 

of distribution variations, normal distribution can explain 5 of 7 indices while Student-t 

innovation explains the other two indices namely NKY (Japan) and SMI (Switzerland). 

This result is in line with another research conducted by Brownless et al. (2011), where the 

authors found Student-t innovation generally did not yield any improvement in the 

performance of the models across a wide variety of asset classes.  It seems that NKY and 

SMI are the exceptions, which suggests that realized volatility obtained using range-based 

estimator exhibits heavier tails compared to the other indices chosen. RiskMetrics 

methodology using IGARCH (1,1) normal distribution as a proxy gains competitive edge in 

forecasting realized volatility of HSI (Hong Kong) and VOSPI (Korea) indices. On the 

other hand, when forecasting realized volatilities using model-free implied volatilities 

across 10 indices, simple symmetric GARCH (1,1) seems to perform well overall.  This 

result suggests that market participants seem to weight positive and negative price 

movements symmetrically in their perceived future risk. When drilling down to the 

different distribution assumptions, Student-t innovation performs relatively well for 8 of 10 

indices, normal and GED are suitable for UKX (U.K) and SMI (Switzerland) respectively.  
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5.3 Information Content Regression Result 
	
 The best forecasting model from each category (Range-based estimator and MFIV) 

of each index is then selected in the univariate regression analysis using ordinary least 

square (OLS) method based on equation 25 to see if they also contain some information 

about the future volatility in addition to their forecasting accuracy. To account for 

heteroscedasticity and autocorrelations of residuals of the regression, Newey West 

correction of standard error procedure is used in EViews with automatic selection of lag 

length option.  

 Before running the univariate regression, Augmented Dickey-Fuller Unit Root test 

is done on all the time series to eliminate the uncertainty of possible spurious regression 

problem with non-stationary time series. All time series presented in the regression are able 

to reject the null hypothesis of a unit root at less than 5% with the exceptions of implied 

volatility time series of HSI and RiskMetrics model for HSI, where the rejections of unit 

root are at 8.5% and 7.2% respectively. 

In Appendix, Table VI and VII illustrate the results of the univariate regression 

analysis on range-based estimator and model-free implied volatility respectively. Both 

constant coefficient (𝛼) and slope coefficient (𝛽) with its corresponding T-statistics in 

parentheses of each model are reported along with 𝑅!. It is evident that all slope coefficient 

estimates are different from 0 and statistically significant at less than 1%, which provides 

evidence that all forecasts bear some information about the future volatility.  

Finally, using the same regression can also test the unbiasness of the time series 

forecasts through the joint hypothesis 𝛼=0 and 𝛽=1 using Wald F-statistic in EViews. The 
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results show that at every instance, the null hypothesis can be rejected at less than 1%. This 

provides statistical evidence that all volatility forecasts presented in this study are 

somewhat biased, which is in line with the conclusion from Jiang and Tian (2005) and 

Andersen et al. (2007b) that most volatility forecasts seem to be somewhat biased.  

6 Conclusions and Future Research 
	
	 The main purpose of this thesis is to investigate the forecasting performance of 

various GARCH models with different innovation assumptions (Normal, Student-t and 

GED) against the range-based estimator and implied volatility as proxies for realized 

volatilities in a more global context by using 10 frequently traded equity indices and its 

volatility indices. In this study, Parkinson (1980) range-based estimator is used to represent 

the ex-post “realized” volatility due its unbiasness and it is believed to be 5 times more 

efficient as the squared return measure according to Garman and Klass (1980). On the other 

hand, model-free implied volatility index from each exchange is used to represent market’s 

expected future volatility, which is another proxy for ex-post volatility. As many prior 

researches state that implied volatility contains important information about future ex-post 

volatility and it is the markets best guess of what will happen in the near future. Model-free 

implied volatility does not depend on any econometrics model and it does not subject its 

calculation to any distribution assumption of the stock prices and returns unlike the popular 

Black-Scholes equation. In order to assess the forecasting error of each model overtime, 

fixed rolling window method is employed with 1,000 observations for each in-sample 

estimation covering over 10 years of data (1/3/2005 – 12/30/2016) and the accuracy of each 
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forecast is evaluated with the four loss functions (RMSE, MAE, MAPE and Theil’s U 

statistic).  

 Although the results are not clear-cut, there are some patterns observed. Depending 

on the index, in forecasting the ex-post volatility, overall asymmetric model such as 

APARCH (1,1) with Normal innovations is the one with best performance with the 

exceptions of NKY (Japan) and SMI (Switzerland) where Student-t innovation performs 

better. RiskMetrics methodology excels in forecasting ex-post volatility of HSI (China) and 

KOSPI (Korea) index. As volatility has many characteristics, some characteristics might be 

more pronounced in one index over the others. For instance, it seems that heavy kurtosis 

such as Student-t can describe NKY and SMI relatively well, which implies that realized 

volatility from these two indices might be more heavy-tailed comparing to others. The 

results from forecasting implied volatility are more consistent in terms of the type of 

GARCH model that can capture the market’s expected volatility across 10 indices; a simple 

GARCH (1,1) with Student-t innovation seems to perform relatively well with exceptions 

of UKX (U.K) and SMI (Switzerland) where Normal and GED seem to perform better. 

This result from forecasting implied volatility seems to imply that market participants seem 

to weight positive and negative price shocks equally in their perceived future expected risk.  

Finally, through univariate regression analysis, it shows that all the winner models bear 

some information about future volatility (range-based estimator and MFIV). The regression 

analysis also suggests that all the forecasts are somewhat biased, which is in line with many 

other prior researches that suggest many volatility forecasts are biased. Fleming (1995) 

concludes that while unbiasness is a good property, it is not the most crucial property if the 

degree of biasness can be pinpointed and corrected.  
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 Although this thesis provides a good overview of the forecasting ability of various 

GARCH (1,1) models across 10 global equity indices, it can be extended to include higher 

order GARCH (m, n) models and long memory time series models proposed in the recent 

literature such as the Fractional Integrated GARCH (FIGARCH) and Heterogeneous 

Autoregressive Model (HAR) to forecast future volatility. In a study conducted by Martens 

and Zein (2004), the authors conclude that long memory models such as the Fractional 

Integrated GARCH model dramatically change the result of the contest between time series 

model and implied volatilities. Kourtis et al. (2016) report the success of using 

Heterogeneous Autoregressive model (HAR) in one-day ahead forecasts for realized 

volatilities compared to GJR-GARCH model. In addition of incorporating more variety of 

the time series models to forecast the future volatility, the sample period in question could 

also be divided into different sub-periods, for example, to analyze how the various model 

perform during period of high distress such as late 2008 – 2009.  
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Appendices 
	
Figure 1:Graph of equity index level along with its volatility index level (1/3/2005 - 12/30/2016) 
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	 	 NKY_VNKY	 	 	 	 	 SMI_V3VI	
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	 	 SX5E_V2X		 	 	 	 	 CAC_VCAC	

									 	
	
	
	
Table III: Descriptive Statistics of range estimator and implied volatility 

	
	 	 SPX_VIX	 	 	 	 	 	 UKX_VFTSE	

		 	 	 	
	
	
  DAX_V1X      HSI_VHSI   

   
 
 
 
 

PK_VOL VIX1
 Mean  0.007747  0.012225
 Median  0.005999  0.010381
 Maximum  0.065486  0.050937
 Minimum  0.001207  0.006230
 Std. Dev.  0.006363  0.005907
 Skewness  3.600757  2.480602
 Kurtosis  23.17167  11.13996

 Jarque-Bera  57746.16  11438.57
 Probability  0.000000  0.000000

PK_VOL VFTSE1
 Mean  0.008515  0.012122
 Median  0.006875  0.010564
 Maximum  0.064581  0.049768
 Minimum  0.001400  0.005755
 Std. Dev.  0.006027  0.005426
 Skewness  3.025790  2.331841
 Kurtosis  18.36100  11.17321

 Jarque-Bera  34436.20  11186.97
 Probability  0.000000  0.000000

PK_VOL V1X1
 Mean  0.009511  0.014239
 Median  0.007962  0.012848
 Maximum  0.066910  0.052639
 Minimum  0.000864  0.007368
 Std. Dev.  0.006440  0.005515
 Skewness  2.677921  2.328785
 Kurtosis  15.11698  11.02875

 Jarque-Bera  22318.55  10955.88
 Probability  0.000000  0.000000

PK_VOL VHSI1
 Mean  0.008158  0.014998
 Median  0.006526  0.012478
 Maximum  0.105983  0.065959
 Minimum  0.001589  0.006868
 Std. Dev.  0.005973  0.007104
 Skewness  4.346506  2.070407
 Kurtosis  42.82799  8.436248

 Jarque-Bera  204890.6  5757.614
 Probability  0.000000  0.000000
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  KOSPI_VKOSPI      NDX_VXN 

             
 
  NKY_VNKY      SMI_V3VI 

             
 
 
  SX5E_V2X      CAC_VCAC 

             
 
 
 
 
 
 
 
 
 
 
 

PK_VOL VKOPSI1
 Mean  0.007844  0.013310
 Median  0.006239  0.011770
 Maximum  0.095138  0.056478
 Minimum  0.001462  0.006457
 Std. Dev.  0.005851  0.006098
 Skewness  4.519293  2.599290
 Kurtosis  42.06828  12.66749

 Jarque-Bera  199395.3  14940.21
 Probability  0.000000  0.000000

PK_VOL VXN1
 Mean  0.008727  0.013586
 Median  0.007150  0.011751
 Maximum  0.068524  0.051001
 Minimum  0.001669  0.007185
 Std. Dev.  0.006115  0.005554
 Skewness  3.401815  2.587490
 Kurtosis  22.57394  12.12037

 Jarque-Bera  54054.33  13841.41
 Probability  0.000000  0.000000

PK_VOL VNKY_1
 Mean  0.008067  0.015833
 Median  0.006586  0.014753
 Maximum  0.082658  0.057973
 Minimum  0.001389  0.006967
 Std. Dev.  0.006011  0.006207
 Skewness  4.100579  2.563174
 Kurtosis  32.22934  12.71043

 Jarque-Bera  112974.4  14780.11
 Probability  0.000000  0.000000

PK_VOL V3VI1
 Mean  0.007345  0.011798
 Median  0.005951  0.010398
 Maximum  0.094066  0.054473
 Minimum  0.001293  0.005844
 Std. Dev.  0.005201  0.005043
 Skewness  3.992814  2.778342
 Kurtosis  38.73910  14.22627

 Jarque-Bera  165843.6  19404.02
 Probability  0.000000  0.000000

PK_VOL V2X1
 Mean  0.009784  0.014929
 Median  0.008139  0.013751
 Maximum  0.071425  0.055348
 Minimum  0.000000  0.007336
 Std. Dev.  0.006595  0.005776
 Skewness  2.624952  1.967203
 Kurtosis  14.82794  8.897416

 Jarque-Bera  21323.45  6399.656
 Probability  0.000000  0.000000

PK_VOL VCAC1
 Mean  0.009314  0.014044
 Median  0.007735  0.012924
 Maximum  0.055616  0.049366
 Minimum  0.001409  0.005845
 Std. Dev.  0.006109  0.005320
 Skewness  2.290436  1.960153
 Kurtosis  11.15772  9.115705

 Jarque-Bera  11204.20  6754.642
 Probability  0.000000  0.000000
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Table IV: Forecasting performance of GARCH-type models on range estimator. 

   SPX      UKX 

   
 
   DAX      HSI    
   

 			 	
	
	 	 	 KOSPI	 	 	 	 	 	 NDX	
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   NKY      SMI 

 			 	
	
	 	 	 SX5E 	 	 	 	 	 CAC	
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Table V: Forecasting performance of GARCH-type models on model-free implied volatility. 

   SPX      UKX 

 							 	
	
	
	
	
	
	 	 	 DAX      HSI	

 						 	
	
	 	 	 KOSPI		 	 	 	 	 	 NDX	
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	 	 	 NKY	 	 	 	 	 	 SMI 

  								 	
	
	
	
	
	
	
	
	 	 	 SX5E      CAC	
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Table VI: Univariate regression of Mincer-Zarnowitz to test information content of model on range-based estimator. 

	
 
 

APARCH 
(Normal) 

APARCH 
(Student-t) 

EGARCH 
(Normal) 

IGARCH 
(Normal) - RM 

SPX 
      𝛼 
      𝛽 
      𝑅! 

 
 

 
 
 

 
-0.000 (-0.68) 
0.743 (22.04) 
0.508 

 

UKX 
      𝛼 
      𝛽 
      𝑅! 

 
9.25E-05 (0.242) 
0.805 (20.35) 
0.423 

   

DAX 
      𝛼 
      𝛽 
      𝑅! 

 
-0.000 (-0.27) 
0.771 (18.63) 
0.438 

   

HSI 
      𝛼 
      𝛽 
      𝑅! 

    
0.002 (5.32) 
0.458 (13.80) 
0.261 

KOSPI 
      𝛼 
      𝛽 
      𝑅! 

    
0.001 (3.16) 
0.522 (9.36) 
0.307 

NDX 
      𝛼 
      𝛽 
      𝑅! 

 
0.000 (0.91) 
0.661 (15.34) 
0.393 

   

NKY 
      𝛼 
      𝛽 
      𝑅! 

 
 

 
-5.56E-05 (-0.10) 
0.562 (12.26) 
0.230 

  

SMI 
      𝛼 
      𝛽 
      𝑅! 

  
0.000 (0.47) 
0.690 (8.42) 
0.357 

  

SX5E 
      𝛼 
      𝛽 
      𝑅! 

  
0.000 (0.823) 
0.733 (19.07) 
0.403 

  

CAC 
      𝛼 
      𝛽 
      𝑅! 

 
0.000 (1.13) 
0.693 (17.60) 
0.401 
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Table VII: Univariate regression of Micer-Zarnowitz to test information content of model on implied volatility. 

 
 

GARCH 
(Student-t) 

GARCH 
(Normal) 

GARCH     
(GED) 

SPX 
      𝛼 
      𝛽 
      𝑅! 

 
0.003 (7.57) 
0.855 (19.11) 
0.818 

 
 
 

 
 

UKX 
      𝛼 
      𝛽 
      𝑅! 

 
 

 
0.003 (3.51) 
0.843 (8.06) 
0.529 

 

DAX 
      𝛼 
      𝛽 
      𝑅! 

 
0.003 (5.88) 
0.895 (22.52) 
0.799 

  

HSI 
      𝛼 
      𝛽 
      𝑅! 

 
0.001 (2.05) 
0.980 (16.01) 
0.823 

  

KOSPI 
      𝛼 
      𝛽 
      𝑅! 

 
0.001 (1.58) 
1.028 (12.52) 
0.845 

  

NDX 
      𝛼 
      𝛽 
      𝑅! 

 
0.003 (4.82) 
0.892 (16.60) 
0.787 

  

NKY 
      𝛼 
      𝛽 
      𝑅! 

 
0.005 (4.67) 
0.753 (8.51) 
0.572 

 
 

 

SMI 
      𝛼 
      𝛽 
      𝑅! 

 
 

  
0.009 (10.55) 
0.246 (3.31) 
0.09 

SX5E 
      𝛼 
      𝛽 
      𝑅! 

 
0.006 (6.61) 
0.700 (10.12) 
0.499 

 
 

 

CAC 
      𝛼 
      𝛽 
      𝑅! 

 
0.020 (5.59) 
3.559 (12.81) 
0.659 

  

    
	
	


