

OCTOBER – 2018

MASTER

QUANTITATIVE METHODS FOR DECISION-MAKING IN

ECONOMICS AND BUSINESS

MASTER’S FINAL WORK
DISSERTATION

THE BANDWIDTH MINIMIZATION PROBLEM

DIANA ANDREIA DE OLIVEIRA AMARO

OCTOBER – 2018

MASTER

QUANTITATIVE METHODS FOR DECISION-MAKING IN

ECONOMICS AND BUSINESS

MASTER’S FINAL WORK
DISSERTATION

THE BANDWIDTH MINIMIZATION PROBLEM

DIANA ANDREIA DE OLIVEIRA AMARO

SUPERVISION:
JOÃO PAULO VICENTE JANELA
LEONOR ALMEIDA LEITE SANTIAGO PINTO

i

Acknowledgements

First of all, I want to thank the professors and colleagues that walked with me on

this journey. In particular, I want to thank my supervisors Leonor and João for their

availability, knowledge and for pushing me until the end of this stage.

I also want to thank my parents for working hard so I could be focused on my

studies. I‘m also very grateful for my sister that taught me the numbers and helped me

with my Math homework when I was in primary school which made my love for

mathematics blossom.

Lastly, I want to thank my cats for being my company despite their attempts on

sitting on my keyboard and biting my computer charger.

ii

Resumo

Esta dissertação tem como objetivo comparar o desempenho de duas heurísticas

com a resolução de um modelo exato de programação linear inteira na determinação de

soluções admissíveis do problema de minimização da largura de banda para matrizes

esparsas simétricas. As heurísticas consideradas foram o algoritmo de Cuthill e McKee e

o algoritmo Node Centroid com Hill Climbing.

As duas heurísticas foram implementadas em VBA e foram avaliadas tendo por

base o tempo de execução e a proximidade do valor das soluções admissíveis obtidas ao

valor da solução ótima ou minorante. As soluções ótimas e os minorantes para as diversas

instâncias consideradas foram obtidos através da execução do código para múltiplas

instâncias e através da resolução do problema de Programação Linear Inteira com recurso

ao Excel OpenSolver e ao software de otimização CPLEX. Como inputs das heurísticas

foram utilizadas matrizes com dimensão entre 4 × 4 e 5580 × 5580 , diferentes

dispersões de elementos não nulos e diferentes pontos de partida.

Palavras-chave: largura de banda; heurística; matriz esparsa; programação inteira

iii

Abstract

This dissertation intends to compare the performance of two heuristics with the

resolution on the exact linear integer program model on the search for admissible

solutions of the bandwidth minimization problem for sparse symmetric matrices. The

chosen heuristics were the Cuthill and McKee algorithm and the Node Centroid with Hill

Climbing algorithm.

Both heuristics were implemented in VBA and they were rated taking into

consideration the execution time in seconds, the relative proximity of the value obtained

to the value of the optimal solution or lower bound. Optimal solutions and lower bounds

were obtained through the execution of the code for several instances and trough the

resolution of the integer linear problem using the Excel Add-In OpenSolver and the

optimization software CPLEX. The inputs for the heuristics were matrices of dimension

between 4 × 4 and 5580 × 5580, different dispersion of non-null elements and different

initialization parameters.

Keywords: bandwidth; heuristic; sparse matrix; integer programming

iv

Table of contents

Acknowledgments .. i

Resumo .. ii

Abstract .. iii

Table of contents .. iv

Table of figures ... v

Table of tables ... v

Abbreviations ... vi

 Introduction .. 1

 Literature Review ... 4

 Methodology ... 7

3.1 Model .. 7

3.2 Heuristics ... 15

 Computational Experiments ... 30

4.1 Instances .. 31

4.2 Computational Results .. 32

 Conclusion .. 35

 References .. 36

 Appendix .. 39

7.1 Graphic representation of the problem ... 39

7.2 Open Solver ... 40

v

Table of figures

Figure 1 Example 1: Graph with initial model labelling... 1

Figure 2 Example 1: Alternative node labelling. .. 2

Figure 3 Tree ... 5

Figure 4 Outerplanar graph ... 5

Figure 5 Halin graph ... 5

Figure 6 Graph from Example 1. .. 9

Figure 7 Excel sheet filled with the ILP restrictions for Example 1. 14

Figure 8 OpenSolver window filled with the ILP parameters for Example 1. 14

Figure 9 Node degrees for Example 1... 21

Figure 10 Planar graph .. 39

Figure 11 Initial profile of the adjacency matrix .. 39

Figure 12 Final profile of the adjacency matrix .. 39

Figure 13 Output of OpenSolver for Example 1 ... 40

Table of tables

Table I Degree of the nodes of the non-oriented graph with 4 vertices and 5 edges

 ... 21

Table II Table that shows the nodes assigned and not assigned for each iteration of

the algorithm CM .. 22

Table III Table that shows the iterations of the heuristic NCHC 29

Table IV Table that contains the lower and upper bounds for each matrix used .. 31

Table V Simulation of the parameters for the NCHC algorithm 32

Table VI Table that makes the correspondence between the method used and its

reference .. 32

vi

Abbreviations

BFS – Breadth First Search

CM – Cuthill and McKee

CPLEX – IBM ILOG CPLEX Optimization Software

CSV – Comma Separated Value

FS – Feasible Solution

HC – Hill Climbing

ILP – Integer Linear Programming

LB – Lower Bound

MBMP – Matrix Bandwidth Minimization Problem

NC – Node Centroid

NP – Non-Deterministic Polynomial Time

OS – Optimal Solution

UB – Upper Bound

VBA – Visual Basic For Applications

VNS – Variable Neighbourhood Search

1

 Introduction

The bandwidth minimization problem has great relevance in applications because

reducing the bandwidth of a matrix can, according to Chagas & De Oliveira, 2015, reduce

the storage, memory consumption and processing costs of solving sparse linear systems

of type 𝐴𝑥 = 𝑏, where 𝐴 is a square invertible matrix of order 𝑛 and 𝑥 and 𝑏 are vectors

of dimension 𝑛.

According to Lim et al., 2004, this problem had its origin in the 1950s and it has

been proven to be NP-complete by H. Papadimitriou, 1976. The bandwidth problem can

also be formulated for graphs if we identify matrix 𝐴 as the corresponding adjacency

matrix. In fact, Garey et al., 1978, demonstrated that even for problems where the graph’s

nodes have a maximum degree of three this problem is still NP-complete.

This work intends to apply an exact Integer Linear Programming (ILP) model and

two heuristics and compare their results. However, before trying to minimize the

bandwidth of a matrix it is important to understand what is exactly the matrix bandwidth.

Example 1:

Taking into consideration the graph shown in Figure 1, 𝐺 = (𝑉, 𝐸) with 4 nodes,

𝑉 = {1,2,3,4} , and 5 edges, 𝐸 = {(1,2), (1,4), (2,3), (2,4), (3,4)} , we can build its

adjacency matrix, where the non-null elements represent the edges of the graph. For each

non-zero entry 𝑎𝑖𝑗 there is an edge connecting nodes 𝑖 and 𝑗 with weight 𝑎𝑖𝑗.

Figure 1 Example 1: Graph with initial model labelling.

1 3

4

2

2

The bandwidth of a matrix is computed from the distances of the non-null elements

of the matrix to the diagonal, i.e., for row 𝑖, we determine 𝑑𝑖𝑎𝑚(𝑖) = MAX
(𝑖,𝑗)∈𝐸

{|𝑖 − 𝑗|}.

In this example we get 𝐴 = [

0 1 0 1
1 0 1 1
0 1 0 1
1 1 1 0

]

⟶ MAX{1,3} = 3
⟶ MAX{1,1,2} = 2

⟶ MAX{1,1} = 1
⟶ MAX{3,2,1} = 3

 , where for each

line we have recorded the maximum distance of a non-zero entry to the diagonal.

Each line of the matrix contributes with a value for the total bandwidth of the matrix

𝐴. As we can see, the first row contributes with the value 3 because the most distant non-

null element from the main diagonal is located 3 indices to the right. The second row

contributes with the value 2, the third row with 1 and the fourth row with 3. The

bandwidth of the matrix 𝐴 corresponds to the maximum of the values contributed by each

row, therefore the bandwidth of the matrix 𝐴 in this case is 3.

Since a matrix of order 𝑛 has a bandwidth at most (𝑛 − 1), the maximum bandwidth

possible for a matrix is 𝑛 − 1. This means that, with the current numbering of the vertices,

we obtained the maximum bandwidth for this matrix.

The bandwidth minimization problem consists in obtaining the smallest possible

bandwidth by performing row and column exchanges or, in the case of graphs, by

relabelling the nodes.

In this example, if we change the node labelling as shown in Figure 2, we do obtain

a lower bandwidth.

Figure 2 Example 1: Alternative node labelling.

1 4

3

2

3

Adjacency matrix: 𝐴 = [

0 1 1 0
1 0 1 1
1 1 0 1
0 1 1 0

]

⟶ 2
⟶ 2
⟶ 2
⟶ 2

As a result of the change of the numbering of the nodes, the adjacency matrix and

its bandwidth were impacted. This was translated in a reduction of the bandwidth to 2

because all the rows contribute with the value 2, which in fact corresponds to the optimal

solution (see appendix 7.2).

Concretely, the bandwidth minimization problem consists of permuting rows and

columns of a given matrix, 𝐴 = {𝑎𝑖𝑗} , with the objective of keeping the non-null

elements of a matrix as close as possible to the main diagonal. The bandwidth of A can

be defined as 𝐵(𝐴) = 𝑀𝐴𝑋{|𝑖 − 𝑗|: 𝑎𝑖𝑗 ≠ 0}.

An extensive study conducted by Chagas & De Oliveira, 2015, comparing 29

metaheuristic-based heuristics showed that the four metaheuristics in the list below

provided better results for the reduction of the bandwidth taking into consideration their

computational cost. These heuristics are Node Centroid with Hill Climbing (Lim et al.,

2004), Variable Neighbourhood Search (Mladenovic et al., 2010), Genetic Programming

Hyper-Heuristic (Koohestani & Poli, 2011) and Charged System Search (Kaveh, 2011).

Out of the four, two heuristics had low computation cost and reasonable bandwidth

reduction, namely the Node Centroid with Hill Climbing and the Genetic Programming

Hyper-Heuristic. The Charged System Search heuristic had possible low computational

cost and possibly high bandwidth reduction. However, the Variable Neighbourhood

Search (VNS-band) heuristic had certainly high bandwidth reduction and reasonable

computational cost.

To give continuity to the study above, the present work intends to compare the

performance of an exact method with two heuristics, that have lower computational cost:

the heuristic Node Centroid with Hill Climbing (NCHC or FNC-HC) (Lim et al., 2004)

and the widely used Cuthill and McKee (CM) heuristic (Cuthill & McKee, 1969).

The next part of this work will briefly refers to the available literature on this

subject, mentioning applications of this problem and types of heuristics. The third part of

this project will describe the exact method developed and the heuristics in a structured

4

form. The fourth part will describe how the methods were applied and will contain the

computational results. Finally, the last part will address the conclusions and some

reflexions about this topic.

 Literature Review

The bandwidth minimization problem was originated in 1962, at Jet Propulsion

Laboratory, when Harper was trying to minimize the maximum absolute error and

absolute error of a 6-bit picture. This problem could be represented by a graph where the

vertices were words in the code and the contribution of single errors for the total matrix

bandwidth was given by the edge differences in a hypercube (Harper, 1964). This

particular form of the Matrix Bandwidth Minimization Problem (MBMP) is known as the

Minimum Linear Arrangement Problem.

Applications of the MBMP consist in the reduction of execution time and storage

cost in the resolution of linear systems 𝐴𝑥 = 𝑏 of sparse matrices with bigger dimension.

For instance, Kaveh (2004), mentioned that in structural mechanics, up to 50% of the

computational cost derives from the resolution of linear systems. For instance, the

computational cost of the Conjugate Gradient Method can be reduced by applying a

“local” ordering of the vertices attained by implementing a heuristic that reduces the

bandwidth. However, the computational cost can be higher if the bandwidth reduces too

much the bandwidth (Hestenes & Stiefel, 1952). Additionally, methods that are based on

the Gaussian elimination can have their number of iterations reduced just by starting with

a pattern of non-zero elements in the coefficient matrix (Cuthill & McKee, 1969). Tarjan

in 1975 proved that to solve a linear system with bandwidth β and 𝑛 restrictions using the

Gaussian Elimination method it would require 𝒪(𝑛3) operations and fills 𝒪(𝑛𝛽2)

memory space.

Many problems from physics can be described through partial differential equations

for which solutions are approximated by using the finite differences, finite elements and

finite volumes methods (Chagas & Oliveira, 2015). Some applications are found in

chemical kinetics, survivability, numerical geophysics and large structures of

transportation of energy. A concrete application is the Very Large Scale Integration,

5

which consists in the design of circuits that combine thousands of transistors or devices

into a single chip (Rodriguez-Tello et al., 2008). Even in Economics, there are several

models where the problems are not modelled by partial differential equations,

approximations can be obtained through linearization leading to large sparse linear

systems (Chagas & Oliveira, 2015). This problem was even implemented in the

Computation area of hypertext layout, a particular type of data storage, by Berry et al. in

1996 when querying documents containing information from a database by matching

user’s keywords to the objects of the database.

Algorithms:

There are 4 main types of resolution and approximations for this problem: exact

algorithms, the first wave of heuristics, the second wave of heuristics and lower bound

search.

The first type consists of exact algorithms that can only be applied to specific types

of graphs with the guarantee of always finding the optimal bandwidth.

Two exact algorithms were presented in 1999 by Del Corso & Manzini can solve

the MBMP for randomly generated smaller instances up to 100 vertices. As of this

moment, the exact algorithm that has better performance for its worst-case scenario bases

itself on dynamic programming and has complexity 𝒪(2𝑛𝑚), where 𝑚 is the number of

edges and n is the number of vertices. (Koren & Harel, 2002)

For some specific graphs, there are exact methods known. For example, the tree

instances which labelling can be done in polynomial time (Shiloach, 1979), some types

of Halin graphs (Easton et al., 1996) and outerplanar graphs (Frederickson & Hambrusch,

1988) and others.

Figure 3 Tree

Figure 4 Outerplanar graph

Figure 5 Halin graph

6

The first wave of heuristics consists of simple heuristics that provide solutions in a short

amount of time sacrificing the quality.

Some examples are the CM heuristic (Cuthill & McKee, 1969) used in this work

and the GPS heuristic (Gibbs et al., 1976) that are widely used as benchmarks due to its

lower computation cost. However, with the increasing information obtained with the

studies in this area, VNS-band (Mladenovic et al., 2010) has become more commonly

used due to its good results, despite having a higher computational cost.

The second wave of heuristics can be considered the more modern ones which focus

more on the quality solution over performance.

Since VNS-band has a higher computational cost and provides better solutions, it

is considered to be part of the more modern heuristics. More recently, metaheuristics were

constructed like for instance Tabu Search (Martı́ et al., 2001) and NCHC (Lim et al.,

2004) that is presented in this work.

Finally, the fourth type is based on finding good lower bounds for the problem.

Until now, the algorithms that provided Lower Bounds had an order of magnitude very

inferior to the values that the heuristics obtained which made almost impossible to access

the quality of the heuristics. In 2008, Martí et al., proposed exact procedures based on the

Branch and Bound and Greedy Randomized Adaptive Search Procedures that computed

optimal solutions for medium sized instances and lower bounds for large sized instances.

Two years later, in 2011, Caprara et al., made great progress with their research by using

tighter restrictions that resulted in them obtaining lower bounds with a gap generally

between 5% and 20%, however, their method is very time consuming.

7

 Methodology

In this section, it will be introduced an exact method for solving the minimization

bandwidth problem and two heuristics that can find good solutions.

As previously mentioned, the heuristics CM and NCHC were chosen to be

implemented in this work. Some factors like the availability of algorithms and examples

provided by the authors were a factor in the selection of these heuristics. For instance, the

heuristic CM was chosen for being a benchmark in the scientific community and for its

simplicity and intuitive comprehension. NCHC was chosen because it has low

computational cost but still a reasonable bandwidth reduction which makes possible its

implementation in bigger problems.

3.1 Model

With the objective of obtaining an optimal solution for this problem, we present an

ILP model below.

Let 𝐺(𝑉, 𝐸) be a non-oriented graph, where V is the set of vertices (or nodes), 𝑉 =

{𝑣1, 𝑣2, … , 𝑣𝑛}, and E is the set of edges, 𝐸 = {𝑒1, 𝑒2, … , 𝑒𝑚}. Let 𝐴𝑛×n = {𝑎𝑖𝑗}, 𝑖 =

1, … , 𝑛; 𝑗 = 1,… , 𝑛 be the sparse symmetric adjacency matrix associated to the graph,

where 𝑎𝑖𝑗 is 1 if 𝑣𝑖 is connected to 𝑣𝑗 and 0 otherwise.

Variables (𝑛2 + 1):

▪ 𝑘 = bandwidth of the matrix 𝐴

▪ 𝑥𝑖𝑗 = {
1, if the node 𝑖 is relabeled as 𝑗
0, otherwise

, 𝑖, 𝑗 = 1,2, … , 𝑛

Objective function: 𝑚𝑖𝑛 𝑧 = 𝑘 (1)

8

Restrictions (2𝑛 + number of arcs + 𝑛2):

𝑠𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜

{

 ∑𝑥𝑖𝑗

𝑛

𝑗=1

= 1, 𝑖 = 1,… , 𝑛 (2)

∑𝑥𝑖𝑗

𝑛

𝑖=1

= 1, 𝑗 = 1,… , 𝑛 (3)

∑𝑖(𝑥𝑢𝑖 −

𝑛

𝑖=1

𝑥𝑣𝑖) ≤ 𝑘, ∀(𝑢, 𝑣): 𝑎𝑢𝑣 ≠ 0 (4)

𝑥𝑖𝑗 ∈ {0,1}, 𝑖 = 1,… , 𝑛; 𝑗 = 1,… , 𝑛 (5)

The objective function (1) minimizes the bandwidth, 𝑧 = 𝑘 , of the sparse

symmetric matrix 𝐴𝑛×𝑛.

Restrictions (2) and (3) ensure that exists a bijection between the initial and final

labelling of the nodes. A bijection is necessary to prevent one node from having multiple

final labels or none.

Restrictions (4) establishes the link between variable k and the actual bandwidth of

the adjacency matrix of the relabelled graph. In fact, if we designate by 𝜑(𝑢) the new

label of the initial node 𝑢 and 𝑘 the bandwidth of the matrix 𝐴𝑛×𝑛, we have that

1. k = MAX
(𝑖,𝑗)∈𝐸

{|𝑖 − 𝑗|}= MAX
(𝑢,𝑣)∈𝐸

{|𝜑(𝑢) − 𝜑(𝑣)|} . Therefore, because 𝐴 is

symmetric, 𝜑(𝑣) − 𝜑(𝑢) ≤ 𝑘, ∀(𝑢, 𝑣): 𝑎𝑢𝑣 ≠ 0.

2. Since ∑ 𝑥𝑖𝑗
𝑛
𝑗=1 = 1 (restriction 2), the sum ∑ 𝑖. 𝑥𝑢𝑖

𝑛
𝑖=1 is reduced to one

term, 𝑖∗𝑥𝑢𝑖∗ = 𝑖∗ = 𝜑(𝑢), where 𝑖∗ is the final labelling of the node 𝑢.

3. Combining 1. and 2., we obtain the restrictions (4) that correspond to the

application of the bandwidth definition to the nodes of the graph after being

relabelled.

Restrictions (5) correspond to enforce the binary nature of the variables that indicate

if a node 𝑖 is relabelled as 𝑗 or not.

9

Illustration:

Figure 6 Graph from Example 1.

Writing the IPL model for Example 1 we will obtain a linear integer problem with

17 variables. Variable 𝑘 represents the final bandwidth of the matrix 𝐴4×4 and the other

16 variables represent all possible relabelling of the four nodes. For instance, node 1 can

remain as 1 after the relabelling (𝑥11 = 1 ⇒ 𝑥12 = 0 ⋀ 𝑥13 = 0⋀𝑥14 = 0) or it can be

relabelled as one of the other three nodes

𝑥𝑖𝑗 = {
1, if node 𝑖 is relabeled as 𝑗
0, otherwise

, 𝑖 = 1,2,3,4; 𝑗 = 1,2,3,4 (42 variables).

Since 𝑥𝑖𝑗 is a binary variable and we have four possible relabelling for each node, we

obtain 16 restrictions of type (5)

𝑥𝑖𝑗 ∈ {0,1}, 𝑖 = 1,2,3,4; 𝑗 = 1,2,3,4. (5)

Furthermore, because we can only attribute the labelling of one node to another node

we will have four restrictions of type (2). Also, after finalizing the relabelling, each node

must have a unique label, which translates into having four restrictions of type (3)

𝑥𝑖1 + 𝑥𝑖2 + 𝑥𝑖3 + 𝑥𝑖4 = 1, 𝑖 = 1,2,3,4 (2)

𝑥1𝑗 + 𝑥2𝑗 + 𝑥3𝑗 + 𝑥4𝑗 = 1, 𝑗 = 1,2,3,4. (3)

In a symmetric matrix 𝐴4×4, each non-null element (𝑘, 𝑙) corresponds to an arc.

The matrix 𝐴 has 10 non-null elements, ergo we can define the group of arcs, A, as

{(1,2), (1,4), (2,1), (2,3), (2,4), (3,2), (3,4), (4,1), (4,2), (4,3)}. Therefore, representing

by two opposite arcs each edges of the non-oriented graph.

1 3

4

2

10

𝐴 = [

0 1 0 1
1 0 1 1
0 1 0 1
1 1 1 0

]

⟶ (1,2), (1,4)

⟶ (2,1), (2,3), (2,4)

⟶ (3,2), (3,4)
⟶ (4,1), (4,2), (4,3)

To apply the bandwidth definition, the contribution of each arc doesn’t exceed the

final bandwidth, 𝑘

1(𝑥𝑢1 − 𝑥𝑣1) + 2(𝑥𝑢2 − 𝑥𝑣2) + 3(𝑥𝑢3 − 𝑥𝑣3) + 4(𝑥𝑢4 − 𝑥𝑣4) ≤ 𝑘, ∀(𝑢, 𝑣): 𝑎𝑢𝑣 ≠ 0. (4)

Finally, the bandwidth minimization problem for the matrix 𝐴4×4 can be written as:

Variables:

▪ 𝑘 = bandwidth of the matrix 𝐴

▪ 𝑥𝑖𝑗 = {
1, if the node 𝑖 is relabeled as 𝑗
0, otherwise

Objective function: 𝑚𝑖𝑛 𝑧 = 𝑘 (1)

Restrictions:

𝑠𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜

{

 ∑𝑥𝑖𝑗

𝑛

𝑗=1

= 1, 𝑖 = 1,… , 𝑛 (2)

∑𝑥𝑖𝑗

𝑛

𝑖=1

= 1, 𝑗 = 1,… , 𝑛 (3)

1(𝑥11 − 𝑥21) + 2(𝑥12 − 𝑥22) + 3(𝑥13 − 𝑥23) + 4(𝑥14 − 𝑥24) ≤ 𝑘 (4.1)
1(𝑥11 − 𝑥41) + 2(𝑥12 − 𝑥42) + 3(𝑥13 − 𝑥43) + 4(𝑥14 − 𝑥44) ≤ 𝑘 (4.2)
1(𝑥21 − 𝑥11) + 2(𝑥22 − 𝑥12) + 3(𝑥23 − 𝑥13) + 4(𝑥24 − 𝑥14) ≤ 𝑘 (4.3)
1(𝑥21 − 𝑥31) + 2(𝑥22 − 𝑥32) + 3(𝑥23 − 𝑥33) + 4(𝑥24 − 𝑥34) ≤ 𝑘 (4.4)
1(𝑥21 − 𝑥41) + 2(𝑥22 − 𝑥42) + 3(𝑥23 − 𝑥43) + 4(𝑥24 − 𝑥44) ≤ 𝑘 (4.5)

1(𝑥31 − 𝑥21) + 2(𝑥32 − 𝑥22) + 3(𝑥33 − 𝑥23) + 4(𝑥34 − 𝑥24) ≤ 𝑘 (4.6)

1(𝑥31 − 𝑥41) + 2(𝑥32 − 𝑥42) + 3(𝑥33 − 𝑥43) + 4(𝑥34 − 𝑥44) ≤ 𝑘 (4.7)
1(𝑥41 − 𝑥11) + 2(𝑥42 − 𝑥12) + 3(𝑥43 − 𝑥13) + 4(𝑥44 − 𝑥14) ≤ 𝑘 (4.8)
1(𝑥41 − 𝑥21) + 2(𝑥42 − 𝑥22) + 3(𝑥43 − 𝑥23) + 4(𝑥44 − 𝑥24) ≤ 𝑘 (4.9)
1(𝑥41 − 𝑥31) + 2(𝑥42 − 𝑥32) + 3(𝑥43 − 𝑥33) + 4(𝑥44 − 𝑥34) ≤ 𝑘 (4.10)

𝑥𝑖𝑗 ∈ {0,1}, 𝑖 = 1,… , 𝑛; 𝑗 = 1,… , 𝑛 (5)

11

Model Implementation:

With the objective of implementing this methodology, it was developed a code to

import a matrix and write the problem restrictions in an Excel sheet, as described in the

code below. To be noted that the binary restrictions were not coded directly as they are

directly inputted in OpenSolver, as it will be shown in Figure 5.

The function “OriginalMatrixReader”, shown below, is used to read a CSV file that

contains the matrix 𝐴, storing its elements in the variable “OriginalMatrix”. To be noted

that since the same matrices will be used with different methodologies in this work, the

function “OriginalMatrixReader” will be used in the next section “3.2 Heuristics”.

Function OriginalMatrixReader() As Variant

 Dim Matrix() As Integer, ColItems() As String

 Dim FilePath As String, LineFromFile As String

 Dim iRow As Long, iCol As integer, Number_of_Nodes As Integer

 Number_of_Nodes = Sheets("Dashboard").Range("rngMatrixSize")

 ReDim Matrix(1 To Number_of_Nodes, 1 To Number_of_Nodes)

 FilePath = Sheets("Dashboard").Range("rngFilePath")

 Open FilePath For Input As #1

 iRow = 1

 Do Until EOF(1)

 Line Input #1, LineFromFile

 ColItems = Split(LineFromFile, ";")

 For iCol = 0 To UBound(ColItems)

 Matrix(iRow, iCol + 1) = ColItems(iCol)

 Next iCol

 iRow = iRow + 1

 Loop

 Close #1

 OriginalMatrixReader = Matrix

End Function

After reading the matrix, we sequentially implement the objective function and

constraints in a format suitable to be used by OpenSolver.

12

1. Fills the first row of the Excel sheet with the list of the variables of the problem.

Cells(1, 2).Value = "k"

For i = 1 To Number_of_Nodes

 For j = 1 To Number_of_Nodes

 Cells(1, 2 + j + (i - 1) * Number_of_Nodes) = "x" & i & "_" & j

 Next j

Next i

2. Writes the restrictions (2): ∑ 𝑥𝑖𝑗
𝑛
𝑗=1 = 1, 𝑖 = 1,… , 𝑛

Nb_variables = 1 + Number_of_Nodes * Number_of_Nodes

iRow = 2: iCol = 2

For i = 1 To Number_of_Nodes

 Cells(iRow, 1) = "SUM(xij, i=" & i & ")"

 Cells(iRow, Nb_variables + 3) = "="

 Cells(iRow, Nb_variables + 4) = 1

 For j = 1 To Number_of_Nodes

 Cells(iRow, iCol + j).Value = 1

 Next j

 iCol = iCol + Number_of_Nodes

 iRow = iRow + 1

Next i

3. Writes the restrictions (3): ∑ 𝑥𝑖𝑗
𝑛
𝑖=1 = 1, 𝑗 = 1,… , 𝑛

For j = 1 To Number_of_Nodes

 iCol = j + 2

 Cells(iRow, 1) = "SUM(xij, j=" & j & ")"

 Cells(iRow, Nb_variables + 3) = "="

 Cells(iRow, Nb_variables + 4) = 1

 For i = 1 To Number_of_Nodes

 Cells(iRow, iCol).Value = 1

 iCol = iCol + Number_of_Nodes

 Next i

 iRow = iRow + 1

Next j

13

4. Writes the restrictions (4): ∑ 𝑖(𝑥𝑢𝑖 −
𝑛
𝑖=1 𝑥𝑣𝑖) ≤ 𝑘, ∀(𝑢, 𝑣): 𝑎𝑢𝑣 ≠ 0 . To be

noted that 𝑎𝑢𝑣 ≠ 0 corresponds to “OriginalMatrix(u,v)=1”

Nb_variables = 1 + Number_of_Nodes * Number_of_Nodes

For u = 1 To Number_of_Nodes

 For v = 1 To Number_of_Nodes

 If OriginalMatrix(u, v) = 1 And u <> v Then

 iCol = 2

 Cells(iRow, 1) = "SUM i(xui-xvi)<=k, u=" & u & ", v=" & v

 Cells(iRow, Nb_variables + 3) = "<="

 Cells(iRow, Nb_variables + 4) = 0

 Cells(iRow, iCol).Value = -1

 iCol1 = iCol + (u - 1) * Number_of_Nodes

 iCol2 = iCol + (v - 1) * Number_of_Nodes

 For i = 1 To Number_of_Nodes

 Cells(iRow, iCol1 + i).Value = i

 Cells(iRow, iCol2 + i).Value = -i

 Next i

 iRow = iRow + 1

 End If

 Next v

Next u

5. Writes the objective function, right-hand side formulas and paints the cell that

contains the bandwidth function with dark orange and the cells that contain the

objective variables with light orange.

' Writes the fO = k

Cells(iRow, 1) = "FO"

Cells(iRow, 2) = 1

' Writes the right-hand side formulas

Restriction_Variables = Cells(2, 2).Address(False, False) & ":" & _

 Cells(2, Nb_variables+1).Address(False, False)

Objective_Variables = Cells(iRow + 1, 2).Address & ":" & _

 Cells(iRow + 1, Nb_variables + 1).Address

Cells(2, Nb_variables + 2).Formula = _

"=SUMPRODUCT(" & Restriction_Variable & "," & Objective_Variables &")"

Cells(2, Nb_variables + 2).AutoFill _

 Destination:=Range(Cells(2, Nb_variables + 2).Address, _

 Cells(iRow, Nb_variables + 2).Address), Type:=xlFillDefault

' Paints the FO and objective variable cells

Cells(iRow, Nb_variables + 2).Interior.Color = RGB(255, 100, 0)

Range(Cells(iRow + 1, 2), Cells(iRow + 1, Nb_variables + 1)) _

 .Interior.Color = RGB(255, 175, 0)

14

The application of this procedure to the matrix for Example 1 yields the spreadsheet

in Figure 4.

Figure 7 Excel sheet filled with the ILP restrictions for Example 1.

As previously mentioned, the binary restrictions 𝑥𝑖𝑗 ∈ {0,1}, 𝑖 = 1,… , 𝑛; 𝑗 =

1, … , 𝑛 (5) were directly inserted in the OpenSolver as per below.

Figure 8 OpenSolver window filled with the ILP parameters for Example 1.

15

3.2 Heuristics

Heuristic methods, from the Greek heuriskein - “to find”, have as advantages their

simplicity, easy implementation and lower consumption of computational resources. As

for disadvantages, they might produce low-quality solutions, depending on the initial

parameters, and there is a possibility of being blocked without finding a feasible solution.

Despite having an exact compact model with a polynomial number of variables and

constraints on the matrix size, heuristics are very important in finding good feasible

solutions. In fact, the number of variables/ constraints has limited the study of the exact

model in the section “4.2 Computational Results”. For instance, Excel has a limited

number of columns that only allows the resolution of problems with the maximum

dimension of 127 nodes and the time spent by OpenSolver on the resolution of bigger

problems is not reasonable (more than 24h) as shown in the section “4.2 Computational

Results”.

Since the objective of this work is to compare results of different methods to solve

the bandwidth minimization problem, it was built the code below that calculates the

bandwidth of a given matrix “MyMatrix” as per below:

𝑏𝑎𝑛𝑑𝑤𝑖𝑑𝑡ℎ = MAX
(𝑖,𝑗)∈𝐸

{|𝑖 − 𝑗|}= MAX
(𝑢,𝑣)∈𝐸

{|𝜑(𝑢) − 𝜑(𝑣)|}

Function Calculate_Bandwidth(MyMatrix() As Integer, Phi () As Integer)

 Dim i As Integer, j As Integer, Band As Integer

 Band = 0

 For i = 1 To Number_of_Nodes

 For j = 1 To Number_of_Nodes

 If MyMatrix(i, j) = 1 And Abs(Phi(j) – Phi (i)) > Band Then

 Band = Abs(Phi (j) - Phi (i))

 End If

 Next j

 Next i

 Calculate_Bandwidth = Band

End Function

16

3.2.1 The Cuthill and McKee Algorithm

The heuristic of Cuthill and McKee is a relatively simple heuristic and intends to

bundle the nodes of a level with nodes of the same level, whenever possible. The levels

are defined as the distance to the starting node. For instance, the adjacent nodes, also

known as neighbours, of the starting node are part of the first level, the direct neighbours

of the direct neighbours of the starting node are part of the second level and so on.

In the work of Cuthill and McKee is suggested to initiate the heuristic with the node

of minimum degree but is also mentioned that are several cases where starting with the

node of minimum degree doesn’t obtain the optimal solution. Therefore, in the section “4

Computational Experiments” this heuristic was applied with four different starting nodes:

the node that has minimum degree, the node that has maximum degree, the node that has

initial label 1 and the node that has initial label 𝑛.

After choosing the starting node, the remaning nodes are assigned by increasing

level and, for each level, by their increasing degree.

More concretely, it was built the function “Calculate_Degree” to read the original

matrix and produce a vector with the degree of each node. The degree of a node 𝑖 of

𝑑𝑒𝑔(𝑖) is the number of edges incident into 𝑖. We can determine the number of adjacent

edges of 𝑖 by counting the number of edges that satisfy the condition 𝑎𝑖𝑗 = 1, which

corresponds to the line of code “MyMatrix(i, j) = 1”.

Function Calculate_Degree(MyMatrix() As Integer) As Variant

Dim i As Integer, j As Integer, Deg() As Integer

ReDim Deg(1 To Number_of_Nodes)

For j = 1 To Number_of_Nodes

 For i = 1 To Number_of_Nodes

 If MyMatrix(i, j) = 1 Then

 Deg(j) = Deg(j) + 1

 End If

 Next i

Next j

Calculate_Degree = Deg

End Function

17

As previously mentioned, one of the suggestions of starting node proposed by

Cuthill & McKee, 1969, was to use a node that has the smallest degree. Therefore, to

determine which nodes have the smallest degree it was built the function below,

“Get_Random_Min_Degree”, that goes through all the elements of the vector calculated

with the function presented above, “Calculate_Degree”. Since the result of heuristics

depends on the starting node and it is common to have several nodes with the same degree,

a random number based on the Uniform distribution was included in the function.

Therefore, when there is a tie between the current node that has the minimum degree and

a new node found with a minimum degree, the probability of switching is 50%.

Function Get_Random_Min_Degree(DegreeVector() As Integer) As Integer

Dim Curr_Min_Degree As Integer, Curr_Node_Min_Degree As Integer

Dim i As Integer

Curr_Min_Degree = Number_of_Nodes

For i = 1 To Number_of_Nodes

 If DegreeVector(i) < Curr_Min_Degree Then

 Curr_Node_Min_Degree = i

 Curr_Min_Degree = DegreeVector(i)

 ElseIf DegreeVector(i) = Curr_Min_Degree Then

 If Rnd < 0.5 Then

 Curr_Node_Min_Degree = i

 End If

 End If

Next i

Get_Random_Min_Degree = Curr_Node_Min_Degree

End Function

Following the same logic of “Get_Random_Min_Degree” it was built the function

to obtain a node with the largest degree.

The function “Insert_Value_by_Order” will be used in this heuristic and it will be

used on the NCHC heuristic. The inputs of the function are a variable

“Vector_To_Update” to which will be added a value “Value” that will be inserted in a

specific position according with the auxiliary value “Order_By”. In the case of the CM

heuristic, the variable to be updated, list of neighbour nodes of the current node, will

receive a new node “Value” and that node will be stored in a position based on its degree

“Order_By”.

18

In general, the function verifies if the vector to be updated doesn’t have content

“Vector_To_Update(1, 1) = 0” to access the need of creating space to receive the new

“Value”. If the value to be inserted is the first one, then there is no need to check if the

value that is being inserted is in the correct position as there is only one position. If the

value to be inserted has the biggest “Order_By”, in the CM algorithm if it has the biggest

degree, we can insert the value in the last position. Lastly, if the “Order_By”, or degree,

is not the biggest of the list because we are using VBA we need to move the values to

free the space where the “Value” and “Order_By” will be inserted.

Function Insert_Value_by_Order(Vector_To_Update() As Integer, Value As

Integer, Order_By As Integer) As Variant

 Dim count As Integer, k As Integer

 If Vector_To_Update(1, 1) = 0 Then

 count = 1

 Else

 count = UBound(Vector_To_Update, 2) + 1

 ReDim Preserve Vector_To_Update(1 To 2, 1 To count)

 End If

 If count = 1 Then

 Vector_To_Update(1, count) = Value

 Vector_To_Update(2, count) = Order_By

 ElseIf Vector_To_Update(2, count - 1) <= Order_By Then

 Vector_To_Update(1, count) = Value

 Vector_To_Update(2, count) = Order_By

 Else

 k = count

 Do While k > 1

 If Vector_To_Update(2, k - 1) > Order_By Then

 Vector_To_Update(1, k) = Vector_To_Update(1, k - 1)

 Vector_To_Update(2, k) = Vector_To_Update(2, k - 1)

 k = k - 1

 Else

 Exit Do

 End If

 Loop

 Vector_To_Update(1, k) = Value

 Vector_To_Update(2, k) = Order_By

 End If

 Insert_Value_by_Order = Vector_To_Update

End Function

19

The code below starts by reading a matrix using “OriginalMatrixReader”. This

matrix is then used to create the vector with the degrees of the nodes with the code

specified in the previous section.

Number_of_Nodes = Sheets("Dashboard").Range("rngMatrixSize")

OriginalMatrix = OriginalMatrixReader

Degree = Calculate_Degree(OriginalMatrix)

With the objective of helping to automate this heuristic, it was created a vector

named “New_Nodes_Labelling” which contains the new label of the nodes. In parallel, a

vector named as “Old_Nodes_Assigned” will help determine if a node has already been

assigned or not during this process. This last function is very important because the same

node can be a neighbour (or adjacent) of multiple nodes and we can’t relabel the same

node with multiple labels. For example, having “New_Nodes_Labelling(1) = 15” means

that the node that started with label 15 will be relabelled as 1. In addition, the condition

“Old_Nodes_Assigned(15) = True” will be verified after the relabeling of node 15.

ReDim New_Nodes_Labelling(1 To Number_of_Nodes)

ReDim Old_Nodes_Assigned(1 To Number_of_Nodes)

Since this implementation allows the selection of a particular starting node, it was

chosen to implement it with the 4 widely used starting nodes below:

1. The starting node is a node with a maximum degree

New_Nodes_Labelling(1) = Get_Random_Max_Degree(Degree)

2. The starting node is a node with a minimum degree

New_Nodes_Labelling(1) = Get_Random_Min_Degree(Degree)

3. The starting node is the first node of the matrix 𝐴

New_Nodes_Labelling(1) = 1

4. The starting node is the last node of the matrix 𝐴

New_Nodes_Labelling(1) = Number_of_Nodes

20

After fixing a starting node, a search by levels for neighbour nodes that were yet

not assigned will be conducted.

For each level, it will be determined the candidate nodes that were not assigned yet.

These candidates verify two conditions: the first condition is that they are not assigned,

i.e., the node value in the vector “Old_Nodes_Assigned” is “False” and the second

condition is to be a neighbour of the “Current_Node” that has already been relabelled,

i.e., “OriginalMatrix(New_Nodes_Labelling(Current_Node), iNode)” equal to “1”. All

the candidates that verify these two conditions are stored in a vector named “OrderedAdj”

and to ensure that they are stored by increasing order of degree it was used the function

“Insert_Value_by_Order” that was presented at the beginning of this section. After

having all the candidates ordered, the nodes are relabelled, i.e., they will be stored in the

vector “New_Nodes_Labelling” and they will be marked as assigned to prevent them

from being assigned multiple times.

This process/search will be done each node assigned until all the nodes are assigned.

Old_Nodes_Assigned(New_Nodes_Labelling(1)) = True

NbAssigned = 1: Current_Node = 1

Do While NbAssigned < Number_of_Nodes

 ReDim OrderedAdj(1 To 2, 1 To 1)

 For iNode = 1 To UBound(Degree)

 If Old_Nodes_Assigned(iNode) = False And _

 OriginalMatrix(New_Nodes_Labelling(Current_Node), iNode)=1 Then

 OrderedAdj = Insert_Value_by_Order(OrderedAdj, iNode, _

 Degree(iNode))

 End If

 Next iNode

 ' Relabels the nodes of the current adjacency by increasing degree

 For iNode = 1 To UBound(OrderedAdj)

 NbAssigned = NbAssigned + 1

 New_Nodes_Labelling(NbAssigned) = OrderedAdj(1, iNode)

 Old_Nodes_Assigned(OrderedAdj(1, iNode)) = True

 Next iNode

 Current_Node = Current_Node + 1

Loop

21

Example 1:

If we apply this heuristic to our example of the matrix 𝐴4×4, considering the starting

node as the node with the smallest degree we obtain the following.

Figure 9 Node degrees for Example 1.

Node Degree (D)

1 2

2 3

3 2

4 3

Table I Degree of the nodes of the non-oriented

graph with 4 vertices and 5 edges

There are two nodes with the smallest degree, 1 and 3. Therefore we can choose as

starting node the node 3.

Iteration
Current

node

Nodes

assigned

Not assigned neighbours

of the current node

Candidate nodes to

be assigned next

1 3 3 Level 1 = {2, 4} Level 1 = {2, 4}

Since both neighbours of node 3, 2 and 4, have the

same degree, we can choose to assign the node 2.

Note: 𝒋(𝒊) indicates that node 𝒊 was relabelled as 𝒋

2 2 3, 2
Level 1 = {4}

Level 2 = {1}

Level 1 = {4}

We can only assign the node 4 because is the only

node not assigned of the first level.

1 3

4

2

22

3 4 3, 2, 4 Level 2 = {1} Level 2 = {1}

Since all the nodes of the level 1 have been assigned,

we proceed with adding the nodes of the second

level.

4 1 3, 2, 4, 1 {} {}

The end, all the nodes have been assigned.

Bandwidth before = 3

𝑴𝑨𝑿 {|𝟐 − 𝟏|, |𝟒 − 𝟏|, |𝟒 − 𝟐|, |𝟑 − 𝟐|, |𝟒 − 𝟑|}

Bandwidth after = 2

𝑴𝑨𝑿 {|𝟐 − 𝟏|, |𝟑 − 𝟏|, |𝟑 − 𝟐|, |𝟒 − 𝟐|, |𝟒 − 𝟑|}

Table II Table that shows the nodes assigned and not assigned for each iteration of the algorithm CM

3.2.2 The Node Centroid with Hill Climbing Algorithm

As stated by Lim et al., 2004, in many heuristics is crucial to have a good initial

solution to obtain high-quality solutions. Therefore, the NCHC algorithm starts with the

generation of initial solutions by performing the Breadth First Search (BFS). Secondly,

the NC is performed to centralize the positions of neighbouring nodes which is known

for obtaining solutions with high quality faster than most of the recent algorithms. Lastly,

the authors chose to perform the procedure HC every other time due to providing very

good improvements but being relatively slow during their experimentation.

Before presenting the algorithm it is important to define the concept of a critical

node. A node 𝑣 is critical if it expresses the maximum bandwidth, i.e. if the maximum

distance between two nonzero elements in the corresponding row of the adjacency matrix

is equal to the matrix bandwidth. When a node is critical, we define its criticality, 𝐶(𝑣),

as being 1. More precisely, we set

𝐶(𝑣) = {
1, 𝑖𝑓 𝑑𝑖𝑎𝑚(𝑣) = 𝑏𝑎𝑛𝑑𝑤𝑖𝑡ℎ
0, 𝑖𝑓 𝑑𝑖𝑎𝑚(𝑣) < 𝑏𝑎𝑛𝑑𝑤𝑖𝑡ℎ

, where 𝑑𝑖𝑎𝑚(𝑣) = 𝑀𝐴𝑋
𝑢∈𝑁(𝑣)

|𝜑(𝑣) − 𝜑(𝑢)|

𝜑(𝑢) is the new label of the initial node 𝑢 and 𝑁(𝑣) = {𝑢 ∈ 𝑉: (𝑢, 𝑣) ∈ 𝐸}.

23

The NCHC algorithm is composed essentially by three other algorithms: the BFS

algorithm is the first algorithm to be applied and consists in choosing randomly a starting

node and adding its neighbours by levels. This is followed by the NC algorithm that

adjusts the vertices to a relative central position in comparison with its neighbours

(centroid) by attempting to reduce the diameter of the 𝜆 − 𝑐𝑟𝑖𝑡𝑖𝑐𝑎𝑙 vertices by moving

them towards the centroid of the bundle. And finally, is then applied HC that searches for

local optimal solutions based on the contribution of each node to the bandwidth, where

the critical nodes that satisfy the conditions 𝐶′(𝑢) ≤ 𝐶(𝑢), 𝐶′(𝑣) ≤ 𝐶(𝑣) and 𝐶′(𝑢) +

𝐶′(𝑣) ≤ 𝐶(𝑢) + 𝐶(𝑣) are identified to perform a swap that might led to a reduction of

the bandwidth; where 𝐶’(𝑣) corresponds to the criticality of the node 𝑣 after the swap,

considering the current bandwidth.

The algorithm starts by reading the inputs such as the number “restart_Times”, that

corresponds to the number of times that the algorithm will restart by generating new initial

solutions, the “NC_Times” that corresponds to the number of times that the NC algorithm

will be performed, “lambda” that is the factor that will be applied to the bandwidth of the

matrix in order to obtain the 𝜆 − critical vertices and the matrix to be used.

restart_Times = Sheets("Dashboard").Range("rngRestart_Times")

NC_Times = Sheets("Dashboard").Range("rngNC_Times")

lambda = Sheets("Dashboard").Range("rng_lambda")

Number_of_Nodes = Sheets("Dashboard").Range("rngMatrixSize")

OriginalMatrix = OriginalMatrixReader

The variable “CurBandwidth”, that represents the minimum bandwidth at any given

step of the heuristic, was added to the original algorithm to store the bandwidth obtained

at the end of performing the HC algorithm and before labels being reset by the function

“IntialLabels” (BFS algorithm).

CurBandwidth = Number_of_Nodes

For i = 1 To restart_Times

 Labelling = InitialLabels(OriginalMatrix)

 For j = 1 To NC_Times

 Labelling = NC(OriginalMatrix, Labelling, lambda)

 If j Mod 2 = 1 Then

 Labelling = HC(OriginalMatrix, Labelling)

 End If

 Next j

 If CurBandwidth > Bandwidth Then CurBandwidth = Bandwidth

Next i

24

The function “InitialLabels” performs the algorithm BFS, which consists in

choosing randomly a starting node and adding its neighbours by levels. This algorithm is

very similar to what was used in the CM algorithm as it considers the neighbourhood of

a node but doesn’t relabel it by increasing degree.

Function InitialLabels(OriginalMatrix() As Integer)

 ReDim New_Nodes_Labelling(1 To Number_of_Nodes)

 ReDim Old_Nodes_Assigned(1 To Number_of_Nodes)

 New_Nodes_Labelling(1) = Int(Number_of_Nodes * Rnd + 1)

 Old_Nodes_Assigned(New_Nodes_Labelling(1)) = True

 NbAssigned = 1: CurrNode = 1

 Do While NbAssigned < Number_of_Nodes

 For iNode = 1 To Number_of_Nodes

 If Old_Nodes_Assigned(iNode) = False And _

 OriginalMatrix(New_Nodes_Labelling(CurrNode), iNode) = 1 Then

 NbAssigned = NbAssigned + 1

 New_Nodes_Labelling(NbAssigned) = iNode

 Old_Nodes_Assigned(iNode) = True

 End If

 Next iNode

 CurrNode = CurrNode + 1

 Loop

 InitialLabels = New_Nodes_Labelling

End Function

25

After relabelling the nodes in the step before there is a need to recalculate the

bandwidth to be able to sort the nodes according to their weight, from smallest to largest

using the NC algorithm. The weight of each node depends on its contribution to the final

bandwidth, being the weight of each node defined as 𝑤(𝑣) =
∑ 𝑓(𝑢)𝑢∈𝑏𝜆(𝑣)

|𝑏𝜆(𝑣)|
, for which

𝑏𝜆(𝑣) = {𝑁(𝑣) ∩ {𝑢: |𝑓(𝑢) − 𝑓(𝑣)| ≥ 𝜆𝐵(𝐺)} ∪ {𝑣}, where 𝑁(𝑣) is the neighbourhood

of 𝑣, 𝐵(𝐺) is the bandwidth of the graph 𝐺 and 𝑓(𝑢) is the label of the initial node 𝑢.

Function NC(OriginalMatrix() As Integer, Labelling() As Integer, lambda

As Double)

 Bandwidth = Calculate_Bandwidth(OriginalMatrix, Labelling)

 ReDim C(1 To Number_of_Nodes)

 ReDim w(1 To Number_of_Nodes)

 For i = 1 To Number_of_Nodes

 w(i) = Labelling(i)

 C(i) = 1

 Next i

 For u = 1 To Number_of_Nodes

 For v = 1 To Number_of_Nodes

 If OriginalMatrix(u, v) = 1 And _

 Abs(Labelling(u) - Labelling(v)) >= lambda * Bandwidth Then

 w(u) = w(u) + Labelling(v): C(u) = C(u) + 1

 w(v) = w(v) + Labelling(u): C(v) = C(v) + 1

 End If

 Next v

 Next u

 For i = 1 To Number_of_Nodes

 w(i) = w(i) / C(i)

 Next i

 For u = 1 To Number_of_Nodes - 1

 For v = u + 1 To Number_of_Nodes

 If w(u) > w(v) Then

 temp = w(u): w(u) = w(v): w(v) = temp

 temp = Labelling(u)

 Labelling(u) = Labelling(v)

 Labelling(v) = temp

 End If

 Next v

 Next u

 NC = Labelling

End Function

26

)

Before presenting the HC algorithm is important to mention that the function 𝐶(𝑣)

is used with the name “Critical”, the function 𝑑𝑖𝑎𝑚(𝑣) is mentioned by the name “Diam”

and the function “Neighbours” corresponds to the neighborhood of a node. It is also used

the function “NeighboursLine” that corresponds to the neighbours of the node 𝑣, 𝑁(𝑣),

that are closer to the 𝑚𝑖𝑑(𝑣) than to 𝜑(𝑣). This group is sorted by increasing order of

|𝑚𝑖𝑑(𝑣) − 𝜑(𝑢)| and is represented by 𝑁′(𝑣) = {𝑢: |𝑚𝑖𝑑(𝑣) − 𝜑(𝑢)| < |𝑚𝑖𝑑(𝑣) −

𝜑(𝑣)|, where 𝑚𝑖𝑑(𝑣)⌊= (𝑀𝐴𝑋{𝜑(𝑢): 𝑢 ∈ 𝑁(𝑣)} + 𝑚𝑖𝑛{𝜑(𝑢): 𝑢 ∈ 𝑁(𝑣)})/2⌋.

Function NeighboursLine(v As Integer, Matrix() As Integer)

 N = Neighbours(v, Matrix)

 max_label_v = 0: min_label_v = Number_of_Nodes

 For i = 1 To UBound(N)

 If Labelling(N(i)) > max_label_v Then _

 max_label_v = Labelling(N(i))

 If Labelling(N(i)) < min_label_v Then _

 min_label_v = Labelling(N(i))

 Next i

 mid_label_v = Int((max_label_v + min_label_v) / 2)

 ReDim Naux(1 To 2, 1 To 1)

 For Each u In N

 If Abs(mid_label_v - Labelling(u)) < _

 Abs(mid_label_v - Labelling(v)) Then

 Naux = Insert_Value_by_Order(Naux, CInt(u), _

 Abs(mid_label_v - Labelling(u)))

 End If

 Next u

 NeighboursLine = Naux

End Function

27

Finally, the algorithm HC is applied. This algorithm searches for local optimal

solutions based on the contribution of each node to the bandwidth.

In this algorithm, critical nodes that satisfy the conditions 𝐶′(𝑢) ≤ 𝐶(𝑢), 𝐶′(𝑣) ≤

𝐶(𝑣) and 𝐶′(𝑢) + 𝐶′(𝑣) ≤ 𝐶(𝑢) + 𝐶(𝑣) are identified to perform a swap that might led

to a reduction of the bandwidth; where 𝐶’(𝑣) corresponds to the criticality of the node 𝑣

after the swap, considering the current bandwidth. To be noted that only for the HC, 𝐶’(𝑣)

can also have a value of 2 if the swap leads to an increase in the bandwidth, i.e., if we

would obtain 𝑑𝑖𝑎𝑚(𝑣) > 𝑏𝑎𝑛𝑑𝑤𝑖𝑑𝑡ℎ after the swap. A detailed demonstration can be

found in the work of Lim et al., 2004.

Function HC(OriginalMatrix() As Integer, Labelling() As Integer)

 ReDim C(1 To Number_of_Nodes)

 ReDim CLine(1 To Number_of_Nodes)

Bandwidth = Calculate_Bandwidth(OriginalMatrix, Labelling)

 can_improve = True

 Do While can_improve = True

 can_improve = False

 For v = 1 To Number_of_Nodes

 C(v) = Critical(v, OriginalMatrix, Labelling)

 If C(v) = 1 Then

 NLine = NeighboursLine(v, OriginalMatrix)

 If NLine(1, 1) <> 0 Then

 For uu = 1 To UBound(NLine, 2)

 u = NLine(1, uu)

 LabellingLine = Labelling

 LabellingLine(v) = Labelling(u)

 LabellingLine(u) = Labelling(v)

 C(u) = Critical(u, OriginalMatrix, Labelling)

 If Diam(v, OriginalMatrix, LabellingLine) > Bandwidth Then

 CLine(v) = 2

 Else

 CLine(v) = Critical(v, OriginalMatrix, LabellingLine)

 End If

 If Diam(u, OriginalMatrix, LabellingLine) > Bandwidth Then

 CLine(u) = 2

 Else

 CLine(u) = Critical(u, OriginalMatrix, LabellingLine)

 End If

28

 If CLine(u) <= C(u) And CLine(v) <= C(v) And _

 CLine(u) + CLine(v) < C(u) + C(v) Then

 Labelling = LabellingLine

 Bandwidth =Calculate_Bandwidth(OriginalMatrix,Labelling)

 can_improve = True: Exit For

 End If

 Next uu

 End If

 End If

 Next v

 Loop

 HC = Labelling

End Function

If we apply this heuristic to the example below with the parameters

“restart_Times=1”, “NC_Times=1” and “lambda=0,7” we obtain the following table.

𝐴 =

[

0
1
1
1
1
0

1
0
1
0
0
0

1
1
0
1
0
0

1
0
1
0
0
1

1
0
0
0
0
1

0
0
0
1
1
0]

Iteration
Current

node

Labelling Not assigned neighbours

of the current node

Candidate nodes to

be assigned next

BFS 5 5 Level 1 = {1,6} Level 1 = {1,6}

5 5,1 Level 1 = {6} Level 1 = {6}

1 5,1,6 Level 2 = {2,3,4} Level 2 = {2,3,4}

1 5,1,6,2 Level 2 = {3,4} Level 2 = {3,4}

1 5,1,6,2,3 Level 2 = {4} Level 2 = {4}

6 5,1,6,2,3,4 {} {}

NC Labelling={5,1,6,2,3,4} ; Bandwidth=4

Note: For w(i) and c(i), i represents the relabelled node. Therefore, w(1) is

the weight of the node with label 5.

w(1)=7 ; c(5)=3 => w(1)/c(1)=2,(3)

w(2)=23 ; c(2)=5 => w(2)/c(2)=4,6

w(3)=12 ; c(3)=5 => w(3)/c(3)=2,4

w(4)=14 ; c(4)=3 => w(4)/c(4)=4,(6)

29

w(5)=3 ; c(4)=1 => w(5)/c(5)=3

w(6)=4 ; c(4)=1 => w(6)/c(6)=4

HC Labelling={5,6,3,4,1,2} ; Bandwidth=4

Remember: Swaps are performed if C’(u) <= C(u) And C’(v) <= C(v) And

C’(u) + C’(v) < C(u) + C(v), for each v, where C(v)=1

v=1, C(v)=1 => N’(v)={3,4}

Tries to swap v=1, u=3

C(u)=0; C’(u)=0, C’(v)=0 => all the conditions to perform the swap are

true, therefore it performs the swap and moves to the next v

Labelling={3,6,5,4,1,2} ; Bandwidth=3

v=2, C(v)=1 => N’(v)={1,3}

Tries to swap v=2, u=1

C(u)=1; C’(u)=2 => C’(u) <= C(u) is false therefore doesn’t swap

Tries to swap v=2, u=3

C(u)=0; C’(u)=1 => C’(u) <= C(u) is false therefore doesn’t swap

Reached the last neighbour, goes to the next v

v=3, C(v)=0 => it doesn’t perform the swap

v=4, C(v)=0 => it doesn’t perform the swap

v=5, C(v)=0 => it doesn’t perform the swap

v=6, C(v)=0 => it doesn’t perform the swap

The end, bandwidth after = 3

Table III Table that shows the iterations of the heuristic NCHC

30

 Computational Experiments

In this section the results will be compared taking into consideration the time of

execution in seconds, the relative proximity of value of the Feasible Solution (FS) to the

value of the Optimal Solution (OS)/ Lower Bound (LB), (FS-LB)/LB and the relative

bandwidth reduction (final bandwidth-initial bandwidth)/initial bandwidth).

Below are the technical details of the computer used to test the heuristics and the

exact model with OpenSolver:

▪ Processor: Intel(R) Core(TM) i3-2350M CPU @ 2.30GHz

▪ Video Card: Intel(R) HD Graphics 3000

▪ Video Card #2: NVIDIA GeForce 610M

▪ RAM: 6.0 GB

▪ Operating System: Microsoft Windows 10 (build 16299), 64-bit

▪ Software used: Microsoft Excel for Office 365 MSO 64-bit

31

As mentioned by Cuthill & McKee, 1969, a Lower Bound (LB) for the heuristics

can be the smallest integer that is greater or equal to 𝐷/ 2, where 𝐷 is the maximum

degree of any node of the graph.

𝒏 LB = ⌈𝑫/𝟐⌉
UB = lowest

bandwidth

found

4 2 2

18 3 5

36 3 6

102 4 14

354 4 269

679 4 537

695 4 543

1255 4 1097

1845 4 1510

2092 4 1776

2772 4 2335

3463 4 2973

3669 4 3637

4761 4 4711

5580 5 4710
Table IV Table that contains the lower and upper bounds for each matrix used

As seen in Table IV, the LB presented is poor for matrices of bigger dimension, an

increase of a matrix dimension by 5577 only leads to an increase of 1 in the LB.

4.1 Instances

We will use sparse symmetric matrices of dimension 4, 18, 36, 102, 354, 679, 695,

1255, 1845, 2092, 2772, 3463, 3669, 4761 and 5580 as inputs for the exact model and for

the heuristics. These matrices were generated from regular conform triangulations of

fixed 2-dimensional domains relevant in solution of elliptic partial differential equations.

To avoid mesh distortion, all the triangles are close to equilateral, which in turn fixes the

typical degree of any node to be 6 for internal nodes and 4 for boundary nodes (see Figure

10).

To help determine the fixed parameters of the heuristic NCHC, it was chosen the

matrix 36 × 36 to perform a simulation with fifty repetitions, 𝑟𝑒𝑠𝑡𝑎𝑟𝑡_𝑡𝑖𝑚𝑒𝑠, for each 𝜆

and 𝑁𝐶 𝑡𝑖𝑚𝑒𝑠 on the table below. As can be seen in the table below, the parameters that

32

will be used are λ=0,7 and 𝑁𝐶 𝑡𝑖𝑚𝑒𝑠 = 15. Due to this algorithm being slow, the number

of 𝑟𝑒𝑠𝑡𝑎𝑟𝑡_𝑡𝑖𝑚𝑒𝑠 that will be used is 5.

𝝀

NC times
0 0,25 0,5 0,7 0,8 0,9 0,95 1

3 18 17 17 21 20 21 22 26

5 21 18 19 18 19 20 22 26

7 17 20 19 18 21 19 19 26

11 19 20 18 20 20 21 20 26

15 18 21 19 15 20 21 22 26

Table V Simulation of the parameters for the NCHC algorithm

To refer to each method on the right side of the table we will use the reference on

the left side.

 Reference Method

OS Open Solver

CPLEX CPLEX

CM_SD CM – start on the node with the smallest degree

CM_LD CM – start on the node with the largest degree

CM_1N CM – start on the 1st node

CM_LN CM – start on the last node

NCHC NCHC restarting 5 times, performing NC 15 times and with 𝜆 = 0,7

Table VI Table that makes the correspondence between the method used and its reference

4.2 Computational Results

To better compare the results the matrices were split into 3 groups. The smallest

group is composed by the matrices which we can use the model in Excel due to columns

limitation, which is reflected in a limited number of variables. These matrices have a

dimension smaller than 128 nodes (4, 18, 36, 102). The second group will contain medium

sized matrices with a dimension between 128 and 2000 (354, 679, 695, 1255, 1845).

33

Lastly, the group with large matrices will contain matrices with dimension greater than

2000 (2092, 2772, 3463, 3669, 4761, 5580).

To be noted that due to the extensive time that the exact model take to achieve an

optimal solution, it was decided to limit their running time to 24 hours, 86400 seconds.

Small matrices: 4,18,36,102

Reference
Average time

spent (sec.)

Relative proximity to OS/

LB (smaller is better)

Relative bandwidth

(smaller is better)

OS* 45517 76,79% -55,57%

CPLEX* 21616 0,00% -67,44%

CM_SD 0 326,79% -1,56%

CM_LD 0 326,67% -0,21%

CM_1N 0 305,36% -11,16%

CM_LN 0 331,79% 0,00%

NCHC 0,25 178,57% -29,83%

*Note: Despite using the exact model, the time of the execution was capped at 24h

per matrix which led to a difference in the relative bandwidth after the application of the

model.

Medium matrices: 354, 679, 695, 1255, 1845

Reference
Average time

spent (sec.)

Relative proximity to OS/

LB (smaller is better)

Relative bandwidth

(smaller is better)

CM_SD 1,1 22,48% 0,35%

CM_LD 1,1 23,22% 0,94%

CM_1N 1,1 23,49% 1,19%

CM_LN 1,1 23,35% 1,08%

NCHC 855,6 0,00% -17,88%

34

Large matrices: 2092, 2772, 3463, 3669, 4761 and 5580

Reference
Average time

spent (sec.)

Relative proximity to OS/

LB (smaller is better)

Relative bandwidth

(smaller is better)

CM_SD 6,8 17,28% 0,16%

CM_LD 6,8 17,18% 0,08%

CM_1N 6,8 17,35% 0,22%

CM_LN 6,8 17,34% 0,21%

NCHC 12806,3 0,00% -14,56%

Based on the tables above we can conclude that bigger matrices require more time

to have their bandwidth reduced. This is in line with what was expected since the

heuristics take more to read the matrices and there are more possibilities of columns and

rows permutations that can potentially lead to the maximum bandwidth reduction. This is

also verified in the resolution of the exact model as there are more restrictions. For

instance, for the matrix of dimension 106, it was not found an optimal solution in less

than 24h using the exact model.

The CM proved to be an algorithm with an easy and intuitive implementation that

provides results in a short period of time. However, it doesn’t reduce the bandwidth as

much as the NCHC algorithm and in some cases, the bandwidth even increases, despite

different starting points being considered. Regardless, for the smaller matrices, the

bandwidth resultant of the application of the algorithm NCHC is half as good as the exact

model which indicates that there is room for improvement and creation of new heuristics.

35

 Conclusion

Several constraints were faced during this study. On the resolution with the exact

method, it was verified that Excel has a low number of columns (16.384) which restrained

the dimension of the matrices that could be solved with the exact method to 127 × 127.

Also, even when it was possible to generate the restrictions to input in OpenSolver, it was

verified that for dimensions 36 and 102 OpenSolver couldn’t reach an optimal solution.

CPLEX performed better in comparison as it was able to reach the optimal solution for

the matrix with dimension 36 and good UB for the bandwidth of the matrix with

dimension 102.

It was noticed that the NCHC heuristic performed very slowly in comparison with

the heuristic CM, but it obtained a better UB for the bandwidth’s matrices. This difference

in computation time is related to the complexity of the NCHC heuristic and the

inefficiency of VBA to handle calculations and sorts on matrices with big dimensions.

It was also concluded that the relative bandwidth reduction obtained with the CM

heuristic was inferior to the one obtained with the NCHC heuristics, having matrices

where the bandwidth increased after performing the algorithm CM. As a consequence of

having a greater bandwidth reduction for the instances used, the algorithm NCHC was

always closer to the LB than the algorithm CM.

36

 References

Berry, M.W., Hendrickson, B. & Raghavan, P. (1996). Sparse matrix reordering schemes

for browsing hypertext. Lect. Appl. Math. 32. p.pp. 99–123.

Caprara, A., Letchford, A.N. & Salazar-González, J.-J. (2011). Decorous Lower Bounds

for Minimum Linear Arrangement. INFORMS Journal on Computing. [Online]. 23

(1). p.pp. 26–40. Available from:

http://pubsonline.informs.org/doi/abs/10.1287/ijoc.1100.0390.

Chagas, G.O. & Oliveira, S.L.G. de (2015). Metaheuristic-based Heuristics for

Symmetric-matrix Bandwidth Reduction: A Systematic Review. Procedia

Computer Science. [Online]. 51 (1). p.pp. 211–220. Available from:

http://dx.doi.org/10.1016/j.procs.2015.05.229.

Del Corso, G.M. & Manzini, G. (1999). Finding Exact Solutions to the Bandwidth

Minimization Problem. Computing. [Online]. 62 (3). p.pp. 189–203. Available from:

https://doi.org/10.1007/s006070050002.

Cuthill, E. & McKee, J. (1969). Reducing the Bandwidth of Sparse Symmetric Matrices.

In: Proceedings of the 1969 24th national conference of the ACM. [Online]. 1969,

New York, New York, USA: ACM Press, pp. 157–172. Available from:

https://doi.org/10.1145/800195.805928.

Easton, T., Horton, S. & Parker, R.G. (1996). A solvable case of the linear arrangement

problem on Halin graphs. Congressus Numerantium. 119.

Frederickson, G.N. & Hambrusch, S.E. (1988). Planar linear arrangements of outerplanar

graphs. IEEE Transactions on Circuits and Systems. 35 (3). p.pp. 323–333.

Garey, M.R., Graham, R.L., Johnson, D.S. & Knuth, D.E. (1978). Complexity Results for

Bandwidth Minimization. SIAM Journal on Applied Mathematics. [Online]. 34 (3).

p.pp. 477–495. Available from: https://doi.org/10.1137/0134037.

Gibbs, N.E., Poole, W.G. & Stockmeyert, P.K. (1976). An algorithm for reducing the

bandwith and profile of a sparse matrix. SIAM Journal on Numerical Analysis.

[Online]. 13 (2). p.pp. 236–250. Available from: http://dx.doi.org/10.1137/0713023.

Harper, L. (1964). Optimal Assignments of Numbers to Vertices. Journal of the Society

for Industrial and Applied Mathematics. [Online]. 12 (1). p.pp. 131–135. Available

from: https://doi.org/10.1137/0112012.

Hestenes, M.R. & Stiefel, E. (1952). Methods of conjugate gradients for solving linear

37

systems. Journal of Research of the National Bureau of Standards. [Online]. 49 (6).

p.p. 409. Available from:

https://nvlpubs.nist.gov/nistpubs/jres/049/jresv49n6p409_A1b.pdf.

Kaveh, A. (2011). Ordering for bandwidth and profile minimization problems via charged

system search algorithm. Iranian Journal of Science and Technology Transaction of

Civil Engineering. [Online]. 36. p.pp. 39–52. Available from:

ro.uow.edu.au/engpapers/5550.

Kaveh, A. (2004). Structural Mechanics: Graph and Matrix Methods. Computational

structures technology series. 3rd Ed. [Online]. England: Research Studies Press.

Available from: https://books.google.pt/books?id=X85RAAAAMAAJ.

Koohestani, B. & Poli, R. (2011). A hyper-heuristic approach to evolving algorithms for

bandwidth reduction based on genetic programming. In: Research and Development

in Intelligent Systems XXVIII. [Online]. 2011, pp. 93–106. Available from:

https://doi.org/10.1007/978-1-4471-2318-7_7.

Koren, Y. & Harel, D. (2002). A Multi-scale Algorithm for the Linear Arrangement

Problem. In: G. Goos, J. Hartmanis, J. van Leeuwen, & L. Kučera (eds.). Graph-

Theoretic Concepts in Computer Science. [Online]. 2002, Berlin, Heidelberg:

Springer Berlin Heidelberg, pp. 296–309. Available from:

https://pdfs.semanticscholar.org/436f/b9a3eb13d2e307f4316ef1ee80d1c3300fb1.p

df.

Lim, A., Rodrigues, B. & Xiao, F.X.F. (2004). A centroid-based approach to solve the

bandwidth minimization problem. In: Proceedings of the 37th Annual Hawaii

International Conference on System Sciences. [Online]. 2004, IEEE, pp. 1–6.

Available from: https://doi.org/10.1109/HICSS.2004.1265221.

Martí, R., Campos, V. & Piñana, E. (2008). A branch and bound algorithm for the matrix

bandwidth minimization. European Journal of Operational Research. [Online]. 186

(2). p.pp. 513–528. Available from:

http://link.springer.com/article/10.1007/s10845-008-0190-5.

Martı́, R., Laguna, M., Glover, F. & Campos, V. (2001). Reducing the bandwidth of a

sparse matrix with tabu search. European Journal of Operational Research.

[Online]. 135 (2). p.pp. 450–459. Available from:

http://linkinghub.elsevier.com/retrieve/pii/S0377221700003258.

38

Mladenovic, N., Urosevic, D., Pérez-Brito, D. & García-González, C.G. (2010). Variable

neighbourhood search for bandwidth reduction. European Journal of Operational

Research. [Online]. 200 (1). p.pp. 14–27. Available from:

http://dx.doi.org/10.1016/j.ejor.2008.12.015.

Papadimitriou, C.H. (1976). The NP-Completeness of the bandwidth minimization

problem. Computing. [Online]. 16 (3). p.pp. 263–270. Available from:

https://doi.org/10.1007/BF02280884.

Rodriguez-Tello, E., Hao, J.K. & Torres-Jimenez, J. (2008). An improved simulated

annealing algorithm for bandwidth minimization. European Journal of Operational

Research. [Online]. 185 (3). p.pp. 1319–1335. Available from:

http://dx.doi.org/10.1016/j.ejor.2005.12.052.

Shiloach, Y. (1979). A Minimum Linear Arrangement Algorithm for Undirected Trees.

SIAM Journal on Computing. [Online]. 8 (1). p.pp. 15–32. Available from:

http://epubs.siam.org/doi/10.1137/0208002.

Tarjan, R.E.. (1975). Graph theory and Gaussian elimination. [Online]. Available from:

http://infolab.stanford.edu/pub/cstr/reports/cs/tr/75/526/CS-TR-75-526.pdf.

39

 Appendix

7.1 Graphic representation of the problem

Figure 10 Planar graph

Figure 11 Initial profile of the adjacency matrix

Figure 12 Final profile of the adjacency matrix

Figure 11 and Figure 12 illustrate two adjacency matrixes obtained from the same

planar graph (Figure 10). The black squares represent the non-null elements of the

matrixes and they illustrate the impact that a different numbering has on the distance of

the non-null elements from the principal diagonal. Due to having elements more distant

from the principal diagonal, the matrix correspondent to Figure 11 has a bigger bandwidth

in comparison with the matrix associated with Figure 12.

40

7.2 Open Solver

Figure 13 Output of OpenSolver for Example 1

