
 

 

MESTRADO 

ECONOMETRIA APLICADA E PREVISÃO 
 
 
 

TRABALHO FINAL DE MESTRADO 

DISSERTAÇÃO 
 

 

 

 

PREDICTING AGGREGATE RETURNS USING 

VALUATION RATIOS OUT-OF-SAMPLE  

 

 

ANA CARLA NATAL DA SILVA SEQUEIRA  

 

 
 
 
 

SETEMBRO - 2012 



 

 

 
MESTRADO EM 

ECONOMETRIA APLICADA E PREVISÃO  
 
 
 

TRABALHO FINAL DE MESTRADO 

DISSERTAÇÃO 
 

 

 

PREDICTING AGGREGATE RETURNS USING 

VALUATION RATIOS OUT-OF-SAMPLE  

 

 

ANA CARLA NATAL DA SILVA SEQUEIRA  

 

ORIENTAÇÃO: 

JOÃO VALLE E AZEVEDO, BANCO DE PORTUGAL 

 
 

SETEMBRO - 2012



ANA CARLA SEQUEIRA| PREDICTING AGGREGATE RETURNS USING VALUATION RATIOS OUT-OF-SAMPLE i 
 
 

i 
 

ABSTRACT 

 

It is well established that valuation ratios provide, in-sample, relevant signals regarding 

future returns on assets. This pattern of predictability is pervasive across financial 

markets. In this dissertation we assess the ability of valuation ratios to predict out-of-

sample aggregate returns for the stock and the housing markets in the U.S.. We apply 

linear models and multivariate filters to produce the forecasts and employ powerful 

out-of-sample tests for inference. We find that there is statistical evidence supporting 

the extension of the in-sample results to an out-of-sample framework. The dividend-

price ratio and the rent-price ratio display a significant ability for predicting stock and 

housing returns, respectively. Nevertheless, we note that these findings may be 

sample dependent. Especially for the stock market, the end of the sample, including 

the recent financial crisis, may be responsible for the good results. 
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RESUMO 

 

É amplamente reconhecido que os valuation ratios fornecem, in-sample, indicações 

relevantes sobre os retornos futuros de ativos. Este padrão de previsibilidade é comum 

a uma larga maioria de mercados. Nesta dissertação, avaliamos a capacidade de certos 

valuation ratios para prever, out-of-sample, os retornos agregados para o mercado de 

ações e para o mercado imobiliário, nos E.U.A.. Aplicamos modelos lineares e filtros 

multivariados para gerar as previsões e utilizamos “poderosos” testes out-of-sample 

para fazer inferência estatística. Verificamos que existe evidência estatística que 

suporta a passagem dos resultados in-sample para um contexto out-of-sample. O rácio 

dividendo-preço e o rácio renda-preço apresentam uma capacidade significativa para 

prever os retornos de ações e imóveis, respetivamente. Notamos, contudo, que estes 

resultados podem depender da amostra. Sobretudo para o mercado de ações, o final 

da amostra (que inclui a recente crise financeira) pode ser o responsável pelos bons 

resultados.   
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1. INTRODUCTION 

Predicting returns is one of the most discussed topics in the academic financial world. 

Cochrane (2011) summarizes a pattern of predictability that is pervasive across 

markets. For a wide set of markets (stocks, bonds, houses, credit spreads, foreign 

exchange and sovereign debt), he concludes (in-sample) that a yield or a valuation 

ratio predicts excess returns, instead of cashflow or price change.1 For the stock 

market, Cochrane (2011) argues that the dividend yields predict returns and do not 

predict dividend growth. More than that, low dividend-yield ratios mean low future 

returns and high dividend-yield ratios mean high future returns. For the housing 

market, the argument is similar: high prices, relative to rents, imply low returns, and 

do not signal the permanent increase of rents or prices. 

From an asset pricing perspective, we can explain this phenomenon using the 

fundamental present value relation. That is, the price of a financial asset should equal 

the present value of its future cashflows or, briefly, asset prices should equal expected 

discounted cashflows. In the case of the housing market, this means that the price of a 

house should equal the present value of its future rents (the analogy to the stock 

market is straightforward). This relation then implies that observed fluctuations in 

financial asset prices should reflect variation in future cashflow, in future discount 

rates, or in both.  

                                                           
1
 See, Fama and French (1988, 1989) for stocks; Fama and Bliss (1987), Campbell and Shiller (1991) and 

Piazzesi and Swanson (2008) for Treasuries; Fama (1986) for Bonds; Hansen and Hodrick (1980) and 
Fama (1984) for foreign exchange; Gourinchas and Rey (2007) for foreign debt. 
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In this paper, we intend to verify whether this pervasive phenomenon holds out-of-

sample, i.e., whether a forecaster would be able to predict excess returns 

systematically, if he stood at the forecast moment without further information. Since 

there are relatively few studies about predicting the housing returns, we decided to 

focus on the housing market. The stock market analysis appears as an important 

reference. We use linear models and multivariate filters to produce the forecasts for 

the two aforementioned markets and employ equal accuracy tests and forecast 

encompassing tests for inference. 

Our results show that there is statistical evidence supporting the extension of the 

in-sample results to an out-of-sample framework. Especially for the housing market, 

we conclude that the rent-price ratio has a huge ability for predicting returns 

(performing the equal accuracy test, we note that all the values are statistically 

different from   at the    significance level). 

Given the lack of out-of-sample studies for the housing market, we consider that 

our findings are a considerable contribution to the literature.  Using a diverse set of 

models to produce the forecasts of returns, we also apply relatively powerful test 

statistics and a bootstrap approach (because our models are nested) to conduct robust 

inference. We obtain all the results for the housing market using two different data 

sources (the Case-Shiller-Weiss (CSW) index and the Office of Federal Housing 

Enterprise Oversight (OFHEO) price index). 

As Rapach and Wohar (2006), our purpose is testing for the existence of return 

predictability in population. As for this paper, we are not interested in exploring 
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“whether a practitioner in real time could have constructed a portfolio that earns 

extra-normal returns”.  

The remainder of this paper is organized as follows. In Section 2 we briefly review 

the relevant literature and in Section 3 we provide a theoretical distinction between 

the in-sample and out-of-sample concepts. Section 4 describes the data used to obtain 

the empirical results, while Section 5 reports the in-sample results. In Section 6 we 

expose the econometric methodology. Section 7 discusses our main findings and the 

last two sections present ideas for future research and the conclusions. 

 

2. A BRIEF REVIEW OF THE RELEVANT LITERATURE 

As mentioned before, there are about a handful of papers examining the predictability 

of housing returns. Case and Shiller (1990) investigate the prices and excess returns 

(in-sample) predictability in the housing market based on a set of independent 

variables including the rent-price ratio. For this variable, the estimated coefficient in 

the ordinary least squares (OLS) regression is positive and statistically significant. 

Using quarterly data and based on a long-horizon regression, Gallin (2008) shows 

that changes in real rents tend to be larger than usual and changes in real prices tend 

to be smaller than usual, when house prices are high relative to rents. 

With a different focus, Campbell        (2009) apply the dynamic Gordon growth 

model to the housing market and find that changes in expected future housing premia 

are an important source of volatility in rent-price ratios. 
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More recently, Plazzi        (2010) conclude (in-sample) that the rent-price ratio 

predicts expected returns for apartments, retail properties and industrial properties 

(but does not predict expected returns of office buildings). 

For the stock market, the literature is voluminous. Several authors have already 

examined the ability of the most common financial variables to be good predictors for 

the aggregate returns or the equity premium.  

Goyal and Welch (2003) assess the performance of the dividend-price ratio when 

used to predict the CRSP (Center for Research in Security Prices) value-weighted 

annual excess returns. Contrary to the in-sample results, they find that the out-of-

sample forecasts produced through a model with the dividend-price ratio have a worse 

performance than those created by a model of constant returns (that is, a model that 

includes only the constant term).  

Along the same line, Goyal and Welch (2008) explore the existence of gains when 

one uses the financial variables with a reasonable in-sample performance to forecast 

(out-of-sample) the equity premium. They conclude that almost all models produce 

poor results out-of-sample, which suggest “that most models are unstable or even 

spurious”.  

Against this background, Rapach and Wohar (2006), using annual data over the 

          period, conclude that several financial variables have a good in-sample 

and out-of-sample ability to forecast stock returns. As justification for these results, 

they emphasize the fact that the tests employed are robust for inference (specifically, 

they use the tests presented in Clark and McCracken (2001) and McCracken (2007)). 
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Following a slightly different approach, Rapach        (2010) use forecast combining 

methods to produce out-of-sample forecasts and find that this approach provides 

significant out-of-sample gains when compared to the historical mean.  

 

3. IN-SAMPLE AND OUT-OF-SAMPLE 

Although we aim at exploring out-of-sample forecasts, we consider important to 

understand the differences between in-sample predictability and out-of-sample 

predictability. In this section, we will distinguish these concepts. 

For sake of simplicity, let us consider the following regression model: 

                            

where      is the return from holding the financial asset from   until    ,     is 

the forecast horizon,    is the financial variable used to predict      and      is a 

disturbance term. 

An in-sample analysis consists of estimating the equation     using the available 

    observations and then, examine the              associated to the OLS 

estimate of   and the goodness-of-fit measure    to assess the predictive ability of 

  .2 When the null hypothesis is rejected and the    is high, we can conclude that     

has predictive power over     . 

There are some potential problems related to this perspective, specifically the 

small-sample bias (   is not an exogenous regressor in equation    ; see Stambaugh 

                                                           
2
 The null hypothesis (      ) reflects the lack of ability of    to forecast     . 
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(1986, 1999)) and the dependence between the observations for the regressand in     

(these observations are overlapping when the forecast horizon is greater than  ; see 

Richardson and Stock (1989)). The serial correlation induced in the disturbance term 

should be taken into consideration when conducting inference. The Newey and West 

(1987) standard errors robust to the autocorrelation and the heteroskedasticity are a 

usual solution. 

An out-of-sample analysis implies the generation of the forecasts for     . Typically, 

the researcher chooses one of the three most common schemes (fixed, recursive or 

rolling) that allow producing the predictions in-real time, as if the forecaster stood in 

the moment when the prediction is made (i.e. using the data available up to that time).  

Here, we describe the concept of out-of-sample predictability only based in the 

recursive scheme for this is the scheme we use in our empirical applications. 

We should start by determining the sample-split parameter ( ), that is, the period 

of the first prediction (we discuss this issue in more detail in Section 6.2.). Once we 

obtain predictions for different forecast horizons ( ), determining   is not the same as 

determining the period of the last observation used in estimating the model (which 

will be      ). Fixing  , we ensure that the first forecast obtained refers to the 

same period, for each  . 

Next, we split the total sample (  observations) into an in-sample portion (includes 

the first     observations) and an out-of-sample portion (composed of the 

observations from     until    ). The first sub-sample is used to estimate the 
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model (equation    , for example).  The other allows evaluating the performance of 

the obtained forecasts through the analysis of the forecast errors.  

Using the OLS estimates of the coefficients in equation    , we construct the 

forecast for the period   given the information until    , that is: 

                         

And then we compute the forecast error (        for    :  

                   

where    is the observed value of the dependent variable at    . 

The remaining predictions are obtained by repeating this procedure for     

           , that is: 

                                     

In the end, we have           forecasts but only         forecast 

errors. We can then determine the Mean Squared Forecast Error (    ): 

      
 

       
             

 
 

   

 
 

       
         

 
 

   

 

and compare the forecasts obtained through the different models (which are 

described in Section 6.1.). 
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4. DATA 

In this section, we describe and characterize the data (available at John Cochrane’s 

website) used in the models estimation. 

 

Stock Market: 

As Lettau and Ludvigson (2001), we use quarterly data for the U.S. stock market. 

Our sample covers the period                 (     ) and our dependent 

variable is the equity premium from holding stocks from period   to    . 

As usual, we define equity premium as the return on the stock market minus the 

return on a short-term (risk-free) interest rate. In our case, we use the CRSP value-

weighted return less the  -month Treasury bill return (the  -month Treasury bill is a 

proxy for the risk-free rate). Formalizing, we can write the variable to forecast   

periods ahead (    
   as: 

    
       

 

 

   

        

 

   

 

where   
      

 ,   
  is the return (including dividends) on the Value-Weighted 

Index,             and     is the  -month Treasury bill return.  

The dividend-price ratio (     is the financial variable which potentially predicts the 

equity premium: 
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We intend to verify whether the pervasive phenomenon identified by Cochrane 

(2011) holds out-of-sample. Our variables were therefore constructed following the 

definitions presented in Cochrane (2011)   we use the simple returns instead of log 

returns. At all events, Goyal and Welch (2003) tried both specifications and found 

similar conclusions. 

 

Housing Market:  

In our applications for the housing market, we use quarterly data from         to 

        (     ). There are two different available samples with similar 

information. One comes from the Case-Shiller-Weiss (CSW) price data, the other 

consists in the houses prices and rents from the Office of Federal Housing Enterprise 

Oversight (OFHEO) “purchase-only” price index. 

Our dependent variable (    
 ) is the log return from holding the house from   until 

    and the predictor is the respective rent-price ratio (    . That is: 

    
             

 

   

     
                

          
 

 

   

 

    
     
      

   

As mentioned before, for both markets, we construct the variables based on the 

definitions and methods presented in Cochrane (2011) (for more details, see Appendix 
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C).3 Table I in Appendix B contains the usual descriptive statistics for all the analyzed 

series.   

 

5. IN-SAMPLE FIT  

As mentioned in Goyal and Welch (2008), the out-of-sample performance is only 

interesting when the model has a good in-sample performance. Hence, in this section, 

we discuss the results obtained through the in-sample regressions and present some 

motivations to the out-of-sample exercise.    

Table II in Appendix B provides the results of regressing the returns from holding 

the financial asset from   to     (      on the corresponding valuation ratio (  ). 

Specifically, for each market in question, we estimate: 

                    

where         and      have the meanings introduced in Section 3;  , as before, is the 

forecast horizon in quarters. 

The equation     is estimated by OLS and the Newey and West (1987) standard 

errors, which are robust to heteroskedasticity and serial correlation, are used to 

compute the             . Following Rapach and Wohar (2006), we use the Bartlett 

kernel and a lag truncation parameter equal to        , where     denotes the integer 

part, for    ; and zero for     to calculate these standard errors.  

                                                           
3
 The stock market data and the housing market data are available at 

http://faculty.chicagobooth.edu/john.cochrane/research/index.htm. The housing market data are also 
available at http://www.lincolninst.edu/subcenters/land-values/rent-price-ratio.asp. 
 

http://faculty.chicagobooth.edu/john.cochrane/research/index.htm
http://www.lincolninst.edu/subcenters/land-values/rent-price-ratio.asp
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As mentioned before, we assess the in-sample predictive performance based on 

values of the             and   . We can also interpret the OLS estimate of   as an 

indicator of the    significance to forecast     .  

Analyzing the results shown in Table II (Appendix B), we can detect a set of 

characteristics that are common across the two markets. The estimate of   and the    

are higher for longer forecast horizons, and the observed              always reject 

the null hypothesis of no predictability. In addition, the signal of the estimates is 

positive, which confirms the conclusions presented in Cochrane (2011): higher 

valuation ratios indicate higher returns. Or, more specifically, high prices, relative to 

dividends (or rents, for the housing market) can be a sign of low returns. 

Hereupon, and since this in-sample predictability may mean nothing out-of-sample, 

it is of all the interest to examine the predictability of these variables out-of-sample.  

 

6. ECONOMETRIC PROCEDURE 

In this section, we discuss the regression models used to produce the out-of-sample 

forecasts, the methods employed to compare them and, lastly, the equal accuracy 

tests and the forecast encompassing tests applied to statistically analyze the results. 

We also describe the bootstrap procedure used to generate the critical values. 
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6.1. Predictive regression models 

Apart from assessing the out-of-sample performance of the valuation ratios to predict 

aggregate returns, we also aim at identifying which model(s) provides the best 

forecasts compared to the historical mean. Therefore, we select several methods to 

generate different sets of predictions for the same variable   aggregate returns. All of 

them are estimated using OLS. 

In what follows,         denotes the forecast of      (the return from holding the 

financial asset from   to    ), given the information up to period  , and    is the 

valuation ratio that might have predictive power for     .  

A direct method requires that only information available up to   is used to obtain 

the forecast for         . By contrast, the iterated method generates the prediction 

for         , using one-step ahead forecasts. For    , the direct and the iterated 

models produce the same forecasts. The direct approach is computacionally simpler. 

• (       ) Historical mean:  

        
 

 
   

 

   

            

As Goyal and Welch (2003, 2008) and Campbell and Thompson (2008), we use the 

historical mean as a benchmark forecasting model, since it represents the hypothesis 

of no predictability, consistent with the most common interpretation of the efficient 

markets hypothesis.  

 



ANA CARLA SEQUEIRA| PREDICTING AGGREGATE RETURNS USING VALUATION RATIOS OUT-OF-SAMPLE 13 
 
 

13 
 

• (       ) Direct autoregressive (  ) with fixed lag order ( ): 

                    

   

   

          

where    and                 are the OLS estimates. In our empirical applications, 

we fix    .  

• (       ) Direct    using the Akaike Information Criterion (AIC) (Akaike, 1974) to 

determine the lag order (  ): 

                    

    

   

                                         

In this method, we only define the maximum lag order (      ). After that, 

whenever a forecast is generated, we apply the AIC to determine the optimal number 

of lags (  ), given all the past information. Thus, for each period  , the    employed to 

produce the prediction         can be different. 

• (       ) Direct augmented    using the AIC to determine the lag order (  ): 

                   

  
   

   

         

  
   

   

 

              
    

                         

               
     and             

     are the OLS estimates. The expression 

“augmented” denotes the introduction of valuation ratios as explanatory variables in 

the regression. Again, the lag order is determined by the AIC (the above comment 

applies). 
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• (       ) Direct regression with or without lags: 

                    

   

   

                    

In this method, the autoregressive part is not taken into consideration. 

• (       ) Univariate and multivariate filters: 

Following the argument presented in Valle e Azevedo and Pereira (2012), when we 

choose this method to generate our forecasts, we assume that we are interested in 

predicting the low frequencies of    (say,          , where          
  

     is a 

band-pass filter eliminating the fluctuations with period smaller than a specified cut-

off) and using these predictions as forecasts of    itself. Explicitly, we will consider 

predictions of the low frequencies of aggregate returns as forecasts of aggregate 

returns itself. The weights of the ideal filter (    ) are given by: 

   
  

 
                              

        

  
              

  

       
   

Nevertheless, since      is an infinite (absolutely summable and stationary) 

polynomial in lag operator   and we only have available a finite sample (       
 ), we 

approximate the low frequencies of    (that is,   ) through a weighted sum of 

elements of    (   ), which will be considered a forecast for   . That is: 

        
   

    

 

    

       

  and   denote the number of observations in the past and in the future, respectively, 

that are considered. 
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We obtain the multivariate filter when we include, in that weighted sum, elements 

of   series of covariance-stationary covariates        , where                  
 
    

      .  Namely: 

        
   

    

 

    

        
   

       

 

    

 

   

 

Solving the problem: 

       

    
   

      
   

        
   

 
        

          
    

where the information set is implicitly restricted by   and  , we determine     (the 

weights of the filter are found solving a linear system with               

equations and unknowns). The solution to problem     is discussed in Valle e Azevedo 

(2011). 

To extract the signal               for    , we should set      in the 

solution. As a result, only the available information up to period   is employed.4 

After choosing the model, we apply the recursive scheme described in Section 3 to 

generate the forecasts. 

 

6.2. Estimation period 

As mentioned in Section 3, the first step of an out-of-sample analysis is to determine 

the in-sample period and the out-of-sample period. Specifically, we should fix a value 

to the sample-split parameter ( ). Nevertheless, there is no criterion that defines how 

                                                           
4
 More detailed explanations about the multivariate filter can be found in Valle e Azevedo (2011). 
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to choose  . We should make a compromise between the number of observations 

used to estimate the coefficients of the model and the number of available 

observations to assess the forecasts performance.  

It is natural to compare predictions at different horizons referring to the same 

period of time (regardless the forecast horizon). To make this possible, the forecast for 

period   must be generated based in the information until period    , which implies 

that, for longer horizons, less observations are available to estimate the coefficients.  

Additionally, since we are forecasting the aggregate returns (the returns from 

holding the financial asset from   until    ), we lose the first   observations of the 

series of interest. Again, longer forecast horizons imply losing more initial 

observations. 

Taking this information into consideration, we fix      , which corresponds to 

the first quarter of      in the stock market data (we consider the predictions for the 

period                ) and to the first quarter of      in the housing market 

data (we consider the predictions for the period                ). 

 

6.3. Forecast evaluation 

We choose the (out-of-sample) Mean Squared Forecast Error (    ) ratio as 

evaluation metric to compare the sets of forecasts obtained through the models 

described in Section 6.1. 
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Given a set of  -step ahead forecasts generated by the model            
  

   

   
   

        , we calculate the forecast errors as: 

      
            

           

where    is the observed value of the dependent variable at   and        
  is the forecast 

of   , generated by model  , given the information up to    .  

Consequently, the      for model   is equal to: 

     
  

 

       
            

  
 

 

   

 
 

       
        

  
 
 

 

   

 

Denoting the      of the benchmark model (the historical mean) by      
     

   and the      of the competing model by      
           , the      ratio is 

given by: 

           
     

 

     
   

When the            is less than  , the competing model predicts better than the 

benchmark model, suggesting that there are out-of-sample forecasting gains. 

Otherwise, the historical mean (which signals constant expected returns) is the best 

possible forecast.  

We also use a graphical analysis to examine the relative performance of the 

forecasting models. As proposed in Goyal and Welch (2003), we construct charts with 

the difference of the cumulative squared forecast errors of the benchmark model 
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(      
     ) and the cumulative squared forecast errors of the competing model 

(      
    ). Formalizing:  

                 
        

          
  

 
 

   

         
  

 
 

 

   

         

                                                            

When this difference is positive, the competing model outperforms the benchmark 

model (the sum of the squared forecast errors from   through   (i.e., the date in the 

 -axis) is greater for the benchmark model than for the competing model).  

 

6.4. Out-of-Sample tests  

We assess the statistical significance of the obtained results considering equal accuracy 

tests (under the null hypothesis, the      from two distinct models are statistically 

equal) and forecast encompassing tests (we test whether a given set of forecasts 

generated by a simpler model embody all the useful predictive information contained 

in another set of forecasts). 

Before describing these tests in more detail, it is important to make a distinction 

between nested and non-nested models and, above all, note that, excluding the 

multivariate filter (model  ), all of our models are nested. 

We say that two models are nested when there is a set of regressors that is 

common between them. In our studies, whenever we compare the competing model   

           with the benchmark model (model  ), we are comparing nested models 

due to the constant term in each regression (setting the coefficients     and     equal to 
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zero in models       and  , we obtain the model  ). Briefly, the benchmark model 

(which includes only the constant term) is a restricted version of the model of interest.  

This clarification is relevant because, as stressed in Clark and McCracken (2005), 

when we have nested models, the population errors of the analyzed models are 

exactly the same, under the null hypothesis that the restrictions imposed in the 

benchmark model are true. This implies that the asymptotic difference between the 

     of two models is exactly zero with zero variance and, consequently, the 

standard distributions are asymptotically invalid.  

Because our models are nested and different forecast horizons (        , in 

quarters) are explored, we use, as recommended in literature, a bootstrap procedure 

for inference.   

 

6.4.1. Equal Accuracy test 

Using the      as the evaluation metric, the equal accuracy test allows testing 

whether the      ratio is statistically equal to  , against the alternative that the 

forecasts produced by the competing model are better (have a lower     ).  

Tantamount, we can write: 

    
     

 

     
                     

     
 

     
     

where      
  is the      of the competing model   and      

  is the      of the 

benchmark model. This test is a one-sided to the left. 
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Using the set of            -steps ahead forecast errors from model  , we 

can also express the null hypothesis as follows: 

             
  

 
           

  
 
      

                      

                                      

where    
         

  
 
        

  
 
          

First proposed by Diebold and Mariano (1995), the        test statistic can be 

written as: 

         
  

    
    

 

where:  

         
  

   ;     
        

              
  

   ; 

   
            is the estimated  th autocovariance of  : 

   
         

          
     

 

     

                 
      

      

  is the truncation parameter and           
 

   
  is the Bartlett Kernel. 

Following Clark and McCracken (2005), we fix     for     and           

for    . This test statistic has an asymptotic standard normal distribution when used 

to compare non nested models forecasts.  
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Notwithstanding, there is evidence that the        test could be over-sized for 

    in small and moderate samples. Thus, Harvey        (1997) proposed a small-

sample correction that resulted in the following test statistic: 

                     
                

 
 

   

                

These authors recommend comparing the values of the modified statistic with critical 

values from the Student’s   distribution with     degrees of freedom, when 

comparing forecasts from non nested models.   

Due to the emergence of other problems (namely, the degeneracy of the long-run 

variance of   
 ), McCracken (2007) develops the         test statistic:  

             
  

     
  

where       is the      of the competing model           . 

In our case, a significant     –  statistic means that the forecasts from the 

competing model have statistically more predictive power than those from the 

historical mean model.  

For practical purposes, we will use the                 and the        

test statistics which have non standard distributions with nested models. 5,6  Clark and 

McCracken (2001) and McCracken (2007) provide tables with asymptotic critical values 

                                                           
5
 Clark and McCracken (2001) find that        has higher power than       .  

6
 Each of them can be written as functions of stochastic integrals of Brownian motion. 
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for    . Since we are interested in a multi-step analysis, we based our inference in a 

bootstrap approach (except for the multivariate filter model).  

 

6.4.2. Forecast Encompassing tests 

According to Clements and Harvey (2009), a set of forecasts encompasses a rival set if 

the latter does not contribute to a statistically significant reduction in      when 

used in combination with the original set of forecasts. Applying this concept to our 

study, if the historical mean forecast encompasses the forecast produced by the model 

with the valuation ratio, then the financial variable does not contain useful additional 

information for predicting the aggregate returns. 

We will present three alternative definitions for forecast encompassing. The way 

how the test is applied depends on the chosen setting.  

The most general formulation, proposed by Fair and Shiller (1989), considers that 

       
  encompasses        

  if the value of    is zero in equation:  

                  
           

      

where        
  denotes the   -steps ahead forecast of    produced by model   (    

for the restricted model (historical mean) and            for the unrestricted model). 

As a result, we should test         (       
  encompasses        

 ) against         

(       
  does not encompass        

 ). 
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Assuming that the individual forecasts are efficient, we can impose the restriction 

        in the equation    , obtaining the regression: 7 

                     
          

      

However, to apply the forecast encompassing test, we consider the Andrews        

(1996) approach instead of equation    .8 Consequently, the encompassing is defined 

by     (we test        against       ) in the regression: 

          
            

        
       

where       
            

  and       
            

 .  

Finally, dropping the intercept in equation    , which means fixing     , we 

require that the individual forecasts are unbiased and efficient. In this last specification 

we define encompassing by     in the equation: 

          
          

        
       

As mentioned in Clements and Harvey (2009), if the restrictions imposed (    

when the forecasts are unbiased, and         when the forecasts are efficient) do 

not hold, the exposed definitions are not equivalent, implying that we can take 

different conclusions using distinct classifications. Nevertheless, when the restrictions 

imposed are true, the tests based in the modified equations (    or    ) should be 

more powerful. 

                                                           
7
 A forecast         is said to be Mincer-Zarnowitz efficient if     and     in a regression      

           , which implies no correlation between the forecast and the forecast error. 

8
 This approach results from some transformations in equation      Specifically,  

                 
          

               
             

         
            

      
                 

              
             

            
        

     . 
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Additionally, if the optimal value of    in equation     is zero, we should conclude 

that, in      sense, the forecast of    cannot be improved by adding the        
  

forecast in the linear function of        
  (i.e.,            

 ), which does not imply that 

the        
  is the optimal forecast for   . 

In order to test for encompassing, the standard             cannot be used since 

the regression errors may not be independent (we consider    ) nor normally 

distributed.9,10 Therefore, Harvey        (1998) proposed an approach, based in 

Diebold and Mariano (1995) test statistic, which consists in testing whether the series 

       
  (  is the number of forecast errors from each model) has zero mean. The test 

statistic is similar to that presented in Section 6.4.1 for the equal accuracy test, 

changing just the definition of     which depends on the regression (        or    ). 

The following table describes the three possible cases: 11 

 

Characteristics of the individual 

forecasts 
  

  

Biased and Inefficient: Regression       
   

  
 
  

 

Biased and Efficient: Regression       
         

              
             

        

Unbiased and Efficient: Regression       
        

         
        

   

where                        and     denote the errors from regressions of    and        
 , 

respectively, on a constant and        
 ;              

  
    and              

  
   . 

 

 
                                                           
9
 Note that the optimal forecast errors is expected to follow a moving-average process of order    . 

10
 Harvey        (1998) examine this problem in the context of unbiased and efficient individual 

forecasts.  

11
 Clements and Harvey (2009). 
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Formally, the test statistic is given by:  

        
  

    
     

  

where    and    
     have the aforementioned meaning. We can also compute the 

modified approach suggested by Harvey        (1997). 

Clark and McCracken (2001, 2005), admitting that the individual forecasts are 

unbiased and efficient, developed the following test statistic: 

             
  

      
  

which is more powerful than the previous test statistics for forecast encompassing.12 

The test statistics exposed do not have a standard distribution (and, most often, 

neither a pivotal asymptotic distribution) in the case of multi-step predictions. The 

procedure of obtaining forecasts using estimated regression models (the estimation 

uncertainty affects the encompassing tests) and the existence of nested models also 

difficult the deduction of the critical values. Therefore, it is widely suggested in the 

literature to use the critical values generated by bootstrap methods. 

In our practical application, we employ the                and the       

statistics to test the forecast encompassing. The critical values used are obtained by 

bootstrapping. 

 

                                                           
12

 Clark and McCracken (2001) provide the critical values for this test statistic, when     and the 
forecast errors are conditionally homoskedastic. 
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6.5. Bootstrap procedure 

We follow Mark (1995) and Kilian (1999) to define a bootstrap method which allows 

obtaining the critical values for the test statistics described in previous sections. 

As Goyal and Welch (2008), we impose the null hypothesis of no predictability 

assuming that the data generating process (DGP) is: 

               

                        

where    denotes the aggregate returns and    is the predictor. We estimate the 

equations      and      by    , using the full sample. 13  

The next step is to generate   (we set         ) innovation sequences, of length 

 , by drawing randomly with replacement from fitted residuals       and       

(       ). Using the sequences       
  

   

 
 and       

  
   

 
 (       ) and the OLS 

coefficient estimates obtained in first step, we produce   sequences of   observations 

for    and   . Specifically, for        , we construct: 

  
          

  

  
             

       
   

Since    follows an autoregressive process of order  , we need an initial 

observation, namely, an observation that is prior to sample used to estimate the 

                                                           
13

 We could use the seemingly unrelated regressions (SUR) to estimate these equations. However, the 
SUR estimates are not necessarily more efficient than OLS estimates in finite samples (although this is 
true asymptotically), therefore we follow the literature and use the OLS method. 
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equations. Whenever necessary, this observation will be randomly selected by picking 

one date from the available data. 

Finally, for each set of   observations, we apply the recursive scheme described in 

Section 3. In the end, we will have   sets of             forecasts and   sets of 

the corresponding forecast errors. After calculating the values of the test statistics (we 

have   observed values for each statistic test), we determine the   ,    and 

    critical values as the    ,     and     percentiles of the resulting statistics, 

respectively. 

 

7. EMPIRICAL RESULTS  

In this section, we expose and discuss the main results obtained using the 

methodology described before. This analysis will be done separately for each market. 

We first present the findings for the stock market (specifically, the results of the out-

of-sample statistical tests and the interpretation of the          charts), and then we 

do the same for the housing market.14    

 

Stock Market: 

Although we have generated forecasts using different models, we only statistically 

analyze those obtained by the direct regression model (model    without lags) and 

multivariate filter (model    using the dividend-price ratio), since these are the 

models that produce better results. As the benchmark (the historical mean) and the 
                                                           
14 The empirical results presented in this paper were obtained using the software            . 
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direct regression are nested models, we use the bootstrap critical values to perform 

the out-of-sample tests.  

Table III in Appendix B reports the      ratios for each model. We conclude that 

only the direct regression generates forecasts that can beat the benchmark for all 

horizons. These ratios are statistically different from   at conventional significance 

levels when we use the        statistic (equation    ) to perform the equal 

accuracy test. Both the quality and the statistical significance of the predictions 

increase with the forecast horizon, which suggests that the dividend–price ratio ability 

to predict the aggregate returns improves when we use longer horizons. These findings 

are consistent with the in-sample results exposed in Section 5, where we note that the 

in-sample predictability increases with the horizon.  

The univariate filter model failed to outperform the benchmark model for all 

horizons, but the multivariate filter has      ratios less than   for      and 

     (despite not being statistically different from 1 when we use the 

                statistic (equation    ) to apply the test). 

Similar conclusions can be drawn when we analyze the forecast encompassing 

results presented in Table IV, Appendix B (which contains the observed values of the 

test statistics). In particular, when we use the       (equation     ) to perform the 

test, we have statistical evidence to reject the null hypothesis (the historical mean 

forecasts encompass those produced by direct regression model) at a    significance 

level for                . 
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The following analysis rests on the evaluation of the           charts    

                which display the cumulative squared forecast errors of the 

benchmark model (from 1985:Q1 through the date in the  -axis) minus the squared 

forecast errors of the competing model (from 1985:Q1 trough the date in the  -axis), 

for each horizon. A positive value means that the competing model has outperformed 

the benchmark model and a positive slope indicates that the competing model had 

lower forecasting error than the historical mean model, in a given quarter. 

For the stock market, we chose to plot merely the          

                   for the direct regression model (without lags) and the 

multivariate filter model (with dividend-price ratio) since these illustrate the main 

findings. 

Considering the shorter forecast horizon (  quarter, see figure  ), we note that the 

direct regression curve exhibits a volatile pattern. This competing model had a good 

performance in                ,                 and         

        and had its poorest performance from         to         (although it 

begins to recover (the curve has a positive slope) from        ). For    , the 

multivariate filter consistently has a worse performance than the direct regression 

model.  

Figure   also shows the cumulative     difference for    , when both models 

underperformed the benchmark. For this horizon, the dividend-price ratio model had 

large prediction errors from         to        . 
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For longer forecast horizons (    , for example; see figure   in Appendix A), the 

curves are smoother and we can identify three distinct periods (which have become 

more apparent as the horizon increases). Namely: an initial period when the forecasts 

produced by the competing models are better, an intermediate period when the 

models had a negative performance and a final period of recovery. We note that this 

final period may be responsible for the good results out-of-sample, meaning that if we 

dropped the last observations of the sample, the direct regression model probably 

could not beat the benchmark. It is also worth noticing that the direct regression 

model curve has an extremer behavior than the multivariate filter curve, that is, it had 

the best performance but also has the worst in given portions of the sample.  

 

Housing Market: 

As we mentioned in Section 4, we have two data sources for the housing market. 

The results are quite similar.  

Tables V and VI in Appendix B contain the      ratios between the competing and 

the benchmark model for horizons                                    . For 

forecast horizons shorter than   years (   quarters), we find that all the competing 

models produce better forecasts than the benchmark model. However, and 

importantly, for longer horizons (over   years), only the models that contain the rent-

price ratio exhibit      ratios lower than  .  

In particular, the      ratio between the direct regression and the benchmark 

model decreases as the horizon increases. Applying the relatively powerful        
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statistic (equation    ) to conduct the equal accuracy test, we note that all the values 

are statistically different from   (at the    significance level). Comparing with the 

results obtained in Section 5, we verify that the predictability pattern identified in-

sample holds out-of-sample for the housing market. 

As regards to the multivariate filter, we observe that, although the      ratios are 

always lower than  , we only have statistical significance for    . Tables VII and VIII 

(in Appendix B) display the forecast encompassing statistics for concluding that the 

historical mean forecasts never encompass the forecasts generated by the direct 

regression model (the null hypothesis is always rejected at a significance level of   ). 

Figures 2 and 3 in Appendix A contain the charts with the             

                for the CSW data and the OFHEO data. We only examine the curves 

from three models: the direct    model (with       ), the direct augmented    

model (also with       ) and the direct regression model (without lags). Although 

we choose to show the charts based on the two data sources, we note that there are 

few differences between them (we will do a general analysis). 

Examining the figures 2 and 3, for    , we conclude that the direct regression 

model had mild underperformance from         to        , conversely it had a 

superior performance in the rest of the sample. The other two models exhibit a really 

good performance from         to         (before that, the         is almost 

zero for both models). 

When we consider the forecast horizons of   and    quarters, the competing 

models only beat the historical mean model from         (approximately) and the 
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models that include the rent-price ratio start to exhibit a better performance than the 

model with only the autoregressive component. This pattern is obvious when we 

analyze the figures 2 and 3, for      and     , where the cumulative     

difference between the    and the benchmark model is constantly negative. From 

       , the direct regression curve grows almost exponentially, evidencing the 

predictive power of the rent-price ratio. 

 

8. FUTURE RESEARCH 

In this section, we propose ideas for future research, some of which are improvements 

to our paper.  

An obvious gap in our study is the lack of robust critical values to statistically assess 

the quality of forecasts produced by the autoregressive models (which are also nested 

models). To solve this problem, it should be defined a bootstrap procedure that 

generate this critical values under the null hypothesis of no predictability.  

Additionally, it would be interesting to extend this research to other markets, 

namely the bonds, the treasuries, the sovereign debt or the foreign debt markets. 

There are relatively few papers about predicting returns of these markets, out-of 

sample. Another suggestion would be to reproduce this study using data for the 

European markets instead of to the U.S. markets.  

From a financial perspective, and since our results reveal that the valuation ratios 

can be used to successfully predict the aggregate returns for stock and housing 
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markets, an academic researcher could also explore the existence of profitable 

investment strategies. 

 

9. CONCLUSION 

In this dissertation, we found evidence that the known in-sample pattern of return 

predictability across markets holds out-of-sample. Considering the stock and the 

housing market, we verify that there are gains when we use valuation ratios to predict 

aggregate returns. The relatively powerful out-of-sample tests applied corroborate 

these results. In particular, for the stock market, we found that the direct regression 

model beats the benchmark, for all horizons. Additionally, we note that the dividend–

price ratio’s ability to predict the aggregate returns improves at longer horizons. For 

the housing market, only the models that contain the rent-price ratio consistently 

exhibit      ratios lower than  , for all horizons.  

The sample dependence identified through the analysis of         charts, for both 

markets, deserves further attention.  It will be interesting to investigate this issue in 

detail, notably by examining the stability of the forecast function while linking it to 

specific events affecting these markets or, more generally, the U.S. economy. 
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APPENDIX A – FIGURES 

Figure 1. Cumulative SSE Difference charts for the Stock Market (horizons of 1, 4, 8, 12, 18 

and 24 quarters). 

Notes: This figure plots the          for                 , that is, the cumulative squared forecast 

errors of the benchmark model (the historical mean) minus the squared forecast errors of the 

competing model, for each horizon. We consider two competing models: the direct regression model 

(purple curve) and the multivariate filter model (green curve). A positive value means that the 

competing model has outperformed the benchmark model. A positive slope indicates that the 

competing model had lower forecasting error than the historical mean model, in a given quarter. 
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Figure 2. Cumulative SSE Difference charts for the Housing Market using CSW data (horizons 

of 1, 4, 8, 12, 18 and 24 quarters). 

Notes: This figure plots the          for                 , that is, the cumulative squared forecast 

errors of the benchmark model (the historical mean) minus the squared forecast errors of the 

competing model, for each horizon. We consider three competing models: the direct regression model 

without lags (green curve), the direct autoregressive (  ) model (purple curve) and the direct 

augmented    model (red curve).  The lag order of the models with autoregressive component is 

determined by the Akaike Information Criterion (      ). A positive value means that the competing 

model has outperformed the benchmark model. A positive slope indicates that the competing model 

had lower forecasting error than the historical mean model, in a given quarter. 
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Figure 3. Cumulative SSE Difference charts for the Housing Market using OFHEO data 

(horizons of 1, 4, 8, 12, 18 and 24 quarters). 

Notes: This figure plots the          for                 , that is, the cumulative squared forecast 

errors of the benchmark model (the historical mean) minus the squared forecast errors of the 

competing model, for each horizon. We consider three competing models: the direct regression model 

without lags (green curve), the direct autoregressive (  ) model (purple curve) and the direct 
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augmented    model (red curve).  The lag order of the models with autoregressive component is 

determined by the Akaike Information Criterion (      ). A positive value means that the competing 

model has outperformed the benchmark model. A positive slope indicates that the competing model 

had lower forecasting error than the historical mean model, in a given quarter. 
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APPENDIX B – TABLES 

 

Table I   Descriptive Statistics 

 
Stock Market data 

 
Housing Market data 

 
Sample period 1947Q1-2010Q2 

 
Sample period 1960Q1-2010Q1 

 Equity Premium DP Ratio  
Case-Shiller data 

 
OFHEO data 

  
Returns RP Ratio 

 
Returns RP Ratio 

Mean 2,751 0,872 
 

5,316 4,994 
 

5,390 5,027 

Sdev. 8,213 0,365 
 

1,750 0,649 
 

1,179 0,559 

Median 3,574 0,831 
 

5,695 5,000 
 

5,643 4,995 

Min -24,650 0,258 
 

-3,483 3,098 
 

0,749 3,633 

Max 24,376 2,492 
 

7,789 6,083 
 

7,538 6,083 

Notes: The data are described in Section 4. All variables are in percentage.  

 

 

Table II   In-Sample Regressions (horizons of 1, 4, 6, 8, 12, 18, 20 and 24 quarters). 

  
Stock Market data    Housing Market data 

Sample period 1947:Q1-2010:Q2    Sample period 1960:Q1-2010:Q1 

Horizon           Case-Shiller data  OFHEO data 

(quarters)    t-stat R² % Adj. R² %      t-stat R²% Adj. R²% 
 

   t-stat R²% Adj. R²% 

1 3,80 (2,89) 2,85 2,46   1,27 (5,24) 22,30 21,91 
 

1,21 (8,47) 32,95 32,61 

4 16,57 (3,14) 11,23 10,88   5,90 (2,88) 38,80 38,48 
 

5,39 (4,73) 45,47 45,19 

6 24,42 (3,09) 15,60 15,26   9,44 (3,09) 47,53 47,26 
 

8,44 (5,02) 52,94 52,70 

8 32,08 (3,38) 19,97 19,64   12,86 (3,49) 54,85 54,61 
 

11,41 (5,52) 59,06 58,84 

12 46,35 (3,97) 25,38 25,07   18,84 (4,62) 64,31 64,12 
 

16,67 (6,81) 67,00 66,82 

18 74,17 (5,17) 33,05 32,76   25,27 (5,73) 67,05 66,87 
 

22,73 (7,98) 69,76 69,60 

20 90,46 (5,69) 36,82 36,54   26,87 (5,72) 65,56 65,37 
 

24,37 (7,97) 69,15 68,98 

24 121,28 (6,52) 44,47 44,23   29,68 (5,44) 61,46 61,24 
 

27,18 (7,63) 66,90 66,71 
 

Notes: The regression equation is                , where      and    are the equity premium and the 

dividend-price ratio, respectively, for the Stock Market; and the log returns and the rent-price ratio for the housing 

market. The data are described in Section 4. t-stat denotes the Newey-West adjusted            .  
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Table III   MSFE ratios and Equal Accuracy test results for the stock market  (horizons of 1, 4, 

6, 8, 12, 18, 20 and 24 quarters). 

Horizon (quarters) 1 4 6 8 12 18 20 24 
  

        

Direct regression without lags 
        

modified MSFE-t (bootstrap critical values) 0,988 0,984 0,976 0,987 0,969 0,909 0,883 0,883 

MSFE-F (bootstrap critical values) 0,988* 0,984** 0,976** 0,987* 0,969*** 0,909*** 0,883*** 0,883*** 
  

        

Direct regression (p=2) 0,991 1,001 0,999 1,008 0,996 0,946 0,934 0,934 
  

        

Direct regression (pmax=4)) 1,001 1,005 1,006 1,011 1,009 0,985 0,977 0,977 
  

        

Multivariate filter (p=100, cut-off=32, M=50) 
        

modified MSFE-t (t(n-1) critical values) 
        

without indicators  1,028 1,122 1,140 1,168 1,230 1,152 1,099 1,099 

with dividend-price ratio 1,020 1,082 1,070 1,080 1,140 1,034 0,983 0,983 

Notes: This table reports the      for each model, considering                       , and the Equal 

Accuracy test results for the direct regression model (without lags) and for the multivariate filter model 

(          , that is, under the null hypothesis the benchmark model (historical mean) predicts better). The 

critical values for the direct regression model are generated using a bootstrap procedure. For the other competing 

model (which is non-nested), critical values from the Student’s   distribution with       degrees of freedom are 

used (  is the number of forecast errors). Predictions were generated for the period                . 

Significance levels at    ,   , and    are denoted by one, two, and three stars, respectively. The data are 

described in detail in Section 4.  

 

 

Table IV   Forecast Encompassing test results for the stock market (horizons of 1, 4, 6, 8, 12, 

18, 20 and 24 quarters).   

Horizon (quarters) 1 4 6 8 12 18 20 24 
                  

Direct regression (without lags) 
        

modified ENC-t (bootstrap critical values) 1,361* 1,184 0,619 0,118 -0,062 0,507 0,946 1,845* 

ENC-F (bootstrap critical values) 0,813 2,224** 1,870** 0,471 -0,361 2,615*** 4,375*** 5,892*** 
  

        

Multivariate filter (p=100, cut-off=32, M=50) 
        

modified MSFE-t (t(n-1) critical values) 
        

without indicators  0,522 0,074 -0,283 -1,014 -2,064 -2,699 -3,207 -3,275 

with dividend-price ratio 0,665 0,294 -0,085 -1,419 -2,699 -1,713 -1,275 -0,223 

Notes: This table reports the observed values of the test statistics employed to conduct the Forecast Encompassing 

test for the direct regression model and the multivariate filter model. Under the null hypothesis, the benchmark 

model (the historical mean model) encompasses the competing model. The test was applied assuming that the 

forecasts are biased and inefficient. The horizons of                        quarters are considered. The 

critical values for the direct regression model are generated using a bootstrap procedure. For the other competing 

model (which is non-nested), critical values from the Student’s   distribution with       degrees of freedom are 

used (  is the number of forecast errors). Predictions were generated for the period                . 

Significance levels at    ,   , and    are denoted by one, two, and three stars, respectively. The data are 

described in detail in Section 4. 
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Table V   MSFE ratios and Equal Accuracy test results for the housing market using CSW data 

(horizons of 1, 4, 6, 8, 12, 18, 20 and 24 quarters). 

Horizon (quarters) 1 4 6 8 12 18 20 24 
  

        

Direct autoregression (p=2) 0,453 0,358 0,448 0,572 0,864 1,024 1,085 1,085 
  

        

Direct autoregression (pmax=4) 0,391 0,362 0,462 0,554 0,868 1,029 1,085 1,085 
  

        

Direct augmented AR (pmax=4) 0,342 0,315 0,344 0,414 0,561 0,401 0,373 0,373 
  

        

Direct regression (without lags) 
        

modified MSFE-t   
(bootstrap critical values) 

0,785*** 0,738* 0,724 0,697 0,579 0,417 0,401 0,401 

MSFE-F  
(bootstrap critical values) 

0,785*** 0,738*** 0,724*** 0,697*** 0,579*** 0,417*** 0,401*** 0,401*** 
  

        

Direct regression (p=2) 0,466 0,465 0,397 0,488 0,559 0,409 0,386 0,386 
  

        

Mult. filter (p=90, cut-off=32, M=40) 
        

modified MSFE-t (t(n-1) c.v.) 
        

without indicators  0,554** 0,602 0,684 0,794 0,945 1,025 1,038 1,038 

with rent-price ratio 0,541** 0,553 0,627 0,716 0,824 0,829 0,827 0,827 

Notes: This table reports the      for each model, considering                       , and the Equal 

Accuracy test results for the direct regression model (without lags) and for the multivariate filter model 

(          , that is, under the null hypothesis the benchmark model (historical mean) predicts better). The 

critical values for the direct regression model are generated using a bootstrap procedure. For the other competing 

model (which is non-nested), critical values from the Student’s   distribution with       degrees of freedom are 

used (  is the number of forecast errors). Predictions were generated for the period                . 

Significance levels at    ,   , and    are denoted by one, two, and three stars, respectively. The data are 

described in detail in Section 4. 

 

 

Table VI   MSFE ratios and Equal Accuracy test results for the housing market  using OFHEO 

data (horizons of 1, 4, 6, 8, 12, 18, 20 and 24 quarters). 

Horizon (quarters) 1 4 6 8 12 18 20 24 
  

        

Direct autoregression (p=2) 0,110 0,230 0,375 0,603 0,930 1,215 1,386 1,660 
  

        

Direct autoregression (pmax=4) 0,118 0,229 0,355 0,500 0,897 1,227 1,386 1,647 
  

        

Direct augmented AR (pmax=4) 0,108 0,172 0,204 0,283 0,388 0,227 0,239 0,302 
  

        

Direct regression (without lags) 
        

modified MSFE-t  
(bootstrap critical values) 

0,541*** 0,516* 0,502* 0,479* 0,403 0,288 0,264* 0,238* 

MSFE-F  
(bootstrap critical values) 

0,541*** 0,516*** 0,502*** 0,479*** 0,403*** 0,288*** 0,264*** 0,238*** 
  

        

Direct regression (p=2) 0,162*** 0,214* 0,271 0,347 0,400 0,291 0,260 0,224 
  

        

Mult. filter (p=90, cut-off=32, M=40) 
        

modified MSFE-t (t(n-1) c.v.) 
        

without indicators  0,297*** 0,472* 0,613 0,760 0,970 1,131 1,162 1,17 

with rent-price ratio 0,255*** 0,351 0,433 0,518 0,630 0,722 0,760 0,829 

Notes: See Table VI. Significance levels at    ,   , and    are denoted by one, two, and three stars, respectively.  
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Table VII   Forecast Encompassing test results for the housing market  using CSW data 

(horizons of 1, 4, 6, 8, 12, 18, 20 and 24 quarters). 

Horizon (quarters) 1 4 6 8 12 18 20 24 
                  

Direct regression (without lags) 
        

modified ENC-t  
(bootstrap critical values) 

3,308*** 1,499 1,447 1,351 1,652 1,253 1,211 1,156 

ENC-F  
(bootstrap critical values) 

3,248*** 3,055*** 2,492*** 3,620*** 11,272*** 28,392*** 27,639*** 20,581*** 
  

        
  

        

Mult. filter (p=90, cut-off=32, M=40) 
        

modified MSFE-t (t(n-1) c.v.) 
        

without indicators  2,995*** 2,167** 1,764** 1,639* 1,342* 1,059 1,088 1,322* 

with rent-price ratio 3,715*** 2,053** 1,696** 1,607* 1,441* 1,212 1,160 1,101 

Notes: This table reports the observed values of the test statistics employed to conduct the Forecast Encompassing 

test for the direct regression model and the multivariate filter model. Under the null hypothesis, the benchmark 

model (the historical mean model) encompasses the competing model. The test was applied assuming that the 

forecasts are biased and inefficient. The horizons of                        quarters are considered. The 

critical values for the direct regression model are generated using a bootstrap procedure. For the other competing 

model (which is non-nested), critical values from the Student’s   distribution with       degrees of freedom are 

used (  is the number of forecast errors). Predictions were generated for the period                . 

Significance levels at    ,   , and    are denoted by one, two, and three stars, respectively. The data are 

described in detail in Section 4. 

 

 

Table VIII   Forecast Encompassing test results for the housing market  using OFHEO data 

(horizons of 1, 4, 6, 8, 12, 18, 20 and 24 quarters). 

Horizon (quarters) 1 4 6 8 12 18 20 24 
  

        

Direct regression (without lags) 
        

modified ENC-t  
(bootstrap critical values) 

5,343*** 2,451** 1,949* 1,404 3,763*** 1,787 1,606 1,421 

ENC-F 
 (bootstrap critical values) 

4,225*** 5,591*** 5,368*** 4,848*** 11,585*** 32,739*** 33,88*** 27,802*** 
  

        
  

        

Mult. filter (p=90, cut-off=32, M=40) 
        

modified MSFE-t (t(n-1) c.v.) 
        

without indicators  3,565*** 1,692** 1,247 1,477* 1,706** 1,139 1,321* 1,581* 

with rent-price ratio 4,076*** 1,989** 1,634* 1,688** 3,575*** 1,444* 1,348* 1,291 

Notes: See Table VII. Significance levels at    ,   , and    are denoted by one, two, and three stars, 

respectively.  
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APPENDIX C   DATA DESCRIPTION 

This Appendix provides additional information about the data used in the estimation of 

models (Section 4 contains the main information about the data). 

 

Stock Market: 

For the stock market, our dependent variable is the      value-weighted return 

less the  -month Treasury bill return. Specifically, we use the following series from the 

     database: 

 

Name of Series  Description 

Vwretd   Return on the Value-Weighted Index   contains the returns, including all 
distributions, on a value-weighted market portfolio (excluding ADRs). 

Vwretx  Return on the Value-Weighted Index   contains returns, excluding all 
dividends, on a value-weighted market portfolio (excluding ADRs). 

T90ret   -month Treasury bill return. 

 

Denoting the return including dividends (held from the beginning of     to the 

beginning of  ) by   
  and the return excluding dividends (held from the beginning of 

    to the beginning of  ) by   , we can formally write: 

  
  

            

    
 

   
       

    
  

where      denotes the price of a stock portfolio at the beginning of period    ,    

denotes the price of a stock portfolio at the beginning of period   and    denotes the 

total dividends paid on the portfolio during period  . 
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Housing market: 

As mentioned in Section 4, for the housing market, we use two different data 

sources. The Case-Shiller-Weiss price data corresponds to a national home price index 

that is calculated from data on repeat sales of single-family homes. The OFHEO index is 

a national house price index for single-family detached properties that considers data 

on conventional conforming mortgage transactions (these data are obtained from the 

Federal Home Loan Mortgage Corporation (Freddie Mac) and the Federal National 

Mortgage Association (Fannie Mae)).15  

Although these indexes apply the same repeat-valuations approach, there are some 

differences between them. In particular, they consider a different geographic coverage 

(only the OFHEO index is calculated using data from all states); and a distinct weighting 

method (the CSW index is value-weighted (the price trends for more expensive homes 

have greater influence on estimated price changes than other homes) while the 

OFHEO index weights price trends equally for all properties).  

 

 

 

 

  

                                                           
15

 Calhoun (1996). 


