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Abstract

The business of insurance companies is to take on the risk of policyholders (individuals or
companies), receiving in return the payment of a premium. In order to protect themselves
against big losses, and not be at risk of insolvency, insurance companies usually reinsure part of
their portfolio by transferring part of the risk taken to another insurance company. Reinsurance
works, in this way, as the insurance of the insurer itself.

The optimal reinsurance problem aims at answering two fundamental questions: (i) What
type of reinsurance contract should be done; (ii) how much risk should be transferred to the
reinsurance company. This master’s final work, seeks to find the optimal reinsurance for 3
different optimality criterion: (i) minimizing the probability of ruin occurring in infinite time;
(ii) maximizing the expected value; and (iii) minimizing the variance of the process.

To obtain the optimal reinsurance treaty, the classic risk model of Crámer and Lundberg
is approximated by a diffusion process which is described by a Brownian motion process. The
surplus Brownian motion process is defined by parameters that incorporate several character-
istics of the underlying Crámer-Lundberg process, including the different premium calculation
principles and the different types of reinsurance treaties.

In this work, the reinsurance treaties under study are the proportional quota-share treaty
and the non-proportional excess of loss treaty, and the premium calculation principle considered
by both, the first insurer and the reinsurer, is the expected value principle.

After building the model, the probability of ruin is analysed. The present study addresses
this moment of ruin, i.e., when the surplus process hits zero or negative values, in continuous
time and infinite time horizon.

The optimal reinsurance strategy is obtained numerically and a sensitivity analysis is made,
using Mathematica software.

Keywords: Reinsurance optimization; surplus process; Brownian motion; Ruin probability;
Quota-share and Excess of loss treaties; Expected value premium principle
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Resumo

A atividade de qualquer companhia de seguros é aceitar o risco dos seus segurados (sejam pessoas
f́ısicas ou juŕıdicas), recebendo em troca o pagamento de um prémio. Com o intuito de se protegerem
face a grandes perdas, as seguradoras podem ressegurar parte da sua carteira transferindo parte do
risco para outra seguradora, diminuindo assim o risco de insolvência. O resseguro funciona, desta
forma, como o seguro da própria seguradora.

O problema da otimização do resseguro visa responder a duas questões fundamentais: (i) Que
tipo de contrato de resseguro deve ser feito; (ii) Quanto risco deve ser transferido para a ressegu-
radora. O presente trabalho final de mestrado, procura encontrar o resseguro ótimo para 3 critérios
de otimalidade diferentes: (i) minimizando a probabilidade de rúına ocorrer no tempo infinito; (ii)
maximizando o valor esperado do processo; e (iii) minimizando a variância do processo.

Para obter o tratado de resseguro ótimo, o modelo de risco clássico de Crámer e Lundberg
é aproximado por um processo de difusão, que é descrito por um processo Brownian motion. O
surplus Brownian motion process é definido por parâmetros que incorporam várias caracteŕısticas
do processo Crámer-Lundberg subjacente, incluindo os diferentes prinćıpios de cálculo de prémio e
os diferentes tipos de tratados de resseguro.

Neste trabalho vamos focar a análise nos tratados de resseguro proporcional quota-share e não
proporcional excess of loss. O prinćıpio de cálculo do prémio considerado, quer para a primeira
seguradora quer para a resseguradora é o prinćıpio do valor esperado.

Após a construção do modelo, a probabilidade de rúına é analisada. O presente estudo trata
desse momento de rúına quando o surplus process atinge valores nulos ou negativos, em tempo
cont́ınuo e num horizonte temporal infinito.

Através do software Mathematica, é obtida numericamente a estratégia ótima de resseguro e é
realizada uma análise de sensibilidade.
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1 Introduction

The business of insurance companies is to take on the risk of policyholders (individuals or compa-
nies), receiving in return the payment of a premium. In order to protect themselves against big
losses, and not be at risk of insolvency, insurance companies usually reinsure part of their port-
folio by transferring part of the risk taken to another insurance company. Reinsurance works, in
this way, as the insurance of the insurer itself. The reinsurer accepts the risk transferred by the
insurer against the payment of a premium. Both premiums, of the insurer and reinsurer, must be
higher than the expected value of the risk transmitted to it, since otherwise the companies will
bankrupt with probability 1 (see Centeno [7]). There are two fundamental questions that insurance
companies face when deciding reinsurance strategies: (i) what is the optimal form of reinsurance,
and (ii) what is the optimal retention level, i.e., what is the optimal amount of risk that should be
reinsured.

The main objective of this study is to understand, which type of reinsurance, quota-share or
excess of loss treaties, minimizes the ruin probability and which is the optimal level of retention
from the perspective of the insurance company in each case. Additionally, and based on the results
obtained minimizing the probability of ruin, we study which of the reinsurance treaties offers the
highest expected value and the smallest variance to the surplus process.

We start by considering the classic surplus process, the Crámer-Lundberg model. This model
follows a compound Poisson process and can be approximated by a diffusion process. The model ob-
tained is a Brownian motion with drift, which is a stochastic process with almost surely continuous
trajectories and stationary and independent increments (see Dixit [11]).

The model we are considering incorporates the principles for calculating the premiums and
different types of reinsurance treaty. The premium for a given policy is a fixed amount received
by the company as compensation for the risk assumed by the insurer, Centeno [7]. This amount
takes into account to the expected losses and management expenses, but it also includes a safety
loading charge, which serves to compensate any random deviations of the losses in relation to their
average. There are several principles for calculating the premium to be collected. In this study we
assume that the insurance company applies the expected value principle for premium calculation
with a safety loading η > 0, and the reinsurer also applies the expected value principle with a safety
loading θ > 0. As reported by Schmidli [23], the reinsurer’s safety loading must be greater or equal
to the insurer’s safety loading, i.e., θ ≥ η. Otherwise, the insurer could reinsure the whole portfolio
and make a profit without any risk.

The model also incorporates the types of reinsurance treaties under consideration. Reinsurance,
as already mentioned, works as an insurance for the insurance company. Reinsurance treaties can be
classified into proportional and non-proportional type treaties. The non-proportional type includes
excess of loss or stop-loss reinsurance. In this study, we consider the quota-share and the excess of
loss treaties.

The optimality criterion considered to obtain the optimal reinsurance treaty is the minimization
of the probability of ruin. In order to do that, the moment of ruin must be analysed. Ruin occurs
when the surplus process is below zero. The moment of ruin can be analyzed in finite or infinite
time horizon, and discrete or continuous time. The present work studies the moment of ruin in
continuous time and considers the infinite time horizon.

Hence, the aim is to find the optimal reinsurance treaty, using the criterion of minimizing the
probability of ruin for each type of treaty we are considering: the quota-share and the excess of

1



loss treaties. The latter will also be subdivided into the inferior limit M and the superior limit
L contracts. Since we are working in a continuous setup, the ruin time is a first passage time for
which the density and CDF can be analytically obtained. Such expression only depends on the
diffusion parameters. Thus, to minimize this probability analytically, we start by defining each of
the diffusion process parameters and apply it to the ruin probability expression. Minimizing the
resulting expression, in some cases, it is possible to explicitly set an expression for the optimal
minimum.

Assuming that the individual claims follow a Gamma distribution, and after minimizing the
probability of ruin for each of the considered types of treaty, a numerical and sensitivity analysis
is performed. First, a sensitivity analysis on the insurer and reinsurer loadings is carried out, with
the objective of understanding which of the reinsurance treaties gives a lower ruin probability and
which is the optimal level of risk to be retained by the insurance company. Then, the safety loading
of the insurer and reinsurer are fixed and a sensitivity analysis is performed on the parameters of
the underlying distribution with the objective of understanding the behavior of the expression of
the ruin probability as a function of the underlying risk. Additionally, different values of the initial
reserve are considered keeping the remaining parameters fixed, in order to understand how the
value of the initial reserve influences the ruin probability.

Based on the optimal retention levels obtained by minimizing the probability of ruin for each
type of reinsurance treaties under consideration, we analyse which of them offers the highest ex-
pected value, or the lowest variance for the surplus process.

This master’s thesis is organized into 6 main chapters, including this introduction. Chapter 2
provides a literature review, contextualizing the present study. Chapter 3 describes how to obtain
the diffusion model, starting from the classic Crámer-Lundberg risk model. There, the considered
premium calculation principles and reinsurance treaties, namely quota-share and excess of loss, are
formally introduced. In Chapter 4 the moment of ruin is analysed starting from the concepts of
ruin and first hitting time. In this chapter, the expression for the Laplace transform of the hitting
time, the probability of the density of the hitting time, the probability of ruin in infinite time, the
expected value of the first hitting time and its variance are deduced. In Chapter 5 a numerical and
sensitivity analysis of the optimal reinsurance treaty to several parameters of the surplus process
is carried out. Finally, in Chapter 6 the main conclusions of this study are presented.
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2 Literature review

Reinsurance is an important management tool for insurance companies and, according to Li and
Shen [16], is an effective way to spread risk in the insurance business. As Centeno [7] stated, the
main motivation that leads insurance companies to reinsure their portfolios is to protect themselves
against losses that could bring negative results and, consequently, jeopardize their solvency. It is
natural for an insurer to make use of the different types of reinsurance treaties that exist, and
indeed there is no ideal type of treaty applicable to all cases. Each type of reinsurance only
provides protection against certain factors that influence the amount of claims.

The reinsurance optimization problem is a fundamental topic that raises some questions for
actuaries, and it has been widely studied, for example by Schmidli [23], Taksar and Markussen [26]
and Browne [2]. Several criterion can be considered to the optimal reinsurance problem as e.g. the
minimization of the ruin probability, or the maximization of the expected utility of wealth. As in
the present study, authors like Shmidli [24], Zhang, Zhou, and Guo [28], X. Liang, Z. Liang and
Young [17], Hipp and Vogt [13], Shmidli [23] and Taksar and Markussen [26] consider the criterion
of minimizing the ruin probability. Dickson and Waters [8] also minimize the ruin probability
up to some given time horizon, either in discrete or continuous time. The study of Golubin [12]
minimizes the expected maximum loss. Menga, Liao and Siu [22] minimize the probability of ruin
and maximize the expected utility, simultaneously. Cani and Thonhauser [5] maximize the expected
discounted surplus level integrated over time. Finally, Browne [2] minimize the ruin probability
and maximize the probability of achieving a given upper wealth level before hitting a given lower
level.

In addition to the ruin probability, in this study the optimal treaties obtained for each type of
reinsurance are compared regarding the maximization of the expected value, and the minimization
of the variance, of the wealth continuous process.

The optimal reinsurance strategy can be studied both in a static or in a dynamic setting. Studies
in a dynamic environment have been very popular. For example, Schmidli [23] considers dynamic
proportional reinsurance strategies in a diffusion setting and also a discrete setting by means of
compound Poisson process. A year later, Schmidli [24] considers the classic risk model and includes
besides reinsurance, investment in a risky asset modeled by the Black-Scholes model. It considers a
proportional type of reinsurance and, to determine the optimal reinsurance strategy, the Hamilton-
Jacobi-Bellman (HJB) approach is used and a numerical procedure to solve the equation is applied.
Mao et al. [21] extends the work of Zhang and Siu [27] and establishes Hamilton-Jacobi-Bellman-
Isaacs (HJBI) equation to determine the optimal investment and reinsurance strategy for an insurer
whose wealth follows a diffusion process. Liang and Yuen [18] examine the optimal proportional
reinsurance strategy in a risk model with two dependent classes of insurance business. In this
study, stochastic control theory is used to derive closed-form expressions for the optimal strategy
and value functions for both the compound Poisson risk model and the Brownian motion model.
Hipp and Vogt [13] consider a risk process modeled by a compound Poisson process to find the
optimal dynamic excess of loss reinsurance strategy minimizing the probability of ruin in infinite
time and prove the existence of a smooth solution of the corresponding HJB equation. In the
research of Taksar and Markussen [26], they assumed the case of proportional reinsurance and
made use of the stochastic control theory to determine the optimal reinsurance policy. Cani and
Thonhauser [5] look for a dynamic reinsurance strategy and, for that, they use analytical methods
to identify the value function as a particular solution of the HJB equation. Liu and Yang [20]
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assume that: (i) the insurance company receives a premium at a constant rate, (ii) the total claims
are modeled by a compound Poisson process, and (iii) the insurer can invest in the money market
and in risky assets such as stocks. The optimal solution is obtained from the HJB equation. Liang
et al. [17] use a stochastic Perron’s method to prove that the minimum probability of ruin is the
unique viscosity solution of its HJB equation with appropriate boundary conditions.

Contrary to most studies carried out in continuous time, in this work we present the optimal
reinsurance strategy in a static environment.

The surplus process can be modeled by the compound Poisson model or by its approximated
Brownian motion. In the present study, we approximate the surplus process to the diffusion model.
There are several studies that consider this approximation, among which are Zhang et al. [28],
Mao et al. [21], Taksar and Markussen [26] and Li and Shen [16]. In the papers of Schmidli [23]
and Meng et al. [22], the surplus process is modeled by both the classic risk model and a Brownian
motion. However, there are many authors who study only the surplus process modeled through
the compound Poisson process, as it is the case of Dickson and Waters [9], Schmidli [24], Dickson
and Waters [8], Hipp and Vogt [13] and Golubin [12].

In this work, to simplify, the expected value premium calculation principle is considered both for
the insurer and the reinsurer. For instance, Cai and Tan [4] and Hu et al. [14] also use the expected
value premium principle to determine the optimal retention level of a stop-loss reinsurance. On the
other hand, in the work of Liang and Yuen [18] the variance premium principle is used. In Li and
Shen [16] the reinsurance premium is calculated according to the variance and standard deviation
premium principles.

We consider the quota-share and the excess of loss treaties in our optimal reinsurance problem.
Some authors, like Dimitrova and Kaishev [10], Hipp and Vogt [13], Golubin [12], Brachetta and
Ceci [1], also use the excess of loss to study this type of problems. Others, such as Schmidli [23]
and [24], Liang and Yuen [18] and Taksar and Markussen [26], consider proportional treaties. In
the studies of Zhang et al. [28], and Centeno [6], the optimization problem with combinations of
quota-share and excess of loss reinsurance strategies is considered.

In our numerical illustration, we show that the quota-share treaty minimizes the ruin probability
when compared to the considered treaties. We also found that the quota-share treaty offers a lower
variance (risk) and the superior limit L of the excess of loss, a higher expected value to the surplus
process. In the work of Zhou, Dong and Xu [29], they considered the problem of minimizing the VaR
and CTE of an insurer’s retained risk and conclude that the quota-share after stop-loss is a better
reinsurance strategy than stop-loss after quota-share. Zhang, Zhou and Guo [28] minimize the ruin
probability by controlling the combinational quota-share and excess of loss reinsurance strategy
and conclude that the optimal combinational reinsurance strategy must be the pure excess of
loss. Golubin [12] studied the classic risk model where both insurance and reinsurance policies are
chosen by the insurer in order to minimize the expected maximal loss, and show that the optimal
reinsurance is excess of loss. We found that the optimal reinsurance strategy highly depends on
the structure of our risk size. We illustrate such a result considering Gamma distributions with the
same expected value but with different moments of higher order.
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3 The surplus process of the insurer

The main purpose of this chapter is to approximate the surplus process to a diffusion model, starting
from the classic risk model. The purpose is to obtain a surplus process modeled by a Brownian
motion incorporating the premium calculation principles and the reinsurance treaties.

3.1 The Classic risk model

As mentioned by Schmidli [25], the Cramér-Lundberg model, also known as the classic risk model,
”measures” the effect of a certain decision of the actuary on risk. The model was initially con-
structed by Filip Lundberg and Harald Cramér and their collective risk model was obtained as a
limit of a sum of individual risk models for an increasing number of individual contracts.

In the classic risk model, the surplus process of a collective contract or a large portfolio is
modeled by,

Xt = x+ Pt− St, (1)

where x is the initial surplus, P > 0 is the premium rate and St is the aggregated claims in a period
of time (0, t]. Therefore, let {St}t≥0 be the aggregate claims process, defined as follows,

St =

Nt∑
i=0

Yi (2)

where Nt is a Poisson process, modeling the incoming claims with rate λ, Y0 ≡ 0, and, for i = 1, 2...,
Yi is a sequence of independent and identically distributed random variables to Y , which is strictly
positive and independent of Nt, representing the size of the successive claims.

The aggregate claims process, {St}t≥0, is a compound Poisson process, since the number of
claims, {Nt}t≥0, is a Poisson process. Recall that the Poisson process has independent and station-
ary increments and so does the compound Poisson process.

The moment-generating function of the aggregate claim process is thus given by

MSt(r) = MNt [lnMY (r)] = exp[λt(MY (r)− 1)], (3)

whose existence depends on the moment-generating function of Yi. Calculating the derivatives of
the moment-generating function at point r = 0, we obtain the raw moments of St, in particular:

E(St) = λtµ, (4)

V ar(St) = λtµ2, (5)

where µ and µ2 are the first and the second raw moments of the claim size distribution Y .

3.2 The approximated diffusion model

According to Schmidli [25], it is difficult to study the characteristics of the classic risk model when
the aggregate claim process is a compound Poisson process. One possibility for overcoming this
difficulty is to look for approximations, namely the diffusion approximations. According to Schmidli
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[25], the idea is to consider a sequence of risk models, in such way that they weakly converge to a
diffusion process.

As previously stated, the classic risk model has stationary and independent increments, therefore
this diffusion approximation only makes sense if the obtained process also has stationary and
independent increments. So, in line with Schmidli [25], increasing the number of claims and making
them smaller, the limiting process should be a Brownian motion. As reported by Dixit [11], a
Brownian motion is a continuous-time stochastic process such that, given the initial value x0 at
time t = 0, the random variable xt for any t > 0 is normally distributed with mean x0 + µt and
variance σ2t, where µ represents the trend and σ the volatility. In this case, The diffusion process
for the surplus process can be written as follows:

dXt = αdt+ σdWt, (6)

where α corresponds to the drift parameter, i.e., represents what the insurance company is effec-
tively gaining with the premium income, and σ is the diffusion parameter, which represents the
volatility of the model, Wt stands for the standard Brownian Motion.

3.3 The insurer continuous model

As stated in the previous section, the diffusion approximation for the surplus process has the
parameters α and σ. The drift parameter, α, represents what the insurance company is effectively
gaining with the premium income. Therefore, this parameter corresponds to the premium gained
by the insurer less the risk retained by it. In what follows S represents the aggregate claims amount
in one unit of time.

Inspired by Schmidli [23], the mathematical expression for the α parameter is given by:

α = PI(S,Z(S))− E(Z(S)), (7)

where Z(S) is the risk retained by the insurance company, with 0 < Z(S) < S, and PI(S,Z(S)) is
the premium charged by the insurer. The premium gained by the insurance company, PI , is given
by the total premium paid by the policyholder to the insurer, PT , minus the premium paid to the
reinsurance company, PR:

PI(S,Z(S)) = PT (S)− PR(S − Z(S)) (8)

Finally, the σ parameter represents the volatility of the process and can be written as follows,

σ2 = V ar(Z(S))⇔ σ =
√
V ar(Z(S)). (9)

3.3.1 Premium Calculation Principles

As defined by Centeno [7], the premium for a given policy is a fixed amount received by the
company as compensation for the risk assumed by the insurer. The premium corresponds in part
to the claims and management expenses, but it also includes a safety loading, which works as a
compensation for any random deviation of the claims in relation to their average. Now, let S be
the risk. Any reasonable premium P should be composed by the net premium, E(S), plus some
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safety loading, η, i.e., P > E(S). There are several premium calculation principles. In Centeno [7]
and in Schmidli [25] we can find some of the most common ones, which are presented below.

1. Expected Value Principle: P = (1 + η)E(S), for some safety loading η > 0

2. Variance Principle: P = E(S) + εV ar(S), for some ε > 0

3. Modified Variance Principle: P = E(S) + εV ar(S)
E(S) , for some ε > 0

4. Standard deviation Principle: P = E(S) + ε
√
V ar(S), for some ε > 0

5. Exponential Principle: P = ε−1log(E[exp(αS)]), for some ε > 0

6. Zero Utility Principle: Let u(x) be some strictly increasing and strictly concave function. The
zero utility premium principle is the unique solution of the equation u(x) = E[u(x) +P −S],
where x corresponds to the initial wealth of the insurance company.

7. Adjusted risk Principle: Let F (x) be the distribution function of the risk S and S ≥ 0. So,
P =

∫∞
0 (1− F (x))ηdx, for some η ∈ (0, 1)

3.3.2 Including the Reinsurance treaty

In order to protect themselves against losses that may jeopardize the continuity of their activity,
insurance companies reinsure part of their business portfolio. As exposed by Centeno [7], treaties
can be classified into proportional and non-proportional. Examples of proportional treaties are the
quota-share and the surplus. Examples of non-proportional treaties are the excess of loss and stop
loss reinsurance treaty. In this thesis the quota-share and excess of loss treaties are considered.

Consider a reinsurance treaty acting on the aggregate claim over a certain period. Let Z(S)
be the retained risk by the insurance company, and H(S) = S − Z(S) the risk ceded to that the
reinsurance entity, with 0 < Z(S) < S.

1. Quota share treaty :

In a quota-share treaty the reinsurer is responsible for a certain fixed percentage of the un-
derlying risk and, in exchange, it receives the correspondent share of the original premium. The
reinsurance entity pays a commission, also proportional to the premiums received, to share the
management and acquisition expenses. To facilitate, we assume that the value of this commission
is zero.

Let the retained percentage of risk be b, with b ∈ (0, 1), and 1 − b be the ceded percentage to
the reinsurer. For each aggregate loss S, the insurer retains Z(S) = bS of the risk and transfers
H(S) = S − Z(S) = S − bS = S(1− b) of the risk to the reinsurer.

Using equation (8), the premium retained by the insurance company, PI(S,Z(S)) becomes,

PI(S,Z(S)) = PT (S)− PR((1− b)S). (10)

The distribution of retained aggregate losses is FZ(S)(s) = FS(s/b) and of the transferred ones is
FH(S)(s) = FS(s/(1− b)). The expected value of the retained aggregate losses is expressed as,

E(Z(S)) =

∫ ∞
0

Z(s)dFS(s) = b

∫ ∞
0

sdFS(s) = bE(S) (11)

7



The second raw moment is expressed as,

E(Z(S)2) =

∫ ∞
0

Z(s)2dFS(s) = b2
∫ ∞

0
s2dFS(s) = b2E(S2) (12)

Hence, by equations (7) and (9) the parameters α and σ are defined as follows,

α = PT (S)− PR((1− b)S)− E(Z(S)) = PT (S)− PR((1− b)S)− bE(S) (13)

σ2 = V ar(Z(S)) = E(Z(S)2)− E(Z(S))2 = b2E(S2)− b2E(S2) = b2V ar(S) = b2λE(Y 2) (14)

Using the parameters above, the diffusion model becomes,

dXt = (PT (S)− PR((1− b)S)− bE(S))dt+ b
√
λE(Y 2)dWt, (15)

where Wt stands for the standard Brownian motion.

2. Excess of Loss Treaty :

Now, consider a reinsurance strategy acting on the individual claims. Let Z(Y ) be the individual
retained risk by the insurance company, and H(Y ) = Y − Z(Y ) be the individual risk that the
reinsurance entity receives, 0 < Z(Y ) < Y . In the excess of loss treaty, an amount M is retained
by the insurer while the remaining part of the risk is ceded to the reinsurer of each individual claim
that occurs. Losses in excess of the deductible M are the responsibility of the reinsurer, and this
liability is generally limited to a certain amount L for each individual loss. When L = +∞ the
coverage is said to be unlimited.

Hence, for each claim Y , the insurer is ceding the amount of risk H(Y ) = Y − Z(Y ):

H(Y ) = min {L; (Y −M)+} =


0 if Y ≤M
Y −M if M < Y ≤M + L,

L if Y > M + L

(16)

where (Y −M)+ = max(0, Y −M). Consequently, for each claim Y , the insurer retains the amount
of risk Z(Y ):

Z(Y ) = Y −H(Y ) =


Y if Y ≤M
M if M < Y ≤M + L.

Y − L if Y > M + L

(17)

Let SH =
∑N1

i=0H(Yi) and SZ =
∑N1

i=0 Z(Yi) be respectively the aggregate claim amount ceded
and retained. Using equation (8), the premium PI(Y,H(Y )) becomes,

PI(S, SZ) = PT (S)− PR(SH) (18)

The distribution of the individual claims retained by the insurance company is

FZ(Y )(y) =

{
FY (y) if y < M

FY (y + L) if y ≥M
(19)
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The first moment of the individual claims is

E(Z(Y )) =

∫ M

0
ydFY (y) +M

∫ M+L

M
dFY (y) +

∫ ∞
M+L

(y − L)dFY (y)

=

∫ M

0
ydFY (y) +M(FY (M + L)− FY (M)) +

∫ ∞
M+L

(y − L)dFY (y)

=

∫ M

0
(1− FY (y))dy +

∫ ∞
M+L

(1− FY (y))dy

(20)

The second raw moment is

E(Z(Y )2) =

∫ M

0
y2dFY (y) +M2

∫ M+L

M
dFY (y) +

∫ ∞
M+L

(y − L)2dFY (y)

= 2

∫ M

0
y(1− FY (y))dy + 2

∫ ∞
M+L

(y − L)(1− FY (y))dy

(21)

By equations (7) and (9), the parameters α and σ are defined by

α = PT (S)− PR(H(S))− E(Z(S)), (22)

σ2 = V ar(SZ) = λE(Z(Y )2). (23)

Using the above parameters, it is easy to obtain the diffusion model:

dXt = (PT (S)− PR(H(S))− E(Z(S))dt+
√
λE(Z(Y )2)dWt, (24)

where Wt stands for the standard Brownian motion.
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4 The moment of ruin

We are now concerned with the moment of ruin. The surplus process described by the diffusion
process derived in the previous chapter hits a given level c, i.e., the first moment when ruin occurs.
As stated by Centeno [7], ruin occurs when the surplus process is negative in a given moment or
moments in time. Hence, we will consider c = 0. The surplus level can be analyzed in finite or
infinite time horizon.

We have seen that the diffusion model in equation (6) is an arithmetic Brownian motion. Now,
let τc be the instant when the stochastic variable Xt reaches a fixed barrier c, assuming X0 > c,
i.e., τc is the first hitting time, given by:

τc = inf {t ≥ 0 : Xt ≤ c} . (25)

In line with Burnecki, Mista and Weron [3], the ruin probability in infinite time, i.e., the probability
that the capital of an insurance company ever drops below the level c, can be written as

Ψ(c) = P (τc <∞) = P

(
inf
t≥0

Xt ≤ c
)
. (26)

In the case of finite time horizon, the process is considered in a finite time interval, i.e., ensuring
that within a defined period, 0 < t < T , the process does not go into ruin. Also by Burnecki, Mista
and Weron [3], the ruin probability in finite time T is given by,

Ψ(c, T ) = P (τc ≤ T ) = P

(
inf

0≤t≤T
Xt ≤ c

)
. (27)

Note that Ψ(c, T ) < Ψ(c) ∀ T > 0.

Laplace Transform of the hitting time

Let τc be the first hitting time of level c > 0 for a Brownian motion Xt with X0 > c, drift α
and variance σ2. Then for s > 0, its Laplace transform is given by, (see Liao [19])

E[e−sτc ] = exp

[
−X0 − c

σ2
(
√
α2 + 2sσ2 − α)

]
, (28)

with s = λα+ λ2σ2/2 and λ > 0.

Probability density of the hitting time

According to the study of Ingersoll [15] and Liao [19], the first hitting time probability density
function f(t) is given by

f(t) =
X0 − c
σ
√

2πt3
exp

[
−(X0 − c− αt)2

2σ2t

]
, (29)

for t > 0. From equation (29), for α = 0, τ has no finite moments.
The cumulative probability distribution is given by one less the probability of not hitting a

given barrier c, and it is described by (see Ingersoll [15])
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F (t) = Φ

[
−(X0 − c) + αt

σ
√
t

]
+ exp

[
2α(X0 − c)

σ2

]
Φ

[
−(X0 − c)− αt

σ
√
t

]
, (30)

where Φ(.) is the standard normal probability distribution.

Finiteness of the hitting time

Consider the probability that the process hits a barrier placed at positive level c, below the
current value X0 > c. Then, the ruin probability regarding level c < X0 is given by (see Liao [19])

Ψ(c) =

{
exp

[
−2α(X0−c)

σ2

]
if α > 0,

1 if α ≤ 0
(31)

For the case of negative or zero drift, almost surely the surplus process will reach zero in a
finite time. The parameter α represents what the insurance company is really gaining from the
premiums, and if α = 0 almost surely the company will bankrupt.

In the case of positive drift, the probability that Xt hits the zero level increases with the
volatility and decreases with the initial level X0 and with the drift.

Expectation of the hitting time

Consider the case when the barrier c is below the current level X0, c < X0. Then the expected
first hitting time is given by (see Liao [19])

E(τc) =

{
X0−c
|α| if α < 0

∞ if α ≥ 0
(32)

We can conclude that, with probability 1, the Brownian motion process will eventually hit c, but
its mean time is infinite when the drift is negative.

If the drift is negative, the variance of the first hitting time is finite. The variance depends on
the volatility and, considering c < X0, it is given by,

V ar(τc) =

{
σ2(X0−c)

2α3 if α < 0.

∞ if α ≥ 0
(33)
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5 Reinsurance optimization: numerical simulations

Numerical studies and sensitivity analyzes for the optimal reinsurance problem are provided in this
chapter. The numerical examples and analysis were developed using the Mathematica software.
The criterion considered to obtain the optimal reinsurance strategy are the minimization of the
ruin probability, the maximization of the expected value and the minimization of the variance of
the surplus process. Individual claims are assumed to follow a Gamma distribution.

5.1 The underlying risk: The Gamma distribution

The Gamma distribution is a family of continuous two-parameter, γ and β, probability distributions,
with γ > 0, the shape parameter and β > 0, the scale parameter. It is used to model positive data
values that are right skewed.

Figure 1 shows the behavior of the Gamma distribution density function when the γ parameter
(shape) varies and the β parameter (scale) is fixed. The greater the value of the γ parameter, the
more the distribution tends to approximate to a Gaussian. If γ is a positive integer, then we have
an Erlang distribution, if γ = 1 we get the Exponential distribution.

Figure 1: Gamma PDF with γ = 1, 4, 6 and β = 2

The scale parameter β indicates how much the density stretches or shrinks upwards (y axis),
depending on the general magnitudes of the represented data values. In Figure 2, the shape
parameter is fixed and the scale parameter varies. The larger the scale parameter the less shrank
the curves are.

Figure 2: Gamma PDF with γ = 2 and β = 2, 4, 6
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5.2 Optimal reinsurance strategy: minimizing the ruin probability

The goal now is to obtain the optimal reinsurance treaty minimizing the ruin probability in infinite
time. The optimal treaty will be obtained numerically for each type of treaties considered, first for
the quota-share and then for the excess of loss.

5.2.1 Minimizing ruin probability in infinite time

In order to minimize the ruin probability in infinite time, the parameters of each treaty are incor-
porated into the expression of the ruin probability in equation (31). Then, the optimal value of
the retained risk will be find by means of the roots of the first derivative of the ruin probability. In
some cases, it will be possible to explicitly obtain the roots. In other cases, only numerical results
can be derived.

As mentioned, it is assumed that the insurance company applies the expected value principle
for premium calculation, with safety loading η > 0, and the reinsurer also uses the expected value
principle, with safety loading θ > 0. The reinsurer’s safety loading must be greater or equal than
the insurer’s safety loading, i.e., θ ≥ η (see Schmidli [23]). Otherwise, the insurer could reinsure
the whole portfolio and make a profit without any risk.

1. Quota-share treaty

In the case of the quota-share treaty, considering the expected value premium principle, the
insurer’s and reinsurer’s premiums are, respectively, defined as follows,

PT (S) = (1 + η)λE(Y ), (34)

PR(H(S)) = (1 + θ)E((1− b)S) = (1 + θ)(1− b)λE(Y ), (35)

From equations (34) and (35), and using the general expression for the parameters of the
diffusion process in the equations (13) and (14), these become:

α = (1 + η)λE(Y )− (1 + θ)(1− b)λE(Y )− bλE(Y ) = λE(Y )(bθ − (θ − η)), (36)

σ2 = V ar(bS) = b2V ar(S)) = λb2E(Y 2) (37)

Equations (36) and (37) will now be incorporated into the expression of the ruin probability in
equation (31). The following equation provides the expression of the ruin probability as a function
of the percentage of risk retained b by the insurer,

Ψ(b) = exp

[
−2[λE(Y )(bθ − (θ − η))](X0 − c)

b2λE(Y 2)

]
, α > 0. (38)

Now, letting Ψ′(b) = 0 and b ∈ [0, 1], we obtain:

b∗ = 2− 2η

θ
, (39)

representing the optimal level of retention for the quota-share treaty minimizing the probability of
ruin using the expected value principle.
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2. Excess of loss treaty

Consider the inferior limitM of the excess of loss treaty, when L =∞. Thus, the risk retained by
the insurer is Z(Y ) = min(Y,M) and the risk transferred to the reinsurer isH(Y ) = Y −min(Y,M).
For this case, the insurer’s and reinsurer’s premiums become

PT (Y ) = (1 + η)λE(Y ), (40)

PR(H(Y )) = (1 + θ)λE(H(Y )) = λ(1 + θ)

∫ ∞
M

SY (y)dy (41)

Using the general parameters defined before in equations (22) and (23), we obtain

α(M) = λ(1 + η)E(Y )− λ(1 + θ)

∫ ∞
M

SY (y)dy − λ
∫ M

0
SY (y)dy

⇔ α(M) = λ(ηE(Y )− θ
∫ ∞
M

SY (y)dy),

(42)

σ2(M) = λ

∫ M

0
y2fY (y)dy +M2λ

∫ ∞
M

fY (y)dy

⇔ σ2(M) = 2λ

∫ M

0
ySY (y)dy.

(43)

So, applying the parameters in equations and considering α > 0, the ruin probability in infinite
time becomes,

Ψ(M) = exp

[
−2λ(ηE(Y )− θ

∫∞
M SY (y)dy)(Xo − c)

2λ
∫M

0 ySY (y)dy

]
. (44)

To minimize this probability we can find the roots of its derivatives, i.e., Ψ′(M) = 0, obtaining

2Mα(M)− θσ2(M) = 0. (45)

For this case, it was not possible to explicitly obtain an expression for the optimal retention
level for the inferior limit M of the excess of loss treaty, minimizing the probability of ruin and
using the expected value principle.

Consider now the superior limit L of the excess of loss treaty. Thus, the risk retained by the
insurer is Z(Y ) = Y −min(Y, L) and the risk transferred to the reinsurer is H(Y ) = min(Y, L).
For this case, the insurer’s and reinsurer’s premiums become

PT (Y ) = (1 + η)λE(Y ), (46)

PR(H(Y )) = (1 + θ)λE(H(Y )) = (1 + θ)λ

∫ L

0
SY (y)dy. (47)
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Using the general parameters defined in equations (22) and (23), we obtain:

α(L) = (1 + η)λE(Y )− (1 + θ)λ

∫ L

0
SY (y)dy − λ

∫ ∞
L

SY (y)dy

⇔ α(L) = λ(ηE(Y )− θ
∫ L

0
SY (y)dy),

(48)

σ2(L) = λ

∫ ∞
L

(y − L)2fY (y)dy ⇔ σ2(L) = 2λ

∫ ∞
L

(y − L)SY (y)dy (49)

So, using equations (48) and (49), the probability of ruin in infinite time becomes

Ψ(L) = exp

[
−2λ(ηE(Y )− θ

∫ L
0 SY (y)dy)(Xo − c)

2λ
∫∞
L (y − L)SY (y)dy

]
. (50)

To minimize this probability consider again the roots of its derivative, i.e., Ψ′(L) = 0, obtaining

θSY (L)σ2(L)− 2α(L)E(Z(Y )) = 0 (51)

As before, it was not possible to explicitly obtain an expression for the optimal retention level
for the superior limit L of the excess of loss treaty, minimizing the probability of ruin and using
the expected value principle.

Having analyzed the lower limit M and the superior limit L separately, let us now look at the
excess of loss treaty more generally, including both inferior and superior limits. The insurer’s and
reinsurer’s premiums become

PT (Y ) = (1 + η)λE(Y ), (52)

PR(H(Y )) = (1 + θ)λE(H(Y )) = (1 + θ)λ

∫ M+L

M
SY (y)dy. (53)

Using the general parameters defined in equations (22) and (23),from equations (52) and (53)
we obtain:

α(M,L) = (1 + η)λE(Y )− (1 + θ)λ

∫ M+L

M
SY (y)dy − λ

∫ M

0
SY (y)dy − λ

∫ ∞
M+L

SY (y)dy

⇔ α(M,L) = λ(ηE(Y )− θ
∫ M+L

M
SY (y)dy),

(54)

σ2(M,L) = λ

∫ M

0
y2fY (y)dy + λM2

∫ M+L

M
fY (y)dy + λ

∫ ∞
M+L

(y − L)2fY (y)dy

⇔ σ2(M,L) = λ(2

∫ M

0
ySY (y)dy + 2

∫ ∞
M+L

(y − L)SY (y)dy).

(55)
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So, using equations (54) and (55), the probability of ruin in infinite time becomes

Ψ(M,L) = exp

[
−2λ(ηE(Y )− θ

∫M+L
M SY (y)dy)(Xo − c)

λ(2
∫M

0 ySY (y)dy + 2
∫∞
M+L(y − L)SY (y)dy)

]
. (56)

Once more, we minimize this probability by finding the critical points of Ψ:

{
∂Ψ
∂M = 0
∂Ψ
∂L = 0

⇔


θσ2(M,L)− 2Mα(M,L) = 0

(SY (M + L)− SY (M))θσ2(M,L)− 2α(M,L)(MSY (M + L)+∫∞
M+L SY (y)dy) = 0.

(57)

Again, it was not possible to explicitly obtain an expression for the optimal retention level M
and L of the excess of loss treaty, minimizing the probability of ruin and using the expected value
principle.

5.2.2 Sensitivity to the safety loading

We now aim at analysing the behavior of the optimal reinsurance treaties: we will use a numerical
approach so the underlying risk distribution, and the initial surplus (reserve), are given. Consider
that each claim amount follows a Gamma distribution and let the parameters of the distribution
be γ = 2 and β = 3. Let also the initial surplus be equal to 1, i.e. x = 1, and the ruin barrier be
c = 0.

Table 1 contains different values for the insurer’s, η, and reinsurer’s, θ, safety loading. Note that
in the two first cases, the insurer’s safety loading is the same, with the reinsurer’s safety loading
varying, and in last two, the opposite occurs.

θ η

0.35 0.30

0.40 0.30

0.80 0.60

0.80 0.75

Table 1: Different values for θ and η

1. Quota-share treaty

Equation (39) is analytically solved, and the optimal retained risk b∗ is obtained in each case
of Table 1. The corresponding value of the ruin probability, Ψ(b∗), is also computed. In Table 2
we can see the optimal retained risk and the respective ruin probability obtained. The graph in
Figure 3 shows the behavior of ruin probability of the quota-share treaty for each case in Table 1.
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Figure 3: Ruin probability in a QS treaty

2. Excess of loss treaty

Equation (45) is numerically solved in Mathematica, and the optimal retained risk M for the
inferior limit M of the excess of loss treaty is obtained in each case of Table 1. The corresponding
value of the ruin probability, Ψ(M), is also computed. In Table 2 we can see the optimal retained
risk and the respective ruin probability obtained. The graph in Figure 4 shows the behavior of the
ruin probability for the inferior limit M of the excess of loss treaty in each case in Table 1.

Figure 4: Ruin probability for the inferior limit M in a XL treaty

Equation (51) is numerically solved in Mathematica, and the optimal retained risk L for the
inferior limit L of the excess of loss treaty is obtained in each scenario of Table 1. The corresponding
value of the ruin probability, Ψ(L), is also computed. In Table 2 we can see the optimal retained
risk and the respective ruin probability obtained. The graph in Figure 5 shows the behavior of the
ruin probability for the superior limit L of the excess of loss treaty in each case in Table 1.

Figure 5: Ruin probability for the superior limit L in a XL treaty
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Finally, consider the excess of loss reinsurance treaty in general. Equation (57) is numerically
solved in Mathematica, and the optimal retained risk M and L are obtained in each case of Table
1. The corresponding value of the ruin probability, Ψ(M,L), is also computed. In Table 2 we can
see the results obtained.

Table 2 summarizes, the values obtained for the four cases and for each type of the reinsurance
treaties under study presenting the optimal levels of risk retention and the respective probability
of ruin.

Parameters b Ψ(b) M Ψ(M) L Ψ(L) M L Ψ(M,L)

θ = 0.35, η = 0.30 0.29 0.66 1.75 0.82 1.15 0.93 1.75 ∞ 0.82

θ = 0.40, η = 0.30 0.50 0.77 3.20 0.88 0 0.94 3.20 ∞ 0.88

θ = 0.80, η = 0.60 0.50 0.59 3.20 0.78 0 0.88 3.20 ∞ 0.78

θ = 0.80, η = 0.75 0.13 0.12 0.75 0.35 2.96 0.84 0.75 ∞ 0.35

Table 2: Ruin probability for the optimal treaties for the cases in Table 1

Numerical results

Analyzing the values obtained above, we verify that for the quota-share treaty and for the
inferior limit M of the excess of loss, it appears that for higher risk retention levels, from the
perspective of the insurer, the probability of ruin is also higher. From an economic point of view,
this means that when the insurance company is more exposed to risk, the greater is the probability
of having negative results and being at risk of ruin.

In general, for the treaties considered, except for the superior limit L of the XL, and taking into
account the cases in which the insurer’s safety loading is fixed, it is possible to verify that with a
higher reinsurer’s safety loading, the higher is the risk retained by the insurance company, i.e., the
lower is the ceded risk and, consequently, the greater the ruin probability. This results are in line
with expectations, since when the amount to be paid for reinsurance increases, the insurer ends up
assigning less risk to the reinsurer.

For the treaties considered with the exception of the superior limit L of the XL and, taking
into account the cases in which the reinsurer’s safety loading is fixed, it is possible to verify that
the greater the safety loading of the insurer, the lower the risk retained by it and, consequently,
the lower the ruin probability. This is because with a higher insurer’s safety loading, the insurer is
charging a higher price to the policyholder. Due to this, the policyholder chooses to transmit less
risk to the insurance entity.

Take a closer look to the superior limit L of the XL, more specifically, for the cases where
θ = 0.4, η = 0.30 and for θ = 0.8, η = 0.6. For these cases, the optimal is the insurer to retain all
the risk. In section 5.2.5., we will analyze in detail the reason for this to happen.

Now, comparing the results obtained in the superior limit L of the XL with the ones in the XL
in general and, looking for the cases where θ = 0.35, η = 0.30, and θ = 0.80, η = 0.75. We verify
that exist an optimal value for both cases in the superior limit L. This tell us that the insurer cede
the smallest risk to the reinsurer, and then not cede the larger risk. Also for the XL in general, we
find that the value of L in the excess of loss treaty is always equal to infinity, which means, that
the insurer does not cede the smallest risk to the reinsurer, and cede the higher risk.

18



Based on the analyzes presented in Table 2, we conclude that the quota-share treaty offers a
lower ruin probability to the insurer when compared to the other treaties considered. The results
obtained are justified by the lower risk retained with the quota-share treaty, which in turn reduces
the probability of the insurance company obtaining negative results.

5.2.3 Sensitivity to the losses distribution

At this point, we intend to analyze the behaviour of the optimal reinsurance: we will use the
numerical approach so the insurer’s safety loading and reinsurer’s safety loading, and the initial
surplus, are given. Consider the insurer’s safety loading, η = 0.6, and the reinsurer’s safety loading,
θ = 0.8 and let the initial surplus of the process equals 1, i.e. x = 1, and the barrier be c = 0.

Table 5 contains different scenarios, with values for γ and β parameters of the Gamma distri-
bution describing the loss of each claim and the expected value, variance, skewness and kurtosis of
the underlying distribution.

Scenarios γ β Expected Value Variance Skewness Kurtosis

A 0.5 2 1 2 2.83 15

B 1 2 2 4 2 9

C 2 2 4 8 1.41 6

D 4 2 8 16 1 4.5

E 6 2 12 24 0.82 4

F 2 4 8 32 1.41 6

G 2 6 12 72 1.41 6

H 2 10 20 200 1.41 6

Table 3: Different scenarios for the gamma parameters γ and β

Note that scenario A, B, C, D and E have the same value for the scale parameter, β. And
scenarios F, G and H take the same values for the shape parameter, γ.

1. Quota-share treaty

Equation (39) is analytically solved, and the optimal retained risk b∗ is obtained in each scenario
of Table 3. The corresponding value of the ruin probability, Ψ(b∗), is also computed. In Table 4,
we can see the optimal retained risk and the respective ruin probability obtained.

Figure 6 shows the behaviour of the ruin probability in a quota-share treaty taking into account
the scenarios where the scale parameter is fixed. Note that for these scenarios, the optimal level
of retained risk, b, and the respective ruin probability, Ψ(b) is always the same. And consequently,
the graph is the same for all scenarios A, B ,C , D and E. This is because we are working with the
Gamma distribution, and the quotient between the expected value of Y and the variance, results
in the relation of 1

β , that is, when we only vary the shape parameter, the graph does not change.
Then, in Figure 7 we also see the behaviour of the ruin probability in a quota-share treaty, now
taking into account the scenarios where the shape parameter is fixed. For the scenarios considered,
the optimal retained risk b is the same.
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Figure 6: Ruin probability in a QS treaty when the scale parameter is fixed

Figure 7: Ruin probability in a QS treaty when the shape parameter is fixed

2. Excess of loss treaty

Equation (45) is numerically solved in Mathematica, and the optimal retained risk M for the
inferior limitM in the excess of loss treaty is obtained in each scenario of Table 3. The corresponding
value of the ruin probability, Ψ(M), is also computed. We can see the results obtained in Table 4.

In Figure 8 we analyse the behaviour of the ruin probability for the inferior limit M in an excess
of loss treaty considering the scenarios with scale parameter fixed. After that, in Figure 9 we study
the behaviour of the ruin probability for the inferior limit M in an excess of loss treaty considering
the shape parameter fixed.

Figure 8: Ruin probability for the inferior limit M in a XL with the scale parameter fixed
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Figure 9: Ruin probability for the inferior limit M in a XL with the shape parameter fixed

Look now to the superior limit L of the excess of loss reinsurance treaty. Equation (51) is
numerically solved in Mathematica, and the optimal retained risk L is obtained in each scenario of
Table 3. The corresponding value of the ruin probability, Ψ(L), is also computed. In Table 2 we
can see the optimal retained risk and the respective ruin probability obtained. In Table 4 We can
see the obtained results.

Figure 10 shows the behaviour of the ruin probability for the superior limit L in a excess of loss
treaty considering the scale parameter fixed. Then, in Figure 11 we have the ruin probability also
for the superior limit L in a excess of loss treaty when the shape parameter is fixed.

Figure 10: Ruin probability for the superior limit L in a XL with the scale parameter fixed

Figure 11: Ruin probability for the superior limit L in a XL with the shape parameter fixed
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Finally, consider the excess of loss reinsurance treaty in general. Equation (57) is numerically
solved in Mathematica, and the optimal retained risk M and L are obtained in each scenario of
Table 3. The corresponding value of the ruin probability, Ψ(M,L), is also computed. In Table 4
we can see the results obtained.

Table 4 summarizes the values obtained for the optimal level of retention of risk and the re-
spective ruin probability for each optimal reinsurance treaty.

Scenario b Ψ(b) M Ψ(M) L Ψ(L) M L Ψ(M,L)

A 0.50 0.45 0.78 0.36 0 0.67 0.78 ∞ 0.36

B 0.50 0.45 1.21 0.52 0 0.74 1.21 ∞ 0.52

C 0.50 0.45 2.14 0.69 0 0.82 2.14 ∞ 0.69

D 0.50 0.45 4.06 0.82 1.59 0.88 4.06 ∞ 0.82

E 0.50 0.45 6.03 0.88 3.33 0.91 6.03 ∞ 0.88

F 0.50 0.67 4.27 0.83 0 0.90 4.27 ∞ 0.83

G 0.50 0.77 6.41 0.88 0 0.94 6.41 ∞ 0.88

H 0.50 0.85 10.68 0.93 0 0.96 10.68 ∞ 0.93

Table 4: Ruin probability for each scenario and for the different reinsurance treaties

Numerical results

In a first analysis, the scale parameter is fixed and the shape parameter varies. Thus, for
the quota-share treaty, the optimal level of risk retention, b, obtained is equal in all considered
scenarios, which allows us to conclude that, for this treaty, the retention level does not depend on
the distribution parameters. Additionally, we verified that the probability of ruin is also the same in
all the respective scenarios. This is something explained by the moments of the Gamma distribution,

since E(Y ) = γβ and E(Y 2) = γβ2, which means that Ψ(b) = exp
[
−2(bθ−(θ−η))(X0−c)

b2β

]
, i.e., the

expression of ruin probability only depends on the scale parameter. In the same analysis, but now
for the inferior limit M in the XL, it appears that the retained risk by the insurer increases with
increasing the shape parameter. Consequently, the probability of ruin increases, that is, as the risk
shifts to the right and it is more evenly distributed along the tails of the distribution, the higher
the level of risk retained by the insurer.

Now, the shape parameter is fixed and the scale parameter varies. For the case of the quota-
share treaty, the optimal risk retention level remains the same with different values for the scale
parameter, however, with the increase of the scale parameter, the probability of ruin also increases.
Generally, for the inferior limit M in the XL, we notice that with an increasing of the scale pa-
rameter, the retained risk is higher and, consequently, the ruin probability also increases. As the
scale parameter increases, so does the risk distribution in the tails, and then the retained risk is
also higher.

Now, look at the superior limit L of the XL treaty. In general, we see that the optimal, for the
insurer, is to retain all the risk. Possibly, because the probability of having small claims is high
and, in this case, it may not make sense for the insurer to reinsure them. Further, in section 5.2.5.,
we will analyze this topic in more detail.
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Once more, we conclude that the quota-share treaty offers a lower ruin probability compared
to the other treaties considered. The results obtained are justified by the lower risk retained with
the quota-share treaty, which in turn reduces the probability of the insurance company obtaining
negative results.

5.2.4 Sensitivity to the initial surplus

We now aim at analysing the behaviour of the optimal reinsurance: we will use a numerical approach
so the underlying risk and, the both insurer’s and reinsurer’s safety loading, are given. Consider
that each claim amount follows a Gamma distribution with parameters γ = 2 and β = 3. Let also
the insurer’s safety loading, η = 0.6, and reinsurer’s safety loading, θ = 0.8, and the ruin barrier
be, c = 0.

Table 5 shows the optimal level of retention for both quota-share and excess of loss (for inferior
limit M , superior limit L and the treaty in general) treaties and, the respective probability of ruin,
considering different values for the initial surplus of the process.

x b Ψ(b) M Ψ(M) L Ψ(L) M L Ψ(M,L)

1 0.50 0.59 3.20 0.78 0 0.88 3.20 ∞ 0.78

5 0.50 0.07 3.20 0.29 0 0.51 3.20 ∞ 0.29

10 0.50 0.004 3.20 0.08 0 0.26 3.20 ∞ 0.08

Table 5: Initial surplus, x, for the different reinsurance treaties

Numerical results

As expected, the results indicate that the probability of ruin decreases when the initial reserve
level is higher. With regard to the optimal level of risk retention, changing the initial reserve level
of the process has no impact on any of the treaties considered, the impact being only on the value
of the ruin probability.

5.2.5 Understanding the particular case of superior limit L: numerical examples

In the previous section, we found that, in most cases, it is optimal to retain all the risk (L = 0) or
to cede all risk above a certain limit M . Thus, in this section we aim to analyse the behaviour of
the optimal retention levels M and L in the XL treaty.

In Table 6, we present the parameters for three scenarios, where the underlying risk distribution
and the insurer’s safety loading, η, and the reinsurer’s safety loading, θ, are given. Consider the
insurer’s safety loading, η = 0.6 and, reinsurer’s safety loading, θ = 0.8.

Scenario γ β Expected Value Variance Skewness Kurtosis

1 3 20 60 1 200 1.15 5

2 0.3 200 60 12 000 3.65 23

3 20 3 60 180 0.45 3.3

Table 6: Parameters for the scenarios 1,2 and 3
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In Table 7, we present the numerical results for scenario 1, in Table 8 the numerical results for
scenario 2 and, in Table 9 for scenario 3.

Treaty Expected value Variance Skewness Kurtosis M L Ψ

Limit L 60 1200 1.15 5 - 7.65 0.985

XL in general 60 1200 1.15 5 30.92 652.99 0.974

Table 7: Numerical results for scenario 1

Treaty Expected value Variance Skewness Kurtosis M L Ψ

Limit L 60 12 000 3.65 23 - 0 0.995

XL in general 60 12 000 3.65 23 0 0.08 0.995

Table 8: Numerical results for scenario 2

Treaty Expected value Variance Skewness Kurtosis M L Ψ(L)

Limit L 60 180 0.45 3.3 - 24.89 0.977

XL in general 60 180 0.45 3.3 30.00 172.33 0.974

Table 9: Numerical results for scenario 3

Numerical results

In the previous sections we found that the optimal value for the superior limit L of the excess
of loss treaty was equal to 0, in most cases, which means that the insurance company does not
transfer any risk to the reinsurer, instead retains all the risk for itself. In this section, we intend to
understand what are the measures that better explain the behaviour of the limit L.

We consider three scenarios in which the expected value of the underlying risk is the same, but
the optimal L is quite different for each scenario. We note that the expected value does no consider
the fatness of the tails properly. Thus, considering the same expected value of the underlying risk
for scenarios 1, 2 and 3, we intend to calculate the moments of higher order, to conclude what is
the impact of these measures on optimal reinsurance treaty.

Taking into account the numerical results obtained in scenario 1 and 2, we realize that for a
higher kurtosis, measure for the weight of the tails of the distribution, the weight of the tails is
very high, so the optimal thing, for the insurance company, would be to retain all the risk, i.e, not
transfer any risk to the reinsurer. Look now to the skewness measure, which gives us information
about the location of the weight of the tails, we notice that for a more positive value of this
indicator, the weight of the tails is closer to zero. In other words, there is a high probability that
the insurance company will have very small losses, so it makes no sense to reinsure losses that are
expected to be so small.

Now consider scenario 3, with the same expected value for the underlying risk and with a
identical value for the weight of the tails, when comparing the value in scenario 2. However, with a
value for the asymmetry indicator smaller and less than 1. Based on the numerical results obtained,
we can conclude that for an identical value for the weight of the tails, but with a less positive value
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for the skewness, it is possible to obtain an optimal solution for the limit L. This means that with
these parameters, a insurance company has a high probability of having large claims, and therefore,
it makes perfect sense to transfer part of its risk to the reinsurer.

5.3 Optimal reinsurance strategy: maximizing the expected value

After analyzing the optimal reinsurance that minimizes the ruin probability, and having obtained
the ruin probability in the several scenarios, the objective now is to analyze, among the optimal
solutions obtained, which one maximizes the expected value of the wealth process, i.e., the drift of
the diffusion.

Table 10 represents the expected value of the surplus process defined by equation (36) for the
quota-share treaty, in equation (42) for the inferior limit M of the excess of loss, by equation (48)
for the superior limit L of the excess of loss and by equation (54) for the excess of loss treaty in
general.

Parameters b α(b) M α(M) L α(L) M L α(M,L)

θ = 0.35, η = 0.30 0.29 0.30 1.75 0.30 1.15 1.41 1.75 ∞ 0.30

θ = 0.40, η = 0.30 0.50 0.60 3.20 0.53 0.00 1.80 3.20 ∞ 0.53

θ = 0.80, η = 0.60 0.50 1.20 3.20 1.07 0.00 3.60 3.20 ∞ 1.07

θ = 0.80, η = 0.75 1.25 0.30 0.75 0.30 2.96 2.37 0.75 ∞ 0.30

Table 10: Expected value, α, of the surplus process

Numerical results

As noted earlier, the drift of the surplus process represents the amount effectively received by
the insurer. Therefore, the greater the value of the premiums received by the insurer, the greater the
expected value of the surplus process. Looking at the results obtained in Table 10, we verify that
the superior limit L for the excess of loss treaty maximizes the expected value of the process. The
results obtained are in line with expectations, as the insurer is not ceding risk to the reinsurer and,
consequently, not paying for it. In this way, the less risk the insurer cedes, the lower the amount
that need to paid to the reinsurer, and therefore, the greater the drift of the surplus process.

5.4 Optimal reinsurance strategy: minimizing the variance

Now, we repeat the previous analysis but looking at the optimal treaties that minimize the variance
of the retained risk.

In Table 11, we compute the variance of the surplus process when we consider the optimal
retention levels. The expression of the variance can be obtained in equations (37), (43), (49) and
(55) when one fixes respectively, the quota-share, the inferior limit M of the excess of loss, the
superior limit L of the excess of loss and, the excess of loss in general.
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Parameters b σ2(b) M σ2(M) L σ2(L) M L σ2(M,L)

θ = 0.35, η = 0.30 0.29 1.47 1.75 2.88 1.15 41.49 1.75 ∞ 2.88

θ = 0.40, η = 0.30 0.50 4.50 3.20 8.56 0.00 54.00 3.20 ∞ 8.56

θ = 0.80, η = 0.60 0.50 4.50 3.20 8.56 0.00 54.00 3.20 ∞ 8.56

θ = 0.80, η = 0.75 1.25 0.28 0.75 0.56 2.96 26.77 0.75 ∞ 0.56

Table 11: Variance, σ2, of the surplus process

Numerical results

The volatility parameter of the surplus process coincide with the standard variation of the
aggregated claim amount. Therefore, the greater the value of the variance of the process, more
exposed is the insurance company to risk. Looking at the results obtained in Table 11, we verify
that, generally, the quota-share treaty minimizes the variance of the retained risk. In this case,
the insurer cedes more risk to the reinsurer and, therefore, the variance of the surplus process is
smaller.

Conversely, the superior limit L of the XL treaty has a higher value for the variance. This
happens because the level of retained risk is higher and then the volatility of the process is also
higher.
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6 Conclusions

The main objectives proposed at the beginning of this master’s final work were to determine the
optimal level of retention and to understand which forms of reinsurance optimize the surplus process
from the perspective of the insurance company. For the realization of these fundamental points,
three criteria were presented throughout this work: (i) the minimization of the ruin probability,
(ii) the maximization of the expected value of the surplus process, and (iii) the minimization of the
variance of the surplus process.

Through a numerical and sensitivity analysis and using the Mathematica software, the optimal
reinsurance strategy was studied. The main numerical results obtained, in general, were that the
quota-share is the treaty that minimizes the ruin probability when compared to the excess of loss
treaty in general and its inferior and superior limits, M and L respectively.

In line with what would be expected, we verified that the ruin probability decreases with the
increase of the initial surplus (reserve) level.

Interestingly, for the initially defined parameters, the superior limit L of the XL treaty, contrary
to the other treaties, had an optimal value equal to zero, which means that the optimal strategy
would always be to retain all the risk by the insurance company. This behaviour was carefully
analysed. We have concluded that L is no longer zero when distributions combine a large kurtosis
and an almost negative skewness.

We noticed that for a larger kurtosis, the weight of the tails is very large, and with a more
positive skewness this weight is closer to zero, so the probability of having very large losses is small.
For this case, we conclude that the optimal, for the insurer, is to retain risk. Therefore, assuming
identical kurtosis and smaller values for the skewness, we verified that the probability of having
large claims increases, and for this case, it is optimal to reinsure part of the risk.

Based on the optimal values of risk obtained with the criterion of minimization of ruin proba-
bility for the different treaties considered, it appears that the superior limit L of XL treaty presents
an expected value of wealth greater than the others. We also conclude that the quota-share treaty
offers a lower variance (risk) for the surplus process.

In this way, it is concluded that the objectives initially defined were fulfilled.
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Nomenclature

BM - Brownian motion
CVaR - Conditional Value at Risk
HJB equation - Hamilton-Jacobi-Bellman equation
HJBI equation – Hamilton-Jacobi-Bellman-Isaacs equation
SDE - Stochastic Differential equation
QS - Quota-share
VaR - Value at risk
XL - Excess of loss
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Appendix

Appendix I - Optimization of ruin probability

1. Quota-Share treaty {
Z(S) = bS

H(S) = (1− b)S
(58)

PT (S) = (1 + η)λE(Y ) (59)

PR(H(S)) = (1 + θ)E(H(S)) = (1 + θ)λE(Y )(1− b) (60)

E(H(S)) = E((1− b)S) = (1− b)λE(Y ) (61)

E(Z(S)) = E(bS) = bλE(Y ) (62)

α = (1 + η)λE(Y )− (1 + θ)λ(1− b)E(Y )− bλE(Y )

= λE(Y )(1 + η − (1− b+ θ − bθ)− b)
= λE(Y )(η − θ + bθ)

(63)

σ2 = V ar(Z(S)) =

= V ar(bS) = b2V ar(S) = b2λE(Y 2)
(64)

Ψ′(b) =
−θb2V ar(S) + 2(η − θ + bθ)bV ar(S)

(b2V ar(S))2

=
−θb2V ar(S) + 2ηbV ar(S)− 2bθV ar(S)

b4V ar(S)2

=
−θb+ 2η − 2θ

b3V ar(S)

(65)

Ψ′(b) = 0

⇔ −θb+ 2η − 2θ = 0

⇔ b =
2η − 2θ

θ

(66)
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2. Inferior limit M for excess of loss treaty

Z(Y ) =

{
Y if Y ≤M
M if Y > M

(67)

H(Y ) =

{
0 if Y ≤M
Y −M if Y > M

(68)

PT (Y ) = (1 + η)λE(Y ) (69)

PR(H(Y )) = (1 + θ)λE(H(Y )) = (1 + θ)λ

∫ ∞
M

SY (y)dy (70)

E(H(Y )) = λ

∫ ∞
M

(y −M)fY (y)dy

= λ [−(y −M)SY (y)]∞M + λ

∫ ∞
M

SY (y)dy

= λ

∫ ∞
M

SY (y)dy

(71)

E(Z(Y )) = λ

∫ M

0
yfY (y)dy + λM

∫ ∞
M

fY (y)dy

= λ [−ySY (y)]M0 + λ

∫ M

0
SY (y)dy − λ [MSY (y)]∞M

= −λMSY (M) + λ

∫ M

0
SY (y)dy +MλSY (M)

= λ

∫ M

0
SY (y)dy

(72)

α(M) = (1 + η)λE(Y )− (1 + θ)λ

∫ ∞
M

SY (y)dy − λ
∫ M

0
SY (y)dy

= (1 + η)λE(Y )− λ
∫ ∞
M

SY (y)dy − λθ
∫ ∞
M

SY (y)dy − λ
∫ M

0
SY (y)dy

= (1 + η)λE(Y )− λθ
∫ ∞
M

SY (y)dy − λE(Y )

= λE(Y ) + ληE(Y )− λθ
∫ ∞
M

SY (y)dy − λE(Y ) = λ(ηE(Y )− θ
∫ ∞
M

SY (y)dy)

(73)
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σ2(M) = λE(Z(Y )2)

= λ

∫ M

0
y2fY (y)dy + λM2

∫ ∞
M

fY (y)dy

= −λM2SY (M) + 2λ

∫ M

0
ySY (y)dy + λM2SY (M)

= 2λ

∫ M

0
ySY (y)dy

(74)

Ψ(M) = exp

[
−2λ(ηE(Y )− θ

∫∞
M SY (y)dy)(Xo − c)

2λ
∫M

0 ySY (y)dy

]
(75)

Ψ′(M) = 0

⇔ −2θSY (M)

∫ M

0
ySY (y)dy + 2MSY (M)(ηE(Y )− θ

∫ ∞
M

SY (y)dy) = 0

⇔ −2θ

∫ M

0
ySY (y)dy + 2M(ηE(Y )− θ

∫ ∞
M

SY (y)dy) = 0

⇔ 2Mα(M)− θσ2(M) = 0

(76)

3. Superior limit L for excess of loss treaty

Z(Y ) =

{
0 if Y ≤ L
Y − L if Y > L

(77)

H(Y ) =

{
Y if Y ≤ L
L if Y > L

(78)

PT (Y ) = (1 + η)λE(Y ) (79)

PR(H(Y )) = (1 + θ)λE(H(Y )) = (1 + θ)λ

∫ L

0
SY (y)dy (80)

E(H(Y )) = λ

∫ L

0
yfY (y)dy + λ

∫ ∞
L

LfY (y)dy

= λ [−ySY (y)]L0 + λLSY (L) + λ

∫ L

0
SY (y)dy

= −λLSY (L) + λLSY (L) + λ

∫ L

0
SY (y)dy

= λ

∫ L

0
SY (y)dy

(81)
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E(Z(Y )) = λ

∫ ∞
L

(y − L)fY (y)dy

= λ [−(y − L)SY (y)]∞L + λ

∫ ∞
L

SY (y)dy

= λ

∫ ∞
L

SY (y)dy

(82)

α(L) = (1 + η)λE(Y )− (1 + θ)λ

∫ L

0
SY (y)dy − λ

∫ ∞
L

SY (y)dy

= (1 + η)λE(Y )− λ
∫ L

0
SY (y)dy − λθ

∫ L

0
SY (y)dy − λ

∫ ∞
L

SY (y)dy

= (1 + η)λE(Y )− λθ
∫ L

0
SY (y)dy − λE(Y )

= λ(ηE(Y )− θ
∫ L

0
SY (y)dy)

(83)

σ2(L) = λ

∫ ∞
L

(y − L)2fY (y)dy

= λ
[
−(y − L)2SY (y)

]∞
L

+ λ

∫ ∞
L

2(y − L)SY (y)dy

= 2λ

∫ ∞
L

(y − L)SY (y)dy

(84)

Ψ(L) = exp

[
−2λ(ηE(Y )− θ

∫ L
0 SY (y)dy)(Xo − c)

2λ
∫∞
L (y − L)SY (y)dy

]
(85)

Ψ′(L) = 0

⇔ θSY (L)

∫ ∞
L

(y − L)SY (y)dy − α(L)

∫ ∞
L

SY (y)dy = 0

⇔ 2θSY (L)

∫ ∞
L

(y − L)SY (y)dy − 2α(L)

∫ ∞
L

SY (y)dy = 0

⇔ θSY (L)σ2(L)− 2α(L)

∫ ∞
L

SY (y)dy = 0

⇔ θSY (L)σ2(L)− 2α(L)E(Z(Y )) = 0

(86)

4. Excess of loss treaty

Z(Y ) =


Y if Y ≤M
M if M < Y ≤M + L

Y − L if Y > M + L

(87)

34



H(Y ) =


0 if Y ≤M
Y −M if M < Y ≤M + L

L if Y > M + L

(88)

PT (Y ) = (1 + η)λE(Y ) (89)

PR(H(Y )) = (1 + θ)λE(H(Y )) = (1 + θ)λ

∫ M+L

M
SY (y)dy (90)

E(H(Y )) = λ

∫ M+L

M
(y −M)fY (y)dy + λ

∫ ∞
M+L

LfY (y)dy

= λ [−(y −M)SY (y)]M+L
M + λ

∫ M+L

M
SY (y)dy + LλSY (M + L)

= −LλSY (M + L) + LλSY (M + L) + λ

∫ M+L

M
SY (y)dy

= λ

∫ M+L

M
SY (y)dy

(91)

E(Z(Y )) = λ

∫ M

0
yfY (y)dy + λ

∫ M+L

M
MfY (y)dy + λ

∫ ∞
M+L

(y − L)fY (y)dy

= λ [−ySY (y)]M0 + λ

∫ M

0
SY (y)dy − λ [−MSY (y)]M+L

M − λ [(y − L)SY (y)]∞M+L

= λ(

∫ M

0
SY (y)dy +

∫ ∞
M+L

SY (y)dy)

(92)

α(M,L) = (1 + η)λE(Y )− (1 + θ)λ

∫ M+L

M
SY (y)dy − λ

∫ M

0
SY (y)dy − λ

∫ ∞
M+L

SY (y)dy

= (1 + η)λE(Y )− λ
∫ M+L

M
SY (y)dy − λθ

∫ M+L

M
SY (y)dy − λ

∫ M

0
SY (y)dy − λ

∫ ∞
M+L

SY (y)dy

= (1 + η)λE(Y )− λθ
∫ M+L

M
SY (y)dy − λE(Y )

= λ(ηE(Y )− θ
∫ M+L

M
SY (y)dy)

(93)
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σ2(M,L) = λ

∫ M

0
y2fY (y)dy + λM2

∫ M+L

M
fY (y)dy + λ

∫ ∞
M+L

(y − L)2fY (y)dy

= λ
[
−y2SY (y)

]M
0

+ 2λ

∫ M

0
ySY (y)dy − λ

[
M2SY (y)

]M+L

M

−λ
[
−(y − L)2SY (y)

]∞
M+L

+ 2λ

∫ ∞
M+L

(y − L)SY (y)dy

= λ(2

∫ M

0
ySY (y)dy + 2

∫ ∞
M+L

(y − L)SY (y)dy)

(94)

Ψ(M,L) = exp

[
−λ(ηE(Y )− θ

∫M+L
M SY (y)dy)(Xo − c)

λ(
∫M

0 ySY (y)dy +
∫∞
M+L(y − L)SY (y)dy)

]
(95)

∂Ψ

∂M
= 0

⇔ 2θ(SY (M + L)− SY (M))(

∫ M

0
ySY (y)dy +

∫ ∞
M+L

(y − L)SY (y)dy)

−2M(ηE(Y )− θ
∫ M+L

M
SY (y)dy)(SY (M + L)− SY (M)) = 0

⇔ θσ2(M,L)− 2Mα(M,L) = 0

(96)

∂Ψ

∂L
= 0

⇔ 2θ(SY (M + L)− SY (M))(

∫ M

0
ySY (y)dy +

∫ ∞
M+L

(y − L)SY (y)dy)

−2(ηE(Y )− θ
∫ M+L

M
SY (y)dy)(MSY (M + L) +

∫ ∞
M+L

SY (y)dy) = 0

⇔ (SY (M + L)− SY (M))θσ2(M,L)− 2α(M,L)(MSY (M + L) +

∫ ∞
M+L

SY (y)dy) = 0

(97)

{
∂Ψ
∂M = 0
∂Ψ
∂L = 0

⇔


θσ2(M,L)− 2Mα(M,L) = 0

(SY (M + L)− SY (M))θσ2(M,L)−
−2α(M,L)(MSY (M + L) +

∫∞
M+L SY (y)dy) = 0

(98)
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