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Abstract

Artificial Neural Networks are flexible nonlinear mathematical models widely

used in forecasting. This work is intended to investigate the support these

models can give to financial economists predicting prices movements of oil and

gas companies listed in stock exchanges. Multilayer Perceptron models with

logistic activation functions achieved better results predicting the direction of

stocks returns than traditional linear regressions and better performances in

companies with lower market capitalization. Furthermore, multilayer percep-

tron with eight hidden units in the hidden layer had better predictive ability

than a neural network with four hidden neurons.

Keywords: Artificial Neural Networks, Multilayer Perceptron, Backpropa-

gation, Financial Markets, Oil & Gas Industry, Forecasting.
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1 INTRODUCTION

1 Introduction

Today, financial markets are much more developed and competitive than

some years ago. This can be verified by the implementation of high-frequency

trading systems, automated computer algorithms designed to analyse the mar-

kets and place orders on securities in fractions of a second, exploring arbitrage

opportunities and giving liquidity to the markets; the increasing competition

between traders and brokers, creating and transacting complex derivative prod-

ucts in a higher volume or the reduction of the asymmetry of information

between investors and borrowers, performed by banks and rating agencies.

In the recent past, mainly because of the U.S. subprime mortgage crisis,

many assets negotiated in financial markets have become more volatile, ac-

cording to a stylized fact of financial time series known as leverage effect. This

way, for a portfolio manager it is of higher importance to have powerful quan-

titative tools at his disposal for decision support in order to compete with

other market participants and to face adversities brought by the increasing

uncertainty.

Artificial neural networks are nonlinear mathematical models used to solve

different kinds of numerical tasks such as function approximation, optimiza-

tion, classification and time series forecasting. Its use has been growing in

many different areas, motivated by the better results these models usually

offer over traditional linear models.

In this study, I investigate whether these models can be used to help an

investor or a trader raise their financial investments returns. To do it, some

of the most liquid market data is collected in order to forecast stock returns

exposed to risk factors such as: market performance, exchange rate, interest

rate and commodities with direct relation to the business core.
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2 LITERATURE REVIEW

As independent variables: the Standard & Poor’s 500 index, the exchange

rate for Euro to U.S. dollar (EUR/USD), the 3 month euribor interest rate, the

Brent crude and natural gas futures contracts are our proxies that, together

with Galp Energia, Repsol, Total, BP, Royal Dutch Shell and Exxon Mobil

stock’s quotations will be used as inputs in an widely used artificial neural

network to predict in each negotiation’s day, starting from the beginning of

2013, if we should go long or short in these oil and gas companies.

The stock’s performance during the same period is the benchmark we want

to beat. Traditional autoregressive models are also used and all the results

will be compared four months later, at the end of April, 2013.

The next sections give a small presentation of the history of neural net-

works (section 2) and an explanation of how they can be constructed (section

3), attempting to motivate the economist taking them into account, specially

for financial modelling. Section 4 presents a comparison between traditional

econometric regressions and artificial neural networks. Sections 5 and 6 are

reserved for experiments and results evaluation, respectively.

2 Literature Review

Artificial Neural Networks (ANNs) are inspired in the complex biological

neural networks. The first mathematical formalization of neural activity dates

from 1943 by the neurophysiologist Warren McCulloch and the mathematician

Walter Pitts [16].

At the time, the development of symbolic logic, computers and switching

theory impressed many theorists with the functional similarity between a bio-

logical neuron and the simple on-off units on which computers are constructed

[28]. This kind of binary logic was in the base of the first artificial neural net-
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2 LITERATURE REVIEW

work, the perceptron, a classifier invented in 1957 by the psychologist Frank

Rosenblatt [28].

In the 1960s there was a great enthusiasm in the scientific community over

ANNs based systems seen as promising to many fields. Single-layer neural

networks such as ADALINE (adaptive linear neuron, see appendix A) were

widely used. However, research stagnated after the publication of Misky and

Papert [18], who showed that the ANNs used at that time were too limited and

not capable of approximating target functions that were not linearly separable

(see Figure 1), such as the exclusive or (XOR1) function.

Figure 1: Linear versus nonlinear separability: (a) Linearly separable function,
and (b) non linearly separable function. Circles and squares designate points
in two different classes

The key for later advances was the invention of the error backpropaga-

tion learning algorithm by Werbos [36] in combination with multilayer net-

works (explained ahead). Since then, along with the computers evolution to

greater processing power, ANNs have become increasingly popular in many

fields of business, industry and science [38]. There are very recent applications

in health: prognoses in hepatitis C [6] and respiratory abnormalities [2]. In Sci-

ence, ANNs have taken an important role in speech recognition [10], robotics

1XOR represents the inequality function, i.e., the output is 1 if the inputs are not alike,
0 otherwise.
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2 LITERATURE REVIEW

and vision [14]. ANNs have also been used to predict or classify economic and

financial variables such as the gross domestic product [33], the unemployment

rate [19], inflation [4], exchange rates [22], sovereign risk rating [8], prices of

derivatives [18], futures trading volume [40], credit risk evaluation [1], mu-

tual funds value [5], prediction of financial crashes [29], bank bankruptcy [25],

electricity [26] and water demands [20].

The investigation of Artificial Neural Networks applied to business and

economic forecast is therefore extensive, particularly of stock returns forecast

[39], due to the incentive of achieving substantial monetary rewards. However,

few studies have developed neural networks for individual companies [39].

2.1 Artificial Neural Networks

A neural network is essentially a set of simple processing units (neurons)

that communicate by sending signals through a high number of connections

[14]. Biologically, each neuron receives information from the ”input” neurons,

by ramifications designated as dentrites (see Figure 2). Then the neuron fires

electrical and chemical signals through a channel called axon, if some thresh-

old is reached. Next, the axon is divided into small channels (synapses), and

finally again in dentrites, until the next neurons up in the chain. Human brain

is composed by about 10 billion neurons and it is believed that all knowledge

and experience is encoded by the connections between them.

Figure 2: A biological neuron representation [24]
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2 LITERATURE REVIEW

John von Neumann [21] designed a model that describes a processing unit

for an electronic digital computer. This processor works at a very high speed,

sequentially and is well constrained when compared with a biological neuron.

ANNs attempt to use some principles believed to be used by the human brain,

like adaptivity, fault tolerance and generalization ability (characteristics not

present in von Neumann’s model), combining a large number of processor units

working in parallel in relatively simple tasks and easier to understand.

There are two main groups of ANN models: feedforward and recurrent.

Feedforward refers to the direction of the network’s operation: data flows from

the inputs to the output. In recurrent ones the output of the network is fed back

to the input units using additional feedback connections [27], that allows the

network to exhibit dynamic behaviour over time. Artificial Neural Networks

are a type of machine learning algorithms, a branch of artificial intelligence.

In 1959, Arthur Samuel defined machine learning as a field of study that gives

computers the ability to learn without being explicitly programmed [31]. This

corresponds to the process of refining a model, that learns from experience

(sample or training data), in order to be used in forecasting.

There are three main types of learning algorithms: supervised learning,

unsupervised learning and reinforcement learning. In supervised learning we

want the neural network to act correctly, minimizing a specified error function,

because we know the correct action for every input in our sample. When data is

unlabelled, there is no error or reward signal to evaluate a potential solution.

In such a case, unsupervised learning (e.g. data clustering) tries to find its

hidden structure. In reinforcement learning, the correct input/output pairs are

never presented. Monte Carlo methods are a popular class of reinforcement

learning algorithms. There are also hybrid learning algorithms, which combine

supervised and unsupervised learning.
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2 LITERATURE REVIEW

Widrow and Hoff [37] designated artificial neurons by adaptive linear ele-

ments and described the output of one such as:

f(x; w) = G(xTw) (1)

where x is the vector of inputs and w = (w0, ..., wn)T is the vector of weights

assigned to each input xi.

The function G is known as a transfer (or activation) function and setting

G(xTw) = xTw, we arrive to a simple linear model, standard in economet-

ric modelling. Kuan and White [15] point out that for the logistic function

G(xTw) = 1

1+e−(xTw)
, we get the logit model, and when G(xTw) is a normal

cumulative distribution function, we obtain a binary probit.

Later, Werbos [36] and Rumelhart, Hinton and Williams [30] combined

such neurons into one function and called them multilayer perceptron, an ANN

composed of at least three layers (see Figure 3).

Figure 3: Structure of a multilayer perceptron

The input neurons xi (i = 1, 2, ..., n) represent the explanatory variables

and they must be in the first layer. The intermediate layer (possibly more) is

6



2 LITERATURE REVIEW

called the hidden layer and is where neurons are attached to transfer functions

and become referred to hidden neurons. Finally, in the last layer there is the

network output. Each input neuron is connected to every neuron in the hid-

den layer by a propagation function z. The most used is the linear, a weighted

combination of the input variables, defined as:

z(x; w) = w0 +
n∑
i=1

xiwi (2)

A similar function is used connecting the second layer and the output. The

function of a multilayer perceptron can be represented as:

f(x; w; β) = F

( H∑
h=0

G(x; w)βh

)
(3)

where β = (β0, ..., βH) is the vector of weights assigned to each hidden neuron.

The output neuron has also a transfer function, represented in equation (3) by

F . In this dissertation I will use the identity function in the final layer, that

allows the output to take values in R, which is in our interest since we want

to predict returns. For instance, setting F to be a logistic function may be a

relevant way for modelling probabilities.

Figure 4: Transfer functions [11]
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3 BACKPROPAGATION LEARNING ALGORITHM

There are other transfer (activation) maps available (see Figure 4), such as

the hyperbolic tangent, a sigmoid function.

The original perceptron of 1957 has a binary transfer function, a type of

step functions that have the significant limitation of not being differentiable.

Radial basis are also a very popular alternative for activation functions (see

appendix B).

Once the network architecture is defined it becomes necessary to estimate

the various weights assigned to each input. Werbos [36] developed an algo-

rithm, the backpropagation, which would come to be the most widely used

[9, 35, 38].

3 Backpropagation Learning Algorithm

Let the training set T = (xp, tp), with p = 1, 2, ..., P patterns, where xp =

(xp1 , ..., xpn)T ∈ Rn is the input vector and tn = (tn1 , ..., tnd
)T ∈ Rd is the target

output. The network computes the output f(xp; w), where w = (w1, ..., wn) is

the vector of weights assigned to each input variable. Define the error function

as follows:

E(w; x; β) =
1

2

P∑
p=1

∣∣∣∣tp − f(xp; w; β)
∣∣∣∣2 (4)

Given a specified multilayer perceptron function f , backpropagation is an al-

gorithm that consists in changing the weights of f with the objective of mini-

mizing the error. For each p, the equation comes as follows:

E(x; w, β) =
1

2

(
t− f(x; w; β)

)2

(5)

8



3 BACKPROPAGATION LEARNING ALGORITHM

The function used ahead in the experiments has additive propagation func-

tions, H logistic functions at the hidden neurons and an identity function at

the output (logistic and identity as transfer functions). The equation is of the

form:

f(x; w; β) = β0 +
H∑
h=1

βh
1

1 + e−
(
w0h+

∑
i wihxi

) (6)

Backpropagation is a generalization of the delta rule (gradient descent), a first

order optimization method. Each β and w is adjusted in the opposite direction

of the error function’s derivative:

4βh = −η ∂E
∂βh

(7)

4wih = −η ∂E
∂wih

(8)

where η is a constant (normally in the range ]0, 1[) known as learning rate. It

represents the magnitude of corrections made to the parameters. Its choice

should be made carefully: values near 1 would cause the algorithm to oscillate

a lot producing bigger errors; values near zero slow the convergence to a solu-

tion. Applied to equations (5) and (6), the partial derivatives with respect to

the error function can be written as:

∂E

∂bh
=

(
t− f(x; w; β)

)
∂f

∂bh
(9)

∂E

∂wih
=

H∑
h=1

(
t− f(x; w; β)

)
∂f

∂Gh

∂Gh

∂z

∂z

∂wih
(10)

9



3 BACKPROPAGATION LEARNING ALGORITHM

with G as the logistic function (recall z from equation (2)). There are several

variants from the original backpropagation, following the same logic as the

steps below:

1. Start with all weights set to random values between -1 and 1.

2. Submit the first training pattern and obtain the output.

3. Compare the network output with the target output.

4. Correct the output weights using the following formula:

bh = bh + ηδoGh + (bh ×momentum) (11)

where bh is the weight connecting the hidden unit h with the output. η is the

learning rate, Gh is the output at hidden unit h, momentum is a constant and

δo is given by the following:

δo = t− f(x; w; β) (12)

where f is the network output and t is the target.

5. Correct the input weights using the following formula:

wih = wih + ηδhxi + (wih ×momentum) (13)

where wih is the weight connecting the input xi to the hidden neuron h, xi is

the correspondent input value at the first layer and δh is given by:

δh = Gh(1−Gh)
∑
h

δowho (14)

where who is the weight connecting the hidden neuron h to the output.

10



3 BACKPROPAGATION LEARNING ALGORITHM

6. Calculate de squared error:

E =
1

2

(
t− f(x; w; β)

)2

(15)

7. Repeat from 2 for each pattern in the training set to complete one epoch

or training time.

8. Shuffle the training set randomly (prevents the network being influencend

by the order of the data2).

9. Repeat from step 2 for predefined periods (or until the error ceases to

change, given a predefined threshold).

Note that β0 and w0 are weights assigned to extra inputs which always equal

one, known as bias (recall Figure 3). After multiplying this by the corre-

spondent weight we get the constant term, analogous to the intercept term

in a linear regression. The momentum parameter (typically between 0 and 1)

quantifies the inertia of the weights, forcing them to change direction contrary

to the one which reduces the error. Small values for momentum can accelerate

the convergence. In the equation (14), the sum presented is up to the number

of units that form the hidden layer. Some authors recommend that the sum

(i.e. the number of hidden neurons) should be up to
√
inputs× outputs [3].

Others argue that the optimal number will generally be found from one-half

to three times the number of hidden neurons [13]. Regarding the number of

hidden layers, multilayer perceptron models with just one hidden layer, since

a sufficient number of hidden neurons is provided, are universal approximators

[12] and the most effectively used.

2Is the most recent data available more important or is it just the relatioship betwen the
input and the output that matter? It’s the econometrician who decides.

11



3 BACKPROPAGATION LEARNING ALGORITHM

3.1 Advantages and Disadvantages

The main advantage of artificial neural networks is that they belong to the

class of nonparametric models, so there is no requirement about the distri-

bution of the data, the availability of multiple training algorithms and their

nonlinear configuration. Empirical observations suggest that when complex

nonlinear relationships exist in data sets, neural networks models may provide

a tighter model fit than conventional regression techniques. They can accu-

rately capture complex patterns in existing information, allow for categorical

data and have no restrictive assumptions. Neural networks also perform well

with missing or incomplete data.

On the other hand, there are no structured criteria for the choice of the

parameters, like the number of hidden layers or hidden neurons, the learning

rate or the training time, etc. Such flexibility involves much trial and error

until the right combination of the parameters is reached. Furthermore, there

are no economic reasons to justify which combination is more appropriated. It

is also difficult to understand how the relationship between hidden neurons are

estimated as well as to interpret in economic or financial terms each weight

separately. This limitation is referred to as the black box criticism. There

is also tendency to overfitting (see Figure 5) due to the large number of free

parameters.

Figure 5: Higher adaptivity to structural break on data and danger of model
overfitting

12



4 TRADITIONAL REGRESSION MODELS

There can be also complexity costs when more than one hidden layer is

used or large training periods: neural networks can be time consuming.

At last, algorithms for artificial neural networks were conceived to converge

to a local minimum of the error function, not the global. However, global

optimization is a big challenge in what concerns computation. Note that nor-

malizing the data, although not required, can improve the performance of the

networks.

4 Traditional Regression Models

Neural networks are similar to linear and nonlinear least squares regression.

Autoregressive and multiple linear regression models may be seen as feedfor-

ward neural networks with no hidden layers, i.e. single layer networks3 (see

figure 6) and one output neuron equipped with a linear transfer function.

Figure 6: Example of a Single layer network

A Logistic regression model (with no interaction terms) is also identical to

a single layer network (but, with logistic function as transfer function). How-

ever, in logistic regressions, the process converges when the likelihood function

is maximized whereas in a neural network it is usually a least squares error

3Some authors don’t consider the input variables forming a layer, because of their inde-
pendence from the model’s configuration.

13



5 OIL & GAS INDUSTRY

function that is minimized (although likelihood functions can be maximized

too). Spackman [32] has shown that a single layer backpropagation neural net-

work developed using a maximum likelihood objective function will converge

to the same solution as a plain logistic regression model. In Table 1 there is a

brief glossary showing some popular terms in the field of neural networks and

their equivalents in statistics. A big separation between traditional statistical

methods and ANNs resides in post estimation analysis. The former have tests

of significance for input variables and confidence intervals for output variables.

Comparable tests are not generally available for the latter. Empirical studies

drew attention to the fact that financial time series exhibit nonlinear effects,

and often fail to verify traditional assumptions of econometrics, such as the

normality, stationary, independence and homoscedasticity of the residuals. In

this work, I explore neural networks as an alternative against traditional linear

regressions (architectures presented in section 5.4).

Neural Networks aaaaaaaaaaaaaaaaStatistics
Input, attribute aaaaaaaaaaaaaaaaIndependent variable
Output aaaaaaaaaaaaaaaaDependent Variable
Connection weights aaaaaaaaaaaaaaaaRegression coefficients
Bias weight aaaaaaaaaaaaaaaaIntercept Parameter
Error aaaaaaaaaaaaaaaaResiduals
Learning, training aaaaaaaaaaaaaaaaParameter estimation
Training case, instance aaaaaaaaaaaaaaaaObservation
Cross-entropy aaaaaaaaaaaaaaaaMaximum likelihood estimation

Table 1: Common terms in the field of neural networks and statistics.

5 Oil & Gas Industry

Half of the twenty biggest companies in 2012, by revenue, are from the oil and

gas industry. Petroleum is a product vital to many other industries and to

14



5 OIL & GAS INDUSTRY

the functioning of the industrialized civilization itself. It is used for a vast and

ever growing-range of purposes: oil to fuel automobiles and airplanes, plastics,

natural gas for heating and increasingly as fuel, etc.

The Chicago Mercantile Exchange Group and the New York Mercantile

Exchange (NYMEX) are the exchange companies where the most liquid con-

tracts of crude oil and natural gas futures are negotiated, respectively. The

price of crude oil futures is often referenced in news reports, historically mov-

ing close to the price of Brent crude searched and explored in the North Sea,

that is the leading global price benchmark for crude oil. Although most Brent

is destined for European markets, it has been used as benchmark by all West

African, Mediterranean and some Southeast Asia crudes.

Energy companies, such as Exxon Mobil, Royal Dutch Shell, BP, Total,

Repsol and Galp Energia operate worldwide in this field as integrated com-

panies: after extracting oil and gas to the surface (upstream sector), they

transport the raw materials principally through pipelines to refineries and,

in the end, deliver the various refined products to downstream distributors.

These companies were chosen for our experiments with ANNs.

5.1 Networks Architecture

All the neural network models estimated have six input variables that can

be good predictors of the next day’s share price of each company.

Let t+ 1 be the day for which the prediction is made. The input variables

are the returns observed in the market in day t of: company’s share price, Brent

crude futures contract price, natural gas futures contract price, 3 month euribor

rate, euro to U.S. dollar exchange rate and Standard & Poor’s 500 index. Let

the price of the asset be defined by the time series {Pt} , t = 0, 1, 2, .... The

return Rt in someday t is defined as: Rt = Pt−Pt−1

Pt−1
.

15



5 OIL & GAS INDUSTRY

Figure 7: Multilayer perceptron with four hidden units

For each company, a neural network with 4 hidden neurons (see Figure 7)

and another model with 8 hidden units (see Figure 8) were implemented. Both

were trained with 1567 observations, taken from Datastream, corresponding

to the period from 01-Jan-2007 to 31-Dec-2012. The learning rate was 0.3 and

the momentum 0.1. The networks were trained for 100 epochs. The software

used was WEKA (Waikato Environment for Knowledge Analysis), an open

source based on JAVA, popular in the machine learning community.

Figure 8: Multilayer perceptron with eight hidden units

16



5 OIL & GAS INDUSTRY

5.2 Investor Strategy

The strategy of the hypothetical investor is at first step, on a daily basis: in

31/Dec/2012 following the close of the NASDAQ stock market, the network

makes a prediction for the return of each stock for the first trading day of 2013.

If the return predicted by the network is greater than zero, then the investor

takes a long position, hoping for an appreciation of the share price. If the return

predicted by the network is less than zero, the investor takes a short position,

betting on a price decline. If the forecast is correct, the profit, corresponding

to the effective price movement: Pt−Pt−1

Pt
is collected. If the opposite occurs,

a loss is incurred. When the U.S. market closes in 02-Jan, a new model is

estimated including the latest information and a new prediction is performed,

but now, for the next negotiations day, 03-Jan. If the network predicts the

same direction for the share movement as the day earlier, then the investor

holds his position, otherwise he closes the position and bets in the opposite

way. We assume that the markets are highly liquid. This assures that when

the market opens our order is immediately matched, so that makes the daily

change in prices to correspond precisely to the variation (in the same direction

or not) of the investor returns. For simplicity, we also suppose that there are

no transaction costs. Institutional investors, like banks, insurance companies

or hedge funds have some ease mitigating them, through the movement of large

sums of cash. For a particular investor, it may be desirable to take them into

account.

5.3 Economic Relevance

It is easy to verify, with the accounts report, the exposure to risk big com-

panies have to deal with every day. Common risks are the market risk, the
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interest rate risk and the exchange rate risk.

The market risk, also known as systematic risk, cannot be eliminated

through portfolio diversification (but it can be hedged against). For instance,

a recession or political turmoil environment cause a decline in the market as

a whole. As a result, the stocks will fall, depending on the correlated volatil-

ity of the stocks in relation to the market movements. A popular measure of

market risk is the beta (β), from the Capital Asset Pricing Model (CAPM).

The higher the beta4, the higher is the market risk associated to that stock.

A large part of coupons paid by companies, as underwriters of bonds, con-

sist in a float reference interest rate plus a spread on a given nominal amount.

In the case of interest rate risk, if our proxy for the float rate, the euribor

(normally at 3 and 6 months maturities) goes up then difficulties rise for com-

panies paying their interests on borrowings. It is also expected a deviation

from investments in stocks to investments in bonds, offering higher yields. On

the other hand, low rates make the fixed income market less attractive. The

Euro Interbank Offered Rate (Euribor) is based on the interest rates at which

a panel of big European banks borrow funds between them. In the calcula-

tion, published every day by the European Banking Federation, the highest

and lowest 15 of all the quotes collected are eliminated. The remaining rates

are averaged. Euribor provides the basis for the price or interest rate of all

kinds of financial products, like corporate bonds.

In the case of Exxon Mobil, for an interest rate risk proxy we used the

LIBOR (London Interbank Offered Rate). The LIBOR is the world’s most

widely used benchmark for short-term interest rates. It is calculated by British

Bankers’ Association in a similar way to the euribor, but on a global scale. In

4Beta is obtained using historical data and computing the covariance between the rates
of return of the asset and the rates of return of the market, all over the variance of the
market returns.
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the United States, many adjustable rates in fixed income market are indexed

to the LIBOR.

Multinational firms are participants in currency markets due to their inter-

national operations. Therefore, this type of companies are subject to exchange

rate risk, due to changes in currency exchange rates, which can adversely affect

profit margins. The exchange rate between the euro and the U.S. dollar is the

most negotiated in the world and it is relatively stable. The U.S. dollar is the

most liquid currency in the forex market. Nearly every central bank and in-

stitutional investors in the world holds this currency, and some countries (e.g.

many countries in Central America) use it as an official or unofficial alternative

to their local currencies or as an exchange-rate peg. In our experiments we use

the exchange rate from euro to U.S. dollar as a proxy for exchange rate risk

and the U.S dollar to the British pound sterling in the case of BP.

The enterprises on this kind of industry are naturally exposed to fluctu-

ating prices of crude oil, natural gas, oil products and chemicals. Factors

that influence supply and demand include natural disasters, weather, political

instability, conflicts, economic conditions and actions by major oil-exporting

countries. For instance, in a low oil and gas price environment, the company

would generate less revenue from its upstream production and, as a result, cer-

tain long-term projects might become less profitable, or even incur in losses.

In the future, the prices of these commodities can be unaffordable given the

increasing demand by emerging economies combined with the need of measures

to reduce CO2 emissions.

Other risk factors, such as the probability of credit events or changes in

securities tax lax, although also important, are not considered in our models

which seek parsimony and high access to standard daily data.
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5.4 Conventional Models Architecture

In our experiments we tested the neural networks presented in subsection 5.1

against the linear models presented next. Let yt be the return for the company

in study in the moment t. The following model describes the returns of this

company as a linear combination of predictor variables:

yt = b0+b1yt−1+b2brentt−1+b3gast−1+b4excht−1+b5indext−1+b6euribt−1+ut

(16)

where brent is the return of the Brent crude oil future contracts prices; gas is

the return of the natural gas futures contact prices; exch is the variation on

the Euro to U.S. dollar; the eurib is the change in the 3 month euribor rate;

index corresponds to the S&P 500 index return and ut being independent and

identically distributed (iid) random variables . This model falls into the class

of autoregressive moving average models with exogenous inputs (ARMAX).

Autoregressive AR(1) models are also used:

yt = c+ φ1yt−1 + ut (17)

with |φ1| < 1 and ut being iid random variables. This model belongs the class

of stationary5 linear processes (moving average models also belong to this

category) and is an important model in Finance, given that it can reasonably

reproduce the dynamics of many time series. Random walks, autoregressive

but nonstationary (evolutive) processes, are also used in our tests:

yt = c+ yt−1 + ut (18)

with ut being a white noise independent from yt−1.

5process whose features of randomness don’t change over time.
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6 Results

For models results evaluation we used the network’s final return, the root

mean squared error (RMSE6), the mean absolute error (MAE7), and the per-

centage of correct predictions on price movements direction and the sharp

ratio. The results are shown in Tables 2-7. In the application of ANNs with

eight hidden units, Galp Energia gave 16.9% of profitability, Repsol 22.92%

and Total 27.27%, in the period of four months. In our experiments, neural

networks didn’t perform so well predicting the direction of stocks prices from

BP, which gave us 5.62% of returns, Shell (-0.55%) and Exxon (5.18%). It is

in the separation between the companies whose ANNs performance were good

and those were results were poorer, that we will derive our conclusions. The

real stocks returns observed for each company in the market during the study

period appear in the tables in the ”Benchmark” row.

Model Profitability RMSE MAE Correct predict.

Neural Network (4 HN) 16.90% 0.0136 0.0107 52.94%

Neural Network (8 HN) 18.09% 0.0134 0.0104 54.12%

ARMAX 3.25% 0.0121 0.0095 45.88%

AR(1) -0.65% 0.0118 0.0093 44.71%

Random Walk 3.17% 0.0169 0.0135 48.24%

Benchmark 3.49% - - -

Table 2: Galp Energia results

a

6RMSE =
2

√∑N
i=1(ti−oi)2

N
7MAE = 1

N

∑N
i=1 |ti − oi| = 1

N

∑N
i=1 |ei|. In the experiments N equals 85, the number

of negotiations days under study. ti corresponds to the target/real observed return at day
i and oi to the prediction given by the model for that day.
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Model Profitability RMSE MAE Correct predict.

Neural Network (4 HN) 22.92% 0.0189 0.0149 49.41%

Neural Network (8 HN) 23.06% 0.0183 0.0140 50.59%

ARMAX 20.62% 0.0171 0.0133 45.88%

AR(1) 0.54% 0.0150 0.0141 45.81%

Random Walk 1.36% 0.0248 0.0196 47.06%

Benchmark 16.04% - - -

Table 3: Repsol results

Model Profitability RMSE MAE Correct predict.

Neural Network (4 HN) 27.27% 0.0140 0.0109 51.76%

Neural Network (8 HN) 29.08% 0.0132 0.0107 52.94%

ARMAX 11.57% 0.0122 0.0094 50.59%

AR(1) -5.54% 0.0123 0.0094 41.18%

Random Walk 4.66% 0.0211 0.0164 55.29%

Benchmark -1.90% - - -

Table 4: Total results

Model Profitability RMSE MAE Correct predict.

Neural Network (4 HN) 5.62% 0.0117 0.0095 52.94%

Neural Network (8 HN) 7.76% 0.0117 0.0095 50.59%

ARMAX 0.81% 0.010 0.0076 45.88%

AR(1) -9.49% 0.0111 0.0078 49.41%

Random Walk 8.77% 0.0188 0.0145 51.76%

Benchmark 9.79% - - -

Table 5: BP results
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Model Profitability RMSE MAE Correct predict.

Neural Network (4 HN) -0.55% 0.0105 0.0078 51.76%

Neural Network (8 HN) 1.41% 0.0107 0.0081 52.94%

ARMAX 0.04% 0.009 0.0057 47.06%

AR(1) -12.05% 0.0077 0.0057 34.12%

Random Walk 3.96% 0.0176 0.0136 47.06%

Benchmark -0.58% - - -

Table 6: Royal Dutch Shell results

Model Profitability RMSE MAE Correct predict.

Neural Network (4 HN) 1.19% 0.011 0.0086 47.06%

Neural Network (8 HN) 1.88% 0.012 0.0088 48.24%

ARMAX 5.85% 0.0092 0.0071 50.59%

AR(1) -6.73% 0.0082 0.0062 40%

Random Walk -7.07% 0.0114 0.0091 38.82%

Benchmark 0.32% - - -

Table 7: Exxon Mobil results

6.1 Results evaluation

ANNs with 8 hidden units were the best models in what concerns the final

return. Autoregressive models always provided better results in terms of root

mean square error and mean absolute error (see appendix C). Most models

had a direction accuracy around fifty percent. Benchmarks were largely beat

in Galp, Repsol and Total experiment’s concerning ANNs. In some cases,

random walks performed results in terms of correct predictions close to the

other models, although with poor final returns.
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6.1.1 Number of Synapse Connections

Artificial neural networks with 8 hidden neurons presented better results

than ANNs with the same learning rate, training time and momentum but

with 4 hidden neurons. The former seem to detect non linearities that the

latter ones do not. We can think of simply add hidden units to our network

hopping even better results. However, parameters estimation can be much

more time consuming adding hidden neurons as well as increasing the number

of hidden layers, input variables or training time. Let ni be the number of

neurons (bias excluded) in layer i (n1 equals the number of input variables)

from an ANN with L layers. The number of parameters to be estimated is

described by the following formula:

L−1∑
i=1

(ni + 1)ni+1 = (n1 + 1)n2 + (n2 + 1)n3 + ...+ (nL−2 + 1)nL−1 (19)

In the experiments, with 6-4-1 and 6-8-1 architectures, for ANNs with four

hidden units there were estimated 33 parameters, whereas in ANNs with 8

hidden units there were estimated 64. Lack of parsimony is evident when

compared with the AR(1) and ARMAX models. In tests, just 2 and 7 param-

eters were estimated per model, respectively.

6.1.2 Companies Market Cap

In a deeper analysis, the need of testing directional forecast values arises

because, although biased forecasts occur, investors still profit if they are on

the correct side of the price change more often than not. Pesaran and Timmer-

mann [23] built a statistic to test if stocks prices directions are independent

from directions given by models. This is the null hypothesis, which suggests

that the model isn’t appropriate to forecast. The statistic is constructed as ex-
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plained bellow. Let P denote the correct direction predictions of the network:

P = 1
N

∑N
t=1Dt a, a where d Dt =

 1, if TtYt > 0

0, otherwise

P = 1 means perfect direction accuracy, whereas P = 0 means that any

correct prediction is made.

Let a At =

 1, if Tt > 0

0, otherwise
; aBt =

 1, if Yt > 0

0, otherwise
;

PA = 1
N

∑N
t=1At a;a PB = 1

N

∑N
t=1Bt a and a P∗ = PAPB + (1− PA)(1− PB).

Pesaran and Timmermann’s statistic, defined as: PT = P−P∗

[V (P )−V (P∗)]
1
2

a∼ N(0, 1)

follows a standardized asymptotic normal distribution with hypothesis:

• H0 : Tt and Yt independent random variables.

• H1 : H0 false.

V (P ) and V (P∗) represent the variances from P and P∗ respectively, defined

by the following:

V (P ) = N−1P∗(1− P∗) a;

V (P∗) = N−1(2PB−1)2PA(1−PA)+N−1(2PA−1)2PB(1−PB)+4N−2PBPA(1−

PB)(1− PA)

Using this statistic for each company in the period of study, the null hypothesis

is never rejected. So, are all models studied not appropriate for forecasting?
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Not even the ANNs for Galp, Repsol and Total, which provided good final

results? Filtering all observed returns into big returns (we considered the ones

with an absolute return greater than 1%) and small returns (otherwise) and

gathering the big returns of Galp, Repsol and Total for a joint evaluation on

the single Pesaran and Timmermann’s statistic, we get a p-value of 0.0427.

Contrary, the null hypothesis is clearly not rejected again when testing for the

big returns of BP, Shell and Exxon together. This statistic was made in the

circumstances presented above by the following reasons. First: the number

of big returns is lower than the number of total returns: increasing the num-

ber of observations by grouping observations in a statistic improves results’

reliability. Second: groupings were made concerning companies’ market capi-

talization8, i.e. the stock price multiplied by the number of shares outstanding,

by separating the three companies with lower market cap from the three ones

with biggest. The main reason of the separation by indicator is that ANNs

performed better for those with lower market cap (see Figure 9).

Figure 9: ANN with 8 hidden neurons return & company market capitalization
(return in %, market cap in 1010 US dollars)

8http://www.forbes.com/global2000/list
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We believe ANNs capture better investors overall expectations for next

negotiation’s day given what happened in the previous day in the market for

the companies with lower market cap, according to the “small firm effect”,

which argues that those tend to have a volatile business environment, more

vulnerable to what happens in the markets, beyond having lower stock prices,

which means that price appreciations tend to be larger than socks with a bigger

market capitalization. Fama and French [7] used this separation (small minus

big) as a relevant input in the three factor model for equity portfolios.

In Table 8 there are the beta coefficients resultants by estimating the re-

gression of each company’s returns against the Standard & Poor’s 500 index

under the tests period.

Company Galp Repsol Total BP Shell Exxon

beta 0.78 1.31 0.97 0.41 0.46 0.69

T-Stat9 9.05* 5.79* 6.03* 2.76** 4.21* 3.99*

Table 8: Companies against market regressions

There were obtained higher betas for the three companies with lower market

capitalization: Galp, Repsol and Total. This supports the thesis of more

vulnerability for lower cap firms. It’s important to take into account that

Exxon Mobil is the major component of the North America Market’s Index

(S&P 500) and even then gave us lower correlation with his home market than

the ”foreign” lower cap companies, in some way revealing the idiosyncratic

effects that the behaviour of financial markets in North America places in

Europe. This type of risk has received some attention by the development of

multivariate models and hypothesis tests, such as the Granger causality, to

9* significant at 99.5% confidence level; ** significant at 99% confidence level.
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test co-movements of return and volatility between financial time series.

6.1.3 Sharpe Ratio

The Sharpe Ratio, defined as:

S =
Rp −Rf

σp
(20)

were Rp is the average or expected value of the returns on the portfolio, Rf the

risk-free10 rate and σp is the portfolio standard deviation, indicates how well

the return of an asset rewards the investor for the risk taken. It is a simple

way to evaluate the performance of a portfolio. When comparing two assets

versus a common benchmark (risk free rate in our experiments), the one with

a higher Sharpe ratio provides a better return for the same risk.

Figure 10: Sharpe Ratio results

Artificial Neural Networks with eight hidden neurons were the bests mod-

els in what concerns the trade-off between risk and return, concerning Galp,

Repsol and Total trading performance. For the three biggest companies in

terms of market cap one cannot draw any relevant conclusions.

10The risk-free rate to 4 months was determined by linear interpolation between the
yields negotiated on the money market at 02/Jan/2013 in US T-Bills (maturities of 3 and 6
months).

28



7 CONCLUSION

7 Conclusion

This work applies artificial neural network (ANN) models against autore-

gressive and multiple linear models in order to investigate their performance

detecting asset price movements quoted in stock exchanges. It were used the

daily returns of future contracts on Brent crude and natural gas, the returns

of the exchange rate between the currencies euro and U.S. dollar and the stock

returns of Galp, Repsol, Total, BP, Shell and Exxon Mobil (1651 observations)

in our models as inputs to predict stocks prices movements for these companies

for the following day, for a period of four months. Two multilayer perceptrons,

with 6-4-1 and 6-8-1 architectures and logistic activation functions in the hid-

den layer and identity at the output learned with those patterns.

Neural Networks were the best models in the experiments, in terms of final

return. It was found that multilayer perceptrons with eight hidden units in

the hidden layer predicted better the returns than multilayer perceptrons with

four hidden units, ceteris paribus.

The ANNs predicting big return’s direction (we considered the ones in

module greater than 1%) provided good results for companies under study

with lower market capitalization. One may conjecture that ANNs capture

better overall investors expectations for next negotiation’s day, given what

happened in the previous day in the markets for the companies with lower

market cap, according to the “small firm effect”, which argues that those tend

to have a volatile business environment, more vulnerable to what happens

in the markets, despite having lower stock prices, which means that price

appreciations tend to be larger than socks with a bigger market capitalization.

Fama and French used this separation (small minus big) as a relevant input in

the famous three factor model for equity portfolios. Moreover, autoregressive
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models always provided better results in terms of root mean squared error and

mean squared error.

Results suggest multilayer perceptron models may serve as a good alterna-

tive tool to traditional econometric regressions for forecasting financial mar-

kets, specially for institutional investors. In fact, these are big sponsors of

this type of research. However, models accuracy is difficult to obtain and can

take months of investigation. Neural network software that allow automated

routines or direct programming skills are desirable.

Given that in our experiments linear models provided better results in

terms of RMSE and MAE, we suggest the combination in a synergistic way

of both traditional regression models and artificial neural networks for time

series forecasting.

There are many other possible extensions to this work. For the followers

of technical analysis, technical indicators such as the Relative Strength Index

(RSI), Bollinger Bands or Moving Average could be good predictor variables

for price movements. Bloomberg believes that in 2020 Singapore will be the

largest wealth manager in the world. A possible extension to enhance profits

is through the application of neural networks in financial markets with strong

growth potential (e.g. Singapore).

For other areas of Finance, such as risk management, given the empiri-

cal evidence that volatilities of financial time series exhibit lower decays is

their autocorrelation functions when compared to the returns, we recommend

the application of neural networks to predict this risk measure for portfolio

managers in contrast to the popular ARCH and GARCH models.

For static modelling, we consider the application of neural networks to fit

term structures as opposed to the most used indirect methods, like the Nelson-

Siegel approach.
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Appendix A ADALINE

Adaptive linear neuron (ADALINE) is a function with n input neurons xi,

each one assigned with one weight wi. The output y can be defined by the

following equation:

y =
n∑
i=1

wixi (21)

After an initial assignment of random values (typically small ones) to the

weights, the fitting is made by adjusting the weights with the following rule:

wnew = wold + η(ŷ − y)x (22)

with η constant, ŷ the value given by the model and y being the target. This

process is repeated until a minimum specified value of the error function E =

(ŷ − y)2 is achieved. This value and the η are defined by the mathematician,

according to the results recorded.

Appendix B Radial Basis Networks

Radial Basis Networks (RBNs) are a popular class of multilayer feed-forward

networks that employs radial basis functions as the activation ones. A RBN,

s, is a scalar function of the input vector, φ : Rn → R, and is of the form:

s(x) =
N∑
i=1

λiφ
(∣∣∣∣x− ci

∣∣∣∣) (23)

where ci is the center vector for neuron i, and λi is the weight of neuron i in

the linear output neuron.
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B RADIAL BASIS NETWORKS

The map φ is called basic function. Every function can be represented as a

linear combination of basis functions. For instance, a quadratic polynomial of

the form x2 + bx+ c has {x2, x, 1} as basis. Popular choices of basic functions

include (writing r =
∣∣∣∣x− ci

∣∣∣∣):
• gaussian kernel: φ(r) = e−(εr)2

• multiquadratic: φ(r) =
√
r2 + c2 , c > 0

• thin plate spline : φ(r) = r2ln(r)

Jointly, the hidden units provide a set of functions that constitute a flexible

basis set for representing input patterns (see Figure 10).

Figure 11: Illustration of modelling flexibility by the combination of radial
basis functions (with w1 = −0.47518, w2 = −0.18924 and w3 = −1.8183)
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C ERROR PERFORMANCE PLOTS

Appendix C Error Performance Plots

Figure 12: Galp error plots from ANN (8 HN) in blue and AR(1) in red

Figure 13: Repsol error plots from ANN (8 HN) in blue and AR(1) in red

Figure 14: Total error plots from ANN (8 HN) in blue and AR(1) in red
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C ERROR PERFORMANCE PLOTS

Figure 15: BP error plots from ANN (8 HN) in blue and AR(1) in red

Figure 16: Shell error plots from ANN (8 HN) in blue and AR(1) in red

Figure 17: Exxon error plots from ANN (8 HN) in blue and AR(1) in red
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