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Abstract

According to Benford’s law, many of the collections of numbers which are generated without

human intervention exhibit a logarithmically decaying pattern in leading digit frequencies.

Through digit analysis, this empirical regularity can help identifying erroneous or fraudulent

data. Due to the power that classical significance tests with fixed dimension attain in large

samples, they produce small p-values and, if the sample is big enough, are able to identify any

deviation from Benford’s law, no matter how tiny, as statistically significant. This may result

in the rejection of Benford’s law in samples where the deviations from it are without practical

importance, and consequently samples which are legit are likely to be classified as erroneous or

fraudulent. This dissertation proposes a Bayesian model selection approach to digit analysis.

An empirical application with macroeconomic statistics from Eurozone countries demonstrates

the applicability of the suggested methodology and explores the conflict between the p-value

and Bayesian measures of evidence (Bayes factors and posterior probabilities) in the support

they provide to the presence of Benford’s law in a given sample. It is concluded that classical

significance tests often reject the presence of Benford’s law in samples which are deemed to

be in conformance to it by Bayesian measures, and that even lower bounds on such measures

over wide classes of prior distributions often provide more evidence in favour of Benford’s law

than the p-value and classical significance tests seem to suggest.
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Digit Analysis Using Benford’s Law: A Bayesian Approach
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Resumo

A lei de Benford, regularidade emṕırica segundo a qual muitos dos conjuntos de números

gerados sem intervenção humana exibem um padrão de decaimento logaŕıtmico nas frequências

de ocorrência de primeiros d́ıgitos, pode ser utilizada para, através da análise da frequência

de d́ıgitos, identificar conjuntos de números potencialmente erróneos ou fraudulentos. Devido

ao elevado ńıvel de potência alcançado pelos testes de hipóteses clássicos de dimensão fixa

em amostras grandes, espera-se que, se a amostra for suficientemente grande, estes consigam

identificar qualquer desvio em relação à lei de Benford, por mais pequeno que seja, como sendo

estatisticamente significativo. Isto pode levar à rejeição da presença da lei de Benford em

amostras onde o desvio em relação à mesma não tem significância prática e à identificação de

amostras leǵıtimas como sendo fraudulentas. Esta dissertação sugere uma abordagem baseada

na seleção bayesiana de modelos. A metodologia proposta é aplicada num estudo emṕırico

que utiliza estat́ısticas macroeconómicas de páıses da Zona Euro e explora o conflito entre o

valor-p e as medidas bayesianas de evidência (fator de Bayes e probabilidades a posteriori) a

ńıvel do suporte por elas fornecido à presença da lei de Benford numa amostra. Conclui-se

que os testes clássicos rejeitam frequentemente a presença da lei de Benford em amostras onde

as medidas bayesianas são favoráveis à sua presença, e que mesmo limites inferiores destas

medidas sobre largas famı́lias de distribuições a priori frequentemente fornecem bastante mais

suporte à presença da lei de Benford do que o valor-p e os testes clássicos.

Palavras-Chave: Análise da Frequência dos Dı́gitos, Bondade do ajustamento, Calibração

do Valor-p, Detecção de Fraude, Seleção Bayesiana de Modelos, Estat́ısticas Macroeconômicas,

Factor de Bayes, Hipótese Nula Precisa, Lei de Benford, Limites Inferiores, Medidas Condicionais

de Evidência, Probabilidade Posterior, Testes de Hipóteses, Valor-p.
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“It is remarkable that a science which began with the consideration of games of

chance should have become the most important object of human knowledge.”

Pierre Simon Laplace (1820)
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Chapter 1

Introduction

“The difficulty lies, not in the new

ideas, but in escaping from the old ones,

which ramify, for those brought up as

most of us have been, into every corner

of our minds.”

John Maynard Keynes (1937)

1.1 Motivation and Goals

Contrary to what one might intuitively think, the observed frequencies of leading digits in

numbers from many naturally occurring collections of numbers are not uniform. Instead,

smaller numbers are more likely to occur as first digits than larger numbers. In many such

datasets, about 30% of the entries start with a 1, 18% start with a 2, and so on up to the

less likely leading digit (9), occurring only about 5% of the time. Those are the frequencies

postulated by Benford’s Law (BL).

Digit Analysis (DA) consists in using empirical regularities regarding the occurrence

of digits in numbers, such as BL, to screen numerical datasets for anomalies like erroneous or

fraudulent data. It relies on goodness-of-fit tests, where a point null hypothesis represents

conformance to the expected law. The classical paradigm of hypothesis testing [Classical

Hypothesis Testing (CHT)] is the predominant approach. Conformance to BL is used as

1



proxy to normal behaviour, but because models are supposed to be approximations of the

reality and one can not realistically expect the data to perfectly fit the postulated models

(even when they are true) in all samples, Benford’s Law based Digit Analysis (BLDA) is a

problem where economic and practical significance of the deviation from the expected law is

more important than its statistical significance. Therefore, CHT with fixed dimension, which

according to Pericchi and Torres (2011) over-reject the null hypothesis in large samples due to

the high power they attain, making statistical significance prevail over economic significance

may be inappropriate for DA. Wasserstein and Lazar (2016) note that if a sample is big

enough then CHT can identify any deviation from the hypothesised law, no matter how tiny,

as statistically significant. BLDA is then likely to produce many false positives, as it identifies

very small deviations from BL, without practical importance, as statistically significant.

One goal of this dissertation is to propose an alternative BLDA methodology, based

on Bayesian Model Selection (BMS). Two model selection environments are presented, one

where conformance to BL frequencies is assessed jointly and is meant to be an alternative to

the classical joint goodness-of-fit tests used in DA, such as the chi-square test, and another

one where agreement to each BL postulated frequency is assessed individually, and is meant

to be an alternative to the classical z-test. Conditional Measures of Evidence (CME) [Bayes

Factors (BFs) and posterior probabilities (PPs)] will be used to quantify the evidence if favour

of the null hypothesis (conformance to BL), instead of the classical and widely used p-value,

which besides being more easily misinterpreted is difficult to perceive in a probability scale

and quantify as the strength of the evidence provided by the data against the null hypothesis.

The other goal is to explore the conflict between CHT and BMS in precise null

hypothesis testing, and its impact to BLDA. Delampady and Berger (1987, 1990) show that

CME often support precise hypotheses with tiny p-values, and that even lower bounds on

CME over wide classes of prior distributions often provide more support to the null hypothesis

than the p-value, suggesting that CHT frequently underestimate the evidence provided by

the data in favour of the null hypothesis.
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1.2 Structure

This dissertation begins with a brief literature review of the relevant topics, where preliminary

concepts are introduced (chapter 2): first, BL is defined and its empirical evidence is reviewed

(section 2.1), then DA is introduced, with particular focus on BLDA (section 2.5), section 2.6

addresses the conflict between the two main paradigms of hypothesis testing (the Classical and

the Bayesian) and section 2.7 details the motivation for the choice of the Bayesian approach

in the particular problem being addressed. Chapter 3 details the theoretical foundations

of the methodology that will be applied: the BFs are derived in sections 3.2 and 3.3, prior

distribution specification is discussed in section 3.4, PPs calculation is discussed in section 3.5

and the lower bounds on BFs and PPs are addressed in section 3.6. Chapter 4 presents an

empirical application of the methodology suggested in chapter 3 using real life data: the data

is described in section 4.2, the study design in section 4.3, the study results are presented

in 4.4 and discussed in section 4.5. The conclusions and the limitations of the approach are

presented chapter 5.

1.3 Notation and Terminology

A number’s first digit, which may also be referred to as that number’s most significant digit,

leading digit or mantissa, is the first element of the number’s floating point representation and

will be denoted D1. Likewise, Dk represents the kth most significant digit in a number: the kth

entry of the number’s floating point representation. The base 10 logarithm of x will be denoted

log(x), and its natural logarithm as ln(x). The CME should be interpreted as measures of

evidence conditioned by the data, not the ones conditioned by the truth of the null hypothesis:

this includes BFs and PPs and excludes p-values. All BFs in this work are BFs in favour

of the null hypothesis. Bold Greek letters represent vectors, capital Greek letters represent

parameter spaces and lower case Greek or Latin letters represent parameters. In situations

of no ambiguity, the null hypothesis may be referred to as just “the null”, the alternative

hypothesis as “the alternative” and the prior distribution as “the prior”. The Bayesian model

combining the prior distribution h(θ) with the likelihood f(x|θ) will be textually denoted as

f(x|θ) ∧ h(θ), for example: Multinomial∧Dirichlet Model or Binomial∧Beta Model.
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Chapter 2

Literature Review

“The law of probability of the occurrence

of numbers is such that all mantissae of

their logarithms are equally probable.”

Simon Newcomb (1881)

2.1 Benford’s Law: History and Definition

BL is due to Simon Newcomb and Frank Benford. Newcomb (1881) noticed that books

logarithmic tables were more worn out on the first pages and progressively cleaner throughout,

suggesting that the larger a number’s starting digit the less looked up to that number was.

Based on this observation, he made the conjecture on the epigraph of this chapter, which

implies the logarithmic relation in equation 2.1 (BL) and the probabilities in table 2.1.

Benford (1938), through a dataset of 20229 observations from 20 different variables, showed

that Newcomb’s conjecture did fit many real life collections of numbers.∗

P (D1 = d1) = log(d1 + 1)− log(d1) = log

(
1 +

1

d1

)
, d1 ∈ {1, . . . , 9} (2.1)

Benford’s (1938) study consisted in collections of numbers from such diverse sources as river

surface areas, population sizes, physical constants, numbers in newspapers front pages, all the

∗ Diaconis and Freedman (1979) provided convincing evidence that Benford manipulated round-off errors
to obtain a better fit. Nevertheless, according to Hill (1995-b), even the unmanipulted data remarkably
agrees to the logarithmic relation in equation 2.1.
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d1d1d1 1 2 3 4 5 6 7 8 9
P (D1 = d1) 0.3031 0.1761 0.1249 0.0969 0.0792 0.0669 0.0580 0.0512 0.0459

Table 2.1: Benford’s Law for First Digits (BL1) probabilities

numbers inside a Reader’s Digest issue, the heat of chemical compounds, molecules weight,

drainage rates, death rates, atomic weights, baseball statistics, addresses from the first 342

people listed on the American Men of Science, sequences of powers, factorials and square

roots, among others.

Through equation 2.1 and table 2.1 it is easy to see that, according to BL, the

distribution of leading digits in numbers is far from uniform. Instead, it shows a logarithmic

decay. Because DA often uses frequencies of digits other than the first, it is necessary to

generalize BL for digits beyond the first (equations 2.4 and 2.5), as well as for combinations

of digits (equations 2.2 and 2.3)∗:

P (D1 = d1, D2 = d2) = log

(
1 +

1

10 d1 + d2

)
(2.2)

P (D1 = d1, . . . , Dn = dn) = log

1 +
1

n∑
i=1

10n−idi

 (2.3)

P (D2 = d2) =
9∑

d1=1

log

(
1 +

1

10 d1 + d2

)
(2.4)

P (Dn = dn) =
9∑

d1=1

10∑
d2=0

· · ·
10∑

dn−1=0

log

1 +
1

n∑
i=1

10n−idi

 (2.5)

where di ∈ {0, 1, . . . , 9} for digits beyond the first. Equation 2.2 is the joint Probability Mass

Function (PMF) of D1 and D2, the first two digits, and equation 2.3 is the joint PMF of

D1, . . . , Dn, the first n digits. The marginal PMF of D2 (equation 2.4) is obtained by using

the lLaw of Total Probability (LTP) on equation 2.2 to sum across all possible values of d1,

and the marginal PMF of the nth most significant digit (equation 2.5) is obtained by using

the LTP on equation 2.3. Benford’s Law for Second Digits (BL2) probabilities, resulting from

equation 2.4, can be consulted in table 2.2. There is still a decreasing pattern, although less

∗ See Benford (1938) or Jamain (2001) for details on the derivation of equations 2.2 and 2.3.
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d2d2d2 0 1 2 3 4 5 6 7 8 9
P (D2 = d2) 0.1197 0.1139 0.1088 0.1043 0.1003 0.0967 0.0934 0.0904 0.0876 0.0850

Table 2.2: Benford’s Law probabilities for the second digit.

evident. For the third digit the probability is nearly uniform and for the forth and following

the deviation from uniformity is inappreciable [see Berger and Hill (2015, p.2)]. Diaconis

(1977) demonstrated that as n gets larger the distribution of Dn converges in exponential

time to uniformity.

2.2 Benford’s Law: Empirical Evidence

Subsequent to Benford’s (1938) work, an abundance of additional empirical evidence has

been found in many different domains, such as physics, biology, demographics, and computer

science. Some examples of conformance to BL that can be found in the scientific literature

are: lists of physical constants [Knuth (1981), Burke and Kincanon (1991)]∗, decimal parts of

failure (hazard) rates (Becker, 1982), radioactive half-lives [both measured and calculated

(Buck, Merchant, and Perez, 1993)], long series of floating point numbers from scientific

calculations [Knuth (1981), Hamming (1970)], sequences of factorials (Sarkar, 1973), powers of

integers†, Fibonacci numbers (Washington, 1981) and Lucas numbers (Giles, 2007), repeated

calculations with real numbers (Knuth, 1981), powers of random numbers (or their reciprocals)

as the exponent gets larger, products of random numbers as the number of terms in the

product gets higher‡ (Adhikari and Sarkar, 1968), prime numbers in large finite intervals

(Luque and Lacasa, 2009)§, the distribution of cells per colony in certain cyanobacterium

(Costas et al., 2008), basic genome data (Friar, Goldman, and Pérez–Mercader, 2012), daily

pollen counts in European cities (Docampo et al., 2009), population sizes [Nigrini and Wood

∗ Jamain (2001) warned to the fact that these results regarding physical constants may not be very
convincing as the samples are usually not large enough to allow strong statistical conclusions.

† See Raimi (1976) for the powers of two. A generalization for powers of higher order is a consequence of
the equidistribution theorem.

‡ Schatte (1988) extended this idea for sufficiently long computations in floating-point arithmetic.
§ Although for this case it is a generalized version of the Benford’s law [see Pietronero, Tosatti, Tosatti,

and Vespignani (2001)]. Furthermore, the larger the interval, the less logarithmic and more uniform
the distribution is. Diaconis (1977) showed that in the infinite limit the distribution of leading digits in
prime numbers is uniform.
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(1995), Jamain (2001), Hill (1995-b)], numbers (Varian, 1972) and regression coefficients

(Tödter, 2009) in scientific publications, vote counts in electoral processes [Torres (2006),

Pericchi and Torres (2011)] and the set of all numbers on the World Wide Web (Berger and

Hill, 2015, p. 4-6). More important for the purpose of this dissertation are the findings in the

fields of economics, finance and accounting: gross domestic product growth rates (Nye and

Moul, 2007), many macroeconomic time series such as banking statistics, national financial

statistics and balance of payment statistics (Gonzalez-Garcia and Pastor, 2009), business

invoices and financial forecasts (Varian, 1972), most of the accounting data [Nigrini (1992,

1995 1999, 1997, 2012)]∗, reported income tax data (Nigrini, 1996), interest received in United

States (US) tax returns (Berger and Hill, 2015), 1-day returns on the Dow-Jones Industrial

Average Index and on the Standard and Poor’s Index for stock prices (Ley, 1996), the main

Chinese stock market indices (Shengmin and Wenchao, 2010), and the Madrid, Vienna and

Zurich stock market prices (Pietronero et al., 2001).

2.3 Benford’s Law: Invariance†

Other distinctive properties of BL conforming datasets is that their leading digit distributions

are scale invariant (Pinkham, 1961), base-invariant (Hill, 1995-a), inversion invariant‡ (Benford,

1938) and sum invariant (Allaart, 1997). This means that if one begins with a BL conforming

dataset and either multiply all entries by a constant, divide one by each entry, or convert all

entries to another base§, the observed frequencies of leading digits will remain approximately

constant. For other invariances of BL see Jamain (2001). It is demonstrated that BL is

the only possible leading digit distribution with such properties, that is, if the frequencies

of leading digits in a numerical dataset are either scale invariant (Pinkham, 1961)¶, base

∗ Nigrini found that lists of items such as accounts receivable or payable, transactions, inventory accounts,
fixed asset acquisitions, daily sales, refunds and disbursements all follow BL.

† For a comprehensive and rigorous review of BL invariance properties see Berger and Hill (2011).
‡ Some tabulations of data are given in reciprocal form, such as candles per watt and watts per candle, as

Benford (1938) exemplified. If one form of the tabulation follows BL then its reciprocal also does.
§ When converting numbers to another base, the set of possible first digits will differ. Therefore, the leading

digits frequencies can not remain the same. However, changing the base will preserve the logarithmic
decay in frequencies if the original dataset follows BL (Smith, 2002). The generalization of BL1 for base
b is fD1(d1) = logb(1 + 1

d1
), for d1 from 1 up to b− 1 (Hill, 1995-b).

¶ Knuth (1981) and Hill (1995-a) accused Pinkham (1961) of making unwarranted assumptions about the
distribution of numbers when deriving BL trought scale-invariance. Also, note that scale invariance is
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invariant (Hill, 1995-a) or sum invariant (Allaart, 1997) then BL must hold.

2.4 Where can the Benford’s Law be Found?

There has been a lot of attempts at explaining the emergence of BL [see Raimi (1976), Hill

(1995-b), Scott and Fasli (2001), Jamain (2001), Smith (2002), Fewster (2009), Nigrini (2012)

or Berger and Hill (2015) for reviews]. It is accepted that the first rigorous explanation was due

to Hill (1995-b), who demonstrated that if random samples from different randomly-selected

(in any unbiased way) probability distributions are combined, then the leading digit frequencies

in the pooled sample converge to BL. This result helps explaining why BL arises so often.

While numbers describing some phenomena are under the control of a single distribution

(for example: the height of adult men behave according to a normal distribution), many

others are dictated by a random mix of all kinds of distributions. A good example is the

dataset resulting from pooling together all the numerical values in a firm’s financial statement:

the numbers will respect to many different variables, each behaving according to it’s own

Data Generating Process (DGP). The same principle applies for the set of all numbers in

a Census form, tax report, scientific article or magazine. This is congruent with Benford’s

(1938) findings: he used numbers from 20 different domains, and the pooled sample fitted BL

very well, even if some of the datasets did not when considered separately.

Some rules of thumb can help assessing whether a dataset should be expected to

conform to BL. The dataset’s mean should be larger than its median and the data’s histogram

should be positively skewed (Wallace, 2002). The graphical representation of the data

should resemble a geometric sequence (without artificial truncation) and the logarithm of the

difference between the largest and smallest values should be close to an integer value (Nigrini,

2012). The larger the ratio of the mean divided by the median, the most likely the fit is

(Durtschi, Hillison, and Pacini, 2004). The numbers should represent quantities, amounts or

sizes, should be free of imposed limits∗ (bounded sequences with restricted significant digits

actually not so rare. Quoting Jones (2002): “In the search for order and laws in complex systems there
has been the realisation that much of life is scale invariant.”.

∗ The “free of imposed limits” assumption may be relaxed as long as the data spans two orders of magnitude
(Nye and Moul, 2007).
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like hours of the day, months or years, human age or weight and the set of all integers are

not good fits), should not be assigned sequentially (like phone numbers, checks and lottery

numbers), and should not be influenced by human thought (ATM withdrawals, donations,

prices or values set at psychological thresholds such as rounded quantities). Datasets where

each entry consists in the arithmetical combination of multiple numbers, are also very likely

to behave according to BL.∗. Scott and Fasli (2001) consider that the best candidate datasets

to reproduce BL are the ones with only positive values, uni-modal (and non zero mode)

positively skewed distribution in which the median is no more than half of the mean. This

implies a lognormal distribution with scale parameter larger than 1.2 for the data.†

Considering the discussion above, most economical and financial datasets are obvious

candidates to fit BL: They consist in the aggregation of observations from several different

variables (such as the set of all numbers in a firm’s financial statement or in a government’s

budget report) and their entries consist in quantities or amounts that can be interpreted (and

are generated) as the mathematical combination of several other variates‡.

2.5 Benford’s Law and Digit Analysis

DA consists in using empirical regularities regarding the occurrence of significant digits in

numbers to detect erroneous or fraudulent data. The idea is to model a baseline frequencies

∗ Recall the already mentioned findings of Adhikari and Sarkar (1968) about products of random numbers,
Hamming (1970) and Knuth (1981) about long series of floating point numbers from scientific calculations,
Sarkar (1973) about factorials, Raimi (1976) about powers of integers, Knuth (1981) about repeated
calculations with real numbers and Schatte (1988) about long computations in floating point arithmetic.
Also, Raimi (1969) and Boyle (1994) argue that multiplying random numbers produces conformance to
BL and Boyle (1994) showed that BL is the limiting distribution of leading digits when random variates
are repeatedly multiplied, divided or raised to integer powers. Scott and Fasli (2001) showed that when
each number in a dataset is a product of many terms, the first digit distribution converges to BL as
the number of terms in the product increases. This holds for products of random variates, successive
multiplication by a new realization of the same random variable and for successive multiplication by
a constant. For products with fewer terms it is possible that full convergence is not reached but a
monotonic decay in the frequencies is still likely to be present.

† The “only positive values” condition is not as restrictive as it may look. Note that taking the absolute
value of all entries in a dataset leaves the leading digit distribution unchanged.

‡ Trivial example: Revenue=price × quantity. Every variable that can be modelled by an equation, can be
interpreted as an arithmetical combination of variates. The amount of terms in such an arithmetical
combination is larger than it may look by inspection of the equation, because the equation has an error
term that is itself interpreted as an arithmetical combination of all non included variates that affect the
value of the dependent variable.
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distribution representing normal behaviour and then attempt to detect if some particular

dataset significantly departs from it (Bolton and Hand, 2002). According to Durtschi, Hillison,

and Pacini (2004) various forms of DA have long been used by auditors when performing

analytical procedures, such as checking transaction records for duplicate payments. BL, when

applied to detect fraudulent or erroneous data, is just a more complex form of DA. BLDA is

only applicable to usually BL conforming datasets, and as seen in section 2.4, this includes

most of the economic and financial data.

Varian (1972) was the first to suggest the application of BL to DA. The idea is that in

datasets of naturally generated numbers (i.e. without intervention) where digit frequencies

conform BL, replacing numbers with fabricated ones typically results in deviation from BL.

As discussed in section 2.4, numbers influenced by human thought usually do not conform

BL, and hence manipulating numbers from a BL conforming DGP leaves a detectable trace

in the data. This may happen for many reasons, like the fact that numbers influenced by

human thought are usually tied to psychological thresholds. Durtschi, Hillison, and Pacini

(2004) note that someone creating false numbers usually (and subconsciously) favours certain

numbers, and may also be biased against certain numbers in an attempt to conceal their

actions. Nigrini and Mittermaier (1997) note that when entering fraudulent data, people tend

to use the same (or similar) amounts often, moving the observed digit frequencies away from

BL. Also, fraudsters are usually unaware of the properties of the DGP behind the data they

are manipulating, and consequently tend to distribute the made-up entries leading digits more

uniformly than a BL law conforming DGP would. Cho and Gaines (2007) find it very unlikely

that someone manipulating numbers would seek to preserve conformance to BL, because even

though it is widely applicable it is not widely known. Moreover, experimental research has

shown that people do a poor job in replicating random data even when they are told what the

DGP is (Camerer, 2003, pp. 134-138). Bolton and Hand (2002) consider the premise behind

fraud detection using tools such as BL to be the fact that fabricating data which conforms to

BL law is difficult. Diekmann and Jann (2010) consider that in order to ascertain the validity

of a BLDA it is necessary to demonstrate that the true data is in accordance to BL and the

manipulated data is not, but Rauch et al. (2011) consider the fact that the probability of BL

emergence is higher for non-manipulated than for manipulated data to be sufficient.
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A wide literature exists on the application of BLDA. Carslaw (1988) analysed New

Zealand firm’s earnings and found that the numbers contained more zeros in the second digit

than expected according to BL, suggesting that firms were manipulating (rounding up) their

earnings. Thomas (1989) studied US firms earnings and found that firms reporting losses

exhibit the reverse pattern (rounded down numbers), and also found evidence of manipulation

(through rounding of numbers) in earnings per share data. Other studies where BL is used in

the detection of earnings manipulation are: Niskanen and Keloharju (2000), Kinnunen and

Koskela (2003), Caneghem (2002, 2004), Skousen, Guan, and Wetzel (2004), Nigrini (2005)

and Guan, He, and Yang (2006). Nigrini (1992, 1996) was the first to extensively apply BL

to accounting data with the goal of detecting fraud. He also used it to help identifying tax

evaders, and so did Watrin, Struffert, and Ullmann (2008) and Möller (2009). Diekmann

(2007) applied BL to scientific fraud detection∗, and Asllani and Naco (2014) used it to screen

hospital spendings for numerical anomalies. Nye and Moul (2007), Gonzalez-Garcia and

Pastor (2009), Judge and Schechter (2009), Tödter (2009), Rauch, Göttsche, Brähler, and

Engel (2011) used BL to assess the quality of economic data and macroeconomic statistics.

Marchi and Hamilton (2006) found evidence of manipulation in self-reported regulatory data

in the Toxic Release Inventory: while reported emissions of some chemicals did not fit BL, the

measured values of the same chemicals did. They concluded that manipulation in the data

may be the reason why large drops in air emissions reported by firms are not always matched

by similar reductions in measured concentrations by pollution monitors. Giles (2007) studied

a dataset of winning bids from eBay auctions and because the numbers fitted BL he found

no evidence of collusion among bidders nor shill among sellers. Prudêncio (2015) analysed

the financial statements of three Portuguese commercial banks from 2007 to 2013 and found

significant deviations from BL. One of those banks, Banco Esṕırito Santo, went Bankrupt in

2014 and its former president, board of directors and other high level employees are facing

several charges including manipulation of accounting numbers. Haynes (2012) analysed

financial statements from bankrupt municipal governments and found overall nonconformity

to BL. He concluded that such screening, had it been done earlier, could have identified that

∗ Recall the findings of Varian (1972) and Tödter (2009) mentioned in section 2.2: regression coefficients
and other numbers from scientific publications are in conformance to BL. Hence, BLDA can help detecting
fraud in scientific publications.
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something was amiss. DA is also being used to screen and validate numbers from electoral

processes [Mebane (2006-a, 2006-b, 2007), Torres (2006), Pericchi and Torres (2004, 2011),

and Torres, Fernandez, Gamero, and Sola (2007)].

2.6 Paradigms of Hypothesis Testing

In the classical approach to hypothesis testing [Fisher (1925), Neyman and Pearson (1933)], a

significant finding is declared when the value of a test statistic exceeds a specified threshold,

with values of the test statistic above that threshold defining the rejection region. The

significance level (also known as dimension) of the test is defined as the maximum probability

that the test statistic falls into the rejection region when the null is true. Fisher (1925) proposed

the p-value (the probability, conditioned on the null hypothesis being true, of obtaining a test

statistic which is at least as unlikely as the one actually observed) as a measure of discrepancy

between observed data and null hypothesis. For its simplicity and apparent objectivity, the

p-value became the standard of measure evidence against an hypothesis (Schervish, 1996).

In the Bayesian approach, initially developed by Jeffreys (1935, 1967), statistical

models represent the DGP of the data under each of two competing hypotheses, the BF

compares the predictive density of the observed data under one model with that of the

alternative model, and the Bayes (1763) theorem is used to compute the PP of the hypotheses.

As Kass and Raftery (1995) note, Bayes theorem updates prior probabilities into

PPs through consideration of the data. The update represents the evidence provided by the

data, and it is the same regardless of the prior probabilities. In the odds scale, the update

corresponds to the BF, and represents the relative predictive density of the data under one

of the hypotheses compared with that of the alternative. The BF is a measure of change in

support, as it measures the change in prior odds in favour of one hypothesis after the data is

observed (Lavine and Schervish, 1999). Bernardo and Smith (1994) intuitively describe the

BF as a measure of whether (and by how much) the data have increased or decreased the

odds in favour of one of the hypothesis. Unlike the p-value, BFs depend only on the predictive

density of observed data, not on long run unobserved results (Goodman, 1999-b). On the

other hand, BFs require the specification of an alternative hypothesis. Because in BLDA the
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hypotheses being compared form a partition of the parameter space, with the alternative

corresponding to the bilateral composite hypothesis of divergence from a point null which

represents conformance to BL, the specification of the alternative is automatic, and therefore

one of the main critiques to this approach [the subjectivity involved in the specification of

the alternative when there is no objective choice (Johnson, 2013)] does not apply. However,

the specification of a prior distribution for the alternative is unavoidable. This drawback can

be mitigated by finding lower bounds on the CME over wide classes of prior distributions.

These two paradigms of hypothesis testing often produce seemingly incompatible

results. Edwards, Lindman, and Savage (1963), Berger and Delampady (1987, 1990), Berger

and Sellke (1987), and Lin and Yin (2015) show that evidence against the null hypothesis

provided by CME can differ by an order of magnitude from the p-value, when testing a

precise null hypotheses, raising concerns about the routine use of moderately small p-values

and significance levels. A p-value of 0.05, conventionally labelled as a significant result and

considered strong evidence against the null in the classical approach, can result in a PP of at

least 0.3 in favour of the null hypothesis∗. To solve this, Johnson (2013) considers that, in

CHT, evidence thresholds should be decreased to 0.005 for the declaration of a significant

finding and to 0.001 for a highly significant finding†. This contradicts Fisher (1925), for

whom a p-value below 0.05 was a safe indicator of a significant result, but agrees with Taleb

(2016), who warns that due the skewness and volatility of a p-value’s meta-distribution (across

repetitions of the same experience), to get what people mean by 5% confidence level, a p-value

almost one order of magnitude smaller than conventional is needed.

The apparent discrepancy between the two paradigms is due to the fact that they rely

on the calculation of different probabilities. p-values and significance levels are conditioned on

the null hypothesis being true, and so they can not be a direct measure of the probability of

that hypothesis (Goodman, 1999-b). PPs represent actual the probability of the hypotheses

being true conditioned on the observed data, which is more straightforward to interpret,

∗ To highlight the conflict between the p-value and the CME, Berger and Delampady (1987, 1990) and
Berger and Sellke (1987) showed that, in precise hypothesis testing, even the lower bounds on BFs and
PPs that are found over wide classes of prior distributions are often much larger than the corresponding
p-values. Therefore, one can not dismiss this conflict by arguing that the discrepancies are due to the
specific prior distribution that was chosen.

† In terms of BFs, Johnson’s (2013) revised standards for statistical evidence correspond to values from 25
to 50 for the declaration of a significant result, and 100 to 200 for a highly significant one.
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as it is more natural to think in terms of the probability of an hypothesis given the data

than in terms of the probability of the data given that the hypothesis is true. Still, a lot

of practitioners incorrectly interpret a p-value of 0.05 as the null hypothesis having a 5%

probability of being true, or as a 5% error rate on the rejection of the null, misinterpretations

which Goodman (1999-a) popularized as “the p-value fallacy”∗.

2.7 Why the Bayesian Approach?

Conformance to BL is a goodness-of-fit problem and hence BLDA relies on goodness-of-fit

statistical tests. Large samples are always preferable, to give the DGPs a chance to reveal its

true properties. Unfortunately, according to Pericchi and Torres (2011), the usefulness and

interpretation of the p-value on classical test statistics is drastically affected by sample size,

and Goodman (1999-a), Wasserstein and Lazar (2016) warn that the p-value and statistical

significance do not take into account the size of the observed deviation from the null: any

deviation, no matter how small, can produce a small p-value if the sample size or measurement

precision is high enough. Consequently, very small deviations from the null, with no practical

importance, are likely to be considered statistically significant†. Conversely, large deviations

can produce large p-values if the sample is small or if the measurements are imprecise, similar

deviations can have different p-values for different sample sizes and similar p-values may

correspond to different deviations in different samples.

Despite the p-value being able to indicate how incompatible the data is with a specified

hypothesis (Sellke, Bayarri, and Berger, 2001), knowing the data to be rare under one

hypothesis is of little use unless one determines how rare it is under the alternative hypotheses.

Hence, although in classical hypothesis testing the smaller the p-value, the more significant

the deviation from the null is, it is difficult to perceive the p-value in a probability scale and

quantify it as the strength of the evidence in the data against the null, as the p-value only

provides one side of the information [Lin and Yin (2015), Wasserstein and Lazar (2016)]‡.

∗ Other references on the susceptibility of the p-value to be misinterpreted are: Gibbons and Pratt (1975),
Schervish (1996), Matthews (1998), O’Hagan and Luce (2003) and Hubbard and Bayarri (2003).

† As Wasserstein and Lazar (2016) note, statistical significance is not equivalent to scientific, human, or
economic significance.

‡ A famous situation in which considering only how unlikely the evidence was under one of the hypothesis
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The practice of summarizing results into either statistically significant or non-significant

and drawing a sharp distinction between them, standard in classical hypothesis testing, can

also be misleading: besides encouraging the dismissal of potentially important evidence

in favour of null, any particular threshold separating significance from non-significance is

arbitrary∗, and even large changes in observed significance levels can correspond to small,

non-statistically nor practically significant changes in the underlying test statistics (Gelman

and Stern, 2006). Wasserstein and Lazar (2016) consider this dichotomy to distort the

scientific process and warn that scientific conclusions and business or policy decisions should

not be based only on whether a p-value passes a specific threshold.

In BLDA, economic and practical significance of the deviation from BL is more

important than it’s statistical significance, as one cannot realistically expect the observed

data to perfectly conform BL in all samples, even when BL hypothesis is true. Therefore,

CHT with fixed dimension, in which statistical significance is known to overweight economic

significance and which according to Pericchi and Torres (2011) are known to over-reject the

null hypothesis (which in this case represents conformance to BL) in large samples, may not

be adequate, as they are likely to produce many false positive results. According to Ley

(1996), the over-rejecting nature of such tests is due to the huge power they attain in large

samples, with the acceptance region shrinking with sample size, for a given significance level.

Leamer (1983) considers this to be a weakness of the classical method, as models are to be

considered mere approximations to reality instead of perfect DGPs.

Aware of all this, Ley (1996) addressed BLDA in a Bayesian way. Despite his posterior

distribution based parameter estimates being very close to BL theoretical ones, the classical

likelihood-ratio and chi-square tests would reject BL hypothesis in all datasets†. Torres (2006)

and Pericchi and Torres (2011) used the Jeffreys model selection approach, based on BFs,

PPs and respective lower bounds, and concluded that datasets with apparently very good fit

to BL could have nearly zero p-values.

resulted in a miscarriage of justice is the Sally Clark trial. See Green (2002) or Bram (2014, p.55)
∗ Only a very small change in some test statistic is required to move from a observed significance level of

0.51 (non-significant) to 0.49 (significant). According to Matthews (1998), even Fisher when asked why
his figure of 0.05 was a safe threshold at which to declare a result as significant, admitted he did not
know at all, and that he simply chose 0.05 because it was convenient.

† The same hypothesis was not rejected in the smaller samples resulting from considering only the last
years of data.
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Chapter 3

Bayesian Digit Analysis: Theoretical

Framework

“If we have no information relevant to

the actual value of the parameter, the

(prior) probability must be chosen so as

to express the fact that we have none.”

Harold Jeffreys (1967)

3.1 Introduction

In a collection of N nonzero numbers there are N first digits, assumed to have been generated

according to some 9-variate multinomial density f(x|θ), and M second digits (M ≤ N)

assumed to have been generated according to some 10-variate multinomial density f(y|ξ).

Because this dissertation focus in BL1 and BL2 based DA, what we want is to check whether

or not, in a given sample, θ and ξ (the parameter vectors from the multinomial DGPs

responsible for the occurrence of first and second digits) are as postulated by BL (tables 2.1

and 2.2, respectively).

Section 3.2 introduces the Multinomial ∧ Dirichlet model, a Bayesian alternative to

the classical joint goodness-of-fit statistical tests commonly used in BLDA.∗ Because joint

∗ The most common are: the chi-square test [see Murteira and Antunes (2012, p.460)], the
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goodness-of-fit tests evaluate conformance to BL frequencies as a whole but do not identify

which frequencies are in agreement to BL in a given sample and which are not, Nigrini (2000)

incorporated the z-test in DA, which applies individually to each frequency. Section 3.3

introduces the Binomial ∧ Beta model, a univariate version of the Multinomial ∧ Dirichlet

model, as an alternative to the z-test in DA.

3.2 Bayes Factor: Multinomial ∧ Dirichlet Model

Consider the random vectors X = (X1, . . . , Xk) and θ = (θ1, . . . , θk), respectively defined

in the subspaces χ = {(x1, . . . , xk) : xi ∈ IN0,
∑k

i=1 xi ≤ N} and Θ = {(θ1, . . . , θk) : θi ∈

(0, 1),
∑k

i=1 θi < 1}, where N is the fixed sample size and Θ is the k-dimensional simplex, Sk.

Let X follow a k-category multinomial distribution with unknown parameter vector θ ∈ Θ:

X|θ ∼Mk(N,θ):

f(x|θ) =
N !∏k+1
i=1 xi!

k+1∏
i=1

θi
xi (3.1)

with x ∈ χ, xk+1 = N −
∑k

i=1 xi and θk+1 = 1−
∑k

i=1 θi.

Let the observed counts of significant digits be represented by x = (x1, . . . , xk)
∗, a

realization of X|θ which is assumed to have arisen under one of two possible and mutually

exclusive states of the world (hypothesis/models) relative to θ: H0 with prior probability

P (H0) = π0 or H1 with prior probability P (H1) = 1−π0. Because the null hypothesis usually

represents the established theory, in the specific problem being addressed H0 represents

conformity to BL. Let θ0 = (θ01, . . . , θ0k) ∈ Θ be the parameter vector of the multinomial

PMF (3.1) under H0. Considering the subspace Θ1 = Θ\{θ0}, the hypotheses being compared

are:

H0 : θ = θ0 vs H1 : θ ∈ Θ1 (3.2)

Kolmogorov-Smirnov [see Massey Jr (1951) or Conover and Conover (1999, p.428)] and the Kuiper test
(Kuiper, 1960), both used with Stephens (1970) correction factor and with Morrow’s (2014) BL specific
critical values, the Conover (1972) test, and BL specific m-statistic (Leemis, Schmeiser, and Evans, 2000)
and d-statistic (Cho and Gaines, 2007) to whom Morrow (2014) also computed critical values. For a
review of the properties of these tests in BLDA see Morrow (2014).

∗ In BL1 analysis k = 8, x1 represents the count of ones as the first digit, x2 represents the count of twos
and so on. In BL2 analysis k = 9, x1 represents the count of ones as the second digit, x2 the count of
twos and so on.
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From Berger and Pericchi (2001), we know that the BF in favour of H0 is obtained

through B01(x) = m0(x)
m1(x)

, where mi(x) is the marginal density of the data under Hi:

mi(x) =

∫
Θi

f(x|θ)π(θ|Hi) dθ (i = 0, 1) (3.3)

where π(θ|Hi) is the prior distribution of θ under Hi, Θi is the parameter space of θ under

Hi and f(x|θ) is the likelihood of θ for a given x. Note that Θ0 = θ0 and as already defined

Θ1 = Θ \ {θ0}. Because H0 is a point null hypothesis,

π(θ|H0) = 1θ0(θ) (3.4)

where 1θ0(θ) is the indicator function of θ in {θ0}. Because the Dirichlet family of distributions

is the conjugate prior of the Multinomial distribution (Turkman and Paulino, 2015), and

also because there is a particular distribution in the Dirichlet family that corresponds to the

Berger, Bernardo, and Sun (2015) overall objective prior, a k-variate Dirichelet distribution

with parameter vector α = (α1, . . . , αk+1) ∈ R+
k+1 will be assumed for the prior distribution

of θ under H1, i.e. θ|H1 ∼ Dirk(α):

π(θ|α, H1) =
Γ(
∑k+1

i=1 αi)∏k+1
i=1 Γ(αi)

k+1∏
i=1

θi
αi−1dθ (3.5)

where Γ(·) is the Gamma function. This prior is centered on E(θ|α, H1) = α∑k+1
i=1 αi

and is

symmetric if αi = α ∀i. Using 3.1, 3.4 and 3.5 on 3.3:∗

m0(x) =
N !∏k+1
i=1 xi!

k+1∏
i=1

θ0i
xi (3.6)

m1(x) =
N !∏k+1
i=1 xi!

B(α+ x)

B(α)
(3.7)

where B(α) =
∫

Θ1

∏k+1
i=1 θi

αi−1dθ and B(α+ x) =
∫

Θ1

∏k+1
i=1 θi

αi+xi−1dθ are multivariate Beta

functions. Finally, dividing 3.6 by 3.7†

B01(x) =

∏k+1
i=1 (θ0i

xi)
∏k+1

i=1 [Γ(αi)]Γ[
∑k+1

i=1 (αi + xi)]

Γ(
∑k+1

i=1 αi)
∏k+1

i=1 Γ(αi + xi)
(3.8)

∗ Derivation of 3.7 in appendix A.1.
† Derivation of 3.8 in appendix A.1.
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with θ0k+1 = 1 −
∑k

i=1 θ0i. Besides the digit counts, x1, . . . , xk+1, and the null hypothesis

multinomial probabilities θ01 . . . , θ0k+1, this BF depends on the Dirichlet hyperparameters,

α1, . . . , αk+1, whose specification will be discussed in section 3.4.

3.3 Bayes Factor: Binomial ∧ Beta Model

From the X|θ ∼ Mk(N,θ) assumption, it follows that each element in X is Binomially

distributed: Xi ∼ Bin(N, θi)∀i ∈ {1, . . . , k}. When assessing conformance to one of BL

frequencies individually, a sample of N numbers corresponds the realization of N Bernoulli

trials, where a success is the occurrence of the first digit whose frequency is being assessed.

Consider Y = (Yi, . . . , YN), a vector of N independent Bernoulli random variables,

Yi ∼ Bin(1, θ), for some unknown θ ∈ Θ = (0, 1). Then X =
∑N

i=1 Yi ∼ Bin(N, θ). Let

y = (yi, . . . , yN) be a realization of Y and x =
∑n

i=1 yi the corresponding realization of X.

The likelihood of θ for a given x in a sample of fixed size N is:

f(x|θ) =

(
N

x

)
θx(1− θ)N−x (3.9)

The data, x, is assumed to have arisen under one of two possible and mutually exclusive

hypothesis relative to θ: H0 with prior probability P (H0) = π0 or H1 prior probability

P (H1) = 1 − π0. Again, H0 represents conformity to BL. Let θ0 ∈ (0, 1) be the parameter

of the binomial PMF (3.9) under H0, and define Θ1 = (0, 1) \ {θ0}. The hypothesis being

compared are:

H0 : θ = θ0 vs H1 : θ ∈ Θ1 (3.10)

Because the Beta family is the conjugate prior of the binomial distribution (Turkman

and Paulino, 2015), and considering the fact that H0 is a point null hypothesis, the assumed

prior distribution for θ is:

π(θ|Hi) =

 1θ0(θ) if i = 0

θa−1(1−θ)b−1

B(a,b)
if i = 1

(3.11)

where B(a, b) = Γ(a)Γ(b)
Γ(b+b)

=
∫ 1

0
θa−1(1− θ)b−1dθ is the beta function, 1θ0(θ) is the indicator

function of θ0 in Θ, θa−1(1−θ)b−1

B(a,b)
is the Probability Density Function (PDF) of a Beta(a, b)
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distribution and E(θ|a, b,H1) = a
a+b

. The marginal densitiy of the data under each hypotheses

is obtained through a univariate version of 3.3:

mi(x) =

∫ 1

0

f(x|θ)π(θ|Hi) dθ (i = 0, 1) (3.12)

Combining 3.11 with 3.12 and considering the hypothesis in 3.10:

m0(x) =

(
N

x

)
θ0
x(1− θ0)N−x (3.13)

m1(x) =

(
N

x

)
B(x+ a, n− x+ b)

B(a, b)
(3.14)

and finally, dividing 3.13 by 3.14, the BF in favor of H0 is:∗

B01(x) =
θ0(1− θ0)N−x Γ(a) Γ(b) Γ(n+ a+ b)

Γ(a+ b) Γ(n+ a− x) Γ(x+ a)
(3.15)

The specification of the hyperparameters a and b will be discussed in the next section.

3.4 Prior Distribution Specification

The criticism that Bayesian methods require subjective prior specification has been effectively

answered by the development of objective Bayesian methods based on non informative priors

(Kass and Wasserman, 1996). However, Berger and Delampady (1987) note that such methods

are not always available, and that precise null hypothesis testing is an example of a situation

where objective procedures do not exist, because even thought one can avoid prior probabilities

specification by focusing on BFs, there is no prior distribution specification that can claim to

be objective. Nevertheless, there are properties to impose on a prior distribution for it to

be considered adequate. Berger and Delampady (1987, 1990) argue that an adequate prior

for precise null hypothesis testing should be uni-modal, symmetric about the null parameter

value or at least centered on it, and non increasing about that same point†, to acknowledge

the central role of the null parameter value (representing the established theory), and avoid

treating parameter values other than that as special.

∗ Derivations of 3.13, 3.14 and 3.15 in appendix A.2.
† i.e. symmetric about (or centered in) θ0, non increasing around θ0 for the Multinomial∧Dirichlet Model

and symmetric about (or centered in) θ0, non increasing around θ0 for the Binomial∧Beta Model.
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In the Multinomial∧Dirichlet Model, if α = 1 is set [like in Pericchi and Torres

(2011) and Torres (2006)], 3.5 reduces the PDF of a uniform distribution on Sk, which is in

conformance to the Bayes-Laplace principle of indifference: assuming equiprobability of events

in the absence of prior knowledge (Syversveen, 1998). For a uniform prior to be obtained in

the Binomial∧Beta Model set a = b = 1. The fact that uniform priors are not invariant to

re-parametrizations (Paulino, Turkman, and Murteira, 2003) is not problematic in DA as we

are only concerned about parameters, not functions of them. Uniform priors are symmetric,

and non increasing in all their domain, hence being non increasing around the null parameter

values. For BLDA they are not centered on the null parameter values∗.

Instead, if α = 1
(

1
k+1

)
is set in the Multinomial∧Dirichlet Model, 3.5 becomes the

PDF of a Dirk
[
1( 1

k+1

)
], which is the overall objective prior (Berger, Bernardo, and Sun, 2015)

for the multinomial distribution. Equivalently, if a = b = 1
2

is set on the Binomial∧Beta

Model, the reference prior for the binomial distribution is obtained (Yang and Berger, 1996),

and because the Binomial∧Beta is a single parameter model, the reference prior is equivalent

to the Jeffreys prior, which unlike the uniform prior is invariant to reparametrizations (Yang,

1995). The overall objective prior and the reference prior obtained above are symmetric†, but

centered in points other than BL null‡. Moreover, because they are symmetric about their

mean, they also fail being non increasing around the null parameter value (for a = b = 1
2

the

Beta distribution is U-shaped and symmetric about 1
2
). Therefore, even though the reference

prior has the appealing conceptual interpretation of materializing a truly non-informative prior

[Bernardo (1979), Berger and Bernardo (1992-a, 1992-b), Berger, Bernardo and Sun (2009)]

and although both the reference and the overall objective prior have desirable properties for

posterior distribution-based inference (Berger, Bernardo, and Sun, 2015), they are designed

for estimation and may not be adequate for this particular BMS problem, as they spread

prior density around parameter values other than the null parameter values.

To center a Dirichlet prior on θ0 is only possible assuming α = cθ0 for some c > 0

(Delampady and Berger, 1990). However, if θ0 is the vector with BL1 or BL2 probabilities

∗ The uniform prior is centered on 1( 1
k+1 ) in the Multinomial∧Dirichlet Model and on 1

2 in the
Binomial∧Beta Model.

† The Dirk distribution is symmetric when αi = α ∀i ∈ {1, . . . , k + 1}, and the Beta (a,b) when a = b.
‡ Because π(θ) ∼ Dirk(α) ⇒ E(θ) = α∑k+1

i=1 αi
, the overall objective prior is centered on 1( 1

k+1 ), and

because θ ∼ Beta(a, b)⇒ E(θ) = a
a+b the reference prior is centered on 1

2 .
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and α = cθ0 is assumed, the resulting Dirichlet prior is not symmetric, as αi 6= αj for i 6= j.

Equivalently, to center the Beta prior on θ0, the necessary assumption are a = s θ0 and

b = s (1− θ0) for some s > 0, which again results in a asymmetrical prior for the specific case

of BL1 and BL2 analysis∗. Hence, to use the BFs in 3.8 or 3.15, we have to give up either on

the prior being symmetric or in the prior being centered on the null parameter value. Giving

up on symmetry seems to have a lower cost: although in the absence of prior knowledge it is

desirable to have a symmetric prior, as there is no particular reason to skew the prior density

towards any particular region in the parameter space, in BLDA the null corresponds to a

established theory, so it might be acceptable to skew the prior distribution towards a region

in parameter space suggested by that theory. On the other hand, there is no justification for

the prior density to be centered around a point other than the null parameter value.

Because the Dirichlet parameters affect the dispersion of the prior density and

consequently define how informative the prior distribution is, so does the choice of c. Because

a Dirk(α) distribution for θ implies a Beta (αi,
∑k+1

j=1 αj − αi) marginal distribution for each

parameter in θ, if θ ∼ Dirk(cθ0) then θi ∼ Beta (c θ0i, c− c θ0i) and Var(θi) = θ0i(1−θ0i)
c+1

. Note

that Var(θi) is a decreasing function of c, and hence smaller values of c are preferable, for

the prior to be as least informative as possible†. Equivalently, the values of a and b affect

the shape of the beta prior, and so does the choice of s. For the beta prior to have an

adequate shape (unimodal, centered on θ0 and non-increasing around θ0), besides a = s θ0

and b = s (1− θ0) it is necessary to have s θ0 > 1 and s (1− θ0) > 1. The smallest value of

s ∈ IN verifying those conditions for BL1 analysis is s = 22‡. For BL2 analysis s = 12 is

enough. Again, smaller values of s are preferable.

An additional property that might be useful to impose in the Dirichlet prior is that after

marginalizing it, the beta marginal distribution for each θi (i = 1, . . . , k + 1) have the already

discussed properties making them adequate prior distributions for θi|H1 in the Binomial∧Beta

model. This constrains even more the choice of the Dirichlet parameters. What is necessary

∗ The Beta(a, b) is only symmetric if a = b. When a = s θ0 and b = s (1− θ0), it is only possible to have
a = b if θ0 = 1

2 . No parameter is assumed to have such value under the BL1 or BL2 null hypotheses.
† The Dirichlet parameters can be interpreted as prior multinomial pseudo counts that subsequently will

be added to the observed counts, smoothing the weight of the likelihood. The larger c is, the larger all
the parameters in α are and consequently the more informative the prior distribution is.

‡ To confirm, just note that multiplying any entry from table 2.1 by 22 yields a number greater than one.
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is a Dirk(α) distribution with α= cθ0, and because Dirk(cθ0) ⇒ θi ∼Beta (c θ0i, c − c θ0i)

it is also necessary that c is such that c θ0i > 1 and c (1− θ0i) > 1, ∀i ∈ {1, 2, . . . , k + 1}. A

Dirichlet distribution fulfilling these requirements is a conjugate prior (for the multinomial

likelihood in the Multinomial∧Dirichlet model), centered on θ0, non-increasing around θ0

and implies a unimodal, centered on θ0i, non-increasing around θ0i beta marginal distribution

for each θi, which are conjugate prior to the binomial likelihood in the Binomial∧Beta model.

The smallest such value of c should be considered, which from the discussion above is c = 22

for BL1 analysis and c = 12 for BL2 analysis.

3.5 Posterior Probabilities

One can avoid the specification of prior probabilities for the hypotheses by focusing solely on

BFs. However, to compute PPs for the hypotheses, prior probabilities have to be assumed.

The BFs can be used to compute the PP of the null hypothesis being true [see Berger and

Sellke (1987)]:

P (H0|x) =

[
1 +

1− π0

π0

B01(x)−1

]−1

(3.16)

where π0 = P (H0) and 1 − π0 = P (H1) are the prior probabilities of the null and of the

alternative, respectively. Berger and Sellke (1987) consider that the objective choice of π0

is 1
2
, even tough some might argue that π0 should be larger, as H0 usually represents the

established theory. Torres (2006) and Pericchi and Torres (2011) used π0 = 1
2

when testing

for BL in their works mentioned in section 2.7. To set such a value for π0 is in conformance

to the principle of indifference, and results in the BF being equal to the posterior odds of H0

relative to H1. The relation in 3.16 applies directly to the BF in 3.8, and if x is replaced by

x it also applies to the one in 3.3.

3.6 Lower Bounds

Because the BFs in 3.8 and 3.15 require the specification of a prior distribution, the PPs

obtained by using 3.16 on them are affected by prior specification. Although Berger and

Delampady (1987) consider that in precise null hypothesis testing there is no choice of prior
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distribution that can claim to be objective, it is possible to impose objective restrictions on

the family of prior under consideration, and find objective lower bounds on BFs and PPs:

BΠ(x) = inf
π∈Π

Bπ(x) (3.17)

PΠ(H0|x) =

(
1 +

1− π0

π0

BΠ(x)−1

)−1

(3.18)

where Bπ(x) is the BF (3.8) that is obtained when a distribution π from a family of candidate

distributions Π is considered as the prior, BΠ(x) is the lower bound on Bπ(x), obtained

when the prior π ∈ Π that maximizes m1(x) is considerer, and PΠ(x) is the lower bound on

P (H0|x), resulting from using 3.16 on BΠ(x). For the BF in 3.15, just replace x by x. For

3.17 and 3.18 to be interpreted as objective lower bounds, the family Π should be large enough

as to contain all reasonable prior distributions, and thus minimizing specification subjectivity,

but should also have restrictions to exclude nonsensical distributions that would bias the lower

bounds against H0. Berger and Sellke (1987) showed that the family Π = {all distributions}

unduly biases conclusions against H0
∗, and so does Π = {all symmetric distributions}.

They propose as objective restrictions on Π that π is unimodal or (equivalently in the

presence of symmetry) non increasing around the null parameter value, so that no parameter

values other than that are favoured. Sellke, Bayarri, and Berger (2001) argue that the

family ΠUS = {Unimodal π, symmetric about the null parameter value} contains virtually

all objective priors, and that no density in this class is absurd. They also consider the

family ΠCU = {Conjugate prior π,which underH1 are centered on the null parameter value}

to produce satisfactory results, even though it is more restricted than ΠUS and may exclude

some reasonable distributions. Delampady and Berger (1990) considered both ΠUS and ΠCU

to be objective classes because they acknowledge the central role of the null parameter value

and spread prior density around it in ways not biased towards particular alternatives. For

testing multinomial model parameters, they showed that these classes produce very similar

lower bounds and derived formulas to compute BΠ. Berger and Delampady (1987) derived

the formulas to compute lower bounds in the Binomial case. If Π is representative enough,

∗ See Edwards, Lindman, and Savage (1963): even with this choice of Π, PΠ(H0|x) is still often larger
than the p-value, indicating that even extreme bias towards H1 in a Bayesian analysis often results in
less evidence against H0 than would appear to have been obtained with the p-value.
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the lower bounds on the PP of the null can claim to be objective, and a large lower bound

indicates that the data does not constitute strong evidence against the null, even if the p-value

is small. As Berger and Sellke (1987) state, a small p-value does not necessarily indicate the

presence of strong evidence against the null. Goodman (1999-b) considers lower bounds on

CME to be even more objective than p-values, because they are unaffected by hypothetical

long run frequentist results that make the p-values uncertain.

Sellke, Bayarri, and Berger (2001) developed a p-value calibration which allows p-values

to be interpreted in either a Bayesian or a frequentist way. Those calibrations can also be

used to compute lower bounds on BFs and PPs. Instead of depending directly on the sample

like the lower bounds in Berger and Delampady (1987, 1990), those lower bounds require only

a p-value (pobs) that is valid as input:

B(pobs) =

 −e pobs ln(pobs) if pobs <
1
e

1 if pobs ≥ 1
e

(3.19)

P (pobs) =

 [1 +B(pobs)
−1]
−1

if pobs <
1
e

1
2

if pobs ≥ 1
e

(3.20)

where B(pobs) is interpreted as the lower bound on the BF in favour of H0 and P (pobs) can

be interpreted as either a lower bound on the type I error conditional probability in the

rejection of H0 or as the lower bound on the PP of H0 arising from the use of 3.16 on the

BF in 3.19 together with the assumption that π0 = 1
2
. The lower bounds on BFs and PPs

obtained with this p-value calibration are very similar the ones obtained in Berger and Sellke

(1987) with ΠUS (the family argued to contain all objective priors), giving strong support

to the appropriateness of the calibration, which also has the advantage of converting pobs

into a more intuitive scale. With this calibration one need not fear misinterpretation of a

Frequentist error rate probability as the probability of the hypothesis being true, as they

coincide. Pericchi and Torres (2011) describe 3.20 as a useful way to calibrate p-values under

a robust Bayesian perspective but warn that because this calibration does not depend on

sample size, for large samples it may be very conservative. A full p-value correction requires a

BF and the corresponding PP of H0.
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Chapter 4

Bayesian Digit Analysis: Empirical

Application

“The ancients knew very well that the

only way to understand events was to

cause them.”

Nassim Taleb (2010)

4.1 Overview

This empirical application is meant to show that the concerns raised in section 2.7 regarding

the classical hypothesis testing framework do arise in DA, as well as to demonstrate the

applicability of the alternative methodologies suggested in chapter 3. The focus is on

macroeconomic data, which like accounting data is susceptible of being manipulated. Rauch,

Göttsche, Brähler, and Engel (2011) warn that macroeconomic statistics can be used by

governments to portray a more favourable picture of their countries economic situation, either

to archive preferential conditions in capital markets, or just for popularity purposes. The

pressure for European Union’s governments to comply with the Stability and Growth Pact

Criteria (SGPC) is an additional incentive for them to manipulate macroeconomic statistics,

so that sanctions are avoided. There is the necessity to develop effective methods to screen

such data for manipulation, and BLDA is one of such possible methods.
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4.2 Data

The data was extracted from the Eurostat Database∗ in July 2016 through the directory:

Database by themes→ Economy and finance→ Government statistics→ Government finance

statistics → Government deficit and debt → Government deficit/surplus, debt and associated

data. For each country being analysed, all numbers from the 38 tables in this category were

aggregated in a dataset. Each of those datasets provides two samples: one of first digits

and one of second digits. This category was selected because, as Rauch, Göttsche, Brähler,

and Engel (2011) note, it is related to public deficit and public debt, which are variables

that are used in the calculation of the SGPC relevant criteria such as deficit ratio and debt

ratio. The period under consideration is from 1999 to 2015, with 1999 being the starting

point because it is the year in which the Euro was introduced as book money. The unit of

measurement is Million Euro for all entries. Only countries that joined the Eurozone prior

to 2006 were selected, so that at least 10 years of data were available. Samples sizes and

some descriptive statistics of the data can be found in table C.2. Matthews (1999) warns

that a sample of numbers should be big enough to give the predicted proportions a chance to

assert themselves. The considered datasets should be big enough. Divergence in sample sizes

between countries is due to missing data, and also because entries equal to zero were removed

from the samples. For the same country, the samples used for BL1 and BL2 analysis may

differ in size, because numbers with only one digit are considered in BL1 analysis but not

in BL2 analysis. Considering the discussion in section 2.4, all sampless that will be subject

to analysis have the properties that typically result in the emergence of BL: each sample

consists in the aggregation of data from 38 different tables respecting to different economic

and financial variables which are measured in amounts and are free of imposed limits, every

sample’s average is larger than its median, all dataset histograms are positively skewed, and

the numbers are supposed to have been generated without human intervention.

∗ http://ec.europa.eu/eurostat/data/database
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4.3 Study Design

Because these datasets are expected to conform to BL, large deviations from it should raise

concern about the process that generated them, namely it may suggest that they were not

generated by a natural process (i.e. without human intervention). Hence, BLDA can help

detecting which datasets are most likely to have been manipulated.

Conformance to BL will be evaluated on each sample from table C.2, using the

Multinomial ∧ Dirichlet model. Three BFs in favour of the null hypothesis (3.2) will be

computed for each sample (using 3.8): one with αi = 1 ∀i, resulting in a uniform prior [as in

Ley (1996), Torres (2006) and Pericchi and Torres (2011)], one with αi = θ0i resulting in a

Dirk(θ0) prior, the least informative Dirichlet centered on θ0, and because of the discussion

in 3.4 about the properties of the marginal distributions of the joint prior, one with either

αi = 22 θ0i (BL1 samples) or αi = 12 θ0i (BL2 samples) resulting in a Dirk(22θ0) prior for

BL1 analysis and a Dirk(12θ0) prior for BL1 analysis. Equation 3.16 will be applied to each

BF in order to compute the corresponding PP. For each sample, the p-value [see Murteira,

Ribeiro, et al. (2010, p.416)] from the chi-square test on the null hypothesis in 3.2 will be

provided. Those p-values will be calibrated into lower bounds on the PPs using 3.20.

Samples with P (H0|x) = 0 will be analysed with the Binomial ∧ Beta model and with

the z-test to identify which frequencies diverge from BL and to which extent. For each such

sample, two BFs (using 3.15) in favour of the null (3.10) will be computed for each leading

digit frequency: one with a = b = 1 resulting in a uniform prior, and one with either a = 22 θ0

and b = 22− 22 θ0 (for BL1 samples) or a = 12 θ0 and b = 12− 12 θ0 (BL2 samples), resulting

in the Beta marginal distributions implied by the Dirk(22θ0) and Dirk(12θ0) priors used in

the Multinomial ∧ Dirichlet model. PPs will be obtained using 3.16, and the lower bounds

on them using 3.20 on the p-value from Nigrini’s (2000) z-test, based on the statitics:

zi =
|θi − θ0i| − 1

2N√
θ0i(1−θ0i)

N

a∼ Normal(0, 1) (4.1)

where 1
2N

is the continuity correction factor.

BFs will be presented in logarithms, rounded to two decimal figures, and will be

interpreted their according to the scale in table C.1. PPs and respective lower bounds, p-values,
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variances and standard deviations will be rounded to five decimal figures. Hyperparameter

standard deviations will be the preferential measure of how informative a prior distribution

is. Unless otherwise stated, CHT is conducted at the dimension of 0.05. BMS prefers the

null hypothesis if P (H0| data) > 0.5 [or B01 > 1 or equivalently ln(B01) > 0] and prefers the

alternative otherwise. Because in BLDA the null hypothesis corresponds to a established

theory and is used as proxy for the status quo (absence of fraudulent or erroneous data),

stronger evidence against the null than P (H0| data) < 0.5 should be required for the null

to be rejected. The rejection rule that will be used is P (H0| data) < 0.05, which is the rule

people incurring in the p-value fallacy think they are applying.

This study has two goals. The first is to compare the results of the Classical and the

Bayesian approaches to BLDA. Bayesian CME will be compared to their Classical counterparts

(p-values) to look for divergences in the conclusions drawn. Because of the discussion in

section 2.7, CHT is expected to reject BL in samples where both Bayesian methods and

graphical inspection suggest otherwise. The second is to try BLDA using prior distributions

centered on the null parameter value and non-increasing around it, as Berger and Delampady

(1987, 1990) consider adequate for precise hypothesis testing, and in particular try the

unified approach discussed in section 3.4 (using as prior in the Binomial ∧ Beta Model the

marginal distributions implied by the joint prior of the Multinomial ∧ Dirichlet Model). All

hyperparameter variances and standard deviations will be computed.

4.4 Study Results

We developed a VBA macro to perform the computations on the data (see appendix D). A

graphical comparison between each dataset’s observed first and second digit counts and BL

postulated counts can be found in Section B.1. The p-values from the chi-square tests and

the results from the Multinomial ∧ Dirichlet model can be found in tables C.3 (αi = 1), C.4

(αi = θ0i) and C.5 (for αi = 22 θ0i). Hyperparameter variances and standard deviations from

the Multinomial ∧ Dirichlet can be found in tables C.14 (for αi = 1), C.15 (αi = θ0i) and C.16

(for αi = 22 θ0i). The datasets that will be analysed with the Binomial ∧ Beta model and

with the z-test are Austria BL1, Ireland BL1, Luxembourg BL1 and Portugal BL1. The z-test
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p-values and the Binomial ∧ Beta model results with the Beta (1, 1) prior (i.e. uniform) can be

found in tables C.6 (Austria), C.7 (Ireland), C.8 (Luxembourg) and C.9 (Portugal) and with

the Beta (22 θ0, 22− 22θ0) prior in tables C.10 (Austria), C.11 (Ireland), C.12 (Luxembourg)

and C.13 (Portugal). The Binomial ∧ Beta model hyperparameter variances and standard

deviations can be found in tables C.17 [Beta (1, 1) prior] and C.18 [Beta (22 θ0, 22− 22θ0)].

4.5 Discussion of the Results

The pictures in appendix B.1 support the idea that the first digit frequencies in the analysed

samples are not uniform. All samples show a decreasing pattern in first digit counts, although

not always monotonically decreasing like BL postulates. Considering Hill’s (1995-b) theorem

mentioned in section 2.4, it is not a surprise that the pooled samples exhibit the best fit to

BL1 and BL2. This may also be due to the fact the pooled samples are much larger than the

countries samples, giving the true frequencies a better chance to assert themselves.

Let’s now discuss prior distribution specification. In tables C.10, C.11, C.12 and

C.13 we can see that P (H0|data) = 1 in all lines of the four tables, signalling that the

Beta (22 θ0, 22−22θ0) prior is too informative. Prior density is so concentrated around θ0 that

the data is not able to shift posterior density away from θ0 in any of the samples that were

analysed with the Binomial∧Beta model. In table C.18 we can see that the hyperparameter

standard deviations look too small with this prior and when compared to the hyperparameter

standard deviations of the uniform prior (table C.17) they are, roughly speaking, 3 to 4 times

smaller. Emphasis will therefore be given to the Binomial∧Beta model results obtained

with the uniform prior and to the Multinomial∧Dirichlet model results obtained with the

uniform and Dirk(θ0) priors. Comparing tables C.14, C.15 and C.16 we can see that in the

Multinomial∧Dirichlet model the Dirk(θ0) is the least informative prior and the Dirk(22θ0)

the most informative. The uniform prior is in the middle, but closer to the Dirk(22θ0).

Lets now analyse the Multinomial∧Dirichlet model results and the p-values from

the chi-square test. First, consider the uniform prior (see table C.3). Comparing each

PP with the corresponding p-value, there is agreement in the rejection of the null at the

traditional dimensions (0.01, 0.05, 0.1) in the datasets of Austria BL1, Belgium BL1, Ireland
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BL1, Luxembourg BL1 and Portugal BL1, and agreement in not rejecting the null in the

datasets of Belgium BL2, Germany BL2, Ireland BL2, Portugal BL2 and Spain BL2.

In Austria BL2 and Finland BL2 the p-values indicate a significant deviation from BL

at the dimension of 0.05 and not significant at 0.1, despite the high PP of the null (≈ 1) and

the BFs claiming decisive evidence in favour of the null. Both datasets have a lower bound

on the PP of the null greater than 0.3. In Greece BL2 and France BL2 we have PPs ≈ 1

and BFs indicating decisive evidence in favour of the null but the p-values only reject the null

at the dimension of 0.05 and not at 0.01. Again, the lower bounds on the PP indicate weak

evidence against the null. In Netherlands BL2 and Pooled Sample BL2 the p-values indicate

barely statistically significant deviations from BL at the dimension of 0.05 (not significant at

0.01) but the BFs indicates decisive evidence in favour of the null, P (H0| data) ≈ 1 for both

datasets and the lower bounds on the PP of the null in both datasets is grater than 0.3.

The last paragraph illustrates the conflict between the p-value and the CME: a small

p-value apparently signals strong evidence against the null but when BMS is used the same

dataset may generate a large PP of the null and even the lower bound on the PP can be much

larger than the p-value. Note that lower bounds are biased towards the alternative hypothesis

and hence the true probability of the null is almost certainly larger than the lower bound.

Also, notice by how much one underestimates the probability of the null when incurring in

the p-value fallacy [interpreting the p-value as the P (H0| data)]. These results also illustrate

the impact of the statistical significance dichotomy to DA: samples with good fit to BL may

have the null rejected just because of an arbitrarily chosen evidence threshold.

In the Finland BL1, France BL2, Germany BL1, Greece BL1, Italy BL1, Italy BL2,

Luxembourg BL2, Netherlands BL1, Spain BL1 and Pooled BL1 samples, the conclusions

drawn with CHT at the traditional dimensions differ from those of BMS. All these samples

have zero or nearly zero p-values and P (H0| data) > 0.9 (except Spain BL1 which has

P (H0| data) = 0.8079). In most of these datasets the lower bounds on the PPs are small and

seem to agree with the p-value, reinforcing the idea that the evidence in favour of the null

is weak. Yet, one must be careful as these lower bounds are based on a p-value calibration

which does not depend on sample size and hence can be very conservative in large samples.

Nevertheless, the Netherlands BL1 sample is a good example of the inadequacy of the p-value
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for precise hypothesis testing: if CHT is used, the p-value of 0.00916 rejects the null at the

traditional significance levels but the three prior distributions used in this study suggest a

PP of the null very close to one, which is decisive evidence in favour of the null. The lower

bound indicates that there is at least a nearly 0.1 PP that the null is true. A similar situation

occurs with Greece BL2. As for the Pooled Sample BL2, despite having a PP of the null of at

least 0.30444 and P (H0| data) ≈ 1 in the three prior specifications, it has a p-value of 0.05579,

which is close to the 0.05 rejection threshold and rejects the null at the dimension of 0.1.

Now consider the Pooled Sample BL1 dataset. It is the largest sample and the shows

the best graphical fit to BL. Nevertheless, a p-value equal to zero indicates that the classical

method finds strong evidence against the null, and the deviation from BL is considered

significant at all significance levels, despite the high PP of the null obtained with the three

prior specifications. The fact that P (H0| data) is also equal to zero is either due to the

conservative nature of the p-value calibration in large samples or to the fact that the observed

p-value which is input in the calibration is very close or equal to zero.∗

With the Dirk(θ0) prior there are even more samples where the conclusions drawn

from BMS differ from those of CHT: Austria BL1, Belgium BL1, Finland BL1, France BL1

and BL2, Germany BL1, Greece BL1, Ireland BL1, Italy BL1 and BL2, Luxembourg BL2,

Netherlands BL1 and Spain BL1. All those samples have either zero or nearly zero p-values,

P (H0| data) ≈ 1 and BFs claiming decisive evidence in favour of the null†. CHT and BMS

agree in the rejection of the null in Luxembourg BL1 and Portugal BL1 and agree in not

rejecting it in Belgium BL2, Germany BL2, Ireland BL2 and Portugal BL2. For Austria BL2,

Finland BL2, Greece BL2, Netherlands BL2 and Pooled Sample BL2 the conclusions may or

may not coincide depending on the dimension of the chi square test. Again, note that small

p-values can be obtained in samples with good conformance to BL and that samples in which

BMS finds strong evidence in favour of the null (high PPs or even high lower bounds on PPs)

may have the null rejected because of an arbitrarily chosen evidence threshold.

∗ Some zeros in the result tables are actually decimal numbers rounded down to zero according to the
rules defined in section 4.3. In such situations, the p-value that is input in the calibration is the decimal
number, as the macro uses more decimal places than the five we are using. If the observed p-value is
actually zero (or a decimal number sufficiently small for the macro to round it to zero), the macro is
programmed to return a lower bound equal to zero, as it is the limit of the calibration as the p-value goes
to zero. Otherwise the macro would return an error message as it couldn’t compute the logarithm of zero.

† With the exception of Austria BL1 where the evidence in favour of the null is “just” very strong.
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Lets now discuss the Binomial∧Beta model and z-test results. For Austria BL1 (see

table C.6) the classical method finds the most significant deviations from BL in the counts

of fives and sevens (both p-values equal to zero). CME agree, as those are the counts with

lowest PP of having been generated by BL, both with nearly zero probability. CHT also

rejects BL in the count of ones and fours. CME disagrees and assigns a PP of conformance to

BL of 0.54162 to the count of ones and 0.19382 to the count of fours. If lower bounds are

considered the PPs are now 0.1682 and 0.0244, respectively. This reduces the gap between the

conclusions drawn with Classical and the Bayesian method but still results in considerable

evidence in favour of the null in the count of ones, which is vehemently rejected with CHT.

In the Ireland BL1 dataset, CHT rejects the null in the counts of threes, fours, fives,

sixes and nines. There is a conflict between the p-value and the CME in the count of fives:

a p-value of 0.00994 results in the rejection of the null at the traditional dimensions and

apparently is strong evidence against the null but the PP of the null is 0.45297 and its lower

bound is 0.11018. In the count of nines the situation is even worse: a p-value of 0.03934 is

sufficient to reject the null at the 0.05 significance level in CHT although the obtained PP is

0.80347 with a lower bound of 0.25707. The same goes for the count of threes: BL is rejected

in CHT as the p-value of 0.04486 is on the 0.05 rejection region, but the uniform prior finds a

PP of 0.77214 for BL, and it’s lower bound is 0.27458. In the counts of sixes the conflict is

less evident [p -value = 0.00018, P (H0| data) = 0.05526, P (H0| data) = 0.004139].

In the Luxembourg BL1 dataset (see table C.8), CHT rejects the null in the counts of

ones, twos and fives. The lowest p-values (equal to zero for the counts of ones and fives) are

backed by very tiny PPs of the null, even when lower bounds are considered. In count of twos,

the nearly zero p-value may conflict with the 0.04634 PP of the null, although if the lower

bound is considered the PP is only 0.01442. Note that the cont of eights, despite having a

p-value not far from the rejection threshold and which would result in the rejection of the null

at the dimension of 0.1, has nearly 0.9 PP of the null, and a lower bound of 0.35 on that PP.

The Portugal BL1 sample seems to be less problematic (see table C.9). There is

conformance in the rejection of BL in the counts of ones, twos and fours. The only conflict to

highlight is in the count of sevens: a p-value that would call for a rejection of the null at the

dimension of 0.1 contrasts with 0.97175 PP of the null, with a 0.5 lower bound.
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Chapter 5

Conclusion

“Far better an approximate answer to

the right question, which is often vague,

than an exact answer to the wrong

question, which can always be made

precise”

John Tukey (1962)

5.1 Conclusion

A Bayesian approach to Benford’s law based digit analysis was suggested. The conflict between

classical hypothesis testing and Bayesian model selection, and its consequences to Benford’s

law based digit analysis were explored through an empirical application using macroeconomic

statistics from Eurozone countries. Combining the ideas exposed in chapters 2 and 3 with the

results from the empirical application in chapter 4, the main conclusions to be drawn are:

• Graphical inspection suggests that, as suspected prior to the experience, the analysed

samples of macroeconomic statistics show a decreasing pattern in leading digit frequencies.

Digit analysis can therefore be an useful tool in the detection of erroneous or fraudulent

collections of such numbers.

• The conflict between classical hypothesis testing and Bayesian model selection does

arise in Benford’s law based digit analysis and can be of severe consequences if one

34



is not aware of it: large samples in which both graphical inspection and conditional

measures of evidence suggest agreement with Benford’s law are likely to have the null

(i.e. Benford’s law) rejected by classical hypothesis testing with fixed dimension.

• This conflict is not due to prior distribution specification, as even the lower bounds on

conditional measures of evidence over wide classes of prior distributions often provide

much more support to Benford’s law than the p-values when compared to the typical

classical hypothesis testing evidence thresholds, suggesting that to consider only the

p-value may cause an underestimation of the evidence in favour of Benford’s law.

• Models are just approximations of reality and one can not realistically expect the data

to perfectly fit the postulated models in all samples even when they are true. Similarly,

one cannot realistically expect collections of numbers to perfectly fit Benford’s law even

when the underlying data generating process is indeed Benford’s law conforming. The

usefulness and interpretation of p-values is then drastically affected by sample size, and

classical hypothesis testing with fixed dimension is of limited usefulness in Benford’s law

based digit analysis: due to the high power that classical tests attain in large samples

they are likely to produce small p-values and reject Benford’s law in samples with

very tiny (and without practical importance) deviations from it, producing many false

positives results (i.e. classifying legit samples as fraudulent or erroneous).

• Although Bayesian methods are often subject to criticism for relying on subjective

procedures, the classical method is also not without an element of subjectivity, as the

threshold separating statistical significance from non-significance is itself arbitrary. It

was shown that when classical hypothesis testing is used in Benford’s law based digit

analysis the conclusions drawn are sensible to that arbitrarily chosen evidence threshold.

It can therefore be misleading to draw sharp conclusions based solely on the statistical

significance of a deviation from Benford’s law.

• Because in precise null hypothesis testing the conditional measures of evidence are often

much larger than the p-value, and it was shown that Benford’s law based digit analysis

is no exception, one incurring in the p-value fallacy will typically largely overestimate

the practical importance of an observed deviation from Benford’s law.
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• Instead of reporting Benford’s law based digit analysis results in a binary significant/not

significant way, as typically done in classical hypothesis testing , it is recommended to

report a measure of evidence quantifying the extent of the deviation from Benford’s law.

Because the p-value is an incomplete measure of the evidence provided by the data,

quantifying only how unlikely it is to observe data as or more extreme than the one

actually observed under one hypothesis without taking into consideration how unlikely

it is under the alternatives, it is advisable to report conditional measures of evidence.

Posterior probabilities measure the probability of the hypotheses provided by the data

and are more safe and straightforward to interpret.

5.2 Limitations

• Benford’s law is just a proxy for normal behaviour, and even a deviation from it with

both economic and statistical significance does not ensure that the data is erroneous or

fraudulent. No accusations should be made based solely on Benford’s law based digit

analysis and further investigation is always required after the identification of a suspect

dataset. Linville (2011) warns that there are case-specific factors that may legitimately

skew the frequencies of digits, like some pricing schemes or discount campaigns. For

example, a firm that sets all prices ending up in 99 has transaction records not in

conformance to Benford’s law. Before applying Benford’s law based digit analysis it is

important to think if the specific situation being analysed has any particularity that

may legitimately skew the observed frequencies away from Benford’s law.

• In chapter 3 the possible values of c and s were restricted to the set of natural numbers

when they need only be restricted for the set of positive real numbers. This choice

was made purely on convenience, as it would be more difficult to find the smallest real

positive number satisfying the restrictions that were imposed.

• Classical hypothesis testing was criticized for underestimating the evidence provided

by the data in favour of the null. That critique may also apply to Bayesian model

selection. The lower bounds on the conditional measures of evidence are also biased

against the null, as from the family of priors under consideration they choose the prior
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which maximizes the predictive density of the alternative hypothesis. The fact that the

p-value calibration that was used does not depend on sample size also contributes to

the underestimation of the true posterior probability of the null, as the calibration may

be conservative in large samples. Sellke, Bayarri, and Berger (2001) note that the fact

that such lower bounds are often still much larger than p-values indicates the severe

nature of the bias against a precise null that can arise due to the p-value fallacy.

• The true Bayes factors and posterior probabilities of the null are almost certainly larger

than the lower bounds on them that were computed. Therefore, it should be safe not to

reject the null when the lower bounds are high. On the other hand, if the lower bound

are small the conclusion is ambiguous, as it does not necessarily implies that the true

conditional measures of evidence are themselves small.

• To allow Bayes factors and posterior probabilities to be computed analytically, only

conjugate priors were used. Unfortunately, the Dirichlet and Beta families were not

versatile enough to allow for the simultaneous imposition of all the desired restrictions

on the hyperparameters without making the priors too informative.

5.3 Further Research

• The p-value calibrations that were used are just approximations to the exact lower

bounds on the conditional measures of evidence. It would be interesting to code a

routine to compute the exact lower bounds using the formulas derived by Berger and

Sellke (1987) and Delampady and Berger (1990).
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Appendix A

Derivations

“Bayes’ rule is a rigorous method for

interpreting evidence in the context of

previous experience or knowledge”

James Stone (2013)

A.1 Multinomial ∧ Dirichlet Model

Note that 3.3 together with 3.1, 3.4 and 3.5 implies :

m0(x) = f(x|θ0) =
N !∏k+1
i=1 xi!

k+1∏
i=1

θi
xi

m1(x) =

∫
Θ1

f(x|θ)π(θ|α)dθ =

∫
Θ1

N !∏k+1
i=1 xi!

k+1∏
i=1

θi
xi

1

B(α)

k+1∏
i=1

θi
αi−1dθ =

=
N !∏k+1

i=1 xi!B(α)

∫
Θ1

k+1∏
i=1

θi
αi+xi−1dθ =

=
N !∏k+1
i=1 xi!

B(α+ x)

B(α)

where B(α) =
∏k+1

i=1 Γ(αi)

Γ(
∑k+1

i=1 αi)
and B(α + x) =

∫
Θ1

∏k+1
i=1 θi

αi+xi−1 =
∏k+1

i=1 Γ(αi+xi)

Γ(
∑k+1

i=1 αi+xi)
. Then, by the

definition of BF in favour of H0:
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B01(x) =
m0(x)

m1(x)
=

N !∏k+1
i=1 xi!

∏k+1
i=1 θ0i

xi

N !∏k+1
i=1 xi!

B(α+x)
B(α)

=

∏k+1
i=1 θ0i

xi

B(α+x)
B(α)

=

∏k+1
i=1 θ0i

xiB(α)

B(α+ x)
=

=

(∏k+1
i=1 (θ0i

xi)
∏k+1

i=1 [Γ(αi)]

Γ[
∑k+1

i=1 (αi)]

)/(∏k+1
i=1 Γ(αi + xi)

Γ(
∑k+1

i=1 αi + xi)

)
=

∏k+1
i=1 (θ0i

xi)
∏k+1

i=1 [Γ(αi)]Γ[
∑k+1

i=1 (αi + xi)]

Γ(
∑k+1

i=1 αi)
∏k+1

i=1 Γ(αi + xi)

A.2 Binomial ∧ Beta Model

Note that 3.12 together with 3.9 and 3.11 implies:

m0(x) = f(x|θ0) =

(
N

x

)
θx0(1− θ0)N−x

m1(x) =

∫ 1

0

f(x|θ)π(θ|a, b)dθ =

∫ 1

0

(
N

x

)
θx(1− θ)N−x θ

a−1(1− θ)b−1

B(a, b)
dθ =

=

(
N

x

)∫ 1

0

θ(x+a)−1(1− θ)(N+b−x)−1

B(a, b)
dθ =

(
N

x

)
B(x+ a,N − x+ b)

B(a, b)

because
∫ 1

0
θ(x+a)−1(1− θ)(n+b−x)−1 = B(x+a,N−x+ b). Next, to compute the Bayes Factor:

B01(x) =
m0(x)

m1(x)
=

(
N
x

)
θx0(1− θ0)N−x(

N
x

)B(x+a,N−x+b)
B(a,b)

=
θx0(1− θ0)N−xB(a, b)

B(x+ a,N − x+ b)
=

=
θx0(1− θ0)N−xΓ(a)Γ(b)Γ(N + a+ b)

Γ(a+ b)Γ(N + a− x)Γ(x+ a)

because B(a, b)=Γ(a)Γ(b)
Γ(a+b)

and B(x+ a,N − x+ b) = Γ(x+a)Γ(N−x+b)
Γ(N+a+b)

.
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Appendix B

Figures

“I think that it is a relatively good

approximation to truth ... that

mathematical ideas originate in

empirics.”

John von Von Neumann (1947)

B.1 Observed Counts vs Expected Counts

This section consists in a graphical comparison between each sample’s observed leading digits

counts and the corresponding BL expected counts. For each dataset, first and second digit

occurrences are analysed.

(a) Austria BL1 (b) Austria BL2

Figure B.1: Austria – Observed counts vs BL expected counts.
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(a) Belgium BL1 (b) Belgium BL2

Figure B.2: Belgium – Observed counts vs BL expected counts.

(a) Finland BL1 (b) Finland BL2

Figure B.3: Finland – Observed counts vs BL expected counts.

(a) France BL1 (b) France BL2

Figure B.4: France – Observed counts vs BL expected counts.
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(a) Germany BL1 (b) Germany BL2

Figure B.5: Germany – Observed counts vs BL expected counts.

(a) Greece BL1 (b) Greece BL2

Figure B.6: Greece – Observed counts vs BL expected counts.

(a) Ireland BL1 (b) Ireland BL2

Figure B.7: Ireland – Observed counts vs BL expected counts.
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(a) Italy BL1 (b) Italy BL2

Figure B.8: Italy – Observed counts vs BL expected counts.

(a) Luxembourg BL1 (b) Luxembourg – BL2

Figure B.9: Luxembourg observed counts vs BL expected counts.

(a) Netherlands BL1 (b) Netherlands BL2

Figure B.10: Netherlands – Observed counts vs BL expected counts.
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(a) Portugal BL1 (b) Portugal BL2

Figure B.11: Portugal – Observed counts vs BL expected counts.

(a) Spain BL1 (b) Spain BL2

Figure B.12: Spain – Observed counts vs BL expected counts.

(a) Pooled Sample BL1 (b) Pooled Sample BL2

Figure B.13: Pooled Sample – Observed counts vs BL expected counts.
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Appendix C

Tables

“The sciences do not try to explain,

they hardly even try to interpret, they

mainly make models. By a model is

meant a mathematical construct which,

with the addition of certain verbal

interpretations, describes observed

phenomena. The justification of such a

mathematical construct is solely and

precisely that it is expected to work.”

John von Von Neumann (1955)

C.1 Bayes Factor Interpretation Scale

Table C.1: BF interpretation scale from Kass and Raftery (1995), augmented with one
category (the first line) for the case when the data provides more support to H1 than to H0.
It corresponds to the Jeffreys (1967) original scale, with two of the original categories pooled
for simplification.

log(B01) B01 Evidence if favour of H0

< 0 <1 Negative (Supports H1)
0 to 0.5 1 to 3.2 Not Worth More Than a Bare Mention
0.5 to 1 3.2 to 10 Substantial
1 to 2 10 to 100 Strong
>2 >100 Decisive
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C.2 Datasets Summary

Table C.2: Datasets and Descriptive Statistics.

Country BL1 Sample Size BL2 Sample Size Average Median Skewness
Austria 619 618 104670 26146 1.53
Belgium 604 604 73711 12911 1.42
Finland 605 605 29658 6782 1.78
France 600 600 170523 29350 1.78

Germany 612 611 52558 8922 1.5
Greece 629 628 29309 4722 1.73
Ireland 616 616 459200 79416 1.52
Italy 625 624 346399 52362 1.67

Luxembourg 602 602 315382 75833 1.67
Netherlands 569 596 6253 875 3.03

Portugal 617 617 31970 6609 1.62
Spain 535 535 43141 6615 1.77

Pooled Sample 7233 7226 138565 11847 3.8
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C.3 Multinomial ∧ Dirichlet Model Results

Table C.3: Chi-square goodness-of-fit test and Multinomial ∧ Dirichlet Model results with
Dirichlet (α = 1) prior distribution, which corresponds to a uniform prior distribution.
Strength of evidence measured according to the scale in table C.1.

Country ln(B01) Evidence P (H0|data) P (H0|data) p-value
Austria BL1 -3.1 Negative 0.0008 0 0
Austria BL2 5.01 Decisive 0.99999 0.35098 0.07798
Belgium BL1 -1.78 Negative 0.01624 0 0
Belgium BL2 5.9 Decisive 0.99999 0.48083 0.2359
Finland BL1 1.07 Strong 0.9192 0.00036 0
Finland BL2 4.79 Decisive 0.99998 0.33118 0.06762
France BL1 -1.4 Negative 0.03862 0 0
France BL2 3.51 Decisive 0.99969 0.06941 0.00522

Germany BL1 1.21 Strong 0.94159 0.00176 0
Germany BL2 5.67 Decisive 0.99999 0.43638 0.1503
Greece BL1 0.89 Substantial 0.88495 0.00187 0
Greece BL2 4.27 Decisive 0.99995 0.16513 0.01815
Ireland BL1 -2.37 Negative 0.00423 0 0
Ireland BL2 6.34 Decisive 0.99999 0.5 0.38686
Italy BL1 1.23 Strong 0.94487 0.00242 0
Italy BL2 3.43 Decisive 0.99963 0.0545 0.00381

Luxembourg BL1 -8.88 Negative 0 0 0
Luxembourg BL2 3.39 Decisive 0.99959 0.08912 0.00732
Netherlands BL1 3.81 Decisive 0.99985 0.10663 0.00916
Netherlands BL2 4.89 Decisive 0.99999 0.31338 0.0595

Portugal BL1 -8.38 Negative 0 0 0
Portugal BL2 5.76 Decisive 0.99999 0.46127 0.18917

Spain BL1 0.62 Substantial 0.8079 0.00192 0
Spain BL2 7 Decisive 0.99999 0.5 0.79277

Pooled Sample BL1 3.18 Decisive 0.99934 0 0
Pooled Sample BL2 9.63 Decisive 0.99999 0.30444 0.05579
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Table C.4: Chi-square goodness-of-fit test and Multinomial ∧ Dirichlet Model results with
Dirichlet (α = θ0) prior distribution. Strength of evidence measured according to the scale in
table C.1.

Dataset ln(B01) Evidence P (H0|data) P (H0|data) p-value
Austria BL1 1.93 Very Strong 0.98835 0 0
Austria BL2 11.23 Decisive 1 0.35098 0.07798
Belgium BL1 3.35 Decisive 0.99955 0 0
Belgium BL2 12.2 Decisive 1 0.48083 0.2359
Finland BL1 6.45 Decisive 0.99999 0.00036 0
Finland BL2 11.11 Decisive 1 0.33118 0.06762
France BL1 4.02 Decisive 0.99991 0 0
France BL2 9.74 Decisive 1 0.06941 0.00522

Germany BL1 6.14 Decisive 0.99999 0.00176 0
Germany BL2 11.93 Decisive 1 0.43638 0.1503
Greece BL1 5.87 Decisive 0.99999 0.00187 0
Greece BL2 10.53 Decisive 1 0.16513 0.01815
Ireland BL1 2.48 Decisive 0.9967 0 0
Ireland BL2 12.64 Decisive 1 0.5 0.38686
Italy BL1 6.12 Decisive 0.99999 0.00242 0
Italy BL2 9.67 Decisive 1 0.0545 0.00381

Luxembourg BL1 -4.33 Negative 0 0 0
Luxembourg BL2 9.61 Decisive 1 0.08912 0.00732
Netherlands BL1 8.98 Decisive 0.99999 0.10663 0.00916
Netherlands BL2 11.13 Decisive 1 0.31338 0.0595

Portugal BL1 -3.61 Negative 0.00025 0 0
Portugal BL2 11.99 Decisive 1 0.46127 0.18917

Spain BL1 5.19 Decisive 0.99999 0.00192 0
Spain BL2 13.25 Decisive 1 0.5 0.79277

Pooled Sample BL1 8.31 Decisive 0.99999 0 0
Pooled Sample BL2 15.96 Decisive 1 0.30444 0.05579
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Table C.5: Chi-square goodness-of-fit test and Multinomial ∧ Dirichlet Model results with
Dirichlet (α = 22θ0) prior for BL1 analysis and Dirichlet (α = 12θ0) prior for BL2 analysis.
Strength of evidence measured according to the scale in table C.1.

Dataset ln(B01) Evidence P (H0|data) P (H0|data) p-value
Austria BL1 -4.92 Negative 0 0 0
Austria BL2 4.56 Decisive 0.99997 0.35098 0.07798
Belgium BL1 -3.59 Negative 0.00026 0 0
Belgium BL2 5.52 Decisive 0.99999 0.48083 0.2359
Finland BL1 -0.6 Negative 0.19978 0.00036 0
Finland BL2 4.46787 Decisive 0.99996 0.33118 0.06762
France BL1 -2.93 Negative 0.00119 0 0
France BL2 3.1 Decisive 0.9992 0.06941 0.00522

Germany BL1 -0.89 Negative 0.11304 0.00176 0
Germany BL2 5.23 Decisive 0.99999 0.43638 0.1503
Greece BL1 -1.14 Negative 0.06684 0.00187 0
Greece BL2 3.87012 Decisive 0.99986 0.16513 0.01815
Ireland BL1 -4.43 Negative 0 0 0
Ireland BL2 5.95 Decisive 0.99999 0.5 0.38686
Italy BL1 -0.91 Negative 0.10967 0.00242 0
Italy BL2 3.02 Decisive 0.99906 0.0545 0.00381

Luxembourg BL1 -10.95 Negative 0 0 0
Luxembourg BL2 2.98 Decisive 0.99896 0.08912 0.00732
Netherlands BL1 1.86 Very Strong 0.98624 0.10663 0.00916
Netherlands BL2 4.47 Decisive 0.99997 0.31338 0.0595

Portugal BL1 -10.29 Negative 0 0 0
Portugal BL2 5.31 Decisive 0.99999 0.46127 0.18917

Spain BL1 -1.75 Negative 0.01752 0.00192 0
Spain BL2 6.55 Decisive 0.99999 0.5 0.79277

Pooled Sample BL1 1.02 Strong 0.9124 0 0
Pooled Sample BL2 9.2 Decisive 0.99999 0.30444 0.05579
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C.4 Binomial ∧ Beta Model Results

Table C.6: Z-test and Binomial ∧ Beta Model results for Austria BL1 with a Beta (1, 1)
prior distribution, which corresponds to a Uniform prior distribution.

Digit ln(B01) P (H0|data) P (H0|data) p-value
1 0.07 0.54162 0.1682 0.01869
2 1.29 0.95114 0.5 0.49281
3 1.32 95419 0.5 0.40591
4 -0.62 0.19392 0.0244 0.0014
5 -1.78 0.01646 0.00117 0
6 1.56 0.97262 0.5 0.74044
7 -3.02 0.00094 0.00152 0
8 1.25 0.94661 0.46235 0.1913
9 1.48 0.96778 0.5 0.42181

Table C.7: Z-test and Binomial ∧ Beta Model results for Ireland BL1 with a Beta (1, 1)
prior distribution, which corresponds to a Uniform prior distribution.

Digit ln(B01) P (H0|data) P (H0|data) p-value
1 0.93 0.89385 0.45944 0.18573
2 1.35 0.95728 0.5 0.59892
3 0.53 0.77214 0.27458 0.04486
4 -1.8 0.0155 0.00133 0
5 -0.08 0.45297 0.11081 0.00994
6 -1.23 0.05526 0.00413 0.00018
7 1.26 0.94816 0.47244 0.21308
8 0.83 0.87153 0.3302 0.06715
9 0.61 0.80247 0.25707 0.03934

Table C.8: Z-test and Binomial ∧ Beta Model results Luxembourg BL1 with a Beta (1, 1)
prior distribution, which corresponds to a Uniform prior distribution.

Digit ln(B01) P (H0|data) P (H0|data) p-value
1 -10.21 0 0 0
2 -1.13 0.04634 0.01442 0.00075
3 1.68 0.92122 0.45994 0.18666
4 1.45 0.96602 0.5 0.66329
5 -4.3 0 0.00017 0
6 1.45 0.96555 0.5 0.4936
7 1.33 0.95527 0.48859 0.26358
8 0.93 0.89434 0.363770 0.08555
9 1.63 0.97734 0.5 0.68984
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Table C.9: Z-test and Binomial ∧ Beta Model results Portugal BL1 with a Beta (1, 1) prior
distribution, which corresponds to a Uniform prior distribution.

Digit ln(B01) P (H0|data) P (H0|data) p-value
1 -10.06 0 0 0
2 -3.24 0.00058 0.00042 0
3 1.43 0.96437 0.5 0.66228
4 -2.95 0.00111 0.00104 0
5 1.54 0.97175 0.5 0.72552
6 1.57 0.97403 0.5 0.84751
7 0.87 0.88065 0.34849 0.07658
8 1.55 0.9724 0.5 0.59123
9 1.68 0.97938 0.5 0.95888

Table C.10: Z-test and Binomial ∧ Beta Model results for Austria BL1 with a Beta (22 θ0, 22−
22 θ0) prior distribution.

Digit ln(B01) P (H0|data) P (H0|data) p-value
1 22.88 1 0.1682 0.01869
2 39.3 1 0.5 0.49281
3 45.9 1 0.5 0.40591
4 47.33 1 0.0244 0.0014
5 48.46 1 0.00117 0
6 53.47 1 0.5 0.74044
7 50.17 1 0.00152 0
8 55.2 1 0.46235 0.1913
9 56.10 1 0.5 0.42181

Table C.11: Z-test and Binomial ∧ Beta Model results for Ireland BL1 with a Beta (22 θ0, 22−
22 θ0) prior distribution.

Digit ln(B01) P (H0|data) P (H0|data) p-value
1 23.38 1 0.45944 0.18573
2 39.41 1 0.5 0.59892
3 45.18 1 0.27458 0.04486
4 46.08 1 0.00133 0
5 50.37 1 0.11081 0.00994
6 50.57 1 0.00413 0.00018
7 54.32 1 0.47244 0.21308
8 54.76 1 0.3302 0.06715
9 55.2 1 0.25707 0.03934
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Table C.12: Z-test and Binomial ∧ Beta Model results for Luxembourg BL1 with a
Beta (22 θ0, 22− 22 θ0) prior distribution.

Digit ln(B01) P (H0|data) P (H0|data) p-value
1 11.88 1 0 0
2 36.92 1 0.01442 0.00075
3 45.5 1 0.45994 0.18666
4 49.31 1 0.5 66329
5 46.15 1 0.00017 0
6 53.13 1 0.5 0.4936
7 54.19 1 0.48859 0.26358
8 54.66 1 0.363770 0.08555
9 56.03 1 0.5 0.68984

Table C.13: Z-test and Binomial ∧ Beta Model results for Portugal BL1 with a
Beta (22 θ0, 22− 22 θ0) prior distribution.

Digit ln(B01) P (H0|data) P (H0|data) p-value
1 12.12 1 0 0
2 35.27 1 0.00042 0
3 45.96 1 0.5 0.66228
4 45.43 1 00104 0
5 51.89 1 0.5 0.72552
6 43.47 1 0.5 0.84751
7 53.95 1 0.34849 0.07658
8 55.46 1 0.5 0.59123
9 56.81 1 0.5 0.95888
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C.5 Hyperparameter Variances – Multinomial ∧Dirichlet

Model∗

Table C.14: Hyperparameter variances and standard deviations in the Multinomial ∧
Dirichlet Model with Dirichlet (α = 1) prior. In BL1 analysis the Dirk(1) prior for θ implies
a Beta(1, 8) marginal distribution for each parameter in θ. In BL2 the marginal distributions
are Beta(1, 9).

BL1 BL2
i σ2(θi) σ(θi) σ2(θi+1) σ(θi+1)
0 - - 0.00818 0.09045
1 0.00988 0.09938 0.00818 0.09045
2 0.00988 0.09938 0.00818 0.09045
3 0.00988 0.09938 0.00818 0.09045
4 0.00988 0.09938 0.00818 0.09045
5 0.00988 0.09938 0.00818 0.09045
6 0.00988 0.09938 0.00818 0.09045
7 0.00988 0.09938 0.00818 0.09045
8 0.00988 0.09938 0.00818 0.09045
9 0.00988 0.09938 0.00818 0.09045

Table C.15: Hyperparameter variances and standard deviations in the Multinomial ∧
Dirichlet Model with Dirichlet (α = θ0) prior. The marginal distributions for each θi (i =
1, . . . , k) are Beta (θ0i, 1− θ0i) distributions.

BL1 BL2
i σ2(θi) σ(θi) σ2(θi+1) σ(θi+1)
0 - - 0.05268 0.22952
1 0.10521 0.32435 0.05046 0.22463
2 0.07254 0.26934 0.04849 0.22020
3 0.05466 0.23380 0.04672 0.21615
4 0.04376 0.20919 0.04512 0.21242
5 0.03646 0.19093 0.04367 0.20896
6 0.03123 0.17673 0.04233 0.20574
7 0.02731 0.16527 0.04109 0.20272
8 0.02427 0.15578 0.03995 0.19988
9 0.02183 0.14776 0.03889 0.19720

∗ The results in this section were obtained using the relation: θi ∼ Dk(α)⇒ σ2(θi) = αi(αs−αi)
α2

s(αs+1) where αs =∑k
j=1 αk, and σ(θi) =

√
σ2. Because a Dirk(α) prior distribution for θ implies a Beta

(
αi,
∑k+1
j=1 αj − αi

)
marginal distribution for each θi in θ, the same variances could be obtained using the formula for the
variance of the Beta distribution: σ2(θi) = a b

(a+b)2(a+b+1)
where a = αi and b =

∑k+1
j=1 αj − αi.
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Table C.16: Hyperparameter variances and standard deviations in the Multinomial ∧
Dirichlet Model with Dirichlet (α = 22θ0) prior. The marginal distributions for each θi (i =
1, . . . , k) are Beta (22 θ0i, 22− 22 θ0i) distributions in BL1 analysis and Beta (12 θ0i, 12− 12 θ0i)
distributions in BL2 analysis.

BL1 BL2
i σ2(θi) σ(θi) σ2(θi+1) σ(θi+1)
0 - - 0.00810 0.09002
1 0.00915 0.09565 0.00776 0.08811
2 0.00631 0.07942 0.00746 0.08637
3 0.00475 0.06895 0.00719 0.08478
4 0.00381 0.06169 0.00694 0.08332
5 0.00317 0.05630 0.00672 0.08196
6 0.00272 0.05211 0.00651 0.08070
7 0.00238 0.04874 0.00632 0.07951
8 0.00211 0.04594 0.00615 0.07840
9 0.00190 0.04357 0.00598 0.07735

C.6 Hyperparameter Variances – Binomial ∧ Beta Model∗

Table C.17: Hyperparameter variances and standard deviations in the Binomial ∧ Beta
Model with Beta (1, 1) prior, resulting in a uniform prior for each parameter.

BL1 BL2
i σ2(θi) σ(θi) σ2(θi+1) σ(θi+1)
0 - - 0.08333 0.28868
1 0.08333 0.28868 0.08333 0.28868
2 0.08333 0.28868 0.08333 0.28868
3 0.08333 0.28868 0.08333 0.28868
4 0.08333 0.28868 0.08333 0.28868
5 0.08333 0.28868 0.08333 0.28868
6 0.08333 0.28868 0.08333 0.28868
7 0.08333 0.28868 0.08333 0.28868
8 0.08333 0.28868 0.08333 0.28868
9 0.08333 0.28868 0.08333 0.28868

∗ The results in this section were obtained using the relations: θi ∼ Beta(a, b)⇒ σ2(θi) = a b
(a+b)2(a+b+1)

and σ(θi) =
√
σ2.
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Table C.18: Prior parameter variances and standard deviations in the Binomial ∧ Beta
Model with Beta (22 θ0, 22− 22 θ0) prior.

BL1 BL2
i σ2(θi) σ(θi) σ2(θi+1) σ(θi+1)
0 - - 0.0081 0.09002
1 0.00915 0.09565 0.00776 0.08810
2 0.00631 0.07945 0.00746 0.08637
3 0.00475 0.06895 0.00719 0.08478
4 0.00381 0.06169 0.00694 0.08332
5 0.00317 0.05630 0.00672 0.08196
6 0.00272 0.05211 0.00651 0.0807
7 0.00238 0.04874 0.00632 0.07951
8 0.00211 0.04594 0.00615 0.0784
9 0.0019 0.04357 0.00598 0.07734
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Appendix D

VBA Code, Macros and Data

“Seeing is not a direct apprehension of

reality, as we often like to pretend.

Quite the contrary: seeing is inference

from incomplete information.”

Edwin Jaynes (2003)

This link∗ redirects to a OneDrive shared folder where the data used in this dissertation

and the VBA macros developed for the empirical application are stored.

The raw data, consisting in 38 tables extracted from the Eurostat Database can be

found in the “Data.xls” file, in the “Data” folder. In that same folder there is a xlsm file with

the name of each country being analysed. Each country’s xlsm file is where all numbers from

all tables of raw data that respect to that country are stored. There is also a xlsm file for the

pooled sample, which aggregates the numbers from all countries. The main tool that was

used to obtain the study results is the macro in the “Macro Benford. xlsm” file. By pasting

a collection of numbers in the first column of this worksheet, under the cell with the word

“Dados”, and pressing the “Testar lei de Benford” button, the macro returns: p-values from the

chi-square test on the BL1 and BL2, p-values from the z-test on all BL1 and BL2 frequencies,

BFs from the Multinomial ∧ Dirichlet Model with Dirk(1), Dirk(θ0), Dirk(22θ0) and Dirk(
1
k

)

prior distributions, BFs from the Binomial ∧ Beta Model with Beta(1, 1), Beta(θ0, 1− θ0),

Beta(22 θ0, 22 − 22 θ0) and Beta( 1
k
, 1
k
) prior distributions, the interpretation of each BF in

∗ https://1drv.ms/f/s!ArrG5X_w8Yihuz036OMFLvva3ZNm
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terms of strength of evidence according to the scale in table C.1, the posterior probabilities

computed using 3.16 on each BF, the lower bounds on posterior probabilities computed with

the p-value calibration on equation 3.20 and the average, median and skewness coefficient of

the dataset. For this macro to work properly at least one of the inserted numbers must have

more than one digit. It is possible to consult the underlying VBA code by pressing the Visual

Basic button on the Developer tab of the Macro Benford. xlsm file.

The file Variances.xlsx is the excel worksheet where all the hyerparameter variances

and standard deviations were computed. The excel formulas that were used can be consulted

in this file. The file Macro Probabilities. xls is an excel worksheet where the BL frequencies

for the first digit, second digit, last digit, first two digits, first three digits and last two digits

can be consulted.
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“The classical theorists resemble Euclidean geometers in a non-Euclidean world

who, discovering that in experience straight lines apparently parallel often meet,

rebuke the lines for not keeping straight as the only remedy for the unfortunate

collisions which are occurring. Yet, in truth, there is no remedy except to throw

over the axiom of parallels and to work out a non-Euclidean geometry. Something

similar is required today in economics”

John Maynard Keynes (1937)
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