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Abstract

Model failures that were observed in the last two decades have shown that the

management of model risk is of great importance for the stability of the insurance

industry and financial markets. Model risk assessment typically requires the identifi-

cation of the worst case scenarios including the upper bounds of the risk measures.

In this paper, we first start off by studying the upper-bounds for the Value-at-

Risk, Tail-Value-at-Risk, and Range-Value-at-Risk of unimodal distributions when

only their mean and their variance upper-bound are known. In a first step, we use a

simple convex ordering argument to reduce the optimization problem to a parametric

optimization problem. In a second step, we solve this parametric optimization prob-

lem and obtain explicit solutions for all probability levels. Our solutions conform well

with those of Li et al. (2018), but their analysis is lengthy and their solutions are

limited to the case in which probabilities are in the range [5/6; 1[. Secondly, since the

non-negativity assumption is common in actuarial studies, we study how this assump-

tion can improve the upper bounds of the Value-at-Risk. Moreover, we utilize our

two-step analysis to find the upper-bound of the Value-at-Risk in a scenario where the

quantile function is fully trusted over a specific range of probability levels. Finally,

we assess the model risk that a Beta model carries in a particular credit portfolio.

Results show that the addition of unimodality assumption and the full knowledge

of a part of the quantile function do offer an improvement on the risk upper bounds.

On the other hand, the non-negativity assumption can lead to a non-improvement in

the case of a small variance or an evaluation of the Value-at-Risk on a low probability

level.

Keywords: Model risk, Value-at-Risk, Tail-Value-at-Risk, Range-Value-at-Risk,

Convex ordering, Unimodal distributions, Risk bounds.
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Resumo

As falhas nos modelos observadas nas últimas duas décadas mostram que a gestão

do risco desses modelos tem uma grande importância na estabilidade dos mercados

financeiros e seguradores. A avaliação do risco do modelo requer usualmente a de-

terminação dos piores cenários posśıveis incluindo o limite superior das medidas de

risco.

Neste documento, começamos por estudar os limites superiores para Value-at-

Risk, Tail-Value-at-Risk e Range-Value-at-Risk de distribuições unimodais quando

apenas os limites superiores da média e da variância são conhecidos. Num primeiro

passo, usamos o processo do ordenamento simples convexo para reduzir o problema

de otimização a um problema de otimização paramétrico. Num segundo passo, re-

solvemos este problema de otimização paramétrico e obtemos soluções expĺıcitas para

todos os ńıveis de probabilidade. As nossas soluções são consistentes com as de Li

et al. (2018), mas a sua análise é longa e as suas soluções limitadas ao caso em que

as probabilidades se encontram no intervalo [5/6; 1[. Em segundo lugar, dado que a

hipótese da não negatividade é comum nos estudos atuariais, estudamos como esta

hipótese pode melhorar os limites superiores do Value-at-risk. Além disso, aplicamos

a análise de dois passos para encontrar o limite superior do Value-at-Risk num cenário

em que a função quantil é totalmente conhecida num intervalo espećıfico de ńıveis de

probabilidades. Por fim, avaliamos o risco do modelo que o modelo Beta gera numa

carteira espećıfica de créditos.

Os resultados mostram que a adição da hipótese da unimodalidade e o conheci-

mento completo de uma parte da função quantil melhoram os limites superiores do

risco. Por outro lado, a hipótese da não negatividade pode não trazer qualquer mel-

horia no caso de se verificar uma variância pequena ou na avaliação do Value-at-Risk

a um ńıvel de probabilidade baixo.

Palavras-chave: Risco do modelo, Value-at-Risk, Tail-Value-at-Risk, Range-

Value-at-Risk, Ordenação convexa, Distribuições Unimodais, Limites de Risco.
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Chapter 1

Introduction

The use of models is seen as the cornerstone of the every-day operations, plan-

ning, and decision-making in the financial world. This reliance on models has been

escalating in the last decades, and this pace is expected to only augment with time.

Besides, in the endeavor of building models that describe in details real-world situa-

tions, we ended-up, in many cases, with complex quantitative models raising the odds

of inappropriate employment of these models and amplifying what is called ’Model

Risk.’ Model Risk can be defined as the potential loss that can result from the misuse

of models (inspired by the definition in the Capital Requirements Directive (CRD)

IV, Article 3.1.11).

Reviewing the aftermaths of past model failures, one cannot neglect the severe

risk that models can present. We can recall from 1997 when LTCM, Long-Term

Capital Management hedge fund, lost around 4.5 billion dollars as a consequence of

lack of stress testing (Lowenstein 2008). Besides, let us look back at the famous

Gaussian-copula of the actuary David X. which was, even though poorly understood

by the investors yet, over-relied on. The almost-blind reliance on this copula-based

correlation model constituted one of the critical implicit drivers of the 2008 financial

crisis (Salmon 2009). An additional illustration can be the disaster that hit JP Morgan

- The London Whale when a modeling error led to an understatement of the risks,

this allowed for a fooled growth until getting hit by the European sovereign debt crisis

in 2012 and causing losses of 6 billion pounds, not counting the 1 billion pounds of

fines (Chase 2013)!

It should be clear by now that model risk is a serious matter with great effect on

any risk measurement procedure and, hence, its quantification is of vital importance.

The methodologies used in assessing the risks in the insurance or financial market

are always based on a specific choice of models for the risk factors; for instance

the Delta-Normal, the simulations or even the empirical methods... Therefore, the

determination of the regulatory capital requirements, for example, is highly sensitive
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to the model choice and thus alarmingly exposed to model risk.

Model risk quantification is usually based on a comparison between the value of a

risk measure given by the adopted model and the value that can occur in a worst-case

scenario. This comparison can be of several types, but it always needs an evaluation

of the upper bound of the risk measure that results from the application of worst

case scenario. Among all the common risk measures, two of the most famous are the

Value-at-Risk, which determines the amount of reserves that a company should hold

in order to gain a specific level of confidence that it will not face failure, and the

Tail-Value-at-Risk that describes how acute the failure would be. Moreover, one of

the most recently developed risk measures is the Range-Value-at-Risk that is notable

for its robustness and its practicality in describing any desired part of the quantile

function.

Recent papers have achieved considerable progress in the valuation of risk bounds

of portfolios. A critical point in the bounds valuation is the scenario adopted, i.e.,

the assumptions that are made on our knowledge towards the risk characteristics.

A common ideology is to assume the knowledge of the marginal distributions of

the single risks of the portfolio, and then assume either no information or partial

information or total information on the dependence structures between the risks.

However, it was shown by Bernard et al. (2016) that replacing the knowledge of

the marginal distributions by the knowledge of the collective mean does not lead

to a significant loss. Additionally, several papers neglected the information on the

dependence structure and focused on the moments of the aggregate risk since these

can be estimated way more accurately. Li et al. (2018) considered the case where we

have information only on the mean, the variance and the shape of the collective risk

and derived upper bounds for the Range-Value-at-Risk, in case of a unimodal shape

of the distribution, only for probability levels in the range [5/6; 1[.

In this thesis, we follow the path of the researchers who only assumed knowledge

of what can be accurately estimated or determined, hence we choose to base our

assumption on the knowledge of the mean and the variance upper bound of the

aggregate risk along with a full confidence in a unimodal shape for the distribution of

the aggregate risk. We construct a two-step approach to assess the risk upper bounds

under different scenarios. The first step is to use the convex ordering approach and the

fact that the linear functions are limiting cases of the convex and concave functions to

simplify the optimization problem to a parametric one. The second step is to perform

the parametric optimization and derive formulas for the risk measures upper bounds.

This two-step approach is used to recover the corresponding results in Li et al. (2018)

and expand them over all the possible probability levels, i.e., we derive the upper
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bounds of each the Value-at-Risk, Tail-Value-at-Risk, and the Range-Value-at-Risk

of unimodal aggregate risks whose mean and variance upper bounds are known for

all probability levels in ]0; 1[. Additionally, it is typical to work on non-negative

risks, in accordance to this fact, we studied the effect of adding the assumption of

non-negativity and derived explicit new formulas for the upper bound of the Value-at-

Risk. In practice, it is common to trust a central part of the distribution derived from

the data and distrust the tails. Following this logic, we used the two-step approach to

determine the Value-at-Risk upper bound when an additional assumption of the full

knowledge of a part of the quantile function is adopted. In order to illustrate all the

obtained results practically, we consider an example of a credit risk portfolio whose

characteristics were chosen according to the collective point of views of credit risk

researchers and practitioners. The numerical example provides a clear illustration of

the extent to which our additional assumptions improve the bounds that were already

derived in the literature and gives an idea of how risky is the Beta model in describing

credit risk portfolios.

The structure of the thesis is as follows. In chapter 2 we present an in-depth

analysis of the existing literature on risk bounds valuations. In chapter 3 an intro-

duction to convex ordering is provided with some of the properties that are of utmost

importance to solve our optimization problems. In chapter 4 we explain in detail how

to apply the two-step approach in order to calculate the upper bounds of the three

risk measures of interest. Chapter 5 is dedicated to the study of the effect of adding

the non-negativity assumption on the upper bound of the Value-at-Risk. In chapter

6 we address the scenario of fully trusting a part of the quantile function. Chapter 7

provides a model risk assessment of a credit risk portfolio that illustrates all the find-

ings of the paper. Finally, conclusions and future perspectives are drawn in Chapter 8.

Chapter 2

Literature review

Many studies concerning risk measure bounds preceded our paper and have offered

rich contributions to the field of research in model risk assessment. The results vary

with the variation in the assumptions taken, for instance, on the level of information
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available on the marginal distributions, the dependence among the marginals, the

moments of the aggregate risk, and the shape of the aggregate risk distribution.

Risk bounds in the case where the dependence structure is unknown but infor-

mation on the marginals is available have, so far, taken considerable attention by

researchers. In fact, the beginning of tail bounds for a sum of two risks dates back

to the eighties with Rüschendorf (1981) and Makarov (1982). Then, more recently,

Embrechts and Puccetti (2006) proposed an upper bound for the distribution func-

tion of the sum of more than two risks in the absence of any dependence information.

The homogeneous case, i.e., the distribution functions of the marginals are identical,

offered a considerable simplification that allowed Wang and Wang (2011) to obtain

sharp tail bounds in the case of monotone densities, Puccetti and Rüschendorf (2013)

to establish the sharpness of dual bonds in the case of monotone and concave densi-

ties, Wang et al. (2013) to find explicit formulas for the worst Value-at-Risk when the

marginal densities are monotone or tail-monotone, and Wang (2014) to study asymp-

totic bounds of the distribution of the sum of risks. In the inhomogeneous case,

the analysis becomes more complicated, and approximations of bounds were needed.

Therefore, a new algorithm, called Rearrangement Algorithm (RA), that can calcu-

late numerically sharp bounds for the distribution of the aggregate risk was offered by

Puccetti and Rüschendorf (2012b) and developed in Embrechts et al. (2013). Under

the inhomogeneity assumption as well, Cai et al. (2018) studies the asymptotic equiv-

alence of risk measures. Additionally, Bernard et al. (2014) derives a convex ordering

lower bound over the admissible risk class for both homogeneous and heterogeneous

risks.

On the other hand, there exist in the literature some studies of how having some

information on the dependence structure, while having fixed marginals, can affect the

bounds of the risk measures. We start by citing Williamson and Downs (1990) which

presented a numerical representation of the probability distributions through which

the dependency bounds are calculated. Then, Denuit et al. (2001) studied the effect

of the positive dependence on the total risk. Embrechts et al. (2003) used the depen-

dence information expressed in a copula function to find bounds for the Value-at-Risk

measure. Rüschendorf (2005) showed how to use the stochastic ordering for bounding

risks and studies the effect of the presence of a stochastic dependence on the risk func-

tionals. A few years later, Puccetti and Rüschendorf (2012a) offered an improvement

on some bounds for the distribution function and the tail probabilities of portfolios

under the assumption of having full information on certain joint distributions and the

assumption of having a constraint on the dependence structure. In Bignozzi et al.

(2015), it is proved that an assumption of a negative dependence would mainly affect

the upper bound of the Value-at-Risk but an assumption of a positive dependence
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would only affect the lower bound. Puccetti et al. (2016) considers the cases where

the dependence information is available only in the tails, in some central part, or

on a general subset of the domain of the distribution function of a risk portfolio.

Still, under the setting of having fixed marginals and a partially specified dependence

structure, Bernard et al. (2017) derives risk bounds (mainly of the Value-at-Risk and

the Tail-Value-at-Risk) for factor models. In Puccetti et al. (2017), independence

among (some) subgroups of the marginal components is assumed, this fact leads to

an improvement of the Value-at-Risk bounds comparing to the case where only the

marginals are known.

In practical situations, determining the dependence structure is a tough task,

and in most of the cases, the results are not accurate enough. On the contrary, an

estimation of the variance of the portfolio sum can be performed with high accuracy.

Therefore, we can see many papers that replace the assumption on the dependence

structure by a constraint on the variance as some source of dependence information.

In fact, it is intuitive to see that adding variance and higher order moments constraints

to a setting where only the collective mean or only the marginals are known would

likely improve the risk bounds since this addition captures information that cannot be

represented by either the mean or the marginals. Bernard et al. (2017) derived Value-

at-Risk bounds based on the knowledge of the marginal distributions and the variance

of the portfolio risk; then Bernard et al. (2017) studied these bounds after the addition

of information on higher order moments (the skewness for instance). Interestingly,

Bernard et al. (2016) proved the critical idea that replacing the knowledge of the

marginal distributions by the knowledge of the collective mean does not cause a

significant loss of information. In fact, a good number of papers have worked on

risk bounds with no knowledge on either marginals or dependence structure but with

information on the mean and higher order moments of the portfolio risk, we cite

Kaas and Goovaerts (1986b), Hürlimann (1998), Hürlimann (2002), De Schepper and

Heijnen (2010), Zymler et al. (2013) among others.

In this paper, we decided to assume, between all the above-mentioned scenarios,

the setting of knowing the collective mean and a constraint on the variance. Addi-

tionally, we assume knowledge of the shape of the distribution of the aggregate risk;

indeed we assume having a unimodal distribution. This assumption is undoubtedly

very relevant in practice and has been considered by several papers, we cite Popescu

(2005), De Schepper and Heijnen (2010), Van Parys et al. (2016), Li et al. (2018)

among others. Under our settings, we firstly aim to find the upper bounds of three

risk measures: Value-at-Risk, Tail-Value-at-Risk, and the Range-Value-at-Risk. The

first two risk measures were extensively used in many of the papers mentioned above,

but the Range-Value-at-Risk is relatively new and was defined as robust risk measure
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by Cont et al. (2010), and maximized in Li et al. (2018) under several scenarios. We

then update our setting to include the assumption of non-negativity, an assumption

that is widely used in actuarial sciences and several other areas. We can see some

bounds derivation for random variables that are defined on a positive interval in many

papers, for instance in Kaas and Goovaerts (1986a), Kaas and Goovaerts (1986b), and

Bernard et al. (2016). Another setting that we consider is the case where we have

information on the mean, the variance and we fully know the quantile function over

a specific interval; this new assumption makes pretty sense since it is common, af-

ter data collection, to give confidence only for a central part of a distribution and

completely distrust the tails. In fact, Bernard and Vanduffel (2015) uses the same

ideology when it splits the area of the multivariate distribution into two, a ”trusted

area and an ”untrusted” area depending on where is the data considered trustworthy

enough. Finally, our analysis, as it will be clear in the following chapters, is based on

the stochastic ordering and specifically the convex ordering. This ordering is highly

adopted in the derivation of risk bounds or even in the approximation of different risk

characteristics, for instance one can check Kaas et al. (2000), Jakobsons and Vanduffel

(2015), Bernard et al. (2016), and Bernard et al. (2017) among others.

Chapter 3

Convex ordering

Actuarial and financial studies have the comparison of risks at its core. A simple

way to order risks is to compute a specific risk measure and then proceed to the

ranking accordingly. However, decision-makers can require a risk that is preferable

to another for all given risk measures; here comes what is called stochastic ordering.

One type of stochastic ordering that compares the variability is the convex ordering.

In this chapter, we present and prove some of the main properties of the convex

ordering that are substantially important for the proofs in the following chapters.

We define the convex ordering as in Shaked and Shanthikumar (2007),

Definition. X is said to be smaller than Y in the convex order, denoted as X ≤cx Y ,
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if and only if

E[ρ(X)] ≤ E[ρ(Y )] for all convex functions ρ : R→ R, (3.1)

provided the expectations exist.

Roughly speaking, if X ≤cx Y , then Y is more variable than X in the sense that

it is more probable to Y to take extreme values.

Starting from the above definition and assuming that the necessary moments are

finite, we prove multiple useful results as follows:

1. We recall that linear functions are the limiting case of convex functions and

hence are considered convex. For X ≤cx Y , if ρ(x) = x then E[X] ≤ E[Y ] and

if ρ(x) = −x then E[X] ≥ E[Y ]. Thus,

X ≤cx Y ⇒ E[X] = E[Y ] (3.2)

2. For X ≤cx Y , if ρ(x) is equal to the convex function x2 then E[X2] ≤ E[Y 2].

But E[X] = E[Y ] and the variance can be computed as V [X] = E[X2]−E[X]2

therefore,

X ≤cx Y ⇒ V [X] ≤ V [Y ] (3.3)

3. We define ρd(x) = (x− d)+ =

{
0 for x ∈]−∞; d[

x− d for x ∈ [d; +∞[
, with d ∈ R. We can

see that ρd(x) is convex and hence X ≤cx Y ⇒ E[(X−d)+] ≤ E[(Y −d)+], ∀d ∈

R. But E[(X − d)+] can be easily shown to be equal to
+∞∫
d

1− FX(x)dx where

FX(x) is the cumulative distribution function of X. Therefore,

X ≤cx Y ⇒ E[(X−d)+] ≤ E[(Y −d)+]⇔
+∞∫
d

FX(x)dx ≥
+∞∫
d

FY (x)dx , ∀d ∈ R

(3.4)

4. Any convex function can be expressed as the limit of a positive linear com-

bination of ρd’s, while each ρd can have a different value of d, plus an addi-

tional linear function as expressed in Proposition 2.8.4 in Denuit et al. (2006)

and presented in the Appendix A.1. Hence, we can simply deduce that if

E[X] = E[Y ] and E[(X − d)+] ≤ E[(Y − d)+] for all d ∈ R then E[ρ(X)] ≤
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E[ρ(Y )] for all convex functions ρ and thus,

X ≤cx Y ⇔


E[X] = E[Y ],

and
+∞∫
d

FX(x)dx ≥
+∞∫
d

FY (x)dx , ∀d ∈ R
(3.5)

5. Let us consider the situation where FX up-crosses FY exactly once, i.e., ∃a ∈ R
such that FX(x) ≤ FY (x) for x < a and FX(x) ≥ FY (x) for x > a. In this

case we can easily see that
+∞∫
d

FX(x)dx ≥
+∞∫
d

FY (x)dx for all d ∈ [a,+∞[ and

+∞∫
d

FX(x) − FY (x)dx is an increasing function in d ∈] −∞, a[ . If we add the

assumption of E[X] = E[Y ] we then have
+∞∫
−∞

FX(x)dx =
+∞∫
−∞

FY (x)dx and hence

+∞∫
d

FX(x)dx ≥
+∞∫
d

FY (x)dx for all d ∈ R.

We denote by F−1X and F−1Y the quantile functions of X and Y respectively. It is

then straightforward that F−1Y up-crossing F−1X is equivalent to FX up-crossing

FY . Finally we come to the following crucial property,

X ≤cx Y ⇔

{
E[X] = E[Y ],

and F−1Y up-crosses F−1X exactly once.
(3.6)

Chapter 4

Upper bounds for VaR, TVAR, and RVAR

for the aggregate risk

Insurance companies and financial institutions rely on risk measures to quantify

the risks they face and make strategic decisions. Two of the most popular risk mea-

sures are the Value-at-Risk and the Tail-Value-at-risk; a relatively new risk measure

is the Range-Value-at-Risk.

In this paper, we take the aggregate risk as a whole in the sense that we avoid

adding assumptions on the dependency between marginal risks that are likely to be
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inaccurate or even, in some cases, unrealistic. We derive the worst-case scenario and

the upper bound for each of the VaR, TVaR, and RVaR of the aggregate risk under

the assumptions that the collective mean, the upper bound of the variance and the

unimodality property of this risk are known. Our assumptions are pretty reasonable

from the practical point of view; in fact, the consideration of the mean and the vari-

ance is a classical framework in the distributional optimization literature (Van Parys

et al. (2016)), and the unimodality assumption is the case of credit loss modelling and

of most of the parametric univariate distributions for instance, Exponential, Pareto,

Gamma, Normal, Log-Normal, Logistic, Beta, Weibull, and student’s t-distribution...

4.1 Definitions and some notations

We start by presenting some definitions and notations that will be used extensively

in the following sections.

Definition. We define unimodality similarly to Li et al. (2018); the distribution of a

random variable X is considered to be unimodal if its cumulative distribution function

FX is convex-concave, i.e. ∃m ∈ R such that FX is convex on ]−∞;m[ and concave

on ]m; +∞[. Note that having a convex-concave cumulative distribution function is

equivalent to having a concave-convex quantile function.

Remark 4.1. Linear functions are considered to be the limiting case of concave and

convex functions. It is thus clear that, under the adopted definition, any continuous

distribution composed of two consecutive linear functions is unimodal (including the

uniform distribution).

We define the following classes that will be used substantially in the proofs:

V (µ, s) = {X : E[X] = µ , V [X] ≤ s2} (4.1)

VU(µ, s) = {X : X is unimodal , X ∈ V (µ, s)} (4.2)

UR =

{
X : F−1X (p) =

{
a for p ∈ [0; b[

c(p− b) + a for p ∈ [b; 1]
, a ∈ R, b ∈ [0; 1], c ∈ R+

}
(4.3)

i.e., UR is the set of random variables whose quantile function is continuous and
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composed of two consecutive non-decreasing linear functions, the first one being flat.

UL =

{
X : F−1X (p) =

{
c(p− b) + a for p ∈ [0; b[

a for p ∈ [b; 1]
, a ∈ R, b ∈ [0; 1], c ∈ R+

}
(4.4)

i.e., UL is the set of random variables whose quantile function is continuous and

composed of two consecutive non-decreasing linear functions, the second one being

flat.

Using Remark 4.1, we can deduce that each element of UR is unimodal. Thus, it

is clear that

UR ∩ V (µ, s) ⊂ VU(µ, s) (4.5)

Similarly, we have

UL ∩ V (µ, s) ⊂ VU(µ, s) (4.6)

4.2 VaR upper bound

The Value-at-Risk has become very famous in the last decades as it is chosen by

the regulators as a benchmark risk measure to prevent insolvency. A Value-at-Risk

at a probability level α represents the amount of capital necessary to ensure with a

confidence level α that the insurance or financial institution will not be technically

insolvent after a specific period.

Let us consider the aggregate risk of a portfolio and assume that we have enough

information to determine its mean, its variance’s upper bound, and the property of

unimodality of its distribution. We denote the random variable of this aggregate risk

by S. Our aim is to find the maximum value of the Value-at-Risk of S at a level α

given the information on the mean, maximum variance and unimodality. We recall

that the V aR is defined as

V aRα(S) = inf{x ∈ R | FS(x) ≥ α}, α ∈]0; 1[ (4.7)

In other words, V aRα(S) can be seen as the left inverse of the cumulative distribution

function of S.

Therefore the problem can be stated as

10



Problem 1.

max
S∈VU (µ,s)

V aRα(S)

We assume that a solution exists to Problem 1. As a first step to solving Problem

1 we need to prove the following two lemmas.

In what follows, we denote by m the level corresponding to the mode xm, i.e., the

cumulative distribution function at the mode has a value of m. (i.e., FS(xm) = m).

Lemma 1.

If α ≥ m , we have that

max
S∈VU (µ,s)

V aRα(S) = max
S∈UR∩V (µ,s)

V aRα(S)

where UR is defined in (4.3).

Proof. Because of relation (4.5), it is straightforward that

max
S∈UR∩V (µ,s)

V aRα(S) ≤ max
S∈VU (µ,s)

V aRα(S) (4.8)

In what follows, we prove the reverse inequality. Once it is shown, the equality

will be automatically held.

Consider S∗ ∈ VU(µ, s) with

V aRα(S∗) = max
S∈VU (µ,s)

V aRα(S)

In Figure 4.1, we illustrate the quantile function of the candidate solution S∗ for

the Problem 1.

As a next step, we show that there exists YR ∈ UR∩V (µ, s) such that V aRα(YR) =

V aRα(S∗), which would directly lead to the following inequality

V aRα(S∗) ≤ max
S∈UR∩V (µ,s)

V aRα(S)

We define the random variable Yc by its quantile function as follows,

F−1Yc
(p) =

{
F−1S∗ (p) for p ∈ [0;α[

c(p− α) + F−1S∗ (α) for p ∈ [α; 1]
(4.9)
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F−1(p)

p1m

F−1S∗ (α)

α

Figure 4.1: The quantile function of the candidate solution S∗

F−1(p)

p1m

F−1S∗ (α)

α

c

F−1
Yc

F−1
S∗

Figure 4.2: The quantile functions of S∗ and Yc
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F−1(p)

p1

F−1S∗ (α)

α

a

b

c

F−1
YR

F−1
Yc

Figure 4.3: The quantile functions of Yc and YR

where c ∈ R+.

The variable c is chosen such that the following mean condition is satisfied: E[Yc] =

µ. In particular, by construction, we have that V aRα(Yc) = V aRα(S∗) = F−1S∗ (α).

In other words, as shown in Figure 4.2, the quantile function of Yc is identical to

the one of S∗ until level α, after which it continues as a linear function in a way that

equates the mean of Yc to the one of S∗.

In Figure 4.2, we illustrate how the equality of means, the linearity of F−1Yc
on

[α; 1], and the convexity of F−1S∗ on this same interval ensures that F−1S∗ up-crosses

F−1Yc
. As a result, F−1S∗ up-crosses F−1Yc

once and E[Yc] = E[S∗] which directly leads,

using Property (3.6), to a convex order relationship between Yc and S∗, i.e. Yc ≤cx S∗.

Having the convexity order we can deduce that V [Yc] ≤ V [S∗] ≤ s2, thus Yc ∈
V (µ, s).

We define the random variable YR by its quantile function as follows,

F−1YR
(p) =


c(b− α) + F−1S∗ (α) for p ∈ [0; b[

c(p− α) + F−1S∗ (α) for p ∈ [b;α[

F−1Yc
(p) for p ∈ [α; 1]

(4.10)

where b ∈ [0;α] and c is as evaluated while finding Yc.

The variable b is determined such that E[YR] = E[Yc]. In particular, by construc-

tion, we have that V aRα(YR) = V aRα(Yc) = V aRα(S∗).

13



In other words, as illustrated in Figure 4.3, the quantile function of YR is identical

to the one of Yc for the part of [α; 1], then we extend this same linear function over a

larger interval limited on the left at p = b, and then the function becomes flat over all

the rest of the interval, where the b was chosen such that the total mean is conserved.

In Figure 4.3, we illustrate how F−1Yc
will eventually up-cross F−1YR

once (because

of the equality of means, the linearity of F−1YR
and the concavity of F−1Yc

). Adding the

fact that E[YR] = E[Yc] leads to YR ≤cx Yc ⇒ V [YR] ≤ V [Yc] ⇒ YR ∈ V (µ, s) .

But looking at the quantile function of YR we can clearly notice that YR ∈ UR ,

hence YR ∈ UR ∩ V (µ, s). Finally we get

V aRα(S∗) = V aRα(YR) ≤ max
S∈UR∩V (µ,s)

V aRα(S)

Lemma 2.

If α < m , we have that

max
S∈VU (µ,s)

V aRα(S) = max
S∈UL∩V (µ,s)

V aRα(S)

where UL is defined in (4.4).

Proof. Relation (4.6) implies that

max
S∈UL∩V (µ,s)

V aRα(S) ≤ max
S∈VU (µ,s)

V aRα(S) (4.11)

We still have to prove the reverse inequality.

Consider S∗ a candidate solution for the Problem 1. And we define the random

variable Yc by its quantile function as shown in Figure 4.4, i.e., the quantile function

of Yc is linear up to level α after which it continues identically to the one of S∗, Yc is

chosen such that its mean is equal to the one of S∗.

Since F−1S∗ up-crosses F−1Yc
(as shown in Figure 4.4) and the mean of Yc is equal to

the one of S∗, then Yc ≤cx S∗ which implies that V [Yc] ≤ V [S∗] ≤ s2 ⇒ Yc ∈ V (µ, s).

We define YL by its quantile function which is represented in Figure 4.5, i.e. the

quantile function of YL is identical to the one of Yc for p ∈ [0;α], this same linear

function is extended until p = b after which the quantile function becomes flat, where

b was chosen such that E[YL] = E[Yc] .
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Figure 4.4: The quantile functions of S∗ and Yc
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Figure 4.5: The quantile functions of Yc and YL
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As illustrated in Figure 4.5, F−1Yc
does necessarily up-cross F−1YL

exactly once. Hav-

ing E[YR] = E[Yc] we deduce that YL ≤cx Yc ⇒ V [YL] ≤ V [Yc] ⇒ YL ∈ V (µ, s) .

Hence YR ∈ UR ∩ V (µ, s). Finally we get

V aRα(S∗) = V aRα(YL) ≤ max
S∈UL∩V (µ,s)

V aRα(S)

We define S∗ as a solution of Problem 1, i.e. the maximum is realized for S∗ with

a value of V aRα(S∗).

Proposition 1.

• If α ∈ [5/6; 1[, V aRα(S∗) = µ+ s
√

4
9(1−α) − 1

• If α ∈]0; 5/6[, V aRα(S∗) = µ+ s
√

3α
4−3α

We underline the fact that the above proposition recovers, in a new method, the

same result as in Theorem 1 in Li et al. (2018) for α ≥ 5/6 (where we tend β to α in

their formula of RV aRα,β to get the V aRα), and extends it by solving the problem

for the rest of the domain.

Remark 4.2. Very interestingly, we can see that the difference between the maximum

median V aR0.5(S
∗) and the mean µ is s

√
3
5

which is the exact general upper bound of

the absolute difference between the median of a unimodal distribution and its mean

as derived by Basu and DasGupta (1997).

Proof. The proof of Proposition 1 will be split into two cases; the first one is the case

of having the level α on the right of the level m which indicates the mode, the second

case considers the level α being lower than the level m of the mode. We denote by

Y ∗R and Y ∗L the optimal solution in each of the two cases respectively. Lacking the

knowledge of the position of the mode, we derive the solution to Problem 1 by com-

paring Y ∗R and Y ∗L and taking the one that maximizes the Value-at-Risk.

Case 1.1. Evaluation of V aR on the right of the mode

As a first step, we show that Problem 1 can be reduced to a simpler problem by

reducing the class of variables used in the optimization. This reduction, in this case,

is expressed in Lemma 1.
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Using Lemma 1 the maximization problem over VU(µ, s) can now be reduced to

a maximization problem over UR ∩ V (µ, s). Denoting by YR a random variable that

belongs to UR ∩ V (µ, s), F−1YR
would be expressed as in (4.3):

F−1YR
(p) =

{
a for p ∈ [0; b[

c(p− b) + a for p ∈ [b; 1]
, a ∈ R, b ∈ [0; 1], c ∈ R+ (4.12)

The optimization will be split into two steps, in the first we optimize over the three

parameters a, b and c and then in the second we optimize over the variance σ2 given

in [0; s2](i.e. over the standard deviation σ given in [0; s]).

Firstly, we use the equations E[YR] = µ and V [YR] = σ2 to express a and c as

functions of b, which leads to the following expression of the quantile function:

F−1YR
(p) =

 µ− σ
√

1−b
1
3
+b

for p ∈ [0; b[

µ+ σ (2p−1−b2)√
(1−b)3(1/3+b)

for p ∈ [b; 1]
(4.13)

Respecting that b ∈ [0;α], we maximize F−1YR
(α) in terms of b, and then we maxi-

mize the results in terms of σ over the interval [0; s] to get Y ∗R ∈ UR ∩ V (µ, s) where

V aRα(Y ∗R) = max
YR∈UR∩V (µ,s)

V aRα(YR)

The results are as follows,

• ∀α ∈]2/3; 1[, Y ∗R is obtained for b = 3α− 2 and σ = s, and

V aRα(Y ∗R) = µ+ s

√
4

9(1− α)
− 1 (4.14)

• ∀α ∈]1/2; 2/3], Y ∗R is obtained for b = 0 and σ = s, and

V aRα(Y ∗R) = µ+ s
√

3(2α− 1) (4.15)
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• ∀α ∈]0; 1/2], Y ∗R is obtained for b = 0 and σ = 0, and

V aRα(Y ∗R) = µ (4.16)

Case 1.2. Evaluation of V aR on the left of the mode

As shown in Lemma 2, the maximization problem over VU(µ, s) can be reduced to

a maximization over UL ∩ V (µ, s). Let YL and Y ∗L two random variables of the class

UL ∩ V (µ, s), with

V aRα(Y ∗L ) = max
YL∈UL∩V (µ,s)

V aRα(YL)

Similarly to the first case, we use the conditions E[YL] = µ and V [YL] = σ2 to get

the following expression of the quantile function of YL:

F−1YL
(p) =

 µ+ σ
√

3 (2p−2b+b2)√
b3(4−3b)

for p ∈ [0; b[

µ+ σ
√

3b
4−3b for p ∈ [b; 1]

(4.17)

We maximize F−1YL
(α) first in terms of b for b ∈ [α, 1] and then in terms of σ over

the interval [0; s]. We get the following result:

∀α ∈]0; 1[, Y ∗L is obtained for b = α and σ = s, and

V aRα(Y ∗L ) = µ+ s

√
3α

4− 3α
(4.18)

Finally, we compare V aRα(Y ∗R) and V aRα(Y ∗L ) to find the optimum which would

hold the value of V aRα(S∗).

As a result we get,

V aRα(S∗) = max[V aRα(Y ∗R);V aRα(Y ∗L )] =

 µ+ s
√

4
9(1−α) − 1 for α ∈ [5/6; 1[

µ+ s
√

3α
4−3α for α ∈]0; 5/6[

(4.19)
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4.3 TVaR upper bound

One of the drawbacks of the Value-at-Risk is that a single V aR does not indicate

the severity of the default, i.e., V aR does not present any information about the

upper tail of the distribution and hence hides the extent to which the default is

severe. Therefore, it is common to complement the risk assessment by the evaluation

of an additional risk measure, the Tail-Value-at-Risk that indicates how fat is the

upper tail. Indeed, TV aRα can be seen as the average of the quantiles from α on.

In this chapter, we are interested in finding the maximum value of the Tail-Value-

at-Risk of the aggregate risk S at specific level α. The TV aR is defined as

TV aRα(S) =
1

1− α

1∫
α

V aRu(S)du, α ∈]0; 1[

where V aRα(S) is the left inverse of the cumulative distribution function of S as

defined before.

We express the problem as follows,

Problem 2.

max
S∈VU (µ,s)

TV aRα(S)

Assuming that a solution exists, the structure of solving Problem 2 will be similar

to the one of Problem 1, i.e., we will start by two lemmas and then split the proof

into two cases, each case studies the interval on one side of the mode which occurs at

level m.

Lemma 3.

If α ≥ m , we have that

max
S∈VU (µ,s)

TV aRα(S) = max
S∈UR∩V (µ,s)

TV aRα(S)

where UR is defined in (4.3).

Proof. From relation (4.5) we deduce that

max
S∈UR∩V (µ,s)

TV aRα(S) ≤ max
S∈VU (µ,s)

TV aRα(S) (4.20)
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We consider that S∗ is a candidate solution for Problem 2. In the following, we

prove the reverse inequality, i.e. we demonstrate that ∃YR ∈ UR ∩ V (µ, s) such that

TV aRα(YR) = TV aRα(S∗) which would imply that

TV aRα(S∗) ≤ max
S∈UR∩V (µ,s)

TV aRα(S)

We consider a random variable Yc similar to the one defined in the proof of Lemma

1 and presented in Figure 4.2 but relative to the candidate solution S∗ of Problem 2.

Thus we have that Yc ≤cx S∗ and Yc ∈ V (µ, s). Moreover, we can easily see that,

TV aRα(S∗) =
1

1− α

1∫
α

V aRu(S
∗)du =

1

1− α

E[S∗]−
α∫

0

V aRu(S
∗)du


=

1

1− α

E[Yc]−
α∫

0

V aRu(Yc)du

 = TV aRα(Yc)

We then consider a random variable YR similar to the one defined in the proof of

Lemma 1 and presented in Figure 4.3. Therefore, YR ≤cx Yc and YR ∈ UR ∩ V (µ, s)

. Having F−1YR
(p) = F−1Yc

(p) for p ∈ [α; 1] implies that TV aRα(YR) = TV aRα(Yc) =

TV aRα(S∗). Hence,

TV aRα(S∗) ≤ max
S∈UR∩V (µ,s)

TV aRα(S)

.

Lemma 4.

If α < m , we have that

max
S∈VU (µ,s)

TV aRα(S) = max
S∈UL∩V (µ,s)

TV aRα(S)

where UL is defined in (4.4).

The proof of Lemma 4 does not present any additional challenge comparing to

the proofs of the previous lemmas. However we explain it in Appendix A.2.

We define S∗ as a solution of Problem 1, i.e. the maximum is realized for S∗ with

a value of V aRα(S∗).
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Proposition 2.

• If α ∈ [1/2; 1[, TV aRα(S∗) = µ+ s
√

8
9(1−α) − 1

• If α ∈]0; 1/2[, TV aRα(S∗) = µ+ s
3

√
α(8−9α)
1−α

We point out that the above proposition recovers, in a new method, the same

result as in Theorem 1 in Li et al. (2018) for α ≥ 5/6 (when we replace β by 1 in

their formula of RV aRα,β), and extends it to the rest of the interval.

Proof. As in the case of the proof of Problem 1, we split the proof into two cases, an

evaluation on each the right and the left of the mode. We denote by Y ∗R and Y ∗L the

optimal solution in each of the two cases respectively. Then we compare Y ∗R and Y ∗L
to find the one that maximizes the TV aRα.

Case 2.1. Evaluation of TV aR on the right of the mode

In this part of the proof we can use Lemma 3 to reduce the problem over VU(µ, s)

to a maximization over UR∩V (µ, s). We denote by YR a random variable that belongs

to UR∩V (µ, s). Respecting that E[YR] = µ and V [YR] = σ2, F−1YR
would be expressed

as in Equation (4.13). We then derive the function of TV aRα that can be expressed

as

TV aRα(YR) = µ+ σ
α− b2√

(1− b)3(1/3 + b)
, b ∈ [0;α] (4.21)

We proceed to the optimization of the above function, first in terms of b over the

interval [0;α], and then in terms of σ over the interval [0; s]. The optimization leads

to Y ∗R ∈ UR ∩ V (µ, s) where

TV aRα(Y ∗R) = max
YR∈UR∩V (µ,s)

TV aRα(YR)

The results are as follows,

• ∀α ∈]1/3; 1[, Y ∗R is obtained for b = 3
2
α− 1

2
and σ = s, with

TV aRα(Y ∗R) = µ+ s

√
8

9(1− α)
− 1 (4.22)
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• ∀α ∈]0; 1/3], Y ∗R is obtained for b = 0 and σ = s, with

TV aRα(Y ∗R) = µ+ sα
√

3 (4.23)

Case 2.2. Evaluation of TV aR on the left of the mode

Based on Lemma 4, the maximization problem over VU(µ, s) can be reduced to

a maximization over UL ∩ V (µ, s). Let YL and Y ∗L two random variables of the class

UL ∩ V (µ, s), with

TV aRα(Y ∗L ) = max
YL∈UL∩V (µ,s)

TV aRα(YL)

Respecting that E[YL] = µ and V [YL] = σ2 we get the F−1YL
expressed in Equation

(4.17).We then derive the following function of TV aRα,

TV aRα(YL) = µ+
σ
√

3

1− α
2bα− b2α− α2√

b3(4− 3b)
, b ∈ [α; 1] (4.24)

We maximize TV aRα(YL) first in terms of b for b ∈ [α, 1] and then in terms of σ

over the interval [0; s]. We get the following results:

• ∀α ∈]2/3; 1[, Y ∗L is obtained for b = 1 and σ = s, with

TV aRα(Y ∗L ) = µ+ sα
√

3 (4.25)

• ∀α ∈]0; 2/3], Y ∗L is obtained for b = 3
2
α and σ = s, with

TV aRα(Y ∗L ) = µ+
s

3

√
α(8− 9α)

1− α
(4.26)
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At a last step, we compare TV aRα(Y ∗R) and TV aRα(Y ∗L ) to find TV aRα(S∗) as

follows,

TV aRα(S∗) = max[TV aRα(Y ∗R);TV aRα(Y ∗L )] =

 µ+ s
√

8
9(1−α) − 1 for α ∈ [1/2; 1[

µ+ s
3

√
α(8−9α)
1−α for α ∈]0; 1/2[

(4.27)

4.4 RVaR upper bound

In Cont et al. (2010), a new risk measure was introduced as a robust risk measure

that includes the Value-at-Risk and the Tail-Value-at-Risk as limiting cases; this risk

measure is called the Range-Value-at-Risk. This new measure can be seen as the

average of the quantiles between two specific probability levels.

In this section, our objective is to find the upper bound of the Range-Value-at-

Risk of the aggregate risk S at specific levels α and β. The RV aR can be defined

as

RV aRα,β(S) =
1

β − α

β∫
α

V aRu(S)du, 0 < α < β < 1

where V aRα(S) is the left inverse of the cumulative distribution function of S as

defined before.

Hence, we present the problem as follows,

Problem 3.

max
S∈VU (µ,s)

RV aRα,β(S)

We assume that a solution exists to Problem 3. We start by presenting the follow-

ing two lemmas. As previously, m represents the value of the cumulative distribution

function of the aggregate risk at the mode.

Lemma 5.

If α ≥ m , we have that

max
S∈VU (µ,s)

RV aRα,β(S) = max
S∈UR∩V (µ,s)

RV aRα,β(S)
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where UR is defined in (4.3).

Proof. Relation (4.5) directly implies that

max
S∈UR∩V (µ,s)

RV aRα,β(S) ≤ max
S∈VU (µ,s)

RV aRα,β(S) (4.28)

Let us prove the opposite inequality. We denote by S∗ a candidate solution for

Problem 3, and we define a random variable Yc similarly to the one defined in the

proof of Lemma 1 and presented in Figure 4.2 but relative to the candidate solution

of Problem 3. We note that, because of the equality of means between Yc and S∗ and

the convexity of F−1S∗ on [α, 1], the slope of the linear part of F−1Yc
is necessarily higher

that the derivative of F−1S∗ at α which implies that F−1Yc
is concave-convex. Thus,

Yc ∈ VU(µ, s) and,

RV aRα,β(Yc) ≤ RV aRα,β(S∗) (4.29)

We start with the assumption that F−1Yc
and F−1S∗ are not identical, and we denote

by i the abscissa of the intersection point.

Based on the assumption above and respecting the convexity property on [α, 1],we

can observe the following results:

• In the case of β ≤ i, ∀u ∈ [α, β] we have V aRu(S
∗) ≤ V aRu(Yc) (with the

equality being only for β = i), hence RV aRα,β(S∗) < RV aRα,β(Yc)

• In case β > i,∀u ∈ [β, 1] we have V aRu(S
∗) > V aRu(Yc),

RV aRα,β(S∗) =
1

β − α

E[S∗]−
α∫

0

V aRu(S
∗)du−

1∫
β

V aRu(S
∗)du


=

1

β − α

E[Yc]−
α∫

0

V aRu(Yc)du−
1∫

β

V aRu(S
∗)du


< RV aRα,β(Yc)

Hence, if F−1Yc
and F−1S∗ were not identical we would definitely obtainRV aRα,β(S∗) <

RV aRα,β(Yc) which contradicts inequation (4.29), i.e., if the two quantile functions

are not identical, we can find for any S∗ ∈ VU(µ, s) a Yc ∈ VU(µ, s) that strictly

improves the RV aR which contradicts the optimality of S∗. We cannot but conclude

that F−1Yc
= F−1S∗ which directly leads to RV aRα,β(S∗) = RV aRα,β(Yc).
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We now recall YR defined in the proof of Lemma 1 and presented in Figure 4.3.

We know that YR ∈ UR ∩ V (µ, s).

Having F−1YR
(p) = F−1Yc

(p) for p ∈ [α; 1] leads to RV aRα,β(YR) = RV aRα,β(Yc) =

RV aRα,β(S∗). Hence,

RV aRα,β(S∗) ≤ max
S∈UR∩V (µ,s)

RV aRα,β(S)

.

Lemma 6.

If α < m , we have that

max
S∈VU (µ,s)

RV aRα,β(S) = max
S∈UL∩V (µ,s)

RV aRα,β(S)

where UL is defined in (4.4).

Proof. Relation (4.6) implies that

max
S∈UL∩V (µ,s)

RV aRα,β(S) ≤ max
S∈VU (µ,s)

RV aRα,β(S) (4.30)

We now demonstrate the opposite inequality.

Let us consider a candidate solution S∗ for Problem 3 and a random variable Yc

defined similarly to the one in the proof of Lemma 2 and presented in Figure 4.4;

therefore Yc ∈ V (µ, s). And since F−1Yc
(p) = F−1S∗ (p) for p ∈ [α; 1] we necessarily have

RV aRα,β(Yc) = RV aRα,β(S∗).

We then consider YL defined similarly to the one in the proof of Lemma 2 and

presented in Figure 4.5. Which means that, as proven previously, YL ∈ UL∩V (µ, s) ⊂
VU(µ, s). Hence,

RV aRα,β(YL) ≤ RV aRα,β(S∗) = RV aRα,β(Yc) (4.31)

If we pretend that F−1Yc
and F−1YL

are not identical, and we respect the equality of

means and the concave-convex form of F−1Yc
, we will necessarily arrive to the following

relation: RV aRα,β(Yc) < RV aRα,β(YL), when 0 < α < β < 1. The last result

contradicts the inequation (4.31); therefore, we can conclude that F−1Yc
can only be

identical to F−1YL
. Thus RV aRα,β(YL) = RV aRα,β(Yc) = RV aRα,β(S∗). Finally we
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can say that,

RV aRα,β(S∗) ≤ max
S∈UL∩V (µ,s)

RV aRα,β(S)

Proposition 3.

For 0 < α < β < 1,

• If 2α + β = 1, RV aRα,β(S∗) = µ+ s
3

√
α(3α + 8)

• If 2α + β 6= 1,

RV aRα,β(S∗) =


µ+ s

√
8

9(2−α−β) − 1 for α ∈
[
5
6
; 1
[
,

max
[
µ+ s

√
8

9(2−α−β) − 1 ;Q
]

for α ∈
]
1
2
; 5
6

[
and β ∈ ]f(α); 1[ ,

Q otherwise,

where

β = f(α) is, for α ∈]1/3; 5/6[, the solution of the equation1

27α3+54α2β2−27α2β−54α2+36αβ3−135αβ2+108αβ−42β4+95β3−54β2 = 0

and

Q = µ+
s
√

3

β − α
b2(β − α− 1) + 2bα− α2√

b3(4− 3b)

for

b = α
3α + 2−

√
(3α− 2)2 + 12(1− β)

2(2α + β − 1)

We note that Proposition 3 recovers Theorem 1 in Li et al. (2018) and extends it

by solving the problem for the rest of the domain.

Remark 4.3. Clearly, V aRα(S∗) and TV aRα(S∗) are the limiting cases ofRV aRα,β(S∗)

when β tends to α and 1 respectively. This fact is obviously respected since, as can

be shown easily, Proposition 1 and Proposition 2 conform with Proposition 3.

Proof. Similarly to what was done previously, we will consider the two cases, when α

is on each the right and the left of the mode. We then perform a comparison to find

1In fact, for α ∈]1/3; 5/6[, β > f(α) is equivalent to having 27α3 + 54α2β2 − 27α2β − 54α2 +
36αβ3 − 135αβ2 + 108αβ − 42β4 + 95β3 − 54β2 > 0
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the upper bounds presented in Proposition 3.

Case 3.1. Evaluation of RVaR when α is on the right of the mode

Using Lemma 5, the maximization problem over VU(µ, s) is again reduced to a

maximization over UR ∩ V (µ, s). We denote by YR and Y ∗R two random variables of

UR ∩ V (µ, s) such that,

RV aRα,β(Y ∗R) = max
YR∈UR∩V (µ,s)

RV aRα,β(YR)

Applying the two relations E[YR] = µ and V [YR] = σ2, F−1YR
would be expressed

as in Equation (4.13). We then derive the function of RV aRα,β that can be expressed

as

RV aRα,β(YR) = µ+ σ
α + β − 1− b2√
(1− b)3(1/3 + b)

, 0 ≤ b ≤ α < β < 1 (4.32)

We optimize the above function in terms of b and σ over the intervals [0;α] and

[0; s] respectively. The optimization leads to Y ∗R with the following characteristics,

• If 4/3 < α + β < 2, Y ∗R is obtained for b = 3
2
(α + β)− 2 and σ = s, with

RV aRα,β(Y ∗R) = µ+ s

√
8

9(2− α− β)
− 1 (4.33)

• If 1 < α + β < 4/3, Y ∗R is obtained for b = 0 and σ = s, with

RV aRα,β(Y ∗R) = µ+ s
√

3(α + β − 1) (4.34)

• If 0 < α + β < 1, Y ∗R is obtained for b = 0 and σ = 0, with

RV aRα,β(Y ∗R) = µ (4.35)
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Case 3.2. Evaluation of RVaR When α is on the left of the mode

Based on Lemma 6, the maximization problem over VU(µ, s) can be reduced to a

maximization over UL∩V (µ, s). Let YL and a random variable of the class UL∩V (µ, s).

In this case, we have two possibilities for the position of b, either between α and

β or between β and 1. Since we need to maximize RV aRα,β(YL) in terms of b over

the full domain [α, 1], we will have to study each possibility alone and then compare

to find the maximum.

Let us start by start by the case where 0 < α < β ≤ b ≤ 1. Applying E[YL] = µ

and V [YL] = σ2 we get the F−1YL
expressed in Equation (4.17).We then derive the

following function of RV aRα,β,

RV aRα,β(YL) = µ+ σ
√

3
α + β − 2b+ b2√

b3(4− 3b)
, b ∈ [β; 1] (4.36)

We maximize RV aRα,β(YL) first in terms of b for b ∈ [β, 1], the maximum in terms

of b is obtained at b = 1 in case α < β(1−β) and 3α2β2 + 2α2β+α2 + 6αβ3−2αβ2 +

3β4−4β3 +β2 > 0, and at b = β otherwise. We then maximize in terms of σ over the

interval [0; s], if the function was maximized at b = 1 then the maximum in terms of

σ would be at σ = 0, if the function was maximized at b = β then the maximum in

terms of σ would be at σ = 0 in case α < β(1− β) and at σ = s otherwise

If we denote Y ∗L,1 a random variable with

RV aRα,β(Y ∗L,1) = max
YL∈UL∩V (µ,s)

RV aRα,β(YL) , 0 < α < β ≤ b ≤ 1

we then express the results as follows,

RV aRα,β(Y ∗L,1) =

{
µ if α < β(1− β),

µ+ s
√

3 α−β+β2√
β3(4−3β)

otherwise.
(4.37)

Now we consider the case where 0 < α ≤ b < β < 1, respecting the condition on

the mean and the variance we can derive the following function for RV aRα,β,

RV aRα,β(YL) = µ+
σ
√

3

β − α
b2(β − α− 1) + 2bα− α2√

b3(4− 3b)
, b ∈ [α; β[ (4.38)
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If we denote Y ∗L,2 a random variable with

RV aRα,β(Y ∗L,2) = max
YL∈UL∩V (µ,s)

RV aRα,β(YL) , 0 < α ≤ b < β < 1

Then, after maximizing in terms of b over [α; β[ and in terms of σ over [0, s], we get

the followings results:

• If 2α + β = 1, then Y ∗L,2 is obtained at b = 3α
3α+2

and σ = s with

RV aRα,β(Y ∗L,2) = µ+
s

3

√
α(3α + 8) (4.39)

• If 2α + β 6= 1, then Y ∗L,2 is obtained at

b = α
3α + 2−

√
(3α− 2)2 + 12(1− β)

2(2α + β − 1)
and σ = s

If we denote Y ∗L the random variable such that

RV aRα,β(Y ∗L ) = max
YL∈UL∩V (µ,s)

RV aRα,β(YL)

Then RV aRα,β(Y ∗L ) is calculated as follows,

RV aRα,β(Y ∗L ) = max[RV aRα,β(Y ∗L,1);RV aRα,β(Y ∗L,2)]

Finally, we compare RV aRα,β(Y ∗R) and RV aRα,β(Y ∗L ) to find RV aRα,β(S∗) pre-

sented in Proposition 3, i.e.,

RV aRα,β(S∗) = max[RV aRα,β(Y ∗R);RV aRα,β(Y ∗L )] (4.40)
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Chapter 5

VaR upper bound for non-negative aggre-

gate risks

Many studies, mainly in actuarial sciences, consider non-negative random vari-

ables. And since it is intuitive that two random variables can have the same mean

and variance even if only one of them is non-negative, then it appears to be meaningful

to add the assumption of non-negativity when it is the case.

In this chapter, we consider how the non-negativity assumption affects the upper

bound of the Value-at-Risk of the portfolio sum.

We recall the notation for the coordinates of the mode represented by FS(xm) = m,

where FS is the cumulative distribution function of the portfolio sum S.

For simplification, we only consider the part of the quantile function that is higher

than m; i.e., we study the upper bounds of V aRα(S) only for α ≥ m. This choice is

reasonable since it constitutes the common case confronted in practice and it helps to

avoid some heavy optimization complications. It is worth keeping in mind that the

coordinates of the mode are considered unknown.

We define the new set:

V +
U (µ, s) = {X : X is unimodal , E[X] = µ , V [X] ≤ s2 , X is non-negative}

(5.1)

Using V aRα(S) as defined previously, our problem would be expressed as follows:

Problem 4.

max
S∈V +

U (µ,s)
V aRα(S)

We assume that a solution S∗ exists for Problem 4, a solution to this problem can

be expressed in the following proposition:
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Proposition 4.

For 0 ≤ α < 1 and s2 ∈
[
0; α+1/3

1−α µ
2
]
,

V aRα(S∗) =



µ
2(1−α) for α ∈

]
1
2
; 1
[

and s2 ∈
[
α−1/3
1−α µ

2; α+1/3
1−α µ

2
]
,

µ+ 9
8µ3

[α(s2 + µ2)2 − (s4 + 5
9
µ4 + 2

3
s2µ2)] for α ∈

]
2
3
; 1
[

and s2 ∈
]
α−5/9
1−α µ

2; α−1/3
1−α µ

2
[
,

or α ∈
]
1
2
; 2
3

]
and s2 ∈

]
µ2

3
; α−1/3

1−α µ
2
[
,

µ+ s
√

4
9(1−α) − 1 for α ∈

]
2
3
; 1
[

and s2 ∈
[
0; α−5/9

1−α µ
2
]
,

µ+ s
√

3(2α− 1) for α ∈
]
1
2
; 2
3

]
and s2 ∈

[
0; µ

2

3

]
,

µ for α ∈
]
0; 1

2

]
,

Proof. As mentioned formerly, we only consider in this chapter the case where the

probability level α at which the V aR is evaluated is higher than the probability level

m of the mode. Hence, using Lemma 1, we can reduce our maximization Problem 4

to a maximization over a set U+
R ∩ V (µ, s) with

U+
R =

{
X : F−1X (p) =

{
a for p ∈ [0; b[

c(p− b) + a for p ∈ [b; 1]
, a ∈ R+, b ∈ [0; 1], c ∈ R+

}
(5.2)

In other words, adding the assumption of non-negativity implies a non-negative

quantile function, i.e. F−1S (0) ≥ 0.

We denote by Y +
R a random variable that belongs to U+

R ∩ V (µ, s). The quantile

function of Y +
R can be expressed similarly to the quantile in Equation (4.13):

F−1
Y +
R

(p) =

 µ− σ
√

1−b
1
3
+b

for p ∈ [0; b[

µ+ σ (2p−1−b2)√
(1−b)3(1/3+b)

for p ∈ [b; 1]
(5.3)
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but only under the condition

µ− σ

√
1− b
1
3

+ b
≥ 0

Thus, the maximization of F−1
Y +
R

(α) will be in terms of the variables b and σ over

the intervals
[
max

(
σ2−µ2/3
σ2+µ2

; 0
)

;α
]

and [0, s] respectively. To ensure that σ2−µ2/3
σ2+µ2

≤ α

for all possible values of α we should have s2 ≤ α+1/3
1−α µ

2; in fact, this upper bound for

the possible values of the variance is pretty reasonable specially for large values of α.

Previously, when we maximized the quantile function of YR, we got three different

functions depending on the domain in which α lays. In our current case, we study how

the restricted domains of b and σ will affect the results. Let us denote the fraction
σ2−µ2/3
σ2+µ2

by b.

The study is as follows:

• For α ∈]2/3; 1[,

We compare b vs b = 3α− 2,

– If b ≤ 3α − 2, which is equivalent to σ2 ≤ α−5/9
1−α µ

2, the maximum would

still be satisfied at b = 3α− 2,

∗ If s2 ≤ α−5/9
1−α µ

2 then the maximum would still be satisfied at σ = s as

well and the upper bound µ+ s
√

4
9(1−α) − 1 would remain.

∗ If s2 > α−5/9
1−α µ

2 then the maximum would be satisfied at σ =
√

α−5/9
1−α µ

and the upper bound would be 4µ
9(1−α) .

– If b > 3α − 2, which is equivalent to σ2 > α−5/9
1−α µ

2 (clearly, this can

only be satisfied for s2 > α−5/9
1−α µ

2), the maximum would be attained at

b = b, replacing in Equation 5.3 for α > b we get the quantile function

F−1
Y +
R

(α)
∣∣
b=b

= µ+ 9
8µ3

[
α(σ2 + µ2)2 − (σ4 + 5

9
µ4 + 2

3
σ2µ2)

]
∗ If α−5/9

1−α µ
2 < s2 < α−1/3

1−α µ
2 then the maximum would be realized at σ =

s, with an upper bound µ+ 9
8µ3

[
α(s2 + µ2)2 − (s4 + 5

9
µ4 + 2

3
s2µ2)

]
.

∗ If s2 ≥ α−1/3
1−α µ

2 then the maximum would be realized at σ =
√

α−1/3
1−α µ,

and the upper bound would become µ
2(1−α) .

32



• For α ∈ [0; 2/3],

We compare b vs b = 0,

– If b < 0, which is equivalent to σ2 < µ2

3
, the maximum would still be

satisfied at b = 0,

∗ If s2 < µ2

3
then the maximum would still be attained at σ = s for

α > 1/2 and σ = 0 otherwise, and the upper bounds would be

µ+ s
√

3(2α− 1) and µ respectively, which replicates previous results.

∗ If s2 ≥ µ2

3
then the maximum would be attained at σ = µ√

3
for α > 1/2

and σ = 0 otherwise, and the upper bounds would be 2µα and µ re-

spectively.

– If b ≥ 0, which is equivalent to σ2 > µ2

3
(which is only satisfied for s2 > µ2

3
),

the maximum would be attained at b = b,

∗ For α ∈]1/2; 2/3],

· If µ2

3
< s2 < α−1/3

1−α µ
2 then the maximum would be realized at σ =

s, with an upper bound µ+ 9
8µ3

[
α(s2 + µ2)2 − (s4 + 5

9
µ4 + 2

3
s2µ2)

]
.

· If s2 ≥ α−1/3
1−α µ

2 then the maximum would be realized at σ =√
α−1/3
1−α µ, and the upper bound would become µ

2(1−α) .

∗ For α ∈]0; 1/2], then σ2 > µ2

3
≥ α−1/3

1−α µ
2. Thus, the maximum would

be realized at σ = µ√
3
, and the upper bound would become 2µα .

To complete the analysis, we need to finish the maximization in terms of σ over

[0; s]. Firstly, we can observe that for α ∈]2/3; 1[ and s2 ∈
[
α−1/3
1−α µ

2; α+1/3
1−α µ

2
]
, we have

maximized in terms of σ over each of the regions

[
0;µ
√

α−5/9
1−α

]
and

]
µ
√

α−5/9
1−α ; s

]
and

got the two maximums 4µ
9(1−α) and µ

2(1−α) respectively. What is left to do is to compare

these two maximums for the specific regions of α and s and get their maximum, which

is clearly µ
2(1−α) in this case. Thus,

V aRα(S∗) =
µ

2(1− α)
for α ∈

]
2

3
; 1

[
and s2 ∈

[
α− 1/3

1− α
µ2;

α + 1/3

1− α
µ2

]

We proceed with the comparisons within all the possible combinations of α and s

to get the final result presented in Proposition 4.
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Chapter 6

VaR upper bound when a part of the quan-

tile function is fully known

In chapter 4 we have derived the upper bound of the Value-at-Risk in case we have

some information about the mean, the variance and the shape of the distribution of

the aggregate risk. What if we, additionally, do trust a part of the distribution but

distrust the rest that includes the tails? This situation is pretty typical since the tails

reflect extreme scenarios and the probabilities to experience them are inherently hard

to establish.

In this chapter, we present a methodology that leads to the derivation of the upper

bound of the Value-at-Risk of the aggregate risk under the assumption of knowing the

mean, the upper bound of the variance, the unimodality property and having the full

knowledge of the quantile function over a specific range that includes the mode. We

point out that our knowledge of the quantile function over a specific region includes

the knowledge of its derivative at the extremities of the interval. The valuation of

the Value-at-Risk, in this case, is only considered at probability levels that are higher

than the one at the upper extremity of the trusted interval.

Let us introduce some notations that will be used in the following proofs. The

coordinates of the mode, the lower extremity of the trusted interval and the upper

extremity of the trusted interval are represented by FS(xm) = m, FS(xk) = k and

FS(xl) = l respectively, where FS is the cumulative distribution function of the port-

folio sum S. And let us denote by g a function that is defined and differentiable

over ]0; 1[ and covers the trusted part of the quantile function (i.e., g(p) = F−1S (p) for

p ∈ [k, l], ∂g(p)
∂p

∣∣
p=k

=
∂F−1

S (p)

∂p

∣∣
p=k

, and ∂g(p)
∂p

∣∣
p=l

=
∂F−1

S (p)

∂p

∣∣
p=l

).

Remark 6.1. A differentiable function h(x) is concave over [a; b] if and only if ∂h
∂x

is

non-increasing over ]a;b[. On the other hand, h(x) is convex over [a; b] if and only if
∂h
∂x

is non-decreasing over ]a;b[.

34



We recall the definition (4.1) of V (µ, s) in chapter 4 and we define the new sets

Ug and V g
U (µ, s) as follows:

Ug =

X : F−1X (p) =


d(p− k) + g(k) for p ∈ [0; k[

g(p) for p ∈ [k; l[

e(p− l) + g(l) for p ∈ [l; b[

c(p− b) + e(b− l) + g(l) for p ∈ [b; 1]

, d ∈
[
∂g(p)
∂p

∣∣
p=k

; +∞
[

, 0 ≤ k ≤ l < b ≤ 1

, ∂g(p)
∂p

∣∣
p=l
≤ e ≤ c ≤ +∞


(6.1)

where g(p) is defined and differentiable over ]0; 1[ and concave-convex over [k; l]

i.e., Ug is the set of random variables whose quantile function is continuous, non-

decreasing and composed of, in a consecutive order, a linear function, a predefined

concave-convex function g, and two linear functions in a way that the quantile function

is concave until a point in g after which it continues as convex.

V g
U (µ, s) = {X : X is unimodal , E[X] = µ , V [X] ≤ s2 , F−1X (p) = g(p) for p ∈ [k; l]}

(6.2)

Using V aRα(S) as defined previously in (4.7), our problem would be expressed as

follows:

Problem 5.

max
S∈V g

U (µ,s)
V aRα(S)

In order to solve the problem, a critical first step is to prove the following lemma,

Lemma 7.

max
S∈V g

U (µ,s)
V aRα(S) = max

S∈Ug∩V (µ,s)
V aRα(S)

Proof. Firstly, when we look at remark (6.1) and the definitions of V (µ, s), Ug, and

V g
U (µ, s), we can straightforwardly see that

Ug ∩ V (µ, s) ⊂ V g
U (µ, s) (6.3)

which directly implies that

max
S∈Ug∩V (µ,s)

V aRα(S) ≤ max
S∈V g

U (µ,s)
V aRα(S) (6.4)
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F−1(p)

p1m

F−1S∗ (α)

αk l

g

F−1
S∗

Figure 6.1: The quantile function of the candidate solution S∗ when F−1S is known
over [k, l].

The next step is to prove the reverse inequality.

Let us call S∗ a random variable that belongs to V g
U (µ, s) such that

V aRα(S∗) = max
S∈V g

U (µ,s)
V aRα(S)

We illustrate in Figure 6.1 the quantile distribution of S∗ and a part of the function

g that represents the exact trusted part of the quantile function.

We define Yc similarly to the one in (4.9) and present its quantile function in

Figure 6.2. Thus Yc ∈ V (µ, s) and V aRα(Yc) = V aRα(S∗) = F−1S∗ (α).

We then define the random variable Yb by its quantile function as follows,

F−1Yb
(p) =


F−1Yc

(p) for p ∈ [0; l[
[c(b−α)+F−1

S∗ (α)](p−l)−g(l)(p−b)
b−l for p ∈ [l; b[

c(p− α) + F−1S∗ (α) for p ∈ [b;α[

F−1Yc
(p) for p ∈ [α; 1]

(6.5)

where b ∈]l;α] and c is as evaluated while finding Yc.

The variable b is calculated such that E[Yb] = E[Yc]. And, obviously, we have

that V aRα(Yb) = V aRα(Yc) = V aRα(S∗).
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F−1(p)

p1

F−1S∗ (α)

αk l

F−1
Yc

F−1
S∗

g
c

m

Figure 6.2: The quantile function of S∗ and Yc when F−1S is known over [k, l].

In Figure 6.3 we illustrate how the quantile function of Yb is identical to the one of

Yc for p ∈ [α; 1], then this same linear is extended to the left until p = b at which the

function, while remaining continuous, changes to another linear function and joins

the function g at p = l after which it becomes again identical to FYc .

We can see that F−1Yc
necessarily up-crosses F−1Yb

exactly once if the equality of

mean and the convexity property is to be respected. Hence, Yb ≤cx Yc ⇒ V [Yb] ≤
V [Yc] ≤ s2 ⇒ Yb ∈ V (µ, s).

Finally, we define the random variable Yd by its quantile function as well,

F−1Yd
(p) =

{
d(p− k) + g(k) for p ∈ [0; k[

F−1Yb
(p) for p ∈ [k; 1]

(6.6)

where d ∈ R+.

We calculate d such that E[Yd] = E[Yb], and we illustrate F−1Yd
in Figure 6.4.

Clearly, V aRα(Yd) = V aRα(Yb) = V aRα(S∗).

Respecting the equality of means and the concavity property, we can clearly

deduce that a single up-crossing is necessary implying that Yd ≤cx Yb and hence

V [Yd] ≤ V [Yb], thus Yd ∈ V (µ, s).

F−1Yd
is clearly continuous, non-decreasing and composed of, in a consecutive order,

a linear function, the concave-convex function g, and two linear functions. Addition-

ally, F−1Yd
is necessarily concave on [0,m[ and convex on ]m; 1]. Therefore Yd ∈ Ug.
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F−1(p)

p1

F−1S∗ (α)

αk l

F−1
Yc

F−1
Yb

g
c

m b

Figure 6.3: The quantile function of Yc and Yb when F−1S is known over [k, l].

F−1(p)

p1

F−1S∗ (α)

αk l

F−1
Yd

F−1
Yb

g

d
m b

Figure 6.4: The quantile function of Yb and Yd when F−1S is known over [k, l].
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Finally we can conclude that ∃Yd ∈ Ug∩V (µ, s) such that V aRα(Yd) = V aRα(S∗),

which implies that

max
S∈V g

U (µ,s)
V aRα(S) ≤ max

S∈Ug∩V (µ,s)
V aRα(S)

Now we can use Lemma 7 to reduce Problem 5 from an optimization over V g
U (µ, s)

to an optimization over Ug∩V (µ, s). Let us call Yg a random variable that belongs to

Ug∩V (µ, s), hence its quantile function would be similar to the one in (6.1). Since we

assume that we have full knowledge of the quantile function over an interval [k; l] then

we can derive from the data the following inputs: k, l, g(k), g(l), ∂g
∂p

∣∣
p=k

, and ∂g
∂p

∣∣
p=l

.

And we have as variables: b, c, d, and e . We then equate E[Yg] to µ and V [Yg] to

σ2. Thus, we reduce the number of variables by 1 to get a quantile function that is

dependent, for instance, on the variables b, d, and σ. We then maximize the function

V aRα(Yg) = FYg(α) for α ∈ [b; 1[ in terms of b, d, and σ over ]l;α],
[
∂g(p)
∂p

∣∣
p=k

; +∞
[
,

and [0; s2] respectively, under the constraint ∂g(p)
∂p

∣∣
p=l
≤ e ≤ c ≤ +∞ .

Assuming that a solution S∗ to Problem 5 exists and the maximization lead to

b = b∗, d = d∗, and σ = σ∗ and hence the values c∗ and e∗ for c and e respectively,

we can then express the upper bound of the Value-at-Risk as

max
S∈V g

U (µ,s)
V aRα(S) = V aRα(S∗) = c∗(α− b∗) + e∗(b∗ − l) + g(l) for α ∈]l; 1[ (6.7)

Remark 6.2. It is worth noting that our results cover several common cases:

• Trusting the quantile function up to a level l, this can be easily found by tending

k to 0 .

• Trusting the coordinates of the mode solely, i.e m and F−1(m), this can be

solved by tending k and l to m.
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Chapter 7

Numerical application to a credit risk port-

folio
In this chapter, we apply all the results obtained so far to a credit risk portfolio.

We adopt one of the principal models that are used in the industry to evaluate the

risk measures of credit risk portfolios, namely the Beta model.

7.1 Model description

We consider a portfolio of n loans given by a bank to n companies that are subject to

default. Let us denote the probability of default of a company i by pi, the maximum

amount of loss that can occur due to the default of company i by EADi (which stands

for Exposure-At-Default), and the percentage of the loss on loan i resulting from the

default of the relative company by LGDi (which stands for Loss-Given-Default). We

define an indicator Ii which takes either the value 1 in case of default of the company

i or 0 otherwise, i.e.,

Ii =

{
1 with probability pi

0 otherwise

Hence, the aggregate portfolio loss, S, can be expressed as

S =
n∑
i=1

Ii EADi LGDi

Another random variable of interest is the aggregate portfolio loss as a percentage

of the aggregate exposure at default and can be expressed as

S∑n
i=1 EADi LGDi

=

∑n
i=1 Ii EADi LGDi∑n
i=1 EADi LGDi

In the actuarial science framework, the CreditRisk+ model is frequently used for
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modeling credit risk. However, Dhaene et al. (2003) showed that, in case of homoge-

neous portfolio where each of the Exposure-At-Default, the Loss-Given-Default, and

the probability of default has the same value for all the risks of the portfolio, the

single factor CreditRisk+ model (CreditRisk+ model with the assumption that the

credit quality is driven by one single factor, the global economy for instance) can

be replaced by a Beta model when n is large enough and p is small enough since

both models would give close results when they have the same values for the first

two moments. Based on this result we decided to adopt the Beta model which would

simplify the analytical computations as compared to the CreditRisk+ model.

In the Beta model, the aggregate portfolio loss as a percentage of the aggregate

exposure at default behaves like a Beta distribution. We assume homogeneity among

the risks and we assume that EAD = v and LGD = 1, therefore

S

nv
∼ Beta(a, b) , for a > 0 and b > 0

Details on the Beta distribution can be found in Appendix A.3.

7.2 Numerical example

In this chapter, we consider a portfolio of 10000 loans of amount 1 million Euros each,

these loans are given by a bank to companies whose rating is high enough to get a

probability of default on the loan of 0.1% (rating of A for instance). This probability

of default can be taken as the expected value of the aggregate loss as a percentage

of the aggregate exposure. In practice, the ratio of the standard deviation of the

aggregate loss as a percentage of the aggregate exposure over the relative mean is

often around 1 in credit risk portfolios, we choose to equate this ratio to 1.3 in our

numerical example. Hence,

E

[
S

nv

]
= 0.1% and V

[
S

nv

]
= (0.13%)2

⇒ E [S] = 10 million Euros and
√
V [S] = 13 million Euros

The parameters a and b can be directly computed by moment matching, in our

case we get

a =
99731

169000
and b =

9963126

169000

Because of the positive homogeneity property of each of the Value-at-Risk, Tail-
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Value-at-Risk, and the Range-Value-at-Risk (check Appendix A.4 for details) we have

that V aRα(S) = nv V aRα

(
S
nv

)
, TV aRα(S) = nv TV aRα

(
S
nv

)
, and RV aRα,β(S) =

nv RV aRα,β

(
S
nv

)
.

We denote by V aRα, TV aRα, and RV aRα,β the upper bounds for the Value-at-

Risk, the Tail-Value-at-Risk, and the Range-Value-at-Risk under the assumption of

having information on the mean, variance and unimodal shape of the aggregate risk

and presented in Propositions 1, 2 ,and 3 respectively. Moreover, we denote by V aR+
α

the Value-at-Risk in the case of adding the assumption of the non-negativity of the

risks and having α higher than the probability level of the mode, and by V aRp
α the

upper bounds of the Value-at-Risk under the assumption of the full knowledge of the

quantile function up to a probability level 75%, these upper bounds are presented

in Proposition 4 and Equation (6.7) (with k = 0 and l = 0.75 ) respectively. To

illustrate the effect of adding the unimodality assumption, we will calculate for each

case the upper bound so-called Cantelli bound presented in Barrieu and Scandolo

(2015) and Bernard et al. (2017). These bounds are derived under the assumption of

having information on the mean (µ) and the upper bound of the variance (s2) solely.

We denote the Cantelli bound by V aRc
α, this bound was proven to be equal to µ +

s
√

α
1−α ,∀α ∈]0; 1[. In fact, in Li et al. (2018), it is shown that under the assumption of

having information only on the mean and the variance, the upper bounds of the Tail-

Value-at-Risk and the Range-Value-at-Risk are equal to the Cantelli upper bound of

the Value-at-Risk, i.e., TV aRc
α = RV aRc

α,β = V aRc
α.

α V aRα(S) V aRc
α V aRα V aR+

α V aRp
α

75% 13.546 32.517 24.741 21.465 13.546
90% 26.106 49 34.127 34.127 30.85
95% 36.182 66.666 46.513 46.513 42.94

99.5% 71.290 193.388 131.874 131.874 89.232

Table 7.1: Upper bounds of the Value-at-Risk under different scenarios regarding the
distributional information that is available. The first column depicts the ”true” risk
measure assuming complete information. All figures are in million Euros.

It is worth noting that, in optimization problems, an equality constraint can be

replaced by an inequality for mathematical convenience and hence the assumption

of having the exact variance would be replaced by an inequation making the value

of the variance a maximum value.This fact renders the formulation of the problem

where the exact value of the variance is known to the same formulation used when

we assume having the value of the upper bound of the variance.

We present the results of our calculations in Table 7.1 and Table 7.2. In Table 7.1,

we can notice that the addition of the unimodality assumption had a great effect on
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α β TV aRα(S) TV aRc
α TV aRα RV aRα,β(S) RV aRc

α,β RV aRα,β

75% 90% 27.648 32.517 30.782 18.785 32.517 26.131
90% 95% 40.943 49 46.513 30.538 49 38.853
95% 99.5% 51.348 66.666 63.249 47.385 66.666 60.619

99.5% 99.9% 87.01 193.388 182.845 80.646 193.388 167.696

Table 7.2: Upper bounds of the Tail-Value-at-Risk and the Range-Value-at-Risk under
different scenarios regarding the distributional information that is available. The first
and the third columns depict the ”true” risk measure assuming complete information.
All figures are in million Euros.

the upper bounds, the assumption of knowing the first three-quarter of the quantile

improved the upper bounds significantly as well especially for high probability levels.

On the contrary, the addition of the non-negativity assumption in this example, and

probably in typical credit risk portfolios as well, makes no significant improvement if

any. In fact, the improvement made at α = 75% is the result of assuming that the

probability level of the mode preceded 75% and not the result of the non-negativity

assumption. On the other hand, in Table 7.2, the unimodality assumption improved

the bounds of the Tail-Value-at-Risk and the Range-Value-at-Risk but not to the

same extent as in the case of the Value-at-Risk.

The model risk can be assessed by calculating the difference between the actual

value of the risk measure and the correspondent upper bound (Barrieu and Scandolo

(2015)). Looking at the results, we can clearly see that the model risk increases

with the probability level; this fact makes the reserving regulations very susceptible

to model risk. The Beta model, in this case, presents serious model risk at high

probability levels if the quantile function is not trusted over the interval [0; 0, 75].

A suggestion would be to try different credit risk models and compare the relative

model risks.
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Chapter 8

Conclusions

The determination of the risk upper bounds is fundamental in model risk assess-

ment. Indeed, the upper bounds depend heavily on the adopted assumptions. In the

existing literature, specifically in Li et al. (2018), upper bounds of the Range-Value-

at-Risk (and implicitly the upper bounds of the Value-at-Risk and the Tail-Value-at-

Risk) in the setting of knowing the mean, the variance, and the unimodal shape of

the risk were found for probability levels higher than 5/6.

This thesis offers several contributions to the field of model risk assessment.

Firstly, it extends the results of Li et al. (2018) to cover the full domain of probability

levels. In fact, the analysis in Li et al. (2018) is lengthy and not very straightforward

in its approach. In contrast, our results are more general and our proofs are based on

well-known properties on convex ordering, which greatly simplifies the optimization

problem. Interestingly, using the same approach, we could provide further contri-

butions. An explicit upper bound of the Value-at-Risk for non-negative unimodal

aggregate risk is derived. Not very surprisingly, the non-negativity assumption lead

to improvement only when we had a combination of a probability level that is higher

than 50% and a sufficiently large variance. Moreover, the scenario where we fully

trust a part of the quantile function is considered. In this last scenario, the risk opti-

mization problem is simplified, and a direct methodology is provided to complete the

optimization numerically. Finally, an example of a credit risk portfolio was presented

to illustrate the upper bounds derived in this thesis and an example of model risk

assessment for the Beta model is performed. This example clarified to what extent

a model can be subject to model risk and how the additional assumptions can either

effectively improve the upper bounds (the unimodality assumption and the assump-

tion of knowing part of the quantile distribution) or have no significant effect (the

non-negativity assumption in this particular case).

Starting with this thesis, we can embark on multiple new interesting research

ideas. A directly linked idea would be to use the practical advantage of our two-
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step approach to test the effect of adding new assumptions on the upper bounds

of the risk measures; for instance, we can consider higher order moments like the

skewness and check whether the knowledge of the skewness would improve the risk

upper bounds or not. A more extensive thought process would be to get inspired by

the Remark 4.2 to think whether we can use the approach developed in this thesis

to recover the characteristics of unimodal distributions found in Basu and DasGupta

(1997) and maybe discover new ones or even expand the work to other types of

distributions. Another extensive idea would be to consider the relationship between

systemic risk and model risk assessment; this is, in fact, a very actual topic since the

International Association of Insurance Supervisors (IAIS) is in the stage of developing

new approach called the activity-based-approach (ABA) after having used an entity-

based-approach (EBA) for the last few years. The activity-based approach focuses on

identifying the activities that can create a systemic risk rather than the entities that

can do so. Knowing that similar activities tend to use similar models, a model failure

can then generate a failure in an activity on a large scale and stimulate a systemic

problem. Hence, we can bet that the model risk assessment would be an essential

criterion in identifying the systemically important activities. Additionally, systemic

risk assessment and model risk assessment are perceived to have some similarities like

the study of worst-case scenarios for instance; this analogy opens our eyes to more

reliance and trust in using the findings of this thesis as a building block in establishing

the link between the two risks. I strongly believe that there are many areas that are

yet to be investigated when it comes to the incidence of risk and the studies behind

risk preservation and assessment, mathematical development can be drawn from this

paper and ideas can be extended for future reference.
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Appendix A

A.1 Proposition 2.8.4 from Denuit et al. (2006)

1. If {fn, n = 1, 2, 3, ...} is a sequence of convex functions fn : I → R converging

to a finite limit function f on I, then f is convex. Moreover, the convergence

is the uniform on any closed subinterval of I.

2. Every continuous function f convex on [a, b] is the uniform limit of the sequence

fn(x) = α
(n)
1 + α

(n)
2 x+

n∑
j=0

β
(n)
j (x− t(n)j )+

with β
(n)
j ≥ 0, knots t

(n)
j ∈ [a, b] for j = 0, 1, ..., n and real constants α1, α2.

A.2 Proof of Lemma 4

Relation (4.6) implies that

max
S∈UL∩V (µ,s)

TV aRα(S) ≤ max
S∈VU (µ,s)

TV aRα(S) (A.1)

We still have to prove the reverse inequality.

We consider a candidate solution S∗ and a random variable Yc defined similarly as

in the proof of Lemma 2 and presented in Figure 4.4. Hence Yc ∈ V (µ, s) and having

F−1Yc
(p) = F−1S∗ (p) for p ∈ [α; 1] implies that TV aRα(Yc) = TV aRα(S∗).

We then consider YL ∈ UL ∩ V (µ, s) defined similarly as in the proof of Lemma 2
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and presented in Figure 4.5. Furthermore, we can easily deduce that

TV aRα(Yc) =
1

1− α

1∫
α

V aRu(Yc)du =
1

1− α

E[Yc]−
α∫

0

V aRu(Yc)du


=

1

1− α

E[YL]−
α∫

0

V aRu(YL)du

 = TV aRα(YL)

Finally we get

TV aRα(S∗) = TV aRα(Yc) = TV aRα(YL) ≤ max
S∈UL∩V (µ,s)

TV aRα(S)

This ends the proof.

A.3 Beta distribution

If X ∼ Beta(a, b) with a > 0 and b > 0, then the density function of X is given by

fX(x) =
Γ(a+ b)

Γ(a)Γ(b)
xa−1(1− x)b−1 for 0 < x < 1,

where

Γ(x) =

∫ +∞

0

tx−1e−tdt for x > 0

The first two central moments of X are:

E[X] =
a

a+ b
and V [X] =

ab

(a+ b)2(a+ b+ 1)

A.4 Positive homogeneity property of risk mea-

sures

A risk measure R is said positive homogeneous if, for any random variable X,

∀c ∈ R+, R(cX) = cR(X)

Proof that V aR, TV AR, and RV AR are positive homogeneous:
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For c ∈ R+, x ∈ R, α ∈]0; 1[ and X a random variable,

V aRα(cX) = F−1cX (α) ≤ x⇔ α ≤ FcX(x)

⇔ α ≤ P (cX ≤ x)

⇔ α ≤ FX(x/c)

⇔ F−1X (α) ≤ x/c

⇔ c V aRα(X) ≤ x

Thus, V aRα(cX) = c V aRα(X) and V aR is positive homogeneous.

TV aRα(cX) =
1

1− α

1∫
α

V aRu(cX)du

=
c

1− α

1∫
α

V aRu(X)du

= c TV aRα(X)

Hence TVaR is positive homogeneous. Same reasoning can be applied to prove

that RVaR is positive homogeneous.
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Bernard, C., L. Rüschendorf, S. Vanduffel, and J. Yao (2017). How robust is the value-at-

risk of credit risk portfolios? The European Journal of Finance 23 (6), 507–534.

Bernard, C. and S. Vanduffel (2015). A new approach to assessing model risk in high

dimensions. Journal of Banking & Finance 58, 166–178.
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Puccetti, G. and L. Rüschendorf (2012a). Bounds for joint portfolios of dependent risks.

Statistics & Risk Modeling with Applications in Finance and Insurance 29 (2), 107–132.
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