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Carlos Oliveira

Abstract

In this thesis, the assumption of risky asset liquidity is relaxed. We assume that

the market contains one trader su�ciently large to in�uence the price of the risky

asset. Unlike the classical Black-Scholes equation, the Black-Scholes equations from

models of illiquid markets are non-linear. In this case, it is di�cult to guarantee the

existence and uniqueness of classical solutions. We discuss the concept of viscosity

solutions and its application in the setting by Frey and Polte (2011).

Wilmott and Schönbucher (2000) presented an equilibrium model for illiquid

markets. We discuss the concept of self-�nancing strategy in their framework and

use the Wilmott-Schönbucher model to study the consequences of collective be-

haviours in �nancial markets. We derive the corresponding Black-Scholes equation

which is non-linear and has unusual boundary conditions.
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Resumo

Nesta tese, a hipótese da liquidez do activo com risco é relaxada. Assumimos

que o mercado contém um investidor su�cientemente grande para in�uenciar o preço

do activo com risco.

Contrariamente à equação de Black-Scholes clássica, as equações de Black-Scholes

para modelos de mercados ilíquidos são não-lineares. Neste caso, é difícil garantir

a existência e unicidade de solução clássica. Discutimos o conceito de soluções de

viscosidade e a sua aplicação no problema proposto por Frey e Polte (2011).

Wilmott e Schönbucher (2000) apresentaram um modelo de equilíbrio para mer-

cados ilíquidos. Nós discutimos o conceito de estratégia auto-�nanciada nessa abor-

dagem e utilizamos o modelo deWilmott-Schönbucher para estudar as consequências

do comportamento colectivo nos mercados �nanceiros. Derivamos a correspondente

equação de Black-Scholes que é não-linear e tem condições de fronteira não usuais.
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1 Introduction

The Black-Scholes model is used to price and to design hedging strategies in di�erent

securities. Black and Scholes in [2] and Merton in [14] simultaneously derived the Black-

Scholes formula for European options. This theory is largely used in the �nancial industry,

but requires strong assumptions, namely:

1. The market allows unbounded short positions, as well as fractional holdings;

2. All traders act as price takers;

3. There are no transaction costs;

4. The market is competitive;

5. The logarithm of the asset price is normally distributed.

These assumptions have been widely criticized in many works such as [9], [10] and [3] .

Black [1] himself stated "I sometimes wonder why people still use the Black-Scholes for-

mula, since it is based on such simple assumptions - unrealistically simple assumptions".

The fourth assumption means that the market's selling and buying prices are equal for

all agents trading in a particular asset. The second assumption signi�es that all agents

can buy or sell unlimited quantities of the asset without moving the price of this asset.

This is sometimes refereed to as perfectly liquid market.

Many of the critiques to the Black-Scholes model are related to the log-normality of

the assets' price distribution. There are many works such as [13] and [5] where the authors

propose di�erent Lévy processes to model the dynamics of the assets' price. Also, the

Black-Scholes model supposes that the volatility of the returns of the assets is constant.

There are many empirical studies showing that this is an unrealistic assumption and

others that propose possible solutions for this problem.
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The present work deals with assumptions (2) and (4). The liquidity of the market isn't

a realistic assumption because in �nancial markets there are some companies, funds and

other institutions that are so large that the e�ects of their actions on the asset' prices are

not negligible. Oddly, there are comparatively few models that relax this assumption.

These models introduce in the standard Black-Scholes model the concept of Liquidity

Risk. The Liquidity Risk is the additional risk associated to the size and the timing of

the transaction. There are two types of models, the reaction function models and the

models with temporary price impact. These models are hurt by theoretical di�culties

that are discussed, among others, by Wilmott and Schönbucher in [16] and Jarrow in [11]

and [12].

While in the Black-Scholes model the partial di�erential equation (PDE) deduced to

price contingent claims is linear, the PDE deduced from models for illiquid markets is

non-linear. In many important cases, this non-linear PDE does not admit a solution in

the classical sense. In many cases, this problem can be solved using viscosity solutions.

In section 2 we present the characteristics of the models of illiquid markets as well

as some examples of non-linear Black-Scholes equations and a sketch of the arguments

used to derive them. The section 3 is based in [7]. We discuss the properties of the

Black-Scholes equation presented there, in particular, its viscosity solutions. Section 4

contains a discussion of the model proposed by Wilmott and Schönbucher [16]. Here we

discuss some interesting issues as the portfolio value and the consistency of the models

in illiquid markets. Finally, Section 5 deals with a collective behaviour case we discuss

the concept of self-�nancing trading strategy as well as the Black-Scholes equation.

2
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2 Black-Scholes equation in illiquid markets

The classical Black-Scholes theory is widely used in the �nancial industry although the

strong assumptions of the model. In this work, we relax the assumption of the market

liquidity. In illiquid markets, the Black-Scholes equations are non-linear PDEs. So in

this section, in order to motivate this work, we present some examples of Black-Scholes

equations deduced from models of illiquid markets.

2.1 The models

The Black-Scholes model can be used to price any contingent claim when we suppose

that the assumptions (1)-(5) are veri�ed. To model the assets' price in illiquid markets

we need a model that allows for the existence of traders with di�erent sizes and di�erent

in�uences in the dynamics of the assets' price. Typically these models consider two types

of agents: a group of many small traders and one large trader. We identify two types of

models: the reaction function models and the models with temporary price impact, as

we explain below.

Reaction function models: In this approach, the asset price depends on the quantity

held by the large trader. For example St = Φ(t, φ(t),W ), where t is the current time, φ(t)

is the quantity of stock held by the large trader at time t and W is a random state. Here

the impact of trading strategies on the asset price is permanent in the sense that it lasts

as long as the large trader keeps his position. That is, the e�ect does not vanish after he

stops trading. In some works such as [15], [8] and [17] the reaction functions, also called

feedback functions, are obtained using an equilibrium approach. In Equilibrium models

the reaction function is obtained through explicit microeconomic equilibrium. Wilmott

and Schönbucher [16] de�ne the aggregate excess of demand by small traders, χ(S,W, t),

as a function of the asset price S, Brownian motion W , and the current time t. The

3
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net demand by the large trader is a function of the asset price and current time, f(S, t).

Therefore the equilibrium is given by χ(S,W, t) + f(S, t) = 0, and the reaction function

is derived by inverting this expression. We discuss all these points in section 3.

Models with temporary price impact: In this class of models the price reacts to the

quantity of assets traded in the market at the time t. The impact of the large trader's

strategies on the stock price is temporary in the sense that it ceases when he stops trading.

An important model for temporary impacts is presented in [18], which developed the

concept of stochastic supply curve, S(t, x,W ) for an asset price that is a function of

the current time, t, the size of the large trader's purchase, x, and a random state, W .

When the size of the transaction is 0, S(t, 0,W ) represents the market price of the asset.

Otherwise, S(t, x,W ) represents the market price modi�ed by the purchase order x. If

the application x 7→ S(t, x,W ) is increasing, then we have S(t, x,W ) = ϕ(x, S(t, 0,W )).

The main di�erence between these two types of models is the form as the large trader

strategy in�uences the asset price. In the �rst case the price is in�uenced by the quantity

held by the large trader while in the second case it is in�uenced by the quantity that he

wants buy or sell in every instant of time.

2.2 Deducing Black-Scholes PDE

In this section we explain one methodology to obtain the Black-Scholes PDE. Suppose we

have a contingent claim with a price process F (S, t). The price process of the underlying

asset follows:

(1) dSt = µ(S, t)dt+ σ(S, t)dW.

4
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We assume a self-�nancing strategy (f, c), where f(S, t) and c(S, t) are the number of

titles of the risky asset and number of bonds held by the trader. The value of this strategy

is Yt = f(S, t)St + c(S, t)Bt and its dynamics is

(2) dYt = f(S, t)dSt + c(S, t)dBt.

If this self-�nancing strategy replicates the payo� of the contingent claim, we will have

F (ST , T ) = YT almost surely. To avoid arbitrage possibilities the contingent claim price

and the portfolio value have to be the same for all 0 ≤ t ≤ T almost surely. Therefore the

stochastic component of the portfolio value and price process have to be the same as well

as the deterministic component. The Black-Scholes PDE is directly obtained from this

condition. Some authors, such as Frey and Polte in [7] deduce the Black-Scholes PDE

assuming r = 0, which facilitates the derivation.

The Black-Scholes PDE's can be viewed as a particular case of an Hamilton-Jacobi-

Bellman (HJB) equation which appears in optimal control problems. In the case of the

Black-Scholes PDE, we have a HJB equation where the control can assume a unique

value. In general the HJB equation is non-linear unlike the classical Black-Scholes PDE

which is linear. All the models considered in this work generate non-linear Black-Scholes

(HJB) equations.

2.3 Examples of Black-Scholes PDE

Now we give two examples of Black-Scholes PDE. The �rst example arises in a reaction

function model. In [15], it is assumed that the reaction function, Φ(t, φ,W ), is Φ(W,φ) =

W exp(ρφ) where ρ is a liquidity parameter. If the market is liquid then we will have

ρ = 0. The larger the parameter ρ the more illiquid is the market. Here W is a Brownian

motion and represents some fundamental value and that is considered relevant to explain

5
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the dynamic of the asset. Finally, φt = ϕ(t, St) represents the quantity of asset that

the large trader wants to hold. Naturally we have the equality St = Φ(Wt, φt), so the

dynamic of S can be obtained applying Itô lemma to the last equality,

dSt =ρStdφt + µSt + σStdWt(3)

dφt =
∂

∂t
ϕ(t, St)dt+

∂

∂S
ϕ(t, St)dSt +

∂2

∂S2
ϕ(t, St)(dSt)

2.(4)

We consider that the interest rate is zero such as Frey and Polte in [7], so the self-�nancing

strategy (2) can be rewritten as dYt = ϕ(t, St)dSt. Notice that if we substitute (4) into (3)

we will obtain the stochastic term as σS
1−ρS ∂

∂S
ϕ(t,S)

. When we use the technique described

in the last subsection we will obtain the Black-Scholes PDE

(5)
∂

∂t
u+

1

2
S2 σ2

(1− ρS ∂2

∂S2u)2

∂2

∂S2
u = 0.

The second example that we present arises in a model with temporary impact. This

example is presented in [18], an important work in this category of models. We think

that it is interesting to present the self-�nancing strategy derived in theorem A3 of [18]

that incorporates the concept of liquidity cost. Considering Yt the value of the portfolio,

that veri�es Yt = ct + φtS(t, 0) where φt is the stock position and ct is the bond position.

The self-�nancing strategy, Yt, veri�es:

(6) Yt = Y0 +

∫ t

0

φu−dS(u, 0)−
∑

0≤u≤t

δφu
(
S(u, δφu)− S(u, 0)

)
−
∫ t

0

∂S

∂x
(u, 0)d[φ, φ]u

where d[φ, φ]u represents the quadratic variation of φu.

For the extended Black-Scholes economy we have S(t, x) = exp(αx)S(t, 0) with α >

0. Here S(t, 0) is a geometric Brownian motion with volatility σ. In this case, for

6
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φt = ϕ(t, St), the dynamic of the self-�nancing strategy is

(7) dYt = ϕ(t, S(t, 0))dS(u, 0)− αS(t, 0)ϕ2
S(t, S(t, 0))σ2S2(t, 0)dt.

The Black-Scholes equation, obtained by the usual arguments, as it can be seen in [7], is

(8)
∂

∂t
u+

1

2
S2σ2

(
1 + 2αS

∂2

∂S2
u

)
∂2

∂S2
u = 0.

3 Viscosity solutions to Black-Scholes equation in

illiquid markets

In many cases, it is di�cult to guarantee the existence of classical solutions for non-

linear PDEs. When classical solutions fail to exist, solutions in some weaker sense may

still exist. The concepts of weak solutions require weaker assumptions to guarantee the

existence of solution than classical solutions. In stochastic control problems, the concept

of viscosity solution is frequently used.

In this section we present problems proposed by Frey and Polte [7] and discuss the

existence and uniqueness of viscosity solutions to these problems.

3.1 Problem Setting

In the last section we presented two examples of Black-Scholes PDE. We can notice that

these two examples yield PDE's of similar structure, namely

(9)
∂

∂t
u+

1

2
S2v

(
S,

∂2

∂S2
u

)
= 0.

7
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Frey and Polte [7] studied equations of this type on the domain Q = [0, T [×(S, S), with

boundary condition

(10) u = h (t, S) ∈ ∂Q,

and 0 < S < S < +∞, T ∈ (0,+∞), ∂Q = {T} × (S, S) ∪ (0, T )× {S, S}.

Following [7], we take the following regularity assumptions:

(A1) The payo� h : [S, S] → R is continuous . The function v : [S, S] × R → R is

continuous on the set dom(v) = {(S, q) ∈ [S, S]× R : v(S, q) <∞}.

(A2) For �xed S ∈ [S, S] the mapping v(S, .) : q → v(S, q) is convex and lower semicon-

tinuous. Moreover, v(S, 0) = 0, and there is a constant λ0 > 0 with ∂
∂q
v−(S, 0) ≤

λ0 ≤ ∂
∂q
v+(S, 0) for all S ∈ [S, S], where ∂

∂q
v− and ∂

∂q
v+ denote de left and right

derivatives of the convex function v(S, .).

In the �rst example of section 2.3, we have v(S, q) = σ2

(1−ρSq)2 q. The assumption (A1)

is veri�ed trivially. The convexity of the function v(S, q) in the second argument is not

veri�ed. The expression of the second derivative of v(S, q) with respect to the second

argument, ∂2

∂q2
v(S, q) can be negative,

(11)
∂2

∂q2
v(S, q) = σ2ρS

4 + 2ρSq

(1− ρSq)4
< 0 when q < − 2

ρS
.

On the other hand, the �rst derivative veri�es ∂
∂q
v(S, q) = σ2 1+ρSq

(1−ρSq)3 whereby is veri�ed

that v−q (S, 0) ≤ λ0 ≤ v+
q (S, 0) with λ0 > 0.

In the second example, v(S, q) = σ2q(1 + 2αSq) and the �rst assumption is trivially

8
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veri�ed. The second assumption is also veri�ed. Notice that

(12)
∂

∂q
v(S, q) = σ2(1 + 4αSq).

So, there is λ0 > 0 such that λ0 = ∂
∂q
v(S, 0) = σ2. Furthermore, the application q 7→

v(S, q) is convex and continuous. It is easily seen that ∂2

∂q2
v(S, q) = 4σ2αS > 0.

For a Dirichlet problem of type (9)-(10), the existence of a classical solution can be

proved only under additional regularity assumptions, namely h ∈ C3 (see theorem 3.1 in

[7]) . This condition is too strong for practical applications because the more common

payo� functions, the European call and put options, are not di�erentiable.

In many cases where the Black-Scholes equation does not admit a classical solution,

the fair price of a contingent claim is still a solution of the Black-Scholes equation, but

in the viscosity sense. This is a weaker concept of solution that we present below.

We consider F : O×R×Rd ×Sd 7→ R, where O ⊂ Rd is open and Sd is the space of

symmetric matrices of size d. The concept of elliptic function is essential to the theory

of viscosity solutions.

De�nition 3.1. Let F be a function de�ned as above. We say that F (x, r, p, A) is elliptic

if

(13) F (x, r, p, A)− F (x, r, p, B) ≤ 0,

whenever A−B is positive semi-de�nite.

9



Carlos Oliveira 3.1 Problem Setting

Let F be elliptic and consider the Dirichlet problem

F (x, u(x), Du(x), D2u(x)) =0 x ∈ O,(14)

u(x) =g(x) x ∈ ∂O.(15)

For any function u : O 7→ R let u and u be de�ned as

(16) u(x) = lim sup
z→x

u(z), u(x) = lim inf
z→x

u(z) ∀x ∈ O

Now, we introduce the de�nition of viscosity solution:

De�nition 3.2. Let F : O×R×Rd×Sd 7→ R be an elliptic function and let u : O 7→ R be

a locally bounded function. u is a viscosity subsolution of the Dirichlet problem (14)-(15)

if:

i) F (x0, u(x0), Dφ(x0), D2φ(x0)) ≤ 0

for all pairs (x0, φ) ∈ O × C2(O) where x0 is a local maximizer of the di�erence (u− φ)

on O, and

ii) lim supz→x,z∈O u(z) ≤ g(x), ∀x ∈ ∂O.

u is a viscosity supersolution of the Dirichlet problem (14)-(15) if:

iii) F (x0, u(x0), Dφ(x0), D2φ(x0)) ≥ 0

for all pairs (x0, φ) ∈ O × C2(O) where x0 is a local minimizer of the di�erence (u − φ)

on O, and

iv) lim infz→x,z∈O u(z) ≥ g(x), ∀x ∈ ∂O.

Finally u is a viscosity solution if it is simultaneously a viscosity subsolution and super-

solution.

10
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3.2 A modi�ed problem

The ellipticity of the left-hand side of the equation (14) is fundamental to develop the

theory of viscosity solutions. We will study the ellipticity of the equation (9) to verify

the adaptability of our problem to the viscosity solutions theory.

Considering F ((t, x), r, p, A) = −p1 − 1
2
x2v(x, a)1 we notice that

F ((t, x), r, p, A)− F ((t, x), r, p, B) = −p1 −
1

2
x2v(x, a)− (−p1 −

1

2
x2v(x, b))(17)

=− 1

2
x2(v(x, a)− v(x, b)).(18)

So, this means that the equation (9) is elliptic if and only if v(x, q) is an increasing

function in the second argument, but this is not guaranteed by assumptions (A1)-(A2)

alone.

This motivate Frey and Polte [7] to propose a Modi�ed Problem, with better properties

than the Original Problem (14)-(15).

The construction of Frey and Polte's Modi�ed Problem relies on the theory of conju-

gate functions. The conjugate function of q 7→ v(S, q) is

v∗(S, λ) = sup{λq − v(S, q) : q ∈ R} λ ∈ R

and the second conjugate function is

v∗∗(S, q) = sup{λq − v∗(S, q) : λ ∈ R}

Since q 7→ v(S, q) is assumed to be convex, it follows that v = v∗∗.

1In this case, A=

(
0 0
0 a

)
.

11
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The Modi�ed Problem is

− ∂

∂t
u− 1

2
S2ṽ

(
S,

∂2

∂S2
u

)
= 0 (t, S) ∈ Q(19)

u(t, S) = h(S) (t, S) ∈ ∂Q(20)

where

(21) ṽ(S, q) = sup{λq − v∗(S, λ) : λ ∈ [v, v]}.

The approach in [7] consists in viewing the modi�ed Dirichlet problem (19)-(20) as the

Hamilton Jacobi Bellman (HJB) equation associated with the following optimal stochastic

control problem.

Consider the state process S with dynamic

(22) dSt =
√
λtStdwt

where {λt}0≤t≤T is a progressively mensurable process with values in the set [v, v] and

the functional to be maximized is

(23) J(t, S, λ) = Et,S

(∫ τ

t

−1

2
S2
θv
∗(Sθ, λθ)dθ + h(Sτ )

)

where τ = inf{t ≥ 0 : (t, St) /∈ Q}.

It can be checked that the HJB equation for the problem (22)-(23) is

(24)
∂

∂t
u+ sup

{
1

2
S2λ

∂2

∂u2
u− 1

2
S2v∗(S, λ) : λ ∈ [v, v]

}
= 0

which is equivalent to (19).

12
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The problem (22)-(23) consists of choosing the path of stochastic volatility, λt, in order

to maximize Et,S (h(τ, Sτ )) subtracting the instantaneous control cost 1
2
S2
uv
∗(Su, λu).

The Modi�ed Problem has better properties than the Original Problem. So, we will

explain some properties of ṽ and of equation (19).

From duality theory, the function ṽ(S, q) coincides with v(S, q) at every point (S, q)

such that v ≤ ∂
∂q
v(S, q) ≤ v. Further, we have ∂

∂q
ṽ(S, q) = v whenever ∂

∂q
v(S, q) ≤ v and

∂
∂q
ṽ(S, q) = v whenever ∂

∂q
ṽ(S, q) ≥ v. It follows that ṽ(S, q) is convex and v ≤ ∂

∂q
ṽ(S, q) ≤

v for all (S, q). Therefore ṽ(S, .) is Lipschitz with |ṽ(S, q1)− ṽ(S, q2)| ≤ v|q1 − q2|.

Since v > 0, it follows that ṽ(S, q) is strictly increasing with respect to q. Therefore,

equation (19) is elliptic.

The parabolicity of the PDEs is a good property when we study the solution of this

equation. We can verify that the equation (19) is parabolic while the equation (9) is not

necessarily parabolic. We can rewrite the left hand side of(19) in Taylor formula around

∂2

∂S2u = 0,

− ∂

∂t
u− 1

2
S2ṽ(S, 0)− 1

2
S2 ∂

∂q
ṽ(S, 0)

∂2

∂S2
u+R

(
S,

∂

∂t
u,

∂2

∂S2
u

)
=0(25)

− ∂

∂t
u− 1

2
S2 ∂

∂q
ṽ(S, 0)

∂2

∂S2
u+R

(
S,

∂

∂t
u,

∂2

∂S2
u

)
=0(26)

If we write the coe�cient values' matrix of the second derivatives of u we will obtain

Γ2,2 =

0 0

0 −1
2
S2 ∂

∂q
ṽ(S, 0)


The eigenvalues are λ1 = 0 and λ2 = −1

2
S2 ∂

∂q
ṽ(S, 0), as ∂

∂q
ṽ(S, 0) ∈ [v, v] the second

eigenvalue is always negative. We conclude that the equation (19) is parabolic. Otherwise,

13



Carlos Oliveira 3.3 Existence and uniqueness of viscosity solutions

the equation (9) can be non-parabolic because we do not have the guarantee that ∂
∂q
v(S, 0)

has a unique sign.

For each 0 ≤ v ≤ v +∞, let ṽ[v,v] denote the correspondent function ṽ. ṽ has the

following monotonicity property.

Proposition 3.1. If [v1, v1] ⊂ [v2, v2] then ṽ[v1,v1] ≤ ṽ[v2,v2], lim v→0+

v→+∞
ṽ[v,v] is the greatest

monotonic convex function no greater than v.

Proof. The proof follows directly from the de�nition of ṽ.

3.3 Existence and uniqueness of viscosity solutions

Below, we explain some properties of viscosity solutions, presented by Frey and Polte.

To prove the existence and uniqueness of viscosity solution, we proceed by several

intermediate propositions.

Proposition 3.2. The Modi�ed Problem has viscosity subsolution, φ, and viscosity su-

persolutions, ψ such that

(27) φ(t, S) = h(S), ψ = h(S) ∀(t, S) ∈ ∂Q

Proof. Consider a sequence {ηn ∈ C∞}n∈N such that ηn ≤ h and ηn converges uniformly to

h in [S, S]. If we de�ne An = maxS∈[S,S]

(
−S2

2
ṽ
(
S, ∂2

∂S2ηn

))+

then, un = An(t−T )+ηn(S)

is a viscosity subsolution. To verify this,

− ∂

∂t
un −

1

2
S2ṽ

(
S,

∂2

∂S2
un

)
= −An −

1

2
S2ṽ

(
S,

∂2

∂S2
ηn

)
≤ 0

14
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Then u(t, S) = supn∈N un(t, S) is a viscosity subsolution and

(28) lim
(t,S)→(T,Ŝ)

u(t, S) = h(Ŝ).

Now, consider a new function ũn = Cn
2

(S − S)(S − S) + ηn(S) where

Cn ≥ maxS∈[S,S]

(
− ṽ(S,0)

v
+ v

v

∣∣∣ ∂2∂S2ηn(S)
∣∣∣). This function is also a viscosity subsolution,

− ∂

∂t
ũn −

1

2
S2ṽ

(
S,

∂2

∂S2
ũn

)
≤ −1

2
S2

(
ṽ(S, 0) + vCn − v

∣∣∣∣ ∂2

∂S2
ηn

∣∣∣∣) ≤ 0

Then, ũ(t, S) = supn∈N ũn(t, S) is a viscosity subsolution and

(29) lim
(t,S)→(t̂,S)

u(t, S) = h(S) lim
(t,S)→(t̂,S)

u(t, S) = h(S).

We conclude that φ = max (u, ũ) is a viscosity subsolution and veri�es (28) and (29).

To prove the existence of viscosity supersolution that veri�es (28) end (29) we con-

sider a sequence {γn ∈ C∞}n∈N such that γn ≥ h and γn converges uniformly to h

in [S, S]. If we de�ne Bn = infS∈[S,S]

(
−S2

2
ṽ
(
S, ∂2

∂S2γn

))−
then, wn = Bn(t − T ) +

γn(S) is a viscosity supersolution as well as the function w(t, S) = infn∈Nwn(t, S) and

this veri�es (28). On the other hand, w̃n = Dn
2

(S − S)(S − S) + γn(S), with Dn ≤

infS∈[S,S]

(
−ṽ(S, 0)− v

v

∣∣∣ ∂2∂S2γn(S)
∣∣∣), is a viscosity supersolution as well as the function

w̃(t, S) = infn∈N w̃n(t, S) and this veri�es (29). We conclude that ψ = max (v, ṽ) is a

viscosity supersolution and veri�es (28) and (29).

We can establish some relations between the viscosity subsolutions of two modi�ed

equations.

Proposition 3.3. If [v1, v1] ⊂ [v2, v2] then, every viscosity subsolution of − ∂
∂t
u−

1
2
S2ṽ[v1,v1]

(
S, ∂

∂S2u
)

= 0 is also viscosity subsolution of − ∂
∂t
u− 1

2
S2ṽ[v2,v2]

(
S, ∂

∂S2u
)

= 0.

15
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Proof. Pick φ ∈ C2 and using J1 as a viscosity subsolution of the �rst equation and

(t1, x1) = argmax(J1 − φ), so by de�nition

(30) − ∂

∂t
φ(t1, x1)− 1

2
x2

1ṽ[v1,v1]

(
x1,

∂2

∂S2
φ(t1, x1)

)
≤ 0.

As ṽ[v2,v2](S, q) ≥ ṽ[v1,v1](S, q) the inequality is veri�ed

(31)

− ∂

∂t
φ(t1, x1)−1

2
x2

1ṽ[v2,v2]

(
x1,

∂2

∂S2
φ(t1, x1)

)
≤ − ∂

∂t
φ(t1, x1)−1

2
x2

1ṽ[v1,v1]

(
x1,

∂2

∂S2
φ(t1, x1)

)
≤ 0

So we conclude that J1 is viscosity subsolution of the second equation.

A consequence of this proposition is that when the PDE of the Original Problem is

elliptic, a viscosity subsolution of the Modi�ed Problem is a viscosity subsolution of the

Original Problem.

Now we want to prove the existence and uniqueness of viscosity solution of the Mod-

i�ed Problem. We start with the proof of existence of viscosity solution of this problem.

Lemma 3.1. Consider the function

(32) F

(
(t, x),

∂

∂S2
u

)
= −1

2
x2ṽ

(
S,

∂

∂S2
u

)
.

If the following assumption is veri�ed,

(A3) The functions v∗(S, λ) and ∂
∂S
v∗(S, λ) are continuous on [S, S]× [v, v],

then there is a continuous function w : [0,∞) 7→ [0,∞) that satis�es w(0) = 0 such that

(33) F ((s, y), Y )− F ((t, x), X) ≤ w

(
|x− y|+ |t− s|+ (x− y)2 + (t− s)2

ε

)

16



Carlos Oliveira 3.3 Existence and uniqueness of viscosity solutions

for every (t, x), (s, y) ∈ O, ε > 0, and symmetric matrices X, Y satisfying

(34) −3

ε

Id 0

0 Id

 ≤
X 0

0 −Y

 ≤ 3

ε

 Id −Id

−Id Id

 .

Proof. The proof follows of lemma V.7.1 in [6] when we consider F ((t, x), ∂
∂S2u) =

−1
2
x2v(x, ∂

∂S2u) .

Notice that assumptions (A1) and (A2) do not guarantee the continuity of v∗. The

next example illustrates this situation. Consider v : R2 7→ R in C∞ such that

v(S, q) = aq + b(S)q2, a > 0, b(s) ≥ 0.

In this case, v∗(S, λ) = (λ−a)2

2b(S)
. If b(S) has roots, v∗ is discontinuous.

Now, we introduce the comparison principle for a Dirichlet problem.

De�nition 3.3. A Dirichlet problem (14),(15) satis�es the comparison principle if the

inequality

(35) φ(x) ≤ ϕ(x)

holds for any viscosity subsolution, φ, and any viscosity supersolution, ϕ, of the Dirichlet

problem.

To prove the comparison principle for the Modi�ed Problem (19), (20) we use a strong

monotonicity condition that is not veri�ed by the equation (19). This problem is solved

using a change variable.

17



Carlos Oliveira 3.3 Existence and uniqueness of viscosity solutions

Proposition 3.4. Let ũ = et−Tu. u is a viscosity solution of the Modi�ed Problem (19),

(20), if and only if ũ is a viscosity solution of the problem

− ∂

∂t
ũ+ ũ− 1

2
et−TS2ṽ

(
S, eT−t

∂2

∂S2
ũ

)
= 0 (t, S) ∈ Q(36)

ũ(t, S) = et−Th(S) (t, S) ∈ ∂Q(37)

Proof. Consider the point (t0, x0) = argmax(u − φ), then this point veri�ed (t0, x0) =

argmax(et−Tu− et−Tφ). Then, since u is a viscosity subsolution

− ∂

∂t
(et−Tφ)(t0, x0) + et0−Tu(t0, x0)− 1

2
et0−Tx2

0ṽ

(
x0, e

T−t0 ∂
2

∂S2

(
et−Tφ

)
(t0, x0)

)
= et0−T

(
− ∂

∂t
φ(t0, x0)− 1

2
x2

0ṽ

(
x0,

∂2

∂S2
φ(t0, x0)

))
≤ 0.

So, ũ = et−Tu is a viscosity subsolution of the Modi�ed Problem (36),(37). With the same

argument we prove that ũ = et−Tu is a viscosity supersolution of the same problem.

Notice that the result can be easily generalized for all ũ = γ(t)u with γ(t) ∈ C1(R),

γ(t) > 0 and ∂
∂t
γ(t) > 0.

The next theorem shows that our Modi�ed Problem (19),(15) veri�es the comparison

principle.

Theorem 3.4. Consider u : Q→ R and w : Q→ R viscosity subsolutions and superso-

lutions, respectively, of the Modi�ed Problem (36), (37) with u an upper semicontinuous

function and w a lower semicontinuous function. Then

(38) sup
Q

(u− w) ≤ 0.

Proof. We let us begin by assuming the opposite, max(t,S)∈Q(u(t, S)− w(t, S)) > 0. The

18
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argmax(u−w) ∈ {0}× (S, S)∪ (0, T )× (S, S). The function ϕ = u− γ
t
is also a viscosity

subsolution and for su�ciently small γ > 0, max(t,S)∈Q(ϕ(t, S) − w(t, S)) > 0. In this

case argmax(ϕ− w) is attained in (0, T )× (S, S). Consider the function

φε(t, x, s, y) = ϕ(t, x)− w(s, y)− (x− y)2 + (t− s)2

2ε
.

(t̂ε, x̂ε, ŝε, ŷε) = argmaxφε

Notice that φε(t̂ε, x̂ε, ŝε, ŷε) ≥ max(t,S)∈Q(ϕ(t, S)− w(t, S)). Moreover,

lim
ε→0

φε(t̂ε, x̂ε, ŝε, ŷε) = max
(t,S)∈Q

(ϕ(t, S)− w(t, S)) = φ(t̂0, x̂0)

lim
ε→0

(xε − yε)2 + (tε − sε)2

ε
= 0

and for all ε > 0 there is Xε, Yε ∈ S2 such that

(
(x̂ε − ŷε) + (t̂ε − ŝε)

ε
,Xε

)
∈ J+

Qϕ(t̂ε, x̂ε),

(
(x̂ε − ŷε) + (t̂ε − ŝε)

ε
, Yε

)
∈ J−Qw(ŝε, ŷε)

−3

ε

Id 0

0 Id

 ≤
Xε 0

0 −Yε

 ≤ 3

ε

 Id −Id

−Id Id

 .

that is guaranteed by lemma A.3.

For the function H ((t, x), u,D2u) = u− 1
2
et−TS2ṽ

(
S, eT−t ∂

2

∂S2u
)
the following is true:

max
(t,x)∈Q

(ϕ(t, x)− w(t, x)) ≤ ϕ(t̂ε, x̂ε)− w(ŝε, ŷε)

= H
(
(t̂ε, x̂ε), ϕ(t̂ε, x̂ε), Xε

)
−H

(
(t̂ε, x̂ε), w(ŝε, ŷε), Xε

)
= H

(
(t̂ε, x̂ε), ϕ(t̂ε, x̂ε), Xε

)
−H ((ŝε, ŷε), w(ŝε, ŷε), Yε)

+H ((ŝε, ŷε), w(ŝε, ŷε), Yε)−H
(
(t̂ε, x̂ε), w(ŝε, ŷε), Xε

)
.
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By the de�nition of viscosity subsolution and supersolution, it follows that the �rst di�er-

ence in the last equality is non positive and lemma 3.1 guarantees thatH ((ŝε, ŷε), w(ŝε, ŷε), Yε)−

H
(
(t̂ε, x̂ε), w(ŝε, ŷε), Xε

)
≤ w

(
|x̂ε − ŷε|+ |t̂ε − ŝε|+ (x̂ε−ŷε)2+(t̂ε−ŝε)2

ε

)
. So, we conclude

that

max
(t,x)∈Q

(ϕ(t, x)− w(t, x)) ≤ m

(
|xε − yε|+ |tε − sε|+

(xε − yε)2 + (tε − sε)2

ε

)
.

This is a contradiction to the initial assumption.

Proposition 3.5. If the functions v∗, ∂
∂S
v∗ are continuous on [S, S]× [v, v], the Modi�ed

Problem (19),(20) has a unique viscosity solution.

Proof. Proposition 3.2 guarantees that there is a viscosity subsolution u and supersolution

w that verify

lim inf
(t,S)→(t̃,S̃),(t,S)∈Q

w = lim sup
(t,S)→(t̃,S̃),(t,S)∈Q

ϕ = h(S), ∀(t̃, S̃) ∈ ∂Q.

Moreover by theorem 3.4, these viscosity subsolution and supersolution verify the com-

parison principle. Then the existence of viscosity solution follows of the theorem A.4

(Ishii theorem) in appendix A.

Suppose that there are two viscosity solutions ϕ(t, S) and ψ(t, S) that verify ϕ(t, S) <

ψ(t, S). By de�nition v(t, S) and u(t, S) are, simultaneously, viscosity subsolutions and

supersolutions. Then, by theorem 3.4, there are viscosity supersolutions and subsolutions

that verify ϕ(t, S) < ψ(t, S). So, we have a contradiction with the comparison principle.
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4 The Wilmott-Schönbucher model

In the literature there are comparatively few models taking into account the illiquidity of

the risky asset market. Here we present a model proposed by Wilmott and Schönbucher

in [16]. We discuss the concept of portfolio value as well as the consistency of the model,

i.e., the possibility of the model to collapse due to the in�uence of the large trader.

4.1 Short introduction to the model

The model considers two types of assets, a risky one, with price S and a risk-free one,

with price B. The risk-free asset is taken as numeraire with B0 normalized to 1. The

market of the risk-free asset is perfectly liquid but the market of the risky asset is not.

There are two types of agents in the market: A single large trader and a large set of small

traders.

The aggregate demand of the risky asset by the small traders at time t is a function

D(S,W, t), where S denotes the price of the risky asset and W is a random parameter.

Similarly, the aggregate supply by the small traders is a function Su(S,W, t). All infor-

mation that arrives to small traders is contained in W . Thus, the small traders don't

have any knowledge about the presence of the large trader in the market. The excess

demand is by de�nition the di�erence between demand and supply,

(39) χ(S,W, t) = D(S,W, t)− Su(S,W, t).

In the absence of the large trader, the equilibrium price at time t is the solution of the

equilibrium equation χ(S,Wt, t) = 0. Assuming χ(S,W, t) is smooth and

(40)
∂χ(S,W, t)

∂S
< 0, ∀(S,W, t) ∈]0,+∞[×R× [0,+∞[,
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the equilibrium price is a unique C2,1 function S = S(W, t). Economically, the condition

(40) means that when the price goes up the excess of demand goes down, as occurs when

supply increases and demand decreases with price.

The quantity of risky asset that the large trader wishes to hold at time t is a function

f(S, t) of the price. It is assumed that this function is smooth and it does not depend

explicitly of W . In the presence of the large trader, the equilibrium price at time t is the

solution of:

(41) χ(S,W, t) + f(S, t) = 0.

If the illiquid market counterpart of (40)

(42)
∂χ(S,W, t)

∂S
+
∂f

∂S
(S, t) < 0, ∀(S,W, t) ∈]0,+∞[×R× [0,+∞[,

holds, then the equilibrium price in the illiquid market is again a smooth function S =

S(W, t). From now on, we will assume that W = Wt is a standard Brownian motion. In

this case, it is easy to derive the dynamics of the price process St. Notice that

(43) dχ(S,W, t) + df(S, t) = 0.

Assuming that ∂
∂W

χ 6= 0, the inverse function theorem guarantees that W can be ex-

pressed as a function of S and t. So, applying the Itô lemma, it is possible to show that

the price process solves a stochastic di�erential equation dSt = µ(S, t)dt + σ(S, t)dWt,
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where

µ(S, t) =
−1

∂
∂S
χ(S,W, t) + ∂

∂S
f(S, t)

[
∂

∂t
χ(S,W, t) +

∂

∂t
f(S, t) +

1

2

∂2

∂W 2
χ(S,W, t)(44)

+
1

2

(
∂
∂W

χ(S,W, t)
∂
∂S
χ(S,W, t) + ∂

∂S
f(S, t)

)2(
∂2

∂S2
χ(S,W, t) +

∂2

∂S2
f(S, t)

)

−

(
∂
∂W

χ(S,W, t)
∂
∂S
χ(S,W, t) + ∂

∂S
f(S, t)

)
∂2

∂S∂W
χ(S,W, t)

]

σ(S, t) =−
∂
∂W

χ(S,W, t)
∂
∂S
χ(S,W, t) + ∂

∂S
f(S, t)

.(45)

Notice that µ and σ are indeed functions of S and t alone because W can be written as

a function of S and t.

On section 5 below we discuss one important case where condition (42) fails.

4.2 The value of the large trader's portfolio

In a perfectly liquid market, any amount of any asset can be converted to cash at market

price, therefore the value of a given portfolio at any moment of time is a well-de�ned

quantity.

In the Wilmot-Schönbucher market, the large trader cannot convert the amount of

risky asset he holds without changing the market price. This leads to the introduction

of two extreme concepts of value of portfolio: the "paper value" and the "liquidation

value". The paper value is computed at current market prices

(46) Yt = ftSt + ctBt,

where ft is an abbreviation of f(St, t) and ct represents the holding in the bonds. Natu-

rally the paper value is real only if we have the "Black-Scholes economy".
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The liquidation value at time t is the amount of money the large trader would obtain

if he would hold the portfolio up to time t when he converts all the risky asset he holds

in numeraire. In order to compute this, we need to discuss in some detail the mechanism

of transaction with the large trader.

Since the large trader seeks the best possible bargain, we assume that he gives priority

to higher bidders and lower askers: suppose that the large trader wants to sell the quantity

ft− − ft. In this case the large trader checks the quantity and the price that each small

trader wants to pay. He sells to �rst the small traders that o�er higher price and only

sells to traders who o�er lower prices after the �rst are saturated. As the equilibrium

price reacts to the quantity that large trader holds, in limit the value obtained with this

transaction is given by

(47) −
∫ ft

ft−

S(x,W, t)dx.

Naturally, if the large trader wants to liquidate his position the value obtained with this

mechanism of transaction is

(48)
∫ ft

0

S(x,W, t)dx,

and the liquidation value of the portfolio is

(49) Yt =

∫ ft

0

S(x,W, t)dx+ ctBt.

4.3 Consistency of the model

In general the models of illiquid markets have theoretical di�culties, because they predict

the collapse of the market at least in some situations. The existence of large traders
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with capacity to in�uence the market price or the existence of traders with privileged

information allows market manipulation. We say that there is a market manipulation

when there is some trading strategy that allows to move the price to make risk free

pro�t. If such strategies can be used without limitations, the market collapses because

small traders are stripped of their wealth. We say that a model is consistent if there are

neither arbitrage possibilities nor possibilities of market manipulation. There are some

works as [11] and [12] studying market manipulation. Also in [16] these questions are

discussed and it is shown that the Wilomott-Schönbucher model is not consistent. Here

we explain the trading strategies called: market corners and the short squeezes.

We say that there is a market corner if the manipulator holds a sizeable part of

the shares in the market. As we know, short sellers sell borrowed stock. Thus, the

manipulator can lend his shares to short sellers who in turn sell them back (inadvertently)

to the manipulator. In this way the manipulator can hold more that 100% of the shares

in the market. The manipulator corners the market. He can require the short sellers his

shares. If the total supply is held by the manipulator, the short sellers have to buy the

shares to the manipulator in order to deliver back to the manipulator. So, the manipulator

can decide the price that the short sellers have to pay. In this case we say that there is

a short squeeze.

In general, when the price mechanism exhibits a delay in the adjustment the manipula-

tor can buy the asset cheaper than the sale of this asset. In [12] it is shown that to prevent

market manipulation the price mechanism cannot exhibit delay in the adjustment.

5 Collective behaviour

Despite the consistency problems mentioned above, the Wilmott-Schönbucher model is

attractive to study the consequences of collective behaviour. We present a de�nition of
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self-�nancing strategy di�erent from the one proposed in [16] and derive, heuristically,

the Black-Scholes equation for the true value of an option in the presence of collective

behaviour by a large group of traders in the market.

5.1 Collective behaviour in the Wilmott-Schönbucher model

Consider a market with a large number of small traders and no large trader. Suppose

that a sizeable fraction of these small traders are following similar strategies. Since all

traders in this group sell and buy in similar circumstances, they act collectively like a

large trader without being aware of this fact. Situations of this kind may arise in real

markets due to the widespread use of model-assisted and automatic trading when large

numbers of traders use similar models or algorithms.

In this case, the issues related to market manipulation do not apply because the

individual traders are unaware of their mutual synchronization and are competitors. The

Wilmott-Schönbucher model is attractive to study the consequences of such collective

behaviour, due to its relative simplicity and "�rst principles" approach.

To simplify, we take χ(St,Wt, t) = α(S∗t − St), where α > 0 is a constant and S∗t

veri�es dS∗t = θS∗t dt + νS∗t dWt. We assume that the synchronized small traders are

hedgers, who try to replicate an European put option using the Black-Scholes strategy.

So, this group of hedgers acts like a large trader with delta strategy f(St, t) = N(d1)− 1,

where N(d1) = 1√
2Π

∫ d1
−∞ exp

(
− z2

2

)
and d1 =

log(
St
K

)+(r+ ν2

2
)(T−t)

ν
√
T−t .

5.2 The price process

It is important to understand the price mechanism in our example to deduce the Black-

Scholes equation for this market. The geometric shape of the strategy of the large trader
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varies as the time approaches to maturity. Near the maturity the strategy of the large

trader approaches a step function with step from −1 to 0 as shown in Figure 1. On the

other hand, the function excess of demand is linear. So, near the maturity, the function

S 7→ χ(S,W, t) + f(S, t) is S-shaped as shown in Figure 2. This function has one local

minimizer and one local maximizer which we denote by x1(t) and x2(t), respectively. We

also de�ne the points Σ1(t), Σ2(t) as the unique solutions to

(50)


χ(S,W, t) + f(S, t) = χ(xi(t),W, t) + f(xi(t), t)

S 6= xi(t)

i = 1, 2. Notice that in our case x1(t), x2(t),Σ1(t),Σ2(t) do not depend on W . Now we

discuss the price equilibria.

The sequence of Figures 3,4 and 5 illustrates one possible sequence for the price equi-

librium. In Figure 3, there is a unique equilibrium price, x(t) and any small perturbation

caused by the Brownian motion moves only a little the equilibrium price. In the Figure

4 there are three possibles equilibria, x(t), y(t) and z(t) . The middle equilibrium, y(t),

is unstable. Notice that around y(t) the slope of χ(S,W, t) + f(S, t) is positive. This

means that the bigger the positive price variation is, the greater the positive excess of

demand variation gets. So, at price y(t) any perturbation moves the equilibrium price

to x(t), or to z(t), which are stable equilibria. Finally consider the case when there are

two equilibria (Figures 5 and 6). In �gure 5 the equilibria are x1(t) and Σ1(t). Σ1(t), is

stable and acts as the equilibrium price in the Figure 3. The equilibrium, x1(t), is stable

with respect to negative price perturbation but any positive price perturbation moves

the equilibrium price to a price in the positive slope and consequently to Σ1(t) . So we

consider that in the �rst moment t, where the market price reaches x1(t) from the left,

there is a jump in the price process from St− = x1(t) to St = Σ1(t). The case in �gure 6

is analogous: in the �rst moment the price reaches x2(t) from the right there is a price
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jump from St− = x2(t) to St = Σ2(t).

5.3 Self-�nancing strategies

A self-�nancing strategy is roughly a dynamic strategy where, after the initial moment,

a purchase of more shares of risky asset is only �nanced by the sale of riskless asset, and

vice-versa. Therefore, after implementing the strategy, there are not any cash in�ows or

out�ows.

Wilmott and Schönbucher in [16] state that a strategy is self-�nanced it satis�es:

(51) dYt = ft−dSt + ct−dBt.

We can obtain this dynamic using the self-�nancing condition:

(ft − ft−)St + (ct − ct−)Bt = 0,

but this is conceptually unsatisfactory, because it assumes that the large trader trades

in block, but as we saw in section 4.2 this is not the optimal trading procedure. If we

consider that the large trader uses the optimal form of trade, then, the self-�nancing

condition is ∫ ft

ft−

S(x,Wt, t)dx+ (ct − ct−)Bt = 0.

Now, we want to obtain the dynamic of the self-�nancing strategy to the collective

behaviour model. To simplify our task we set Bt ≡ 1. As seen below, the equilibrium

price jumps when it hits the minimizer or the maximizer, so we can formalize the portfolio
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value with the following processes. Let Γi(W, t), with i = 1, 2, be the functions:

Γ1(W, t) = min{S : α(S∗ − S) + f(S, t) = 0}(52)

Γ2(W, t) = max{S : α(S∗ − S) + f(S, t) = 0}(53)

So, we can de�ne the cadlag process (St, It), where:

It =

 1 if St− < x1(t) ∨ St− = x2(t)

2 if St− > x2(t) ∨ St− = x1(t)
(54)

St = ΓIt(Wt, t)(55)

The strategy of the big portion of the small investors is φ(Wt, t) = f (ΓIt(Wt, t), t). In

consequence, the value of the portfolio is

(56) Yt = φ(Wt, t)ΓIt(Wt, t) + ct,

and the dynamics of Yt is obtained by the Itô Lemma:

dYt =d (φ(Wt, t)ΓIt(Wt, t)) + dct(57)

=ΓIt(Wt, t)dφ(Wt, t) + φ(Wt, t)dΓIt(Wt, t) + dφ(Wt, t)dΓIt(Wt, t) + dct

There are 4 possibles scenarios:

It− = 1; It = 1 −→ St− < x1(t)(58)

It− = 2; It = 1 −→ St− = x2(t)(59)

It− = 1; It = 2 −→ St− = x1(t)(60)

It− = 2; It = 2 −→ St− > x2(t)(61)

29



Carlos Oliveira 5.3 Self-�nancing strategies

To guarantee that our self-�nancing condition is veri�ed we do:

dct = ct − ct− =−
∫ ft

ft−

S(x,Wt, t)dx = −
∫ ft

ft−

(
S∗(Wt, t) +

x

α

)
dx

=−
(
S∗(Wt, t) +

ft + ft−
2α

)
(ft − ft−)(62)

=−
(
S∗(Wt−, t−) +

ft−
α

+ S∗(Wt, t)− S∗(Wt−, t−) +
ft − ft−

2α

)
(ft − ft−)

=−
(
S (ft−,Wt−, t−) + S∗(Wt, t)− S∗(Wt−, t−) +

ft − ft−
2α

)
(ft − ft−)

=−
(
S (ft−,Wt−, t−) + dS∗t +

1

2α
dft

)
dft.

We can rewrite this result as

(63) dct = −
(

ΓIt−(Wt−, t−) + dS∗t +
1

2α
dφt

)
dφt

To calculate the dynamics of ΓIt(Wt, t) we notice that:

dΓIt =ΓIt(Wt, t)− ΓIt−(Wt−, t−)

=ΓIt(Wt, t)− ΓIt−(Wt, t) + ΓIt−(Wt, t)− ΓIt−(Wt−, t−)(64)

=ΓIt(Wt, t)− ΓIt−(Wt, t) +

(
∂ΓIt−
∂t

+
∂2ΓIt−
∂W 2

)
dt+

∂ΓIt−
∂W

dWt

where the di�erence of two �rst terms can be simpli�ed in:

(65) ΓIt(Wt, t)− ΓIt−(Wt, t) =


0 if It− = It

ΓIt(Wt, t)− x2(t) if It− = 2 and It = 1

ΓIt(Wt, t)− x1(t) if It− = 1 and It = 2.
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To derive the dynamics of φt we need to observe the 4 di�erent scenarios:

dφt = φt − φt− =



f (Γ1(Wt, t), t)− f (Γ1(Wt−, t−), t−) if St− < x1(t)

f (Γ1(Wt, t), t)− f (Γ2(Wt−, t−), t−) if St− = x2(t)

f (Γ2(Wt, t), t)− f (Γ1(Wt−, t−), t−) if St− = x1(t)

f (Γ2(Wt, t), t)− f (Γ2(Wt−, t−), t−) if St− > x2(t)

.(66)

In the scenario (58) and (61) we have that:

f (Γi(Wt, t), t)− f (Γi(Wt−, t−), t−) =
∂f

∂Γi
dΓi +

∂f

∂t
dt+

1

2

∂2f

∂Γ2
i

(dΓi)
2

=
∂f

∂Γi

(
∂Γi
∂W

dWt +
∂Γi
∂t

dt+
1

2

∂2Γi
∂W 2

dt

)
+

(
∂f

∂t
+

1

2

∂2f

∂Γ2
i

(
∂Γi
∂W

)2
)
dt(67)

=

(
∂f

∂Γi

∂Γi
∂t

+
1

2

(
∂f

∂Γi

∂2Γi
∂W 2

+
∂2f

∂Γ2
i

(
∂Γi
∂W

)2
)

+
∂f

∂t

)
dt+

∂f

∂Γi

∂Γi
∂W

dWt

=µi(t−, St−)dt+ σi(t−, St−)dWt

When St− = x2(t) the dynamics of the self-�nancing strategy is:

f (Γ1(Wt, t), t)−f (Γ2(Wt−, t−), t−) = f (Γ1(Wt, t), t)− f (Γ2(Wt, t), t)

+f (Γ2(Wt, t), t)− f (Γ2(Wt−, t−), t−)(68)

=f (Γ1(Wt, t), t)− f (x2(t), t−) + µ2(t−, St−)dt+ σ2(t−, St−)dWt

Finally we have the situation St− = x1(t) and the dynamics is:

f (Γ2(Wt, t), t)−f (Γ1(Wt−, t−), t−) = f (Γ2(Wt, t), t)− f (Γ1(Wt, t), t)

+f (Γ1(Wt, t), t)− f (Γ1(Wt−, t−), t−)(69)

=f (Γ2(Wt, t), t)− f (x1(t), t−) + µ1(t−, St−)dt+ σ1(t−, St−)dWt

Notice that ∂Γi
∂W

is unbounded. We have the equilibrium condition (41) from which we
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can write S(W, t) = g(W, t). So, the implicit function theorem guarantees that:

(70)
∂Γi
∂W

= −∂ (χ(S,W, t) + f(S, t))

∂W

(
∂ (χ(S,W, t) + f(S, t))

∂S

)−1

.

When S → x1(t) or S → x2(t) the denominator tends to 0, then ∂Γi
∂W

is unbounded. For

each scenario we can specify a little more the dynamics of ct. When we have St− < x1(t)

or St− > x2(t) the dynamics of ct is:

dct =−
(
S (ft−,Wt−, t−) + dS∗t +

1

2α
dφt

)
dφt

=−
(
St− + θS∗dt+ νS∗dWt +

1

2α
(µi(t−, St−)dt+ σi(t−, St−)dWt)

)
(71)

× (µi(t−, St−)dt+ σi(t−, St−)dWt)

=−
(
St−µi(t−, St−) + (νS∗)σi(t−, St−) +

σ2
i (t−, St−)

2α

)
dt− St−σi(t−, St−)dWt,

for i = 1 or i = 2 respectively. There are two other cases St− = x1(t) and St− = x2(t).

We derive the dynamics of ct for the St− = x1(t):

dct =−
(
St− + θS∗dt+ νS∗dWt

+
1

2α
(f(Γ2(Wt, t), t))− f(x1(t), t) + µ1(t−, St−)dt+ σ1(t−, St−)dWt)

)
× (f(Γ2(Wt, t), t))− f(x1(t), t) + µ1(t−, St−)dt+ σ1(t−, St−)dWt)

=−
(
St− +

1

2α
(f(Γ2(Wt, t), t))− f(x1(t), t))

)
(f(Γ2(Wt, t), t))− f(x1(t), t))

−
((

θS∗ +
µ1(t−, St−)

α

)
dt+

(
νS∗ +

σ1(t−, St−)

α

))
(f(Γ2(Wt, t), t))− f(x1(t), t))

−
(
St−µ1(t−, St−) + (νS∗)σ1(t−, St−) + σ2

1(t−, St−)
)
dt− St−σ1(t−, St−)dWt

for the case St− = x2(t) the derivation of the dynamics of ct is similar.
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5.4 The Black-Scholes equation

In this section we want to derive the the Black-Scholes equation for the collective be-

haviour in the Wilmott-Schönbucher model.

First we present the dynamic of the price process:

σ(St, t) =
ανS∗

α− ∂
∂S
f(St, t)

(72)

µ(St.t) =
1

α− ∂
∂S
f(St, t)

(
αθS∗ +

∂

∂t
f(St, t) +

1

2
σ2(St, t)

∂2

∂S2
f(St, t)

)
(73)

We notice that the authors write the drift of the di�usion as a function of St and t.

Indeed, we can write the Brownian Motion, Wt, as a function of St and t. So, it's easy

to show that the drift and the volatility of the di�usion is given by:

σ(St, t) =
αν (S − f(St, t))

α− ∂
∂S
f(St, t)

(74)

µ(St.t) =
1

α− ∂
∂S
f(St, t)

(
αθ (S − f(St, t)) +

∂

∂t
f(St, t) +

1

2
σ2(St, t)

∂2

∂S2
f(St, t)

)
(75)

If we consider that there are no jumps between t− and t then, we can obtain the

dynamics of the self-�nancing strategy value such as in the last section. This dynamics

can be simpli�ed by considering

(76) dYt = a(St, t)dt+ b(St, t)dWt

Then, the HJB equation and the usually boundary condition are is given by

Vt(t, S, Y ) + LV (t, S, Y ) =0, ∀(t, S, Y ) ∈ [0, T [×R+ × R(77)

V (T, S) =Φ(S, Y ), ∀(S, Y ) ∈ R+ × R(78)
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where L is the in�nitesimal generator, i.e., the operator de�ned as:

L̃g = lim
h→0+

Es,y
t [g(St+h, Yt+h)]− g(s, y)

h

=
∂g

∂y
(St, Yt)a(St, t) +

∂g

∂s
(St, Yt)µ(St, t) +

∂2g

∂y∂s
(St, Yt)σ(St, t)b(S, t)(79)

+
1

2

(
∂2g

∂y2
(Yt, St)b

2(St, t) +
∂2g

∂s2
(Yt, St)σ

2(St, t)

)

for g smooth and bounded.

In the scenario (60) we have a jump when the price reaches the minimum price x1(t).

So, in the moment t, the value of S attains the value x1(t) and jumps to the value Σ1(t).

We need to compute the jump in the self-�nancing strategy value:

Yt =Yt− −
(
x1(t) +

f(Σ1(t), t)− f(x1(t), t)

2α

)(
f(Σ1(t), t)− f(x1(t), t)

)
+f(Σ1(t), t)Σ1(t)− f(x1(t), t)x1(t)

=Yt− − α
(
x1(t) +

Σ1(t)− x1(t)

2

)(
Σ1(t)− x1(t)

)
(80)

+f(Σ1(t), t)Σ1(t)− f(x1(t), t)x1(t)

=Yt− − α
Σ1(t) + x1(t)

2

(
Σ1(t)− x1(t)

)
+ f(Σ1(t), t)Σ1(t)− f(x1(t), t)x1(t)

On the other hand, in the scenario (61), in the moment t the price process St attains

x2(t) and jumps to the value Σ2(t).

The jump in the self-�nancing strategy value is given by:

(81) Yt = Yt− − α
Σ2(t) + x2(t)

2

(
Σ2(t)− x2(t)

)
+ f(Σ2(t), t)Σ2(t)− f(x2(t), t)x2(t)
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Then the Black-Scholes equation is (77) and (78) adding the conditions:

V (t, x1(t), y) =V

(
t,Σ1(t), y − αΣ1(t) + x1(t)

2

(
Σ1(t)− x1(t)

)
+f(Σ1(t), t)Σ1(t)− f(x1(t), t)x1(t)

)
, ∀(t, Y ) ∈ [0, T [×R(82)

V (t, x2(t), y) =V

(
t,Σ2(t), y − αΣ2(t) + x2(t)

2

(
Σ2(t)− x2(t)

)
+f(Σ2(t), t)Σ2(t)− f(x2(t), t)x2(t)

)
, ∀(t, Y ) ∈ [0, T [×R(83)

The jumps in the price process suggest that the solution, if it exists, is not continuous.

Observe the Figure 6 where we try to illustrate the boundary conditions (78), (82) and

(83). Suppose that there is a continuous solution, then limS→x1(t)− limt→T− V (t, S, Y ) =

limt→T− limS→x1(t)− V (t, S, Y ). However this is not veri�ed. Notice that,

lim
S→x1(t)−

lim
t→T−

V (t, S, Y ) = V (T,K, Y )

lim
t→T−

lim
S→x1(t)−

V (t, S, Y ) = V (T,K +
1

α
, Y − 1

2α
)

where K is the strike price. Naturally, V (T,K, Y ) = V (T,K + 1
α
, Y − 1

2α
) for all Y ∈ R

is not veri�ed.

6 Conclusion and open questions

The existence of large traders and collective behaviours in �nancial markets justi�es the

importance of models taking into account market illiquidity. The Black-Scholes equations

derived from these models are non-linear, so the concept of viscosity solutions is useful

in this setting. For a problem proposed by Frey and Polte in [7], we show the existence

and uniqueness of viscosity solutions and we discuss also some other properties.
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We also presented a model proposed by Wilmott and Schönbucher and some problems

related to these models are discussed. In many cases these models allow the collapse of

the market, a problem that we avoid by considering the particular case of collective

behaviour. In the context of this model, we deduce the concept of self-�nancing strategy.

In this work we presented some relevant questions to be further developed that we

list:

1. Prove that the process (St, It) is Markov;

2. Study the consequences of the fact that the function ∂Γi
∂W

is unbounded and the

possible solutions for this potential problem;

3. Verify the dynamic programming principle in the derivation of the HJB equation

for the collective behaviour case;

4. The Black-Scholes equation for our model of collective behaviour has unusual bound-

ary conditions. Due to this, it is not clear if the concept of viscosity solution applies

to this problem.
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A Complementary results about viscosity solutions

We present some theory about viscosity solutions. We give the results without proofs,

which can be found in many books such as [6] or other publications such as [4]. Here we

consider F : O × R× Rd × Sd 7→ R, the equation

(84) F (x, u(x), Du(x), D2u(x)) = 0,

and we de�ne below the concept of viscosity solution. We present an alternative de�nition

based in the second order Taylor form. Let ψ be a lower semi-continuous function. We

consider (x0, φ) ∈ O×C2(O) where x0 is a local maximum point of the di�erence (ψ−φ)

on O. To simplify we set p = Dφ and A = D2φ. Motivated by the second order Taylor

form we have that:

(85) ψ(x) ≥ ψ(x0) + p.(x− x0)T +
1

2
(x− x0)A(x− x0)T + o

(
|x− x0|2

)
.

For the upper semi-continuous function, ϕ, and the pair (x0, φ) ∈ O × C2(O) where

x0 is a local minimum point of the di�erence (ϕ− φ) on O we have

(86) ϕ(x) ≤ ϕ(x0) + p.(x− x0)T +
1

2
(x− x0)A(x− x0)T + o

(
|x− x0|2

)
.

De�nition A.1. The subjet of the function ψ at the point x0 is de�ned as

(87) J−Oψ(x0) = {(p,A) ∈ Rd × Sd : (x0, p, A) verify (85)}
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The subjet of the function ϕ at the point x0 is de�ned as

(88) J+
Oϕ(x0) = {(p,A) ∈ Rd × Sd : (x0, p, A) verify (86)}

Proposition A.1. Let ϕ be an upper semi-continuous function. ϕ is a viscosity subso-

lution of (84) if

(89) F (x, u(x), p, A) ≤ 0

for all (p,A) ∈ J+
Oϕ(x)

Similarly, let ψ be an lower semi-continuous function. ψ is a viscosity supersolution

of (84) if

(90) F (x, u(x), p, A) ≥ 0

for all (p,A) ∈ J−Oψ(x)

Now we present some results on the stability of viscosity solutions.

Lemma A.1. Consider an upper semi-continuous function, ϕ : O 7→ R, and a triplet

(x0, p, A) ∈ O×Rd×Sd such that (p,A) ∈ J+
Oϕ(x0). Suppose there is a sequence of upper

semi-continuous functions {ϕi : O 7→ R}i∈N satisfying the conditions:

1. There is a sequence {xi ∈ A}i∈N such that lim(xi, ϕi(xi)) = (x0, ϕ(x0));

2. Any sequence {xi ∈ A}i∈N satis�es lim supϕ(xi) ≤ ϕ(limxi).

In this case there is a sequence {(xi0, pi, Ai) ∈ O × Rd × Sd}i∈N such that:

1. (pi, Ai) ∈ J+
Oϕ(xi0) for every i ∈ N;
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2. lim(xi0, ϕi(x
i
0), pi, Ai) = (x0, ϕ(x0), p, A).

Theorem A.2. Consider an elliptic continuous function F : O×R×Rd×Sd 7→ R, and let

F be a non-empty set of viscosity subsolutions of (84). If the function φ = sup{ϕ : ϕ ∈ F}

with x ∈ O is locally bounded, then it is a viscosity subsolution of (84).

Theorem A.3. Consider a sequence of elliptic functions {Fi : O×R×Rd×Sd 7→ R}i∈N,

and �x an elliptic function F : O × R× Rd × Sd 7→ R satisfying

(91) F (x, r, p, A) ≤ lim inf
i→∞

{
Fj(x̃, r̃, p̃), Ã) : j > i, (x̃, r̃, p̃) ∈ B 1

i
(x, r, p, A)

}

for every (x, r, p, A) ∈ O × R× Rd × Sd.

For each i ∈ N, let φi : O 7→ R be a viscosity subsolution of (84).

If the function φ(x) = lim supi→∞ {φj(z) : j > i, z ∈ Bfrac1i(x)} with x ∈ O is locally

bounded, then it is a viscosity subsolution of (84).

There are some results concerning Dirichlet problems.

Lemma A.2. Suppose F is continuous and pick φ : O 7→ R, a viscosity subsolution of

the Dirichelet problem. Suppose there is a triplet (x0, p, A) ∈ O × Rd × Sd such that:

(p,A) ∈ J−Oφ(x0)(92)

F (x0, φ(x0), p, A) < 0.(93)
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There exist ε > 0 and a viscosity solution, φε : O 7→ R, of the Dirichlet problem such that

sup
x∈O

(φε(x)− φ(x)) > 0,(94)

φε(x) ≥ φ(x), ∀x ∈ O,(95)

φε(x) = φ(x), ∀x ∈ O \Bε(x)(96)

Theorem A.4 (Ishii). Suppose that F is continuous and a Dirichlet problem veri�es

the comparison principle and admits a viscosity subsolution φ : O 7→ R and a viscosity

supersolution ϕ : O 7→ R such that

(97) lim inf
z→x,z∈O

φ = lim sup
z→x,z∈O

ϕ = h(x), ∀x ∈ ∂O

Then, the function

(98) u(x) = sup {ψ(x) : ψ is a viscosity subsolution and φ ≤ ψ ≤ ϕ(x)}

is a viscosity solution of the Dirichlet problem

Finally we present some results for the HJB equation:

(99) − ∂

∂t
u(t, x) + F

(
t, x, u(t, x),

∂

∂x
u(t, x),

∂2

∂t2
u(t, x)

)
= 0

Lemma A.3. Let φ : O 7→ R and ψ : O 7→ R be two locally bounded upper semi-

continuous functions. Fix a real function ϕ ∈ C2(O×O), and let (x0, y0) be a maximum

point of the function

(100) (x, y) 7→ φ(x) + ψ(y)− ϕ(x, y).

For every ε > 0 such that Id−εD2ϕ(x0, y0) > 0 there are sequences
{

(Ai, Bi) ∈ Sd × Sd
}
i∈N,
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{(xi, yi) ∈ O ×O}i∈N and
{

(pi, wi) ∈ Rd × Rd
}
i∈N such that

1. lim(xi, yi) = (x0, y0), limφ(xi) = φ(x0), limψ(yi) = ψ(y0), lim(pi, wi) =(
∂
∂x
ϕ(x0, y0), ∂

∂y
ϕ(x0, y0)

)
and lim(Ai, Bi) = (A,B) for some (A,B) ∈ Sd × Sd;

2.

(pi, Ai) ∈ J+
Oφ(xi)(101)

(wi, Bi) ∈ J+
Oψ(yi)(102)

3.

(103) −1

ε
Id ≤

X 0

0 Y

 ≤ (Id− εD2ϕ(x0, y0)
)−1

D2ϕ(x0, y0).
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B Graphics

The following �gures complement the explanation of the price process developed in section

5.2. We consider t �xed, close to the maturity.

Figure 1: The large trader strategy. Figure 2: The excess demand function.

f(., t)

S χ(., t) + f(., t)

S

Figure 3: A stable equilibrium price. Figure 4: Two stables equilibrium prices.

χ(., t) + f(., t)

x(t) S

χ(., t) + f(., t)

Sx(t) y(t) z(t)

Figure 5: Jump 1 in the price process. Figure 6: Jump 2 in the price process.

χ(., t) + f(., t)

Sx1(t) Σ1(t)

χ(., t) + f(., t)

Sx2(t)Σ2(t)
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This last �gure complements the explanation about the di�culty in obtaining a clas-

sical solution for the Black-Scholes equation developed in section 5.4.

Figure 5: The boundary conditions (78), (82), (83).

T−

t

Σ2(t)x1(t) x2(t) Σ1(t) S
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C Calculation of the maximum and minimum points

in collective behaviour case

When the variables W and t are �xed we can �nd the extreme points using the usual

tools for one variable function. We start with the calculation of critical points.

∂

∂S
{χ(St,Wt, t) + f(St, t)} = 0

−α +
1√
2Π

exp

(
−d

2
1

2

)
∂

∂S
d1 = 0

1

Stν
√

2Π(T − t)
exp

(
−d

2
1

2

)
= α.

In order to simplify we set A(t) = ν
√

2Π(T − t). Therefore,

−d
2
1

2
= log(αA(t)) + log(St)(104)

−1

2

(
log(St)

B(t)
+ C(t)

)2

= log(αA(t)) + log(St),(105)

where B(t) = ν
√
T − t and C(t) =

(r+ ν2

2
)(T−t)−log(K)

B(t)
. If we use the substitution log(St) =

y, we will have a second order equation:

− 1

2B2(t)
y2 − (1 +

C(t)

B(t)
)y − (

C2(t)

2
+ log(αA)) = 0

So, we have y =
−(1+

C(t)
B(t))±

√
(1+

C(t)
B(t))

2
−C

2(t)

B2(t)
− 2 log(αA)

B2(t)

1
B2(t)

. After some simpli�cations we can

obtain y = −E(t)±
√
B4(t)D(t)− 2B2(t) log(αA). Here E(t) = (r+ 3

2
ν2)(T−t)− log(K)
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and D(t) = 2
ν2

( log(K)
T−t + r + ν2). Then the minimum and maximum points are given by,

(106) St = exp
(
−E(t)±

√
B4(t)D(t)− 2B2(t) log(αA)

)
.
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