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Abstract

Workers’ Compensation is a mandatory and very competitive Line of Business (LoB) for Insurance

Companies. Companies cannot raise premiums too much from fear of losing market share, but they

also cannot lower them as it needs to be financially viable. With the growing popularity of Data

Science models, internal processes are being adapted to more precise and advanced models.

Following a work accident, a healthcare provider is recommended to the injured workers.

It is our opinion that the recommendation system in production is too rudimentary and can be

optimized. It was our main objective in this internship to optimize this recommendation system.

Our solution provides an estimate of medical and transportation cost which depends on the health-

care provider. With this project, claim managers can have access to the most efficient healthcare

unit, as well as an estimate of the corresponding liability.

Models for the cost were developed using Extreme Gradient Boosting (XGB) as an alternative

to the staple, Generalized Linear Models (GLM). By changing the loss function we applied XGB

to both regression and classification problems and achieved more precise predictions.

To encode categorical variables in numerical values, we developed an algorithm that groups

costs according to each level of a variable for the past 3 years and then computes its average. This

encoding technique is similar to target encoding.

To assess the added value of this model, we compute the costs for the current recommendation

applied. The new recommendation recognizes cheaper alternatives and predicts savings in total

expenses of up to 1,7 million Euros.

Key-Words: Machine Learning, Regression, Boosting trees, Recommendation System, Patient

Attribution, Workers’ Compensation
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Resumo

O ramo de Acidentes de Trabalho é uma linha de negócio obrigatória e com bastante competitivi-

dade. Nos últimos anos, temos observado um crescimento na popularidade de Data Science e esta

transformação passa também por atualizar os modelos e processos internos aplicados em seguros.

Após um Acidente de Trabalho, é recomendado ao beneficiário um prestador cĺınico para acom-

panhar o seu tratamento.

Usando várias variáveis sociais e patológicas modelamos custos médicos e de transportes, de-

pendendo estes do prestador cĺınico principal do lesado. Esta metodologia permite que os gestores

de sinistros tenham acesso não só à melhor recomendação como também a uma estimativa final de

custos.

Os modelos de custo esperado e frequência foram desenvolvidos usando Extreme Gradient Boost-

ing em vez de modelos mais tradicionais como os GLM. XGB é um modelo de Machine Learning

útil para previsão tanto em regressão como em classificação. Para problemas com muitos dados,

este modelo tende a prever com maior precisão e rapidez.

Para uma utilização eficaz do modelo as variáveis categóricas são codificadas em numéricas

através de target encoding modificado. Isto é, as observações são agrupadas de acordo com os

ńıveis da variável e com o ano de ocorrência, e é calculada a média da variável de resposta para

cada ńıvel com as observações dos 3 anos antecedentes.

Por fim, para avaliar o valor acrescentado do modelo desenvolvido, calculamos os custos incor-

ridos caso optássemos pela recomendação em prática. A nova recomendação consegue poupar até

1,7 milhões de euros por ano entre despesas médicas e de transportes.

Palavras-Chave: Machine Learning, Regressão, Boosting trees, Sistemas de Recomendação,

Atribuição de Pacientes, Acidentes de Trabalho
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Chapter 1

Introduction

1.1 Context

Workers’ Compensation is a mandatory insurance in Portugal. It covers accidents arising from

work-related phenomena by ensuring that, after a potential accident, the worker in question is able

to perform its usual work as fast and as efficiently as possible; or by ensuring the worker gets

compensation for potential permanent disabilities. A work accident is one that happens at the

work place during the work time and causes direct or indirect bodily injury, functional disturbance

or disease that leads to disability for usual work, gain or death. By definition, a work place

is understood any place where the worker has to go in virtue of his/her job and where he/she

is directly or indirectly under the supervision of the employer. Work time comprises any time

preceding the usual work time in preparation or related to it and any time succeeding in acts

related to it. Usual and forced interruptions are also contemplated [APS, Associação Portuguesa

de Seguradores (2017b)].

In exchange for guaranteeing the aforementioned conditions for its clients, insurance companies

charge a value per insured worker, commonly referred to as a premium. Premiums are set such

that they are fair for both insurer and employing company. Decreasing premium values increased

the competitiveness for this line of business for many years, and insurance companies needed to

keep up in order to keep market share. Eventually, the loss ratio turned ”negative”, which is to say

the premiums collected were lower than the liabilities. To counteract this effect, premiums have to

increase and/or liabilities decrease. Within the context of this project we approached this problem

by investing in optimizing internal models such as a recommendation for healthcare providers.

2



Francisco Canto Moniz CHAPTER 1. INTRODUCTION

After a work accident, a healthcare provider is recommended to the injured worker based on

his residency’s municipality and the observed pathology. By analyzing expected costs for each

healthcare provider and expected transportation costs the recommendation can be improved. This

means that a less-than-optimal recommendation will happen less often therefore reducing costs

inherent to this operation.

A recommendation based on costs would usually be obtained from the application of Generalized

Linear Models. The GLM based approach provides an easy to interpret structure and displays the

influence of each variable on the final prediction. This model provides a greater visibility which

is crucial because insurance companies are required by law to disclose the factors that lead to

oscillations in premiums. However, for internal models this explainability is unnecessary and GLMs

may be replaced by better performing models. Within the context of this project we use Extreme

Gradient Boosting. Although it is a black-box model it is less susceptible to over-fitting which

means that it behaves better than GLM when exposed to new an unknown combination of factors.

The analysis was conducted using R, a programming environment for statistical computing and

plotting. All these factors made this project significantly relevant, not only for the industry in

question, but for the personal development of the author of this report.

The developed model considers several social, demographic and pathological variables to esti-

mate the average cost and frequency variables. Perhaps the most important explanatory variable

is the healthcare provider. By stressing it we simulated the cost for each medical facility, and thus

we can compare and choose the best option for each patient. Transportation is also an important

factor and contributes for a more accurate choice of the final cost. A more precise prediction of

transportation costs contributes to a more accurate choice of the healthcare provider.

1.2 Motivations and Goals

The present report summarises the analysis developed from February to July at Fidelidade. I joined

the Direção de Estudos Técnicos de Não Vida e Estat́ıstica (DET) where I focused on the line of

business of Workers’ Compensation (WC).

The project was organized in a progressive manner where three main goals were defined:
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• Modelling the main cost components that can be dependent on the healthcare provider;

• Evaluating the impact of the distance between the injured worker and the healthcare provider;

• Finding the healthcare provider that minimizes the total costs of the injured.

The scope of the internship is to start building a model for patient attribution, as well as claim

estimation. By obtaining a preliminary average of the incurred costs by the treatment of a workplace

injury a more accurate provisioning can be made at the start of each process.

Transportation from the residency of the injured worker to the treatment facility must be pro-

vided by the insurer and its cost is estimated assuming taxis are used. The prices for taxis are fixed

leaving only the driving distance and the number of hospitals visits to be estimated.

For medical expenses this dissertation explores two models - Generalized Linear Models and

Extreme Gradient Boosting. Generalized Linear Models have been the standard in insurance,

results are easily explained and have a solid mathematical background. By drawing a comparison

with Extreme Gradient Boosting, we can understand the differences and verify whether the increase

in accuracy outweighs the loss in explainability.

1.3 Document Structure

The structure of this report is as follows: in chapter 2 the data used for this project is presented

along with variables used for modelling. Additionally, some restrictions coming from the data are

addressed. chapter 3 explains Extreme Gradient Boosting theoretically. Further methodologies

related to modelling are clarified. chapter 4 and 5 introduce Medical and Transportation expenses

and their predictions. chapter 6 presents the main components of the recommendation system and

at last chapter 7 contains conclusions and future work.
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Chapter 2

Data

In this chapter an introduction is made to the datasets, the methods used for wrangling the data

and the main constraints found are discussed.

2.1 Introducing the main datasets

For the construction of the multiple models employed throughout the project there are two main

datasets. The first dataset contains all the information regarding the accidents as well as the

information about the injured and the second dataset contains the information of the receipts -

amount, entity providing care, relevant dates and nature of the expenses.

The first dataset includes all accidents in the line of business of Workers’ Compensation except

where Fidelidade is not the lead co-insurer, meaning, contracts where Fidelidade is not the main

retainer of risk. The study includes all such contracts from 2007 until 2018. This applies to standard

employed workers as well as self employed workers. Only claims that have been deemed closed are

considered, which is to say that the cost of the claim is not expected to increase. Over the course

of twelve years nearly 600 000 accident reports were accumulated. However due to missing data,

opened cases and further restrictions we will consider 280 000 useful for modelling.

The second dataset logs all filed receipts and has over 6 million entries. These are the receipts of

the claims, segmented by nature of the expense and include information regarding medical provider.

Examples of natures of expense include medical expense, physiotherapy, and imageology exams.

Information was exported from SAS Enterprise but pre-processed in R. Models were developed

in R and final results were analysed in Excel.

5
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2.2 Variables

Variables can be separated in response variables and explanatory variables. We will introduce them

and explain the pre-processing methods used.

2.2.1 Response variables

Response variables are the variables that we are modelling and that we deem important for rec-

ommending a healthcare provider. Since the recommendation is to be based on basic health care

and physiotherapy we will be modelling frequency of healthcare treatments as well as their costs.

In this context frequency is used to represent the number of different days that a patient needs to

go to healthcare provider or physiotherapy centre, and so we will be modelling physiotherapy and

general medical expenses separately. Our response variables are:

• Total cost of simple medical expenses;

• Total cost of physiotherapy (when physiotherapy is required);

• Proportion of physiotherapy;

• Number of days of out-patient visits to healthcare providers;

• Number of days of out-patient visits to physiotherapy centres.

WHere out-patients are patients who are not hospitalized while in-patients are hospitalized at the

hospital.

There were some obstacles raised while building these variables. Due to the internal categoriza-

tion of expenses, we had to restructure the categories to better fit the purposes of our research.

This is further explained in chapter 4. As for the physiotherapy the number of sessions had to

sometimes be inferred based on overall price of physiotherapy or on existing information of phys-

iotherapy packages, because several expenses were wrongly logged. On our first approach we tried

modelling number of physiotherapy packages, but soon realized that packages can contain different

number of sessions. The information would also be distorted by physiotherapy sessions that were

not attended as these are not paid.

6
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Training accurate models requires big datasets with meaningful data, as such, we aggregated

common medical expenses and built a separate model for physiotherapy. The aforementioned

aggregation can be found in chapter 4.

Surgery and other expenses with lower frequency were removed, as models built would not be as

reliable. Furthermore, when considering variables for the model, we want variables with complete

information (meaningful data) that can explain the model. Thus, variables that were partially

complete (missing data) were discarded.

As for the modelling of the transportation cost and frequency of in-patient appointments, a

dataset from the portuguese postal office (CTT - Correios de Portugal. S.A.) [CTT, Correios de

Portugal, S.A (2019)] was used for connecting zip codes with municipalities and districts, and from

the expenses dataset we count the different days of service provided to estimate a number of visits

to healthcare providers. A last dataset was built for distances between healthcare providers and

injured’s residency using Google Maps queries.

Lastly, the claims happen over 12 years and a major concern is the medical inflation. We took

a first step by analysing the observed changes in price of each medical expense over the years and

surprisingly most expenses had decreasing prices. That is, over the years the contracts drawn with

healthcare providers accommodated the same treatments at lower prices. An explanation found is

that a contract with Fidelidade provides a steady stream of new clients for healthcare providers

allowing them to charge lower prices.

2.2.2 Explanatory variables

The explanatory variables can be split into social, demographic and pathological variables. For

Extreme Gradient Boosting all input variables need to be encoded into numerical values. With this

in mind, we can still use categorical variables, but first we must encode them into numerical ones.

Before going further into the variables that were used, we need to assimilate two basic concepts

for transforming categorical variables into numerical variables. One-hot encoding is the process

of using dummy variables to represent different levels. Every level of a variable is compared to a

fixed level and thus we can encode any categorical variable with n level in to n− 1 variables [Lantz
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(2013)]. An example can be seen in equation 2.1.

sex =


1 if sex is male

0 if sex is female

(2.1)

This is an effective method for variables with few levels and when the steps between levels are the

same, if variables are not nominal this should not be used. Thus, encoding the remaining variables

requires different methods. We opted for target encoding, where a statistic - in this case the mean

- of the target variable is taken for each level, as shown in [Feature engineering I - Categorical

Variables Encoding (2018)]. In consideration of the extent of years in the study, the grouping for

each level considers only the previous 3 years, which also proved useful to provide more consistent

predictions in levels with few observations. To combine variables we group observations according

to the different combinations of levels of both variables and compute the average value of the past

3 years. The algorithm is only slightly modified to accommodate this.

The social and demographic variables included in the model were sex, age, risk zone and salary

of the injured, and the Economic Activity Code (CAE) of the company. The sex is a binary variable

so using one-hot encoding we transform it into a numerical variable. In the case of the age variable

we left the values as numerical. Salary was grouped according to a factor of the national minimum

salary and used only to build combined variables. Risk zone is a variable built for another project

at Fidelidade which we re-purposed. As for Risk Zone, municipalities were distributed according

to the risk companies were exposed to in the LoB of WC. Portugal is divided into 16 Risk Zones.

As for the Economic Activity Codes, there are over 1 000 CAE’s thus they were organised into

18 clusters. This variable was also built for a different project at Fidelidade. Both these variables

are good examples of situations where one-hot encoding would create an abundance of variable

columns, but mean encoding can synthesise information into one column.

Companies register two main CAE’s, even if involved in more activities. For this study we

use only one of those CAE chosen at random. This is used to simplify the analysis however we

recognise problems can arise. For example, in construction we can have an electrician and an upper

management employee who are exposed to very different risks but classified as belonging to the same

category. We attempt to mitigate the effect of a single CAE by creating a combined variable which

8



Francisco Canto Moniz CHAPTER 2. DATA

includes salary and activity code, so that we can better identify the risk each worker is exposed to

and hence refine the performance of the models.

As for pathological variables we have the pathology and the cause of the accident of the injured

party. The pathologies are defined according to the International Disease Code (IDC9) [Organiza-

tion (1978)], but further structured into group according to expert judgement. The cause of the

accident is a categorical variable with values such as ”falling of object”. As in other categorical

variables, they are encoded into numerical by target encoding.

2.2.3 Healthcare providers

An initial evaluation of an injured worker’s condition is performed over the phone and a healthcare

provider is recommended accordingly. This recommendation is a pivotal variable for this project.

The first provider is of paramount importance as it evaluates the full extension of the damage and

recommends the best fitting treatment.

The first step is finding the first viable healthcare provider for our sample. Fidelidade has a

network of healthcare providers able to assist any injured worker close to their residency. The con-

tracts are reviewed yearly and Fidelidade may change the contracts established with these centres.

We were provided with a full list of healthcare providers, which included not only present, but also

past medical centres. Furthermore, public hospitals and companies owned clinics (PMT - Posto

Médico Tomador) are also part of this list, even though these are not possible recommendations

as they are only used in particular occasions. To identify the healthcare provider of each injured

worker we use the first healthcare provider that treated the patient, however when such institution

is a public hospital or a PMT we retrieve next eligible healthcare provider so as to not discard any

more data.

In some cases, doctors and special services of an hospital have their own healthcare provider

identification number and so we aggregated them under a main healthcare provider. Each healthcare

unit is accompanied with a classification according to the services available. When we have less

than 1 000 injured workers treated in one health centre we pool them together with other healthcare

providers under similar conditions. This reduces the levels of the variable and increases accuracy

of predictions for small clinics for which we have less data.

9
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For our recommendation, we considered 219 Physical Rehabilitation Centres and 350 general

healthcare providers distributed throughout the Portuguese mainland.

2.3 Main Constraints

Wrangling the data proved to be a challenge as many variables had to be built from the available

information. Examples of these are the transportation variables, such as number of physiotherapy

sessions, or main healthcare provider. As for working with Healthcare providers and the nature

of expenses presented we struggled with many adversities due to misclassifications. Overall, the

biggest challenge was understanding which information was available and how to best make use of

it.

It is worth noting that the project was developed in a computer with 8GB of RAM, and we were

using datasets with several million entries so the whole process of wrangling data, training models

and computing final results was time exhaustive and any small correction required long periods to

run.

10



Chapter 3

Extreme Gradient Boosting

Artificial Intelligence is a field of Computer Science studying the creation of intelligence as seen

on humans. As an example, machines that are programmed to learn without being explicitly told.

Better known as Machine Learning. Machine Learning is a data analysis and algorithm development

method that learns from data fed into the model. By continuously learning from new data, the

algorithm is able to extrapolate and learn hidden features of the data.

The Machine Learning algorithm we used is Extreme Gradient Boosting. By boosting decision

trees, the algorithm can solve regression or classification problems. Comparing to other gradient

boosting algorithms XGB shows optimization for big data sets with sparse data, performs out-of-

core calculations and increases the model performance which shows faster run times than other

similar algorithms [Chen & Guestrin (2016)].

3.1 Models leading to Extreme Gradient Boosting

Extreme Gradient Boosting is one of the most advanced algorithms using decision trees. To fully

understand it, we should first review some concepts that lead to its development.

The most basic element of XBG is a decision tree that can be used for classification or regression.

Decision trees can be used as a prediction model. Fundamentally, in each node of a tree we make

a decision, a variable is chosen and split, separating the observations. After several decision splits

we have a decision tree with all observations distributed along the leaves. A statistic, such as the

mode, is used to compute the final prediction. A singular tree although easily interpretable is prone

to over-fitting [James et al. (2014)]. Tree learning algorithms are also good for handling missing

data and ignoring redundant variables.

11
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Single decision trees have predictions with high variance and low accuracy. Thus Breiman sug-

gests a new improvement, Bagging or Bootstrap Aggregating. As the name indicates, random

sub-samples are bootstrapped to generate different trees. A statistic such as the mode in classi-

fication or the average in regression is used to aggregate predictions. This methodology not only

presents more accurate results, as it lowers the variance of the model. The main drawback is the

loss in interpretability of the model [Breiman (1996)]. While in a decision tree we can explain

the final result by following the path to the leaf, in bagging observations in different trees fall in

different leaves so such a definite answer cannot be given. Even though bagging works for reducing

the variance, the correlation between trees is still high.

Stochastic modelling presents the perfect solution to high correlation between trees by consid-

ering a sub-space of the feature space. That is each tree is built using only part of the available

feature space, reducing correlation and improving accuracy [Ho (1995)]. Finally, we can look at a

Random Forest as an ensemble of trees giving equal weight to each tree, which suggests an approach

where the weights are optimized for a better model. This is the advancement made with boosting.

Boosting like the previous algorithms generates thousands of different trees, each tree on its

own providing a bad estimator, but by carefully selecting the impact of each tree a more robust

predictor is built [Friedman et al. (1998)] and [Schapire & Freund (2012)]. Boosting selects a base

classifier, that is defined as any classifier better than random guessing which usually is weak by

itself. This assumption, that a base classifier is weak by itself, is the weak learning assumption.

After building a classifier and analysing which observations were badly predicted we can build

the next classifier giving more weight to the input space that had bad predictions. Before explaining

boosting we will introduce two concepts, the training and validation loss.

3.2 Training and Validation loss

When building a model, an important step is the evaluation of the results. To verify the accuracy

we compare the predictions to the observed values. Furthermore, we may want the results to follow

a business objective and balancing these goals is part of the model building process. Thus, a first

step in prediction is always to partition the data. By setting two samples, we can train the model
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in the first data and then use new data (unknown to the model) to predict. This methodology uses

two losses, the training loss when training the model on the majority of the data and the validation

loss when applying the model to unseen data.

Training loss, also known as the objective function, matches the business objective. For example,

when modelling costs the distribution of the predictions has to be similar to the distribution of the

data. In Actuarial Science, it is usually assumed that costs follow an heavy tail distribution, such

as a Gamma, and frequency follows a discrete distribution such as Negative Binomial or Poisson

Bahnemann (2015). For our data in particular we found that costs were closely represented by

a compound Poisson-Gamma and that frequency of medical sessions was similar to a Generalized

Poisson. For the current project, Training loss is optimized by maximizing the likelihood functions

of the corresponding distributions.

Validation loss evaluates the performance of the model. During training we have instructed

our model to follow a distribution function and in testing we want to make sure it resembles the

sample as closely as possible. The loss applied varies according to the type of problem at hand. In

classification the Area Under the Curve (AUC) is usually the standard, and for regression the Root

Mean Square Error (RMSE) is used.

3.3 Reviewing Tree Boosting

The premise for a typical supervised learning problem is a sample of n observations with m features,

x is the feature vector, and the response or target variable is y. That is (x, y), where x ∈ <m and

y ∈ <. During training we build a predictor with a part of the sample leaving the rest for assessing

the accuracy of the predictions in a sample unknown to the model.

Boosting is an additive model [Friedman (2000)], where the predictor is obtained by an iterative

improvement over the last predictor. Suppose our tree ensemble model has K additive functions,

then:

ŷ
(k)
i = ŷ

(k−1)
i + ft(xi), y = 1, . . . , n (3.1)

And summing over all k,
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ŷi =

K∑
k=1

fk(xi) (3.2)

Figure 3.1: Scoring of observations, by summing predictions of individual trees to calculate the final

prediction.

Each fk is an independent decision tree with T leaves and weights ω on the leaves. For regression,

the leaves contain a continuous score, ωi ∈ <. Each observation is classified by the tree according

to the decisions at each stump and a final prediction is obtained for each observation by summing

the score of the leaves in each tree, as shown in figure 3.3.

The set of rules of functions used by the model is determined initially by minimizing the following

objective.

Obj =
∑
i

l(yi, ŷi), (3.3)

where l is a fitting convex loss function. This measures the accuracy of the model by comparing
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the predictions ŷ with the target variable y. Afterwards a penalty to the model, Ω(fk), is applied

to avoid complex set of functions. For this model, L2 regularization is applied [Ng (2004)], where a

penalty is added to the loss function as the square of the weights/scores. This means larger scores

on a leaf have a bigger penalty, which spreads the decision more evenly among all trees to avoid

over-fitting. Without this regularization we would have traditional gradient tree boosting problem.

Obj =
∑
i

l(yi, ŷi) +
∑
k

Ω(fk) (3.4)

=
∑
i

l(yi, ŷi) +
∑
k

γT +
1

2
λ||ω||2, (3.5)

where γ represents a penalty that is added to the model to prevent using complex trees with lots

of leaves.

The variables for this model are equations and as such, the optimization is done stepwise,

yti = yi
(t−1) + ft (xi), then at step t, we have that the objective is given by:

Obj(t) =

n∑
i=1

[
l
(
yi, ŷ

(t)
i

)]
+ Ω (ft) =

n∑
i=1

[
l(yi, ŷ

(t−1)
i + ft(xi))

]
+ Ω (ft) (3.6)

Applying a second order Taylor Series approximation to the loss function, equation 3.6 can be

written as:

Obj(t) =

n∑
i=1

[
l
(
yi, ŷ

(t−1)
i

)
+ gift (xi) +

1

2
hif

2
t (xi)

]
+ Ω (ft) , (3.7)

where gi and hi are, respectively, the Gaussian and the Hessian functions of the loss function. Since

we are minimizing the loss function the constant terms can be dropped, arriving at:

Obj(t) ∝
n∑

i=1

[ft(xi)] + Ω (ft) (3.8)

Let j represent the leaves of a tree. Each observation i falls in one and only one leaf j of a tree.

The value of the predictor for a observation i in a tree is going to be the weight of the leaf j. Let

Ij denote the set of possible leaves for each observation. Then:

Ōbj(t) =

T∑
j=1

ωj

∑
i∈Ij

gi

+
1

2
ω2
j

λ+
∑
i∈Ij

hi

+ γT. (3.9)
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To compute the optimal weights in each leaf, we need only minimize.

∂Ōbj

∂w∗j
= 0 ⇐⇒

∑
i∈Ij

gi + ω∗j

λ+
∑
i∈Ij

hi

 = 0 (3.10)

⇐⇒ ω∗j = −
∑

i∈Ij gi

λ+
∑

i∈Ij hi
(3.11)

For a fixed tree structure, the optimal value is obtained by substituting (12) in (10). Then:

Ōbj(t) = −1

2

T∑
j=1

(∑
i∈Ij gi

)2
λ+

∑
i∈Ij hi

+ γT. (3.12)

To compute the loss reduction obtained by an individual split, we split the set of leaves I. Each

node, can either go to left, Il, or to the right Ir, such that I = Il ∪ Ir. By applying the following

formula, we evaluate possible split candidates.

Lsplit =
1

2

[ (∑
i∈Il gi

)2
λ+

∑
i∈Il hi

+

(∑
i∈Ir gi

)2
λ+

∑
i∈Ir hi

−
(∑

i∈I gi
)2

λ+
∑

i∈I hi

]
− γ (3.13)

3.4 Split Finding

On equation 3.13 several splits are considered to minimize the gradient, but we have not seen how

the split points are chosen. Although computationally expensive, the best method is a greedy search

going over all the points. If the computer does not have enough memory to perform the greedy

algorithm, then we can use a quantile search. For either algorithm, the data in each feature column

is sorted and stored separately. These feature columns are equal for all trees, so by storing this

information the model runs faster. For each feature space, quantiles that give the lowest gradient

increase are selected.

A major road block in split finding is sparse data. Sparse data can be mainly caused by missing

data or, in some cases, frequent zeros in data. XGB handles sparse data by choosing a default

direction to follow in a split with missing data. For each feature, the algorithm learns which

direction brings the lower increase in gradient.
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3.5 Meta parameters

The model gives the user a lot of flexibility in the adjustment of meta parameters. There are two

main categories of parameters explored throughout the modelling phase - tree boosting and learning

task. Boosting parameters help control over-fitting and overall accuracy while learning task define

the objective to be optimized and the evaluation metric (Training and Validation loss). Table 3.1

presents the final parameters chosen.

Tuning requires analysing variations in several parameters and be careful with dependencies

and relationships between different parameters. As such we restricted our tuning to eta, maximum

depth, gamma, sub-sample, column sample by tree and lambda. Eta is the learning rate of tree,

this is every prediction from a tree is multiplied by a factor to reduce its impact. Max depth sets

the depth of trees and is used to control over-fitting, if a tree goes to deep it will learn relationships

that are too specific to a particular sample. Gamma specifies the minimum loss for a split; if a split

does not reduce the gradient by the specified value then that is a terminal node. It is worth noting

the algorithm does prune the tree at the end removing any split that did not add enough value.

Column sample by tree and sub-sample are the proportion of the feature and sample space used in

each tree, respectively. Lambda controls L2 regularization on terms, as seen on equation 3.5.

As for comparing different models two main evaluation metrics were tested, Root Mean Square

Error (RMSE) Chai & Draxler (2014) and Area Under a Receiver Operating Characteristic Curve

Fawcett (2006). RMSE is advised for Regression Models while AUC is appropriate for Classification.

3.6 Tweedie

For a given variance-power parameter, p, a Tweedie distribution belongs to the family of the

exponential dispersion models. The Tweedie distributions have a special mean-variance relationship.

Given a random variable Y ∼ Td(µ, σ2), that is mean and dispersion parameter σ2, its variance is

given by

V ar(Y ) = σ2µp (3.14)
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Meta Parameter Average

Cost

Physio

Average

Cost Medi-

cal

Proportion

of Physio

Number of

Physio Ses-

sions

Number

of Medical

Sessions

Max Depth 4 3 3 3 3

Col-sample by tree 0,8 0,8 0,8 0,8 0,8

Sub-sample 0,8 0,8 0,8 0,8 0,8

Eta 2 2 1 2 2

Gamma 2 2 2 2 2

Objective Tweedie Tweedie Bernoulli Poisson Poisson

Evaluation Metric RMSE RMSE AUC RMSE RMSE

Tweedie Variance

Power

1.25 1.35 NA NA NA

Table 3.1: Meta parameters tested and values chosen for training models

Where p ∈ is the variance-power parameter. By changing p different distributions are obtained.

Namely:

• p = 0, Normal distribution

• p = 1, Poisson distribution

• 1 < p < 2, Compound Poisson-Gamma distribution

• p = 2, Gamma distribution

• p = 3, Inverse Gaussian distribution

We take special notice of the Compound Poisson-Gamma, we can use it to model total claim cost

where it is assumed Poisson distributed arrival of claims and and Gamma distributed claim amounts

[Jørgensen & C. Paes De Souza (1994)].
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3.7 Generalized Linear Models

To be able to assess if employing more advanced models is necessary, we build the models for

medical costs also using GLMs. As GLM is a well known topic we will not present a theoretical

introduction. However, for those interested we recommend consulting [McCullagh & Nelder (1989)]

for a theoretical approach and [Goldburg & Tevet (2016)] for a practical overview.
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Chapter 4

Modelling Treatment costs

In this chapter we will apply the model described previously to predict costs incurred from treat-

ments. We start by understanding how receipts are kept and how to best use them for modelling.

Once the costs are aggregated, a model is built using GLM and XGB and an analysis of the results

obtained in each model is provided.

Fidelidade organizes work accident expenses into categories according to their nature. These

can be:

Figure 4.1: Diagram of expenses in Workers’ Compensation

Covenants are fees paid to the healthcare provider for a package of treatments. There are
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three main aspects in a Covenant: period of coverage, extension of treatments and premium. The

covenant for each healthcare provider is unique, updated on a yearly basis and it is assumed the

premium is designed as an average of the cost of the covered treatments.

To each new injured worker, Fidelidade attributes a ”process number” under which we can

aggregate receipts to obtain the full cost of each claim and this is the key for connecting with other

data tables. We are interested in costs related to medical expenses and since we are creating a

general recommendation system, we will predict only common medical costs. Figure 4.1 decomposes

medically related expenses in its several components.

Figure 4.2: Distribution of medical expenses.

Besides all the medical costs, another big influence on the total cost is the wage repayments

from a work leave. After an accident, the worker might have to rest or attend treatments during

the day. This situations are classified, respectively, as absolute and partial temporal disabilities.

During this project these costs are not considered, however, they are acknowledged and present a

possible improvement on the developed models.
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4.1 Medical Aggregate Expense

In order to correctly model each cost category, a main assumption concerning the treatments covered

in each covenant contracts has to be set. If coverages varied we could not draw a comparison of costs

between different healthcare providers. Thus, to set a fair and equal starting ground, all medical

expenses that are covered in the most in-depth contract are aggregated under a new expense. This

new category is the Medical Aggregate Expense and can be computed as:

Medical

Aggregate

Expense

= Covenant + Appointments + Medical Expenses + Exams, (4.1)

where Exams expense exclude X-rays and CT scans which are never covered in covenant contracts.

For the modelling of the Medical Aggregate Expense we used Extreme Gradient Boosting with

a Tweedie distribution as the training loss and Root Mean Square Error as the validation loss.

During the modelling process we run tests on several meta parameters adjusting according to the

observed errors. The final parameters can be seen on table 3.1. As for the variables we performed

a final test by consulting one of the outputs of the model, the importance of the variables, which

is measured as the total sum of the reduction in likelihood of using a variable in each split. The

following figure is an example of the outputs, the remaining model summaries and plots of variable

importance can be explored in the Appendix A.

Before analysing the results we should first understand what each figure shows. On the left side,

the plots compare observations and predictions to understand overall fitness, while on the right

an analysis of the errors is performed. We would like to draw the attention of the reader to the

first plot (top-right), a scatter plot of observation-predictions where we can observe the variance in

predictions. On the bottom right of this figure 4.3 different error measures are displayed (Adjusted

R-squared, RMSE and Mean Absolute Error). These metrics are the main criteria for choosing the

final model. On the bottom left, the plot displays the densities of predictions and observations. It

is desirable that the shape of the densities are similar so that a new observation can be accurately

predicted. As for the right side of the figure, we can study the residuals of the models. Perhaps the
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most useful is the error density map. If the curve is asymmetric then predictions are biased to be

higher or lower than observations.

We are now ready to compare models built using GLM and XGB methodologies. Figures 4.3

and 4.4 can be used to compare both models. The shape of densities in the values distribution plots

are very similar, thus the decision was made based on the error measures.

Figures 4.3 and 4.4 model the Expected Medical Costs using XGB and GLM,respectively. In

concrete terms, XGB provide a 100% better R-squared, 12,5% lower RMSE and 11% Mean Absolute

Error. All these measures prove that for this problem XGB is the best choice.

During training we selected the explanatory variables with higher importance as these have more

explainability of the results and discard the remaining. This importance plots for the variables of

each model can be consulted on the Appendix. Figure 4.3 and 4.4 present the predictions from the

models.
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Figure 4.3: R output from Expected Medical costs with XGB

Figure 4.4: R output from Expected Medical costs with GLM
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4.2 Physiotherapy

Physiotherapy is the physical rehabilitation of the injured, which includes hydrotherapy, and its

taken in sessions up to 20 sessions. For a full recovery the injured worker might need to undertake

physiotherapy more than once, in which case the cost is aggregated to the the first package of costs.

Physiotherapy is an easy addition to the model, the proportion of physiotherapy is high (around

25%) and the physiotherapy centres are usually independent from other health clinics which means

the recommendation system for physiotherapy is separate.

Figure 4.5: R output from Physiotherapy costs

For physiotherapy we are building two models - the proportion of the physiotherapy and the

average cost of the treatment. The models applied were Extreme Gradient Boosting with a vali-

dation loss of, respectively, a Bernoulli and a Tweedie and the testing losses were Area Under the

Curve and Root Mean Square Error.

The procedure for modelling is similar to the Aggregate Medical Costs, the meta parameters

can be consulted in table 3.1. and the results on figure 4.5.
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Transportation Costs

Transportation costs are incurred everytime an injured requires medical attention and it is the

insurance companies responsibility to facilitate it. Under Article 40 of the Workers’ Compensation

Legal Regime, transportation has to be made available to and from the treatment centre [APS,

Associação Portuguesa de Seguradores (2017a)].

The typical means of transportation are buses, taxis, private cars, ambulances and, in rare occa-

sions, airplanes or helicopters. Ideally, workers use public transportation or travel on their own car

and are later refunded for their expenses, however the prices per km are unknown. Transportation

by taxi is provided when the injured worker is unable to drive himself. For the remaining of the

study we assumed transportation by taxi since prices are fixed, so estimates will be consistent even

though they are probably disproportionate to reality.

The cost of transportation will be estimated as a product of the number of kilometers between

injured and healthcare provider by the number of necessary trips and the price per kilometer.

Cost of Transportation = Number of km×Number of trips× Price per km (5.1)

Over the next sections we will analyse each factor and explain its modelling.

5.1 Number of Kilometers

The number of kilometers between two points is given by the driving distance. While querying

google for the distance between two points is feasible for a small sample, when we considered the

size of our sample deriving a formula to estimate this distance was more realistic.
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Figure 5.1: Adjustment factor and derivation of driving distance between injured workers’ residence

and health clinic

Then the idea is to use a reference point in each municipality as a halfway point from a new

injured to the healthcare centre, as shown in figure 5.1. The distance is then estimated as an

average between the adjusted euclidean distance and the driving distance. Let W represent the

injured worker residence, R the reference point and H the healthcare provider.

Estimated Distance =
DistWH ×Adj. factor + (DistWR ×Adj. factor +DistRH)

2
, (5.2)

where Distij represents the distance between i and j. The adjustment factor is given by the following

average:

Adj. Factor = E

[
Driving Distance

Euclidean Distance

]
(5.3)

Distances are computed from all injured workers’ residences to all healthcare providers locations,

these are the healthcare providers described in chapter 2. Healthcare providers and injured in the

Autonomous Regions of Açores and Madeira were removed as they are not connected to Mainland

Portugal by road.
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5.2 Number of trips

Two models had to be built - one for the medical sessions and another for physiotherapy. Medical

expenses will englobe medical appointments, speciality appointments and out-patient expenses.

Adding all bills registered in separate days we have the total number of necessary rides. On the

other hand, as for physiotherapy the response variable is just the number of sessions.

Extreme Gradient Boosting will again be used, this time we are modelling frequency, so the

loss function is a generalized Poisson. Input variables need to be numeric so the same encoding is

applied.

5.3 Price per Kilometer

The price per kilometer depends on the number of kilometers driven and the injured workers’ home

district.

A fee will be added according to the waiting time of the taxi driver. This fee is paid in periods

of 30 minutes. It is assumed that the average waiting is 1 hour and 30 minutes, corresponding to

an increase of 10 euros per trip.
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Recommendation Systems

A Recommendation System provides a suggestion for a user. In our project we are interested in

suggesting healthcare providers to injured workers. By creating a scoring function we obtain a

ranking of healthcare providers personalized to each user. Currently any injured worker is recom-

mended to a partner facility based on initial assessment of pathology and residency’s municipality.

By considering an estimation of the medical costs and adding a more accurate prediction of travel

expenses we rank health centres according to their costs. The model gives a score to each health-

care provider and recommends to each injured worker an optimal healthcare provider. Currently

any injured worker is recommended to a partner facility based on initial assessment of pathology

and residency’s municipality. It was observed that for more serious injuries an ambulance is called

taking the injured to a public hospital and only when the injured is stable is he/she then transferred

to a partner healthcare provider.

Our objective is to find the healthcare provider with the lowest cost. To get an estimate of

the cost of each one, we estimate the costs of each healthcare provider with the previously trained

model. The estimated cost of travel is added to obtain a final cost estimate. For each injured

worker we minimized the cost and found the optimal healthcare provider.

From a business perspective Fidelidade built central medical units to assist work accidents.

These units have invested in doctors specialized in many pathologies, thus providing better di-

agnostic, assessment of injury and ultimately lower incidence of Permanent Disability. There is

higher attention to identifying chronic disease to avoid future liabilities. These are all advantages

in choosing the central units that are hidden from the model.

Two scenarios were developed, unrestricted recommendation and segmented in hospital/health

clinics. An unrestricted recommendation can suggest an injured to a clinic even when the pathol-
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ogy is severe. The second scenario segments the healthcare sample into hospital and clinic and

recommends within the same class that the current model would recommend.

6.1 Scenario I - no restrictions

In the first scenario we apply no restrictions, injured can be recommended anywhere. Initially, we

compare our models recommendation to the current recommendation. However, to understand the

degree of difference between predictions we relax our restrictions and start recommending the same

facilities as the current model if the variation between predictions is lower than some percentage.

Table 6.1 displays the results for variations of 5, 10, 15, 20 and 25%. This contains data from 178 642

previous work accidents. The actual recommendation is unknown, so a proxy is used based on what

the current system would recommend. First column informs the reader of the main statistics when

our model would give the same recommendation. Afterwards, each column considers a different

variation of prices for which the recommendation would remain the same. That is, in the second

column where a variation of 5% is considered, if we predicted hospital A to be only 4% cheaper

than the current recommendation of hospital B, then we would still recommend hospital B.

Base Rec. Rec. with

5% var.

Rec. with

10% var.

Rec. with

15% var.

Rec. with

20% var.

Rec. with

25% var.

Count 55 956 69 965 81 341 94 214 102 594 111 267

Percentage (%) 31,46 39,34 45,74 52,98 57,69 62,57

Portfolios Ex-

pected Gain

(e)

6 926 834,98 6 882 867,49 6 766 952,45 6 550 689,59 6 345 736,84 6 069 785,21

Annual Ex-

pected Gain

(e)

2 287 722,17 2 273 201,05 2 234 917,85 2 163 492,83 2 095 803,19 2 004 664,79

Table 6.1: Global Summary of scenario I

6.2 Scenario II - Conditional recommendation

The base scenario has an intrinsic flaw, each healthcare provider is limited by the number of

patients a health clinic can accommodate. Smaller clinics do not have the dimension to be one of
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the main health providers. To reduce the probability of overburdening the medical units the patient

attribution is similar to the current model - if an hospital would be recommended, then we will

recommend an hospital. Otherwise, we recommend a health clinic.

For this scenario we classified the recommendation in production in hospital/Clinic and recom-

mend Hospitals if it would usually recommend hospitals and clinics otherwise. The main prob-

lematic with recommending too hany injured to clinics is the patient capacity of medical units.

While an hospital might be able to support a big surge in injured workers, a small clinic can easily

be overrun. Table 6.2 displays the results from the aforementioned variations in prediction values.

Overall, we can see that an increase in similarity with the current recommendation comes at a small

reduction in gain.

Base Rec. Rec. with

5% var.

Rec. with

10% var.

Rec. with

15% var.

Rec. with

20% var.

Rec. with

25% var.

Count 58 709 71 337 81 024 91 108 98 333 107 528

Percentage (%) 35,00 42,52 48,30 54,31 58,62 64,10

Portfolio’s Ex-

pected Gain(e)

6 030 780,75 5 987 883,06 5 887 623,13 5 711 750,91 5 522 338,13 5 218 406,28

Annual Ex-

pected Gain

(e)

1 991 782,81 1 977 615,01 1 944 502,21 1 886 416,99 1 823 859,73 1 723 480,31

Table 6.2: Global Summary of scenario II

31



Chapter 7

Conclusion and Future Work

7.1 Conclusions

After analysing and pre-processing all information available we had to decide which cost categories

would be modelled. All medical expenses with high frequency were aggregated for modelling. We

used Extreme Gradient Boosting which showed clear advantages over GLMs.

Following the medical costs, we model the transportation costs, by estimating the distance

Injured Worker - Healthcare Provider and the number of trips. The transportation is assumed

to be provided by taxis where the price per kilometer is fixed. When the healthcare providers

recommended by both models are different, there is on average a 5 kilometer decrease from choosing

our recommendation which translates into saving approximately 14 euro per injured worker in

transportation alone.

Two recommendation systems are built. On a first attempt, no restrictions are applied to patient

attribution. The scoring is based only on the cheapest overall cost. However, we recognise that

not all healthcare centres are equipped to perform, for example, surgery or accommodate burn

victims. Thus a second model is created, where healthcare providers are split according to size

and functions in hospitals and health clinics. The cost predicted on this second model are more

realistic, the expected yearly gain is still high and estimated at 1,7 million e.

7.2 Future Works

Many improvements, tests or even methodologies have been left out due to time constraints. Run-

ning the currents models is a time consuming process and the methodologies applied were thought
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out with possible improvements in the future.

First and foremost, a global estimate of expenses incurred from a Temporal Disability has to

be computed. For this work we focused on basic medical expenses, physiotherapy, imageology and

transportation costs leaving out salary repayments for recovery days, pharmacy expenses, surgery/

hospitalisation and prostheses. For salary repayments we would like to model the number of days

with partial and/or absolute disability and build an estimate by multiplying by the repayment

factor and the daily wage. As for the other expenses we would model them separately and each

cost would be added to a final estimate.

Models for regression and classification are always being updated and there are some models

that could have been tested even in the area of boosting that for some problems have reported

better results than XGB, namely Catboost [Dorogush & Gulin (2018)]. Catboost as in XGB applies

gradient boosting with decision trees to build a predictor but provides an in-model categorical

variable pre-processing which might be more adequate than our current encoding.

During model tuning, a last improvement could be made by adding external information from

national databases. The idea is to combine the information in our entries, such as location or

profession, with national statistics so that we can capture some explanation as to how our response

variables work.
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Appendix A

Models and Variable Importance

In this Appendix, we display outputs from models introduced during the main body but not included

on it. These are the models of frequency for Medical Expenses and Physiotherapy as well as for

the proportion of physiotherapy.

Expected frequency of medical expenses was also modelled with GLM. By using boosted trees

we were able to achieve a 13% reduction in RMSE.

Figure A.1: R output from Expected Frequency of Medical Expenses in XGB
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Figure A.2: R output from Expected Frequency of Medical Expenses in GLM
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Figure A.3: R output for the proportion of physiotherapy with XGB

Figure A.4: R output from Expected Frequency of Physiotherapy Sessions in XGB
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In Machine Learning, tuning is the process of adjusting variables and meta parameters to control

over-fitting and accuracy of predictions. One of the observed outputs of the model is the Importance

of each variable, this is calculated as the reduction in the validation loss from applying that variable

in each split. The output is given as the percentage of the impact of each variable. Variables with a

small percentage or impact can then be removed as their impact on the final prediction is negligible.

Figure A.5: Variable Importance of Expected Cost of Medical Expenses in XGB
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Figure A.6: Variable Importance of Expected Cost of Medical Expenses in GLM

Figure A.7: Variable Importance of Expected Frequency of Medical Expenses in XGB

40



Francisco Canto Moniz APPENDIX A. MODELS AND VARIABLE IMPORTANCE

Figure A.8: Variable Importance of Expected Frequency of Medical Expenses in GLM

Figure A.9: Variable Importance of Expected Cost of Physiotherapy Expenses in XGB
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Figure A.10: Variable Importance of Expected Frequency of Medical Expenses in XGB

Figure A.11: Variable Importance of the proportion of physiotherapy in XGB
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