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Resumo 

Esta dissertação tem como objetivo comparar o desempenho de duas heurísticas 

com a resolução de um modelo exato de programação linear inteira na determinação de 

soluções admissíveis do problema de minimização da largura de banda para matrizes 

esparsas simétricas. As heurísticas consideradas foram o algoritmo de Cuthill e McKee e 

o algoritmo Node Centroid com Hill Climbing. 

As duas heurísticas foram implementadas em VBA e foram avaliadas tendo por 

base o tempo de execução e a proximidade do valor das soluções admissíveis obtidas ao 

valor da solução ótima ou minorante. As soluções ótimas e os minorantes para as diversas 

instâncias consideradas foram obtidos através da execução do código para múltiplas 

instâncias e através da resolução do problema de Programação Linear Inteira com recurso 

ao Excel OpenSolver e ao software de otimização CPLEX. Como inputs das heurísticas 

foram utilizadas matrizes com dimensão entre 4 × 4  e 5580 × 5580 , diferentes 

dispersões de elementos não nulos e diferentes pontos de partida. 
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Abstract 

This dissertation intends to compare the performance of two heuristics with the 

resolution on the exact linear integer program model on the search for admissible 

solutions of the bandwidth minimization problem for sparse symmetric matrices. The 

chosen heuristics were the Cuthill and McKee algorithm and the Node Centroid with Hill 

Climbing algorithm. 

Both heuristics were implemented in VBA and they were rated taking into 

consideration the execution time in seconds, the relative proximity of the value obtained 

to the value of the optimal solution or lower bound. Optimal solutions and lower bounds 

were obtained through the execution of the code for several instances and trough the 

resolution of the integer linear problem using the Excel Add-In OpenSolver and the 

optimization software CPLEX. The inputs for the heuristics were matrices of dimension 

between 4 × 4 and 5580 × 5580, different dispersion of non-null elements and different 

initialization parameters. 

 

Keywords: bandwidth; heuristic; sparse matrix; integer programming 
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 Introduction 

The bandwidth minimization problem has great relevance in applications because 

reducing the bandwidth of a matrix can, according to Chagas & De Oliveira, 2015, reduce 

the storage, memory consumption and processing costs of solving sparse linear systems 

of type 𝐴𝑥 = 𝑏, where 𝐴 is a square invertible matrix of order 𝑛 and 𝑥 and 𝑏 are vectors 

of dimension 𝑛. 

According to Lim et al., 2004, this problem had its origin in the 1950s and it has 

been proven to be NP-complete by H. Papadimitriou, 1976. The bandwidth problem can 

also be formulated for graphs if we identify matrix 𝐴 as the corresponding adjacency 

matrix. In fact, Garey et al., 1978, demonstrated that even for problems where the graph’s 

nodes have a maximum degree of three this problem is still NP-complete. 

 

This work intends to apply an exact Integer Linear Programming (ILP) model and 

two heuristics and compare their results. However, before trying to minimize the 

bandwidth of a matrix it is important to understand what is exactly the matrix bandwidth. 

 

Example 1: 

Taking into consideration the graph shown in Figure 1, 𝐺 = (𝑉, 𝐸) with 4 nodes, 

𝑉 = {1,2,3,4} , and 5 edges, 𝐸 = {(1,2), (1,4), (2,3), (2,4), (3,4)} , we can build its 

adjacency matrix, where the non-null elements represent the edges of the graph. For each 

non-zero entry 𝑎𝑖𝑗 there is an edge connecting nodes 𝑖 and 𝑗 with weight 𝑎𝑖𝑗. 

 

Figure 1 Example 1: Graph with initial model labelling. 
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The bandwidth of a matrix is computed from the distances of the non-null elements 

of the matrix to the diagonal, i.e., for row 𝑖, we determine 𝑑𝑖𝑎𝑚(𝑖) = MAX
(𝑖,𝑗)∈𝐸

{|𝑖 − 𝑗|}. 

In this example we get 𝐴 = [

0 1 0 1
1 0 1 1
0 1 0 1
1 1 1 0

]  

⟶ MAX{1,3} = 3    
⟶ MAX{1,1,2} = 2

⟶ MAX{1,1} = 1   
⟶ MAX{3,2,1} = 3

 , where for each 

line we have recorded the maximum distance of a non-zero entry to the diagonal. 

Each line of the matrix contributes with a value for the total bandwidth of the matrix 

𝐴. As we can see, the first row contributes with the value 3 because the most distant non-

null element from the main diagonal is located 3 indices to the right. The second row 

contributes with the value 2, the third row with 1 and the fourth row with 3. The 

bandwidth of the matrix 𝐴 corresponds to the maximum of the values contributed by each 

row, therefore the bandwidth of the matrix 𝐴 in this case is 3. 

Since a matrix of order 𝑛 has a bandwidth at most (𝑛 − 1), the maximum bandwidth 

possible for a matrix is 𝑛 − 1. This means that, with the current numbering of the vertices, 

we obtained the maximum bandwidth for this matrix. 

 

The bandwidth minimization problem consists in obtaining the smallest possible 

bandwidth by performing row and column exchanges or, in the case of graphs, by 

relabelling the nodes. 

 

In this example, if we change the node labelling as shown in Figure 2, we do obtain 

a lower bandwidth. 

 

Figure 2 Example 1: Alternative node labelling. 
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Adjacency matrix: 𝐴 = [

0 1 1 0
1 0 1 1
1 1 0 1
0 1 1 0

]  

⟶ 2
⟶ 2
⟶ 2
⟶ 2

 

 

As a result of the change of the numbering of the nodes, the adjacency matrix and 

its bandwidth were impacted. This was translated in a reduction of the bandwidth to 2 

because all the rows contribute with the value 2, which in fact corresponds to the optimal 

solution (see appendix 7.2). 

 

Concretely, the bandwidth minimization problem consists of permuting rows and 

columns of a given matrix, 𝐴 = {𝑎𝑖𝑗}  , with the objective of keeping the non-null 

elements of a matrix as close as possible to the main diagonal. The bandwidth of A can 

be defined as 𝐵(𝐴) = 𝑀𝐴𝑋{|𝑖 − 𝑗|: 𝑎𝑖𝑗 ≠ 0}. 

An extensive study conducted by Chagas & De Oliveira, 2015, comparing 29 

metaheuristic-based heuristics showed that the four metaheuristics in the list below 

provided better results for the reduction of the bandwidth taking into consideration their 

computational cost. These heuristics are Node Centroid with Hill Climbing (Lim et al., 

2004), Variable Neighbourhood Search (Mladenovic et al., 2010), Genetic Programming 

Hyper-Heuristic (Koohestani & Poli, 2011) and Charged System Search (Kaveh, 2011). 

Out of the four, two heuristics had low computation cost and reasonable bandwidth 

reduction, namely the Node Centroid with Hill Climbing and the Genetic Programming 

Hyper-Heuristic. The Charged System Search heuristic had possible low computational 

cost and possibly high bandwidth reduction. However, the Variable Neighbourhood 

Search (VNS-band) heuristic had certainly high bandwidth reduction and reasonable 

computational cost. 

To give continuity to the study above, the present work intends to compare the 

performance of an exact method with two heuristics, that have lower computational cost:  

the heuristic Node Centroid with Hill Climbing (NCHC or FNC-HC) (Lim et al., 2004) 

and the widely used Cuthill and McKee (CM) heuristic (Cuthill & McKee, 1969). 

 

The next part of this work will briefly refers to the available literature on this 

subject, mentioning applications of this problem and types of heuristics. The third part of 

this project will describe the exact method developed and the heuristics in a structured 
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form. The fourth part will describe how the methods were applied and will contain the 

computational results. Finally, the last part will address the conclusions and some 

reflexions about this topic. 

 

 Literature Review 

The bandwidth minimization problem was originated in 1962, at Jet Propulsion 

Laboratory, when Harper was trying to minimize the maximum absolute error and 

absolute error of a 6-bit picture. This problem could be represented by a graph where the 

vertices were words in the code and the contribution of single errors for the total matrix 

bandwidth was given by the edge differences in a hypercube (Harper, 1964). This 

particular form of the Matrix Bandwidth Minimization Problem (MBMP) is known as the 

Minimum Linear Arrangement Problem. 

 

Applications of the MBMP consist in the reduction of execution time and storage 

cost in the resolution of linear systems 𝐴𝑥 = 𝑏 of sparse matrices with bigger dimension. 

For instance, Kaveh (2004), mentioned that in structural mechanics, up to 50% of the 

computational cost derives from the resolution of linear systems. For instance, the 

computational cost of the Conjugate Gradient Method can be reduced by applying a 

“local” ordering of the vertices attained by implementing a heuristic that reduces the 

bandwidth. However, the computational cost can be higher if the bandwidth reduces too 

much the bandwidth (Hestenes & Stiefel, 1952). Additionally, methods that are based on 

the Gaussian elimination can have their number of iterations reduced just by starting with 

a pattern of non-zero elements in the coefficient matrix (Cuthill & McKee, 1969). Tarjan 

in 1975 proved that to solve a linear system with bandwidth β and 𝑛 restrictions using the 

Gaussian Elimination method it would require 𝒪(𝑛3)  operations and fills 𝒪(𝑛𝛽2) 

memory space. 

 

Many problems from physics can be described through partial differential equations 

for which solutions are approximated by using the finite differences, finite elements and 

finite volumes methods (Chagas & Oliveira, 2015). Some applications are found in 

chemical kinetics, survivability, numerical geophysics and large structures of 

transportation of energy. A concrete application is the Very Large Scale Integration, 
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which consists in the design of circuits that combine thousands of transistors or devices 

into a single chip (Rodriguez-Tello et al., 2008). Even in Economics, there are several 

models where the problems are not modelled by partial differential equations, 

approximations can be obtained through linearization leading to large sparse linear 

systems (Chagas & Oliveira, 2015). This problem was even implemented in the 

Computation area of hypertext layout, a particular type of data storage, by Berry et al. in 

1996 when querying documents containing information from a database by matching 

user’s keywords to the objects of the database. 

 

Algorithms: 

There are 4 main types of resolution and approximations for this problem: exact 

algorithms, the first wave of heuristics, the second wave of heuristics and lower bound 

search. 

 

The first type consists of exact algorithms that can only be applied to specific types 

of graphs with the guarantee of always finding the optimal bandwidth. 

Two exact algorithms were presented in 1999 by Del Corso & Manzini can solve 

the MBMP for randomly generated smaller instances up to 100 vertices. As of this 

moment, the exact algorithm that has better performance for its worst-case scenario bases 

itself on dynamic programming and has complexity 𝒪(2𝑛𝑚), where 𝑚 is the number of 

edges and n is the number of vertices. (Koren & Harel, 2002) 

For some specific graphs, there are exact methods known. For example, the tree 

instances which labelling can be done in polynomial time (Shiloach, 1979), some types 

of Halin graphs (Easton et al., 1996) and outerplanar graphs (Frederickson & Hambrusch, 

1988) and others. 

 

Figure 3 Tree 

 

Figure 4 Outerplanar graph 
 

Figure 5 Halin graph 
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The first wave of heuristics consists of simple heuristics that provide solutions in a short 

amount of time sacrificing the quality. 

Some examples are the CM heuristic (Cuthill & McKee, 1969) used in this work 

and the GPS heuristic (Gibbs et al., 1976) that are widely used as benchmarks due to its 

lower computation cost. However, with the increasing information obtained with the 

studies in this area, VNS-band (Mladenovic et al., 2010) has become more commonly 

used due to its good results, despite having a higher computational cost. 

 

The second wave of heuristics can be considered the more modern ones which focus 

more on the quality solution over performance. 

Since VNS-band has a higher computational cost and provides better solutions, it 

is considered to be part of the more modern heuristics. More recently, metaheuristics were 

constructed like for instance Tabu Search (Martı́ et al., 2001) and NCHC (Lim et al., 

2004) that is presented in this work. 

 

Finally, the fourth type is based on finding good lower bounds for the problem. 

Until now, the algorithms that provided Lower Bounds had an order of magnitude very 

inferior to the values that the heuristics obtained which made almost impossible to access 

the quality of the heuristics. In 2008, Martí et al., proposed exact procedures based on the 

Branch and Bound and Greedy Randomized Adaptive Search Procedures that computed 

optimal solutions for medium sized instances and lower bounds for large sized instances. 

Two years later, in 2011, Caprara et al., made great progress with their research by using 

tighter restrictions that resulted in them obtaining lower bounds with a gap generally 

between 5% and 20%, however, their method is very time consuming.  
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 Methodology 

In this section, it will be introduced an exact method for solving the minimization 

bandwidth problem and two heuristics that can find good solutions. 

As previously mentioned, the heuristics CM and NCHC were chosen to be 

implemented in this work. Some factors like the availability of algorithms and examples 

provided by the authors were a factor in the selection of these heuristics. For instance, the 

heuristic CM was chosen for being a benchmark in the scientific community and for its 

simplicity and intuitive comprehension. NCHC was chosen because it has low 

computational cost but still a reasonable bandwidth reduction which makes possible its 

implementation in bigger problems. 

 

3.1 Model 

With the objective of obtaining an optimal solution for this problem, we present an 

ILP model below. 

 

Let 𝐺(𝑉, 𝐸) be a non-oriented graph, where V is the set of vertices (or nodes), 𝑉 =

{𝑣1,  𝑣2,  … ,  𝑣𝑛}, and E is the set of edges, 𝐸 = {𝑒1,  𝑒2,  … ,  𝑒𝑚}. Let 𝐴𝑛×n = {𝑎𝑖𝑗}, 𝑖 =

1, … , 𝑛; 𝑗 = 1,… , 𝑛 be the sparse symmetric adjacency matrix associated to the graph, 

where 𝑎𝑖𝑗 is 1 if 𝑣𝑖 is connected to 𝑣𝑗  and 0 otherwise. 

 

Variables (𝑛2  + 1): 

▪ 𝑘 = bandwidth of the matrix 𝐴 

▪ 𝑥𝑖𝑗 = {
1,  if the node 𝑖 is relabeled as 𝑗
0,  otherwise                                  

, 𝑖, 𝑗 = 1,2, … , 𝑛 

 

Objective function: 𝑚𝑖𝑛 𝑧 = 𝑘       (1) 
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Restrictions (2𝑛 +  number of arcs + 𝑛2): 

𝑠𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜 

{
 
 
 
 

 
 
 
 ∑𝑥𝑖𝑗

𝑛

𝑗=1

= 1,  𝑖 = 1,… , 𝑛                             (2)

∑𝑥𝑖𝑗

𝑛

𝑖=1

= 1,  𝑗 = 1,… , 𝑛                             (3)

∑𝑖(𝑥𝑢𝑖 −

𝑛

𝑖=1

𝑥𝑣𝑖) ≤ 𝑘, ∀(𝑢, 𝑣): 𝑎𝑢𝑣 ≠ 0   (4)

𝑥𝑖𝑗 ∈ {0,1},  𝑖 = 1,… , 𝑛; 𝑗 = 1,… , 𝑛        (5)

 

 

The objective function (1) minimizes the bandwidth, 𝑧 = 𝑘 , of the sparse 

symmetric matrix 𝐴𝑛×𝑛. 

Restrictions (2) and (3) ensure that exists a bijection between the initial and final 

labelling of the nodes. A bijection is necessary to prevent one node from having multiple 

final labels or none. 

Restrictions (4) establishes the link between variable k and the actual bandwidth of 

the adjacency matrix of the relabelled graph. In fact, if we designate by 𝜑(𝑢) the new 

label of the initial node 𝑢 and 𝑘 the bandwidth of the matrix 𝐴𝑛×𝑛, we have that 

1. k = MAX
(𝑖,𝑗)∈𝐸

{|𝑖 − 𝑗|}= MAX
(𝑢,𝑣)∈𝐸

{|𝜑(𝑢) − 𝜑(𝑣)|} . Therefore, because 𝐴  is 

symmetric, 𝜑(𝑣) − 𝜑(𝑢) ≤ 𝑘, ∀(𝑢, 𝑣): 𝑎𝑢𝑣 ≠ 0. 

2. Since ∑ 𝑥𝑖𝑗
𝑛
𝑗=1 = 1 (restriction 2), the sum ∑ 𝑖. 𝑥𝑢𝑖

𝑛
𝑖=1  is reduced to one 

term, 𝑖∗𝑥𝑢𝑖∗ = 𝑖∗ = 𝜑(𝑢), where 𝑖∗ is the final labelling of the node 𝑢.  

3. Combining 1. and 2., we obtain the restrictions (4) that correspond to the 

application of the bandwidth definition to the nodes of the graph after being 

relabelled. 

Restrictions (5) correspond to enforce the binary nature of the variables that indicate 

if a node 𝑖 is relabelled as 𝑗 or not. 
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Illustration: 

 

Figure 6 Graph from Example 1. 

 

Writing the IPL model for Example 1 we will obtain a linear integer problem with 

17 variables. Variable 𝑘 represents the final bandwidth of the matrix 𝐴4×4 and the other 

16 variables represent all possible relabelling of the four nodes. For instance, node 1 can 

remain as 1 after the relabelling (𝑥11 = 1 ⇒ 𝑥12 = 0 ⋀ 𝑥13 = 0⋀𝑥14 = 0) or it can be 

relabelled as one of the other three nodes 

𝑥𝑖𝑗 = {
1, if node 𝑖 is relabeled as 𝑗
0,  otherwise                           

,  𝑖 = 1,2,3,4; 𝑗 = 1,2,3,4 (42 variables). 

 

Since 𝑥𝑖𝑗 is a binary variable and we have four possible relabelling for each node, we 

obtain 16 restrictions of type (5) 

𝑥𝑖𝑗 ∈ {0,1},  𝑖 = 1,2,3,4; 𝑗 = 1,2,3,4.       (5) 

Furthermore, because we can only attribute the labelling of one node to another node 

we will have four restrictions of type (2). Also, after finalizing the relabelling, each node 

must have a unique label, which translates into having four restrictions of type (3) 

𝑥𝑖1 + 𝑥𝑖2 + 𝑥𝑖3 + 𝑥𝑖4 = 1,  𝑖 = 1,2,3,4      (2) 

𝑥1𝑗 + 𝑥2𝑗 + 𝑥3𝑗 + 𝑥4𝑗 = 1,  𝑗 = 1,2,3,4.   (3)

 

In a symmetric matrix 𝐴4×4, each non-null element (𝑘, 𝑙) corresponds to an arc. 

The matrix 𝐴 has 10 non-null elements, ergo we can define the group of arcs, A, as 

{(1,2), (1,4), (2,1), (2,3), (2,4), (3,2), (3,4), (4,1), (4,2), (4,3)}. Therefore, representing 

by two opposite arcs each edges of the non-oriented graph. 

1 3

4

2
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𝐴 = [

0 1 0 1
1 0 1 1
0 1 0 1
1 1 1 0

]  

⟶ (1,2), (1,4)           

⟶ (2,1), (2,3), (2,4)

⟶ (3,2), (3,4)           
⟶ (4,1), (4,2), (4,3)

 

 

To apply the bandwidth definition, the contribution of each arc doesn’t exceed the 

final bandwidth, 𝑘 

1(𝑥𝑢1 − 𝑥𝑣1) + 2(𝑥𝑢2 − 𝑥𝑣2) + 3(𝑥𝑢3 − 𝑥𝑣3) + 4(𝑥𝑢4 − 𝑥𝑣4) ≤ 𝑘, ∀(𝑢, 𝑣): 𝑎𝑢𝑣 ≠ 0. (4) 

 

Finally, the bandwidth minimization problem for the matrix 𝐴4×4 can be written as: 

Variables: 

▪ 𝑘 = bandwidth of the matrix 𝐴 

▪ 𝑥𝑖𝑗 = {
1,  if the node 𝑖 is relabeled as 𝑗
0,  otherwise                                  

 

 

Objective function: 𝑚𝑖𝑛 𝑧 = 𝑘          (1) 

 

Restrictions: 

𝑠𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜 

{
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 ∑𝑥𝑖𝑗

𝑛

𝑗=1

= 1,  𝑖 = 1,… , 𝑛                             (2)

∑𝑥𝑖𝑗

𝑛

𝑖=1

= 1,  𝑗 = 1,… , 𝑛                             (3)

1(𝑥11 − 𝑥21) + 2(𝑥12 − 𝑥22) + 3(𝑥13 − 𝑥23) + 4(𝑥14 − 𝑥24) ≤ 𝑘   (4.1)  
1(𝑥11 − 𝑥41) + 2(𝑥12 − 𝑥42) + 3(𝑥13 − 𝑥43) + 4(𝑥14 − 𝑥44) ≤ 𝑘   (4.2)  
1(𝑥21 − 𝑥11) + 2(𝑥22 − 𝑥12) + 3(𝑥23 − 𝑥13) + 4(𝑥24 − 𝑥14) ≤ 𝑘   (4.3)  
1(𝑥21 − 𝑥31) + 2(𝑥22 − 𝑥32) + 3(𝑥23 − 𝑥33) + 4(𝑥24 − 𝑥34) ≤ 𝑘   (4.4)  
1(𝑥21 − 𝑥41) + 2(𝑥22 − 𝑥42) + 3(𝑥23 − 𝑥43) + 4(𝑥24 − 𝑥44) ≤ 𝑘   (4.5)  

1(𝑥31 − 𝑥21) + 2(𝑥32 − 𝑥22) + 3(𝑥33 − 𝑥23) + 4(𝑥34 − 𝑥24) ≤ 𝑘   (4.6)  

1(𝑥31 − 𝑥41) + 2(𝑥32 − 𝑥42) + 3(𝑥33 − 𝑥43) + 4(𝑥34 − 𝑥44) ≤ 𝑘   (4.7)  
1(𝑥41 − 𝑥11) + 2(𝑥42 − 𝑥12) + 3(𝑥43 − 𝑥13) + 4(𝑥44 − 𝑥14) ≤ 𝑘   (4.8)  
1(𝑥41 − 𝑥21) + 2(𝑥42 − 𝑥22) + 3(𝑥43 − 𝑥23) + 4(𝑥44 − 𝑥24) ≤ 𝑘   (4.9)  
1(𝑥41 − 𝑥31) + 2(𝑥42 − 𝑥32) + 3(𝑥43 − 𝑥33) + 4(𝑥44 − 𝑥34) ≤ 𝑘   (4.10)

𝑥𝑖𝑗 ∈ {0,1},  𝑖 = 1,… , 𝑛; 𝑗 = 1,… , 𝑛        (5)
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Model Implementation: 

With the objective of implementing this methodology, it was developed a code to 

import a matrix and write the problem restrictions in an Excel sheet, as described in the 

code below. To be noted that the binary restrictions were not coded directly as they are 

directly inputted in OpenSolver, as it will be shown in Figure 5. 

 

The function “OriginalMatrixReader”, shown below, is used to read a CSV file that 

contains the matrix 𝐴, storing its elements in the variable “OriginalMatrix”. To be noted 

that since the same matrices will be used with different methodologies in this work, the 

function “OriginalMatrixReader” will be used in the next section “3.2 Heuristics”. 

Function OriginalMatrixReader() As Variant 

    Dim Matrix() As Integer, ColItems() As String 

    Dim FilePath As String, LineFromFile As String 

    Dim iRow As Long, iCol As integer, Number_of_Nodes As Integer 

     

    Number_of_Nodes = Sheets("Dashboard").Range("rngMatrixSize") 

    ReDim Matrix(1 To Number_of_Nodes, 1 To Number_of_Nodes) 

 

    FilePath = Sheets("Dashboard").Range("rngFilePath") 

    Open FilePath For Input As #1 

    iRow = 1 

    Do Until EOF(1) 

        Line Input #1, LineFromFile 

        ColItems = Split(LineFromFile, ";") 

        For iCol = 0 To UBound(ColItems) 

            Matrix(iRow, iCol + 1) = ColItems(iCol) 

        Next iCol 

        iRow = iRow + 1 

    Loop 

    Close #1 

   

    OriginalMatrixReader = Matrix 

End Function 

 

 

After reading the matrix, we sequentially implement the objective function and 

constraints in a format suitable to be used by OpenSolver.  
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1. Fills the first row of the Excel sheet with the list of the variables of the problem. 

Cells(1, 2).Value = "k" 

For i = 1 To Number_of_Nodes 

    For j = 1 To Number_of_Nodes 

       Cells(1, 2 + j + (i - 1) * Number_of_Nodes) = "x" & i & "_" & j 

    Next j 

Next i 

 

2. Writes the restrictions (2): ∑ 𝑥𝑖𝑗
𝑛
𝑗=1 = 1,  𝑖 = 1,… , 𝑛    

Nb_variables = 1 + Number_of_Nodes * Number_of_Nodes 

iRow = 2: iCol = 2 

For i = 1 To Number_of_Nodes 

    Cells(iRow, 1) = "SUM(xij, i=" & i & ")" 

    Cells(iRow, Nb_variables + 3) = "=" 

    Cells(iRow, Nb_variables + 4) = 1 

    For j = 1 To Number_of_Nodes 

        Cells(iRow, iCol + j).Value = 1 

    Next j 

    iCol = iCol + Number_of_Nodes 

    iRow = iRow + 1 

Next i 

 

3. Writes the restrictions (3): ∑ 𝑥𝑖𝑗
𝑛
𝑖=1 = 1,  𝑗 = 1,… , 𝑛 

For j = 1 To Number_of_Nodes 

    iCol = j + 2 

    Cells(iRow, 1) = "SUM(xij, j=" & j & ")" 

    Cells(iRow, Nb_variables + 3) = "=" 

    Cells(iRow, Nb_variables + 4) = 1 

    For i = 1 To Number_of_Nodes 

        Cells(iRow, iCol).Value = 1 

        iCol = iCol + Number_of_Nodes 

    Next i 

    iRow = iRow + 1 

Next j 
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4. Writes the restrictions (4): ∑ 𝑖(𝑥𝑢𝑖 −
𝑛
𝑖=1 𝑥𝑣𝑖) ≤ 𝑘, ∀(𝑢, 𝑣): 𝑎𝑢𝑣 ≠ 0 . To be 

noted that 𝑎𝑢𝑣 ≠ 0 corresponds to “OriginalMatrix(u,v)=1” 

Nb_variables = 1 + Number_of_Nodes * Number_of_Nodes 

For u = 1 To Number_of_Nodes 

     For v = 1 To Number_of_Nodes 

        If OriginalMatrix(u, v) = 1 And u <> v Then 

            iCol = 2 

            Cells(iRow, 1) = "SUM i(xui-xvi)<=k, u=" & u & ", v=" & v 

            Cells(iRow, Nb_variables + 3) = "<=" 

            Cells(iRow, Nb_variables + 4) = 0 

            Cells(iRow, iCol).Value = -1 

            iCol1 = iCol + (u - 1) * Number_of_Nodes 

            iCol2 = iCol + (v - 1) * Number_of_Nodes 

            For i = 1 To Number_of_Nodes 

                Cells(iRow, iCol1 + i).Value = i 

                Cells(iRow, iCol2 + i).Value = -i 

            Next i 

            iRow = iRow + 1 

        End If 

    Next v 

Next u 

 

5. Writes the objective function, right-hand side formulas and paints the cell that 

contains the bandwidth function with dark orange and the cells that contain the 

objective variables with light orange. 

' Writes the fO = k 

Cells(iRow, 1) = "FO" 

Cells(iRow, 2) = 1 

 

' Writes the right-hand side formulas 

Restriction_Variables = Cells(2, 2).Address(False, False) & ":" & _ 

              Cells(2, Nb_variables+1).Address(False, False) 

Objective_Variables = Cells(iRow + 1, 2).Address & ":" & _ 

                Cells(iRow + 1, Nb_variables + 1).Address 

Cells(2, Nb_variables + 2).Formula = _ 

"=SUMPRODUCT(" & Restriction_Variable & "," & Objective_Variables &")" 

Cells(2, Nb_variables + 2).AutoFill _ 

       Destination:=Range(Cells(2, Nb_variables + 2).Address, _ 

       Cells(iRow, Nb_variables + 2).Address), Type:=xlFillDefault 

  

' Paints the FO and objective variable cells 

Cells(iRow, Nb_variables + 2).Interior.Color = RGB(255, 100, 0) 

Range(Cells(iRow + 1, 2), Cells(iRow + 1, Nb_variables + 1)) _ 

    .Interior.Color = RGB(255, 175, 0) 
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The application of this procedure to the matrix for Example 1 yields the spreadsheet 

in Figure 4. 

 
Figure 7 Excel sheet filled with the ILP restrictions for Example 1. 

 

As previously mentioned, the binary restrictions 𝑥𝑖𝑗 ∈ {0,1},  𝑖 = 1,… , 𝑛; 𝑗 =

1, … , 𝑛 (5) were directly inserted in the OpenSolver as per below. 

 
Figure 8 OpenSolver window filled with the ILP parameters for Example 1. 
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3.2 Heuristics 

Heuristic methods, from the Greek heuriskein - “to find”, have as advantages their 

simplicity, easy implementation and lower consumption of computational resources. As 

for disadvantages, they might produce low-quality solutions, depending on the initial 

parameters, and there is a possibility of being blocked without finding a feasible solution. 

 

Despite having an exact compact model with a polynomial number of variables and 

constraints on the matrix size, heuristics are very important in finding good feasible 

solutions. In fact, the number of variables/ constraints has limited the study of the exact 

model in the section “4.2 Computational Results”. For instance, Excel has a limited 

number of columns that only allows the resolution of problems with the maximum 

dimension of 127 nodes and the time spent by OpenSolver on the resolution of bigger 

problems is not reasonable (more than 24h) as shown in the section “4.2 Computational 

Results”. 

 

Since the objective of this work is to compare results of different methods to solve 

the bandwidth minimization problem, it was built the code below that calculates the 

bandwidth of a given matrix “MyMatrix” as per below: 

𝑏𝑎𝑛𝑑𝑤𝑖𝑑𝑡ℎ = MAX
(𝑖,𝑗)∈𝐸

{|𝑖 − 𝑗|}= MAX
(𝑢,𝑣)∈𝐸

{|𝜑(𝑢) − 𝜑(𝑣)|} 

Function Calculate_Bandwidth(MyMatrix() As Integer, Phi () As Integer) 

    Dim i As Integer, j As Integer, Band As Integer 

     

    Band = 0 

    For i = 1 To Number_of_Nodes 

        For j = 1 To Number_of_Nodes 

           If MyMatrix(i, j) = 1 And Abs(Phi(j) – Phi (i)) > Band Then 

               Band = Abs(Phi (j) - Phi (i)) 

           End If 

        Next j 

    Next i 

 

    Calculate_Bandwidth = Band 

End Function 
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3.2.1 The Cuthill and McKee Algorithm 

The heuristic of Cuthill and McKee is a relatively simple heuristic and intends to 

bundle the nodes of a level with nodes of the same level, whenever possible. The levels 

are defined as the distance to the starting node. For instance, the adjacent nodes, also 

known as neighbours, of the starting node are part of the first level, the direct neighbours 

of the direct neighbours of the starting node are part of the second level and so on. 

 

In the work of Cuthill and McKee is suggested to initiate the heuristic with the node 

of minimum degree but is also mentioned that are several cases where starting with the 

node of minimum degree doesn’t obtain the optimal solution. Therefore, in the section “4 

Computational Experiments” this heuristic was applied with four different starting nodes: 

the node that has minimum degree, the node that has maximum degree, the node that has 

initial label 1 and the node that has initial label 𝑛. 

After choosing the starting node, the remaning nodes are assigned by increasing 

level and, for each level, by their increasing degree. 

 

More concretely, it was built the function “Calculate_Degree” to read the original 

matrix and produce a vector with the degree of each node. The degree of a node 𝑖 of 

𝑑𝑒𝑔(𝑖) is the number of edges incident into 𝑖. We can determine the number of adjacent 

edges of 𝑖 by counting the number of edges that satisfy the condition 𝑎𝑖𝑗 = 1, which 

corresponds to the line of code “MyMatrix(i, j) = 1”.  

Function Calculate_Degree(MyMatrix() As Integer) As Variant 

Dim i As Integer, j As Integer, Deg() As Integer 

ReDim Deg(1 To Number_of_Nodes) 

For j = 1 To Number_of_Nodes 

    For i = 1 To Number_of_Nodes 

        If MyMatrix(i, j) = 1 Then 

            Deg(j) = Deg(j) + 1 

        End If 

    Next i 

Next j 

Calculate_Degree = Deg 

End Function 
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As previously mentioned, one of the suggestions of starting node proposed by 

Cuthill & McKee, 1969, was to use a node that has the smallest degree. Therefore, to 

determine which nodes have the smallest degree it was built the function below, 

“Get_Random_Min_Degree”, that goes through all the elements of the vector calculated 

with the function presented above, “Calculate_Degree”. Since the result of heuristics 

depends on the starting node and it is common to have several nodes with the same degree, 

a random number based on the Uniform distribution was included in the function. 

Therefore, when there is a tie between the current node that has the minimum degree and 

a new node found with a minimum degree, the probability of switching is 50%. 

 

Function Get_Random_Min_Degree(DegreeVector() As Integer) As Integer 

Dim Curr_Min_Degree As Integer, Curr_Node_Min_Degree As Integer 

Dim i As Integer 

 

Curr_Min_Degree = Number_of_Nodes 

For i = 1 To Number_of_Nodes 

    If DegreeVector(i) < Curr_Min_Degree Then 

        Curr_Node_Min_Degree = i 

        Curr_Min_Degree = DegreeVector(i) 

    ElseIf DegreeVector(i) = Curr_Min_Degree Then 

        If Rnd < 0.5 Then 

            Curr_Node_Min_Degree = i 

        End If 

    End If 

Next i 

 

Get_Random_Min_Degree = Curr_Node_Min_Degree 

End Function 

 

Following the same logic of “Get_Random_Min_Degree” it was built the function 

to obtain a node with the largest degree. 

 

The function “Insert_Value_by_Order” will be used in this heuristic and it will be 

used on the NCHC heuristic. The inputs of the function are a variable 

“Vector_To_Update” to which will be added a value “Value” that will be inserted in a 

specific position according with the auxiliary value “Order_By”. In the case of the CM 

heuristic, the variable to be updated, list of neighbour nodes of the current node, will 

receive a new node “Value” and that node will be stored in a position based on its degree 

“Order_By”. 



 

18 

 

 

 

In general, the function verifies if the vector to be updated doesn’t have content 

“Vector_To_Update(1, 1) = 0” to access the need of creating space to receive the new 

“Value”. If the value to be inserted is the first one, then there is no need to check if the 

value that is being inserted is in the correct position as there is only one position. If the 

value to be inserted has the biggest “Order_By”, in the CM algorithm if it has the biggest 

degree, we can insert the value in the last position. Lastly, if the “Order_By”, or degree, 

is not the biggest of the list because we are using VBA we need to move the values to 

free the space where the “Value” and “Order_By” will be inserted.  

 

Function Insert_Value_by_Order(Vector_To_Update() As Integer, Value As 

Integer, Order_By As Integer) As Variant 

    Dim count As Integer, k As Integer 

     

    If Vector_To_Update(1, 1) = 0 Then 

        count = 1 

    Else 

        count = UBound(Vector_To_Update, 2) + 1 

        ReDim Preserve Vector_To_Update(1 To 2, 1 To count) 

    End If 

     

    If count = 1 Then 

        Vector_To_Update(1, count) = Value 

        Vector_To_Update(2, count) = Order_By 

    ElseIf Vector_To_Update(2, count - 1) <= Order_By Then 

        Vector_To_Update(1, count) = Value 

        Vector_To_Update(2, count) = Order_By 

    Else 

 k = count 

        Do While k > 1 

            If Vector_To_Update(2, k - 1) > Order_By Then 

                Vector_To_Update(1, k) = Vector_To_Update(1, k - 1) 

                Vector_To_Update(2, k) = Vector_To_Update(2, k - 1) 

                k = k - 1 

            Else 

                Exit Do 

            End If 

        Loop 

        Vector_To_Update(1, k) = Value 

        Vector_To_Update(2, k) = Order_By 

    End If 

 

    Insert_Value_by_Order = Vector_To_Update 

End Function  
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The code below starts by reading a matrix using “OriginalMatrixReader”. This 

matrix is then used to create the vector with the degrees of the nodes with the code 

specified in the previous section. 

Number_of_Nodes = Sheets("Dashboard").Range("rngMatrixSize") 

OriginalMatrix = OriginalMatrixReader 

Degree = Calculate_Degree(OriginalMatrix) 

 

With the objective of helping to automate this heuristic, it was created a vector 

named “New_Nodes_Labelling” which contains the new label of the nodes. In parallel, a 

vector named as “Old_Nodes_Assigned” will help determine if a node has already been 

assigned or not during this process. This last function is very important because the same 

node can be a neighbour (or adjacent) of multiple nodes and we can’t relabel the same 

node with multiple labels. For example, having “New_Nodes_Labelling(1) = 15” means 

that the node that started with label 15 will be relabelled as 1. In addition, the condition 

“Old_Nodes_Assigned(15) = True” will be verified after the relabeling of node 15. 

 

ReDim New_Nodes_Labelling(1 To Number_of_Nodes) 

ReDim Old_Nodes_Assigned(1 To Number_of_Nodes) 

 

Since this implementation allows the selection of a particular starting node, it was 

chosen to implement it with the 4 widely used starting nodes below: 

1. The starting node is a node with a maximum degree 

New_Nodes_Labelling(1) = Get_Random_Max_Degree(Degree) 

 

2. The starting node is a node with a minimum degree 

New_Nodes_Labelling(1) = Get_Random_Min_Degree(Degree) 

 

3. The starting node is the first node of the matrix 𝐴 

New_Nodes_Labelling(1) = 1 

 

4. The starting node is the last node of the matrix 𝐴 

New_Nodes_Labelling(1) = Number_of_Nodes 
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After fixing a starting node, a search by levels for neighbour nodes that were yet 

not assigned will be conducted. 

For each level, it will be determined the candidate nodes that were not assigned yet. 

These candidates verify two conditions: the first condition is that they are not assigned, 

i.e., the node value in the vector “Old_Nodes_Assigned” is “False” and the second 

condition is to be a neighbour of the “Current_Node” that has already been relabelled, 

i.e., “OriginalMatrix(New_Nodes_Labelling(Current_Node), iNode)” equal to “1”. All 

the candidates that verify these two conditions are stored in a vector named “OrderedAdj” 

and to ensure that they are stored by increasing order of degree it was used the function 

“Insert_Value_by_Order” that was presented at the beginning of this section. After 

having all the candidates ordered, the nodes are relabelled, i.e., they will be stored in the 

vector “New_Nodes_Labelling” and they will be marked as assigned to prevent them 

from being assigned multiple times. 

This process/search will be done each node assigned until all the nodes are assigned. 

 

Old_Nodes_Assigned(New_Nodes_Labelling(1)) = True 

NbAssigned = 1: Current_Node = 1 

Do While NbAssigned < Number_of_Nodes 

    ReDim OrderedAdj(1 To 2, 1 To 1) 

    For iNode = 1 To UBound(Degree) 

       If Old_Nodes_Assigned(iNode) = False And _       

       OriginalMatrix(New_Nodes_Labelling(Current_Node), iNode)=1 Then 

           OrderedAdj = Insert_Value_by_Order(OrderedAdj, iNode, _ 

      Degree(iNode)) 

       End If 

    Next iNode 

 

   ' Relabels the nodes of the current adjacency by increasing degree 

    For iNode = 1 To UBound(OrderedAdj) 

        NbAssigned = NbAssigned + 1 

        New_Nodes_Labelling(NbAssigned) = OrderedAdj(1, iNode) 

        Old_Nodes_Assigned(OrderedAdj(1, iNode)) = True 

    Next iNode 

     

    Current_Node = Current_Node + 1 

Loop 
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Example 1: 

If we apply this heuristic to our example of the matrix 𝐴4×4, considering the starting 

node as the node with the smallest degree we obtain the following. 

 

Figure 9 Node degrees for Example 1. 

Node Degree (D) 

1 2 

2 3 

3 2 

4 3 

Table I Degree of the nodes of the non-oriented 

graph with 4 vertices and 5 edges 

 

There are two nodes with the smallest degree, 1 and 3. Therefore we can choose as 

starting node the node 3. 

 

Iteration 
Current 

node 

Nodes 

assigned 

Not assigned neighbours 

of the current node 

Candidate nodes to 

be assigned next 

1 3 3 Level 1 = {2, 4} Level 1 = {2, 4} 

 

Since both neighbours of node 3, 2 and 4, have the 

same degree, we can choose to assign the node 2. 

 

Note: 𝒋(𝒊) indicates that node 𝒊 was relabelled as 𝒋 

2 2 3, 2 
Level 1 = {4} 

Level 2 = {1} 

Level 1 = {4} 

 

We can only assign the node 4 because is the only 

node not assigned of the first level. 

 

 

  

1 3

4

2
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3 4 3, 2, 4 Level 2 = {1} Level 2 = {1} 

 

Since all the nodes of the level 1 have been assigned, 

we proceed with adding the nodes of the second 

level. 

 

4 1 3, 2, 4, 1 {} {} 

The end, all the nodes have been assigned. 

Bandwidth before = 3 

𝑴𝑨𝑿 {|𝟐 − 𝟏|, |𝟒 − 𝟏|, |𝟒 − 𝟐|, |𝟑 − 𝟐|, |𝟒 − 𝟑|} 

Bandwidth after = 2 

𝑴𝑨𝑿 {|𝟐 − 𝟏|, |𝟑 − 𝟏|, |𝟑 − 𝟐|, |𝟒 − 𝟐|, |𝟒 − 𝟑|} 

 

Table II Table that shows the nodes assigned and not assigned for each iteration of the algorithm CM 

         

3.2.2 The Node Centroid with Hill Climbing Algorithm 

As stated by Lim et al., 2004, in many heuristics is crucial to have a good initial 

solution to obtain high-quality solutions. Therefore, the NCHC algorithm starts with the 

generation of initial solutions by performing the Breadth First Search (BFS). Secondly, 

the NC is performed to centralize the positions of neighbouring nodes which is known 

for obtaining solutions with high quality faster than most of the recent algorithms. Lastly, 

the authors chose to perform the procedure HC every other time due to providing very 

good improvements but being relatively slow during their experimentation. 

 

Before presenting the algorithm it is important to define the concept of a critical 

node. A node 𝑣 is critical if it expresses the maximum bandwidth, i.e. if the maximum  

distance between two nonzero elements in the corresponding row of the adjacency matrix 

is equal to the matrix bandwidth.  When a node is critical, we define its criticality, 𝐶(𝑣), 

as being 1. More precisely, we set 

𝐶(𝑣) = {
1, 𝑖𝑓 𝑑𝑖𝑎𝑚(𝑣) = 𝑏𝑎𝑛𝑑𝑤𝑖𝑡ℎ
0, 𝑖𝑓 𝑑𝑖𝑎𝑚(𝑣) < 𝑏𝑎𝑛𝑑𝑤𝑖𝑡ℎ

, where 𝑑𝑖𝑎𝑚(𝑣) =  𝑀𝐴𝑋
𝑢∈𝑁(𝑣)

|𝜑(𝑣) − 𝜑(𝑢)|  

𝜑(𝑢) is the new label of the initial node 𝑢 and 𝑁(𝑣) = {𝑢 ∈ 𝑉: (𝑢, 𝑣) ∈ 𝐸}. 
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The NCHC algorithm is composed essentially by three other algorithms: the BFS 

algorithm is the first algorithm to be applied and consists in choosing randomly a starting 

node and adding its neighbours by levels. This is followed by the NC algorithm that 

adjusts the vertices to a relative central position in comparison with its neighbours 

(centroid) by attempting to reduce the diameter of the 𝜆 − 𝑐𝑟𝑖𝑡𝑖𝑐𝑎𝑙 vertices by moving 

them towards the centroid of the bundle. And finally, is then applied HC that searches for 

local optimal solutions based on the contribution of each node to the bandwidth, where 

the critical nodes that satisfy the conditions 𝐶′(𝑢) ≤ 𝐶(𝑢), 𝐶′(𝑣) ≤ 𝐶(𝑣) and 𝐶′(𝑢) +

𝐶′(𝑣) ≤ 𝐶(𝑢) + 𝐶(𝑣) are identified to perform a swap that might led to a reduction of 

the bandwidth; where 𝐶’(𝑣) corresponds to the criticality of the node 𝑣 after the swap, 

considering the current bandwidth. 
 

The algorithm starts by reading the inputs such as the number “restart_Times”, that 

corresponds to the number of times that the algorithm will restart by generating new initial 

solutions, the “NC_Times” that corresponds to the number of times that the NC algorithm 

will be performed, “lambda” that is the factor that will be applied to the bandwidth of the 

matrix in order to obtain the 𝜆 − critical vertices and the matrix to be used. 

restart_Times = Sheets("Dashboard").Range("rngRestart_Times") 

NC_Times = Sheets("Dashboard").Range("rngNC_Times") 

lambda = Sheets("Dashboard").Range("rng_lambda") 

Number_of_Nodes = Sheets("Dashboard").Range("rngMatrixSize") 

OriginalMatrix = OriginalMatrixReader 
 

The variable “CurBandwidth”, that represents the minimum bandwidth at any given 

step of the heuristic, was added to the original algorithm to store the bandwidth obtained 

at the end of performing the HC algorithm and before labels being reset by the function 

“IntialLabels” (BFS algorithm). 

CurBandwidth = Number_of_Nodes 

For i = 1 To restart_Times 

    Labelling = InitialLabels(OriginalMatrix) 

    For j = 1 To NC_Times 

        Labelling = NC(OriginalMatrix, Labelling, lambda) 

        If j Mod 2 = 1 Then 

            Labelling = HC(OriginalMatrix, Labelling) 

        End If 

    Next j 

    If CurBandwidth > Bandwidth Then CurBandwidth = Bandwidth 

Next i 
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The function “InitialLabels” performs the algorithm BFS, which consists in 

choosing randomly a starting node and adding its neighbours by levels. This algorithm is 

very similar to what was used in the CM algorithm as it considers the neighbourhood of 

a node but doesn’t relabel it by increasing degree. 

Function InitialLabels(OriginalMatrix() As Integer) 

    ReDim New_Nodes_Labelling(1 To Number_of_Nodes) 

    ReDim Old_Nodes_Assigned(1 To Number_of_Nodes) 

     

    New_Nodes_Labelling(1) = Int(Number_of_Nodes * Rnd + 1) 

    Old_Nodes_Assigned(New_Nodes_Labelling(1)) = True 

    NbAssigned = 1: CurrNode = 1 

 

        Do While NbAssigned < Number_of_Nodes 

        For iNode = 1 To Number_of_Nodes 

            If Old_Nodes_Assigned(iNode) = False And _ 

   OriginalMatrix(New_Nodes_Labelling(CurrNode), iNode) = 1 Then 

                NbAssigned = NbAssigned + 1 

                New_Nodes_Labelling(NbAssigned) = iNode 

                Old_Nodes_Assigned(iNode) = True 

            End If 

        Next iNode 

        CurrNode = CurrNode + 1 

    Loop 

     

    InitialLabels = New_Nodes_Labelling 

End Function 
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After relabelling the nodes in the step before there is a need to recalculate the 

bandwidth to be able to sort the nodes according to their weight, from smallest to largest 

using the NC algorithm. The weight of each node depends on its contribution to the final 

bandwidth, being the weight of each node defined as 𝑤(𝑣) =
∑ 𝑓(𝑢)𝑢∈𝑏𝜆(𝑣)

|𝑏𝜆(𝑣)|
, for which 

𝑏𝜆(𝑣) = {𝑁(𝑣) ∩ {𝑢: |𝑓(𝑢) − 𝑓(𝑣)| ≥ 𝜆𝐵(𝐺)} ∪ {𝑣}, where 𝑁(𝑣) is the neighbourhood 

of 𝑣, 𝐵(𝐺) is the bandwidth of the graph 𝐺 and 𝑓(𝑢) is the label of the initial node 𝑢. 

Function NC(OriginalMatrix() As Integer, Labelling() As Integer, lambda 

As Double) 

 

    Bandwidth = Calculate_Bandwidth(OriginalMatrix, Labelling) 

    ReDim C(1 To Number_of_Nodes) 

    ReDim w(1 To Number_of_Nodes) 

    For i = 1 To Number_of_Nodes 

        w(i) = Labelling(i) 

        C(i) = 1 

    Next i 

 

    For u = 1 To Number_of_Nodes 

        For v = 1 To Number_of_Nodes 

            If OriginalMatrix(u, v) = 1 And _ 

     Abs(Labelling(u) - Labelling(v)) >= lambda * Bandwidth Then 

                w(u) = w(u) + Labelling(v): C(u) = C(u) + 1 

                w(v) = w(v) + Labelling(u): C(v) = C(v) + 1 

            End If 

        Next v 

    Next u 

     

    For i = 1 To Number_of_Nodes 

        w(i) = w(i) / C(i) 

    Next i 

 

    For u = 1 To Number_of_Nodes - 1 

        For v = u + 1 To Number_of_Nodes 

            If w(u) > w(v) Then 

                temp = w(u): w(u) = w(v): w(v) = temp 

                temp = Labelling(u) 

   Labelling(u) = Labelling(v) 

                Labelling(v) = temp 

            End If 

        Next v 

    Next u 

    NC = Labelling 

End Function 
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) 

 

Before presenting the HC algorithm is important to mention that the function 𝐶(𝑣) 

is used with the name “Critical”, the function 𝑑𝑖𝑎𝑚(𝑣) is mentioned by the name “Diam” 

and the function “Neighbours” corresponds to the neighborhood of a node. It is also used 

the function “NeighboursLine” that corresponds to the neighbours of the node 𝑣, 𝑁(𝑣), 

that are closer to the 𝑚𝑖𝑑(𝑣) than to 𝜑(𝑣). This group is sorted by increasing order of 

|𝑚𝑖𝑑(𝑣) − 𝜑(𝑢)|  and is represented by 𝑁′(𝑣) = {𝑢: |𝑚𝑖𝑑(𝑣) − 𝜑(𝑢)| < |𝑚𝑖𝑑(𝑣) −

𝜑(𝑣)|, where 𝑚𝑖𝑑(𝑣)⌊= (𝑀𝐴𝑋{𝜑(𝑢): 𝑢 ∈ 𝑁(𝑣)} + 𝑚𝑖𝑛{𝜑(𝑢): 𝑢 ∈ 𝑁(𝑣)})/2⌋. 

 

Function NeighboursLine(v As Integer, Matrix() As Integer) 

    N = Neighbours(v, Matrix) 

 

    max_label_v = 0: min_label_v = Number_of_Nodes 

    For i = 1 To UBound(N) 

        If Labelling(N(i)) > max_label_v Then _ 

            max_label_v = Labelling(N(i)) 

        If Labelling(N(i)) < min_label_v Then _ 

            min_label_v = Labelling(N(i)) 

    Next i 

    mid_label_v = Int((max_label_v + min_label_v) / 2) 

     

    ReDim Naux(1 To 2, 1 To 1) 

    For Each u In N 

        If Abs(mid_label_v - Labelling(u)) < _ 

    Abs(mid_label_v - Labelling(v)) Then 

  Naux = Insert_Value_by_Order(Naux, CInt(u), _ 

  Abs(mid_label_v - Labelling(u))) 

        End If 

    Next u 

     

    NeighboursLine = Naux 

End Function 
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Finally, the algorithm HC is applied. This algorithm searches for local optimal 

solutions based on the contribution of each node to the bandwidth. 

In this algorithm, critical nodes that satisfy the conditions 𝐶′(𝑢) ≤ 𝐶(𝑢), 𝐶′(𝑣) ≤

𝐶(𝑣) and 𝐶′(𝑢) + 𝐶′(𝑣) ≤ 𝐶(𝑢) + 𝐶(𝑣) are identified to perform a swap that might led 

to a reduction of the bandwidth; where 𝐶’(𝑣) corresponds to the criticality of the node 𝑣 

after the swap, considering the current bandwidth. To be noted that only for the HC, 𝐶’(𝑣) 

can also have a value of 2 if the swap leads to an increase in the bandwidth, i.e., if we 

would obtain 𝑑𝑖𝑎𝑚(𝑣) > 𝑏𝑎𝑛𝑑𝑤𝑖𝑑𝑡ℎ after the swap. A detailed demonstration can be 

found in the work of Lim et al., 2004. 

 

Function HC(OriginalMatrix() As Integer, Labelling() As Integer) 

  ReDim C(1 To Number_of_Nodes) 

  ReDim CLine(1 To Number_of_Nodes) 

   

Bandwidth = Calculate_Bandwidth(OriginalMatrix, Labelling) 

 

  can_improve = True 

  Do While can_improve = True 

    can_improve = False 

    For v = 1 To Number_of_Nodes 

             

      C(v) = Critical(v, OriginalMatrix, Labelling) 

      If C(v) = 1 Then 

        NLine = NeighboursLine(v, OriginalMatrix) 

        If NLine(1, 1) <> 0 Then 

          For uu = 1 To UBound(NLine, 2) 

            u = NLine(1, uu) 

            LabellingLine = Labelling 

            LabellingLine(v) = Labelling(u) 

            LabellingLine(u) = Labelling(v) 

                         

            C(u) = Critical(u, OriginalMatrix, Labelling) 

            If Diam(v, OriginalMatrix, LabellingLine) > Bandwidth Then 

              CLine(v) = 2 

            Else 

              CLine(v) = Critical(v, OriginalMatrix, LabellingLine) 

            End If 

            If Diam(u, OriginalMatrix, LabellingLine) > Bandwidth Then 

              CLine(u) = 2 

            Else 

              CLine(u) = Critical(u, OriginalMatrix, LabellingLine) 

            End If 
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            If CLine(u) <= C(u) And CLine(v) <= C(v) And _ 

  CLine(u) + CLine(v) < C(u) + C(v) Then 

              Labelling = LabellingLine 

              Bandwidth =Calculate_Bandwidth(OriginalMatrix,Labelling) 

              can_improve = True: Exit For 

            End If 

          Next uu 

        End If 

      End If 

    Next v 

  Loop 

  HC = Labelling 

End Function 

 

If we apply this heuristic to the example below with the parameters 

“restart_Times=1”, “NC_Times=1” and “lambda=0,7” we obtain the following table. 

𝐴 =

[
 
 
 
 
 
0
1
1
1
1
0

  

1
0
1
0
0
0

  

1
1
0
1
0
0

  

1
0
1
0
0
1

  

1
0
0
0
0
1

  

0
0
0
1
1
0]
 
 
 
 
 

 

 

Iteration 
Current 

node 

Labelling Not assigned neighbours 

of the current node 

Candidate nodes to 

be assigned next 

BFS 5 5 Level 1 = {1,6} Level 1 = {1,6} 

5 5,1 Level 1 = {6} Level 1 = {6} 

1 5,1,6 Level 2 = {2,3,4} Level 2 = {2,3,4} 

1 5,1,6,2 Level 2 = {3,4} Level 2 = {3,4} 

1 5,1,6,2,3 Level 2 = {4} Level 2 = {4} 

6 5,1,6,2,3,4 {} {} 

NC Labelling={5,1,6,2,3,4} ; Bandwidth=4 

Note: For w(i) and c(i), i represents the relabelled node. Therefore, w(1) is 

the weight of the node with label 5. 

w(1)=7 ; c(5)=3 => w(1)/c(1)=2,(3) 

w(2)=23 ; c(2)=5 => w(2)/c(2)=4,6 

w(3)=12 ; c(3)=5 => w(3)/c(3)=2,4 

w(4)=14 ; c(4)=3 => w(4)/c(4)=4,(6) 



 

29 

 

w(5)=3 ; c(4)=1 => w(5)/c(5)=3 

w(6)=4 ; c(4)=1 => w(6)/c(6)=4 

HC Labelling={5,6,3,4,1,2} ; Bandwidth=4 

Remember: Swaps are performed if C’(u) <= C(u) And C’(v) <= C(v) And 

C’(u) + C’(v) < C(u) + C(v), for each v, where C(v)=1 

v=1, C(v)=1 => N’(v)={3,4} 

Tries to swap v=1, u=3 

C(u)=0; C’(u)=0, C’(v)=0 => all the conditions to perform the swap are 

true, therefore it performs the swap and moves to the next v 

Labelling={3,6,5,4,1,2} ; Bandwidth=3 

v=2, C(v)=1 => N’(v)={1,3} 

Tries to swap v=2, u=1 

C(u)=1; C’(u)=2 => C’(u) <= C(u) is false therefore doesn’t swap 

Tries to swap v=2, u=3 

C(u)=0; C’(u)=1 => C’(u) <= C(u) is false therefore doesn’t swap 

Reached the last neighbour, goes to the next v 

v=3, C(v)=0 => it doesn’t perform the swap 

v=4, C(v)=0 => it doesn’t perform the swap 

v=5, C(v)=0 => it doesn’t perform the swap 

v=6, C(v)=0 => it doesn’t perform the swap 

The end, bandwidth after = 3 

Table III Table that shows the iterations of the heuristic NCHC  
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 Computational Experiments 

In this section the results will be compared taking into consideration the time of 

execution in seconds, the relative proximity of value of the Feasible Solution (FS) to the 

value of the Optimal Solution (OS)/ Lower Bound (LB), (FS-LB)/LB and the relative 

bandwidth reduction (final bandwidth-initial bandwidth)/initial bandwidth). 

 

Below are the technical details of the computer used to test the heuristics and the 

exact model with OpenSolver: 

▪ Processor: Intel(R) Core(TM) i3-2350M CPU @ 2.30GHz 

▪ Video Card: Intel(R) HD Graphics 3000 

▪ Video Card #2: NVIDIA GeForce 610M 

▪ RAM: 6.0 GB 

▪ Operating System: Microsoft Windows 10 (build 16299), 64-bit 

▪ Software used: Microsoft Excel for Office 365 MSO 64-bit 

 

  



 

31 

 

As mentioned by Cuthill & McKee, 1969, a Lower Bound (LB) for the heuristics 

can be the smallest integer that is greater or equal to 𝐷/ 2, where 𝐷 is the maximum 

degree of any node of the graph. 

𝒏 LB = ⌈𝑫/𝟐⌉ 
UB = lowest 

bandwidth 

found 

4 2 2 

18 3 5 

36 3 6 

102 4 14 

354 4 269 

679 4 537 

695 4 543 

1255 4 1097 

1845 4 1510 

2092 4 1776 

2772 4 2335 

3463 4 2973 

3669 4 3637 

4761 4 4711 

5580 5 4710 
Table IV Table that contains the lower and upper bounds for each matrix used 

As seen in Table IV, the LB presented is poor for matrices of bigger dimension, an 

increase of a matrix dimension by 5577 only leads to an increase of 1 in the LB. 

 

4.1 Instances 

We will use sparse symmetric matrices of dimension 4, 18, 36, 102, 354, 679, 695, 

1255, 1845, 2092, 2772, 3463, 3669, 4761 and 5580 as inputs for the exact model and for 

the heuristics. These matrices were generated from regular conform triangulations of 

fixed 2-dimensional domains relevant in solution of elliptic partial differential equations. 

To avoid mesh distortion, all the triangles are close to equilateral, which in turn fixes the 

typical degree of any node to be 6 for internal nodes and 4 for boundary nodes (see Figure 

10). 

 

To help determine the fixed parameters of the heuristic NCHC, it was chosen the 

matrix 36 × 36 to perform a simulation with fifty repetitions, 𝑟𝑒𝑠𝑡𝑎𝑟𝑡_𝑡𝑖𝑚𝑒𝑠, for each 𝜆 

and 𝑁𝐶 𝑡𝑖𝑚𝑒𝑠 on the table below. As can be seen in the table below, the parameters that 
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will be used are λ=0,7 and 𝑁𝐶 𝑡𝑖𝑚𝑒𝑠 = 15. Due to this algorithm being slow, the number 

of 𝑟𝑒𝑠𝑡𝑎𝑟𝑡_𝑡𝑖𝑚𝑒𝑠 that will be used is 5. 

 

𝝀 

NC times 
0 0,25 0,5 0,7 0,8 0,9 0,95 1 

3 18 17 17 21 20 21 22 26 

5 21 18 19 18 19 20 22 26 

7 17 20 19 18 21 19 19 26 

11 19 20 18 20 20 21 20 26 

15 18 21 19 15 20 21 22 26 

Table V Simulation of the parameters for the NCHC algorithm 

 

To refer to each method on the right side of the table we will use the reference on 

the left side. 

 Reference Method 

OS Open Solver 

CPLEX CPLEX 

CM_SD CM – start on the node with the smallest degree 

CM_LD CM – start on the node with the largest degree 

CM_1N CM – start on the 1st node 

CM_LN CM – start on the last node 

NCHC NCHC restarting 5 times, performing NC 15 times and with 𝜆 = 0,7 

Table VI Table that makes the correspondence between the method used and its reference 

 

4.2 Computational Results 

To better compare the results the matrices were split into 3 groups. The smallest 

group is composed by the matrices which we can use the model in Excel due to columns 

limitation, which is reflected in a limited number of variables. These matrices have a 

dimension smaller than 128 nodes (4, 18, 36, 102). The second group will contain medium 

sized matrices with a dimension between 128 and 2000 (354, 679, 695, 1255, 1845). 
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Lastly, the group with large matrices will contain matrices with dimension greater than 

2000 (2092, 2772, 3463, 3669, 4761, 5580). 

To be noted that due to the extensive time that the exact model take to achieve an 

optimal solution, it was decided to limit their running time to 24 hours, 86400 seconds. 

 

Small matrices: 4,18,36,102 

Reference 
Average time 

spent (sec.) 

Relative proximity to OS/ 

LB (smaller is better) 

Relative bandwidth 

(smaller is better) 

OS* 45517 76,79% -55,57% 

CPLEX* 21616 0,00% -67,44% 

CM_SD 0 326,79% -1,56% 

CM_LD 0 326,67% -0,21% 

CM_1N 0 305,36% -11,16% 

CM_LN 0 331,79% 0,00% 

NCHC 0,25 178,57% -29,83% 

 

*Note: Despite using the exact model, the time of the execution was capped at 24h 

per matrix which led to a difference in the relative bandwidth after the application of the 

model. 

 

Medium matrices: 354, 679, 695, 1255, 1845 

Reference 
Average time 

spent (sec.) 

Relative proximity to OS/ 

LB (smaller is better) 

Relative bandwidth 

(smaller is better) 

CM_SD 1,1 22,48% 0,35% 

CM_LD 1,1 23,22% 0,94% 

CM_1N 1,1 23,49% 1,19% 

CM_LN 1,1 23,35% 1,08% 

NCHC 855,6 0,00% -17,88% 
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Large matrices: 2092, 2772, 3463, 3669, 4761 and 5580 

Reference 
Average time 

spent (sec.) 

Relative proximity to OS/ 

LB (smaller is better) 

Relative bandwidth 

(smaller is better) 

CM_SD 6,8 17,28% 0,16% 

CM_LD 6,8 17,18% 0,08% 

CM_1N 6,8 17,35% 0,22% 

CM_LN 6,8 17,34% 0,21% 

NCHC 12806,3 0,00% -14,56% 

 

Based on the tables above we can conclude that bigger matrices require more time 

to have their bandwidth reduced. This is in line with what was expected since the 

heuristics take more to read the matrices and there are more possibilities of columns and 

rows permutations that can potentially lead to the maximum bandwidth reduction. This is 

also verified in the resolution of the exact model as there are more restrictions. For 

instance, for the matrix of dimension 106, it was not found an optimal solution in less 

than 24h using the exact model. 

The CM proved to be an algorithm with an easy and intuitive implementation that 

provides results in a short period of time. However, it doesn’t reduce the bandwidth as 

much as the NCHC algorithm and in some cases, the bandwidth even increases, despite 

different starting points being considered. Regardless, for the smaller matrices, the 

bandwidth resultant of the application of the algorithm NCHC is half as good as the exact 

model which indicates that there is room for improvement and creation of new heuristics. 
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 Conclusion 

Several constraints were faced during this study. On the resolution with the exact 

method, it was verified that Excel has a low number of columns (16.384) which restrained 

the dimension of the matrices that could be solved with the exact method to 127 × 127. 

Also, even when it was possible to generate the restrictions to input in OpenSolver, it was 

verified that for dimensions 36 and 102 OpenSolver couldn’t reach an optimal solution. 

CPLEX performed better in comparison as it was able to reach the optimal solution for 

the matrix with dimension 36 and good UB for the bandwidth of the matrix with 

dimension 102. 

It was noticed that the NCHC heuristic performed very slowly in comparison with 

the heuristic CM, but it obtained a better UB for the bandwidth’s matrices. This difference 

in computation time is related to the complexity of the NCHC heuristic and the 

inefficiency of VBA to handle calculations and sorts on matrices with big dimensions. 

It was also concluded that the relative bandwidth reduction obtained with the CM 

heuristic was inferior to the one obtained with the NCHC heuristics, having matrices 

where the bandwidth increased after performing the algorithm CM. As a consequence of 

having a greater bandwidth reduction for the instances used, the algorithm NCHC was 

always closer to the LB than the algorithm CM. 
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 Appendix 

7.1 Graphic representation of the problem 

 

Figure 10 Planar graph 

 

 

Figure 11 Initial profile of the adjacency matrix 

 

 

Figure 12 Final profile of the adjacency matrix 

Figure 11 and Figure 12 illustrate two adjacency matrixes obtained from the same 

planar graph (Figure 10). The black squares represent the non-null elements of the 

matrixes and they illustrate the impact that a different numbering has on the distance of 

the non-null elements from the principal diagonal. Due to having elements more distant 

from the principal diagonal, the matrix correspondent to Figure 11 has a bigger bandwidth 

in comparison with the matrix associated with Figure 12. 
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7.2 Open Solver  

 

Figure 13 Output of OpenSolver for Example 1 


