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ABSTRACT 
 
A considerable part of the banking business includes the lending of money. Inherently, 

a bank incurs the risk of not receiving back the money lent. In this work, default risk is 

studied through the distribution function of the aggregate losses. 

After making the link between the characteristics of a portfolio of loans and of a life 

insurance policies portfolio, Risk Theory results are applied to the portfolio of loans 

under study. CreditRisk+, usually classified as the actuarial model, is a credit risk model 

which uses this link. As an input to this model, both the individual probabilities of 

default for each obligor and the exposure at risk are needed. 

The first part of this work focus on the estimation of the probability of default through a 

logit model, taking into account some financial indicators of the company. Then, in the 

context of a collective risk model, Panjer’s recursive algorithm is applied. 

Following the methodology of CreditRisk+, the portfolio is then divided into sectors and 

default volatility is introduced in each sector, reaching a different aggregate loss 

distribution function. 

At the end, we find that similar results are obtained with less time consuming 

approximation methods, particularly with NP approximation. 

Finally, the average interest rate that the bank should have charged to the loans in the 

portfolio is found as well as the amount of money that should have been reserved to 

account for losses. 

 

Keywords: Loan portfolio, Probability of default, Logit, Collective risk model, 

Aggregate loss, Panjer, CreditRisk+ 
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RESUMO 
 
Uma parte considerável do negócio bancário inclui naturalmente o empréstimo de 

dinheiro. Inerentemente, o risco de não receber de volta o montante emprestado é 

assumido pela instituição bancária. Neste trabalho, o risco de incumprimento é 

estudado através da função de distribuição das perdas agregadas. 

Depois de feita a ponte entre as características de uma carteira de empréstimos de um 

banco e as características de uma carteira de apólices de seguros vida, os resultados 

da Teoria de Risco podem ser aplicados à carteira em estudo. O CreditRisk+, 

geralmente classificado como o modelo actuarial, é um modelo de risco de crédito que 

tem por base esta ponte. Para aplicação deste modelo, é necessária informação 

relativa às probabilidades de incumprimento de cada devedor e a exposição ao risco, 

que no nosso caso é igual ao montante em dívida. 

Na primeira parte deste trabalho é estimada a probabilidade de incumprimento através 

de um modelo logit, tendo em conta alguns indicadores financeiros da empresa. 

Seguidamente, no contexto de um modelo de risco coletivo, é aplicado o método 

iterativo de Panjer. 

Seguindo a metodologia proposta pelo modelo CreditRisk+, a carteira é seguidamente 

dividida em setores e, em cada setor, é introduzida volatilidade à probabilidade de 

incumprimento. 

No final, conclui-se que conseguem ser obtidos resultados semelhantes utilizando 

métodos de aproximação menos dispendiosos, nomeadamente com a aproximação 

NP.  

Finalmente, a taxa de juro média que o banco deveria aplicar aos empréstimos em 

carteira é calculada, assim como a reserva que deveria ter sido constituída. 

 

Palavras-chave: Empréstimos bancários, Probabilidade de incumprimento, Logit, 

Modelo de risco coletivo, Perda agregada, Panjer, CreditRisk+ 
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1. INTRODUCTION 

 
A considerable part of the business of bank institutions is to lend money. Implicitly, the 

risk of not receiving back the amount of money lent is incurred. This risk is called 

default risk and its quantification assumes a fundamental role in the risk management 

of a bank.  

 

This work aims to study and quantify the default risk. To apply the methodologies 

presented throughout the essay, a portfolio of loans owned by a national bank 

institution was provided. However, it should be remarked that the ultimate interest of 

this work is not to study this particular portfolio, but to show the application of Risk 

Theory models, usually applied in the insurance context, to the banking framework.  

 

In a first part, the probability of default is briefly studied. We are interested in finding 

what financial indicators of a company can explain default and how. For this, we will 

align our approach with what is commonly done in the literature, as far as possible, 

given some data limitations.  

 

Then, these estimated probabilities will be used as an input to the credit risk model 

under study in this work, CreditRisk+, also known as the actuarial risk model among the 

most used ones. We are going to show why this risk model is considered to be the 

actuarial one. Particularly, we are going to follow CreditRisk+ ideas, but formalizing 

every step in the Risk Theory framework. This is the second part of this work, which 

consists of Sections 3 and 4. 

 

In Section 5, we test whether similar results can be obtained with approximation 

methods which depend only on some moments of the aggregate loss distribution. 

 

At the last section, the average interest rate that the bank should have charged to 

obligors such that the portfolio is self sustainable is found for a certain probability level 

as well as the initial reserve that should have been accounted. 
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2. PROBABILITY OF DEFAULT  
 

When a bank lends money to an obligor there is no guarantee that the obligor will pay 

back the amount in debt. Each obligor has intrinsically associated a probability of 

default. It is common sense that this probability of default is driven by some factors. For 

example, it is more likely to observe a start-up company defaulting than a multinational 

one as it is more likely that default comes from a company with negative profit in the 

previous year rather than from one with positive profit. The first part of this work aims to 

decode what factors may influence a company to default, estimating it through a logit 

model. 

 

2.1. Generalized Linear Models  
 

Linear regression models aim to quantify how a set of independent variables affect a 

response variable. In its simplest form, the response variable y  is estimated as a 

linear combination of the explanatory variables 1 2, , ..., nx x x  such that  

0 1 1 2 2 ... n ny x x x         
 

where i  are parameters to be estimated and  2N 0,   is an error term. 

Therefore, it is in fact the expected value of the response variable y  that is being 

estimated as a linear combination of the explanatory variables, i.e. 

  0 1 1 2 2E ... n ny x x x x         

 

As a result of this, it is implicit under linear regression models estimation that 

 2N ,y x x   

where 0 1 1 2 2 ... n nx x x x         . In some practical applications, this might not 

be a proper assumption. This is particularly obvious when modelling a binary response 

variable. When this is the case, the problem enters in the scope of generalized linear 

models. 

 

Given a response random variable Y , a generalized linear model is characterized by 

(i) A distribution function 

The probability density function of the response variable is assumed to be a member of 

the exponential family, i.e. the set of distributions whose density function can be  
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written as 

 
 

 
 , , exp ,Y

y b
f y c y

a

 
 



 
  

   

where  , the natural parameter, is a function of the expected value of Y  and   is the 

dispersion parameter. To this family belong for instance distributions such as Normal, 

Poisson or Binomial. 

(ii) A linear predictor 

The linear predictor   is defined as the linear combination of the explanatory variables 

1 2, , ..., nx x x , i.e. 

0 1 1 2 2 ... n nx x x         . 

(iii) A link function 

The link function g  is a monotonic differentiable function which establishes the 

relationship between the expected value   of Y  and the linear predictor, i.e. 

 g   . It is common practice to consider as link function the canonical link function, 

which is defined as the function h  such that  h  . 

 

In the context of this work, we want to estimate the probability of default of the obligors 

in our portfolio through a generalized linear model. Being 
iD  the random variable that 

models the default of obligor i  and ip  its probability of default, we have that 

 Bi 1,i iD p . It is worth noting that the expected value of 
iD  is ip , and therefore, 

under an appropriate generalized linear model and after estimating the linear predictor 

i  for obligor i , our estimate for ip  is the output by the inverse link function of the 

estimated linear predictor, i.e.  1

i ip g  . 

 

When modelling a Binomial response random variable, the link function must be 

chosen in such a way that its inverse can only take values between 0 and 1. The 

canonical link function is  

  ln
1

cg





 
  

   

 

Using this link function, this model is known as the logit model. Other common choices 



 Default Risk:  
Ricardo Brito Penha Analysis of a Credit Risk Model 4 

 

 4 
 

are the probit ( pg ) and the complementary log-log ( lg ) link functions, which are as 

follow 

   1

pg     

    log log 1lg    
 

where 
1  is the inverse of the distribution function of a standard normal random 

variable. 
 

2.2. Literature Review 

 
The literature on the topic of what financial indicators might drive future default is 

extensive and remote. Edward Altman is amongst the first to investigate this topic. 

Back in 1968, Altman (1968) studied how a set of financial indicators can predict 

corporate bankruptcy. He started with 22 ratios under the categories of liquidity, 

profitability, leverage, solvency and activity, concluding by the significance of 5 of them. 

 

It is common practice to consider financial ratios from different categories. Intuitively, 

this allows for different aspects of a firm to be captured. Profitability, efficiency and 

liquidity are amongst ratio categories that are more frequently used to predict default. 

 

Besides firm-specific factors, macroeconomic risk factors are also frequently taken into 

account to capture systemic risk, as in Carling et al. (2007), Bonfim (2009) and 

Hamerle (2004). For instance, Bonfim (2009) estimates the probability of default for a 

sample of companies through a probit model using only firm-specific information as 

explanatory variables in a first approach. Then, by incorporating some macroeconomic 

variables, an improvement in the model is registered, which suggests some important 

and reasonable links between credit risk and macroeconomic dynamics.  

 

Along with macroeconomic variables, factor or dummy variables can also be 

considered. Still related with systemic risk effect, Volk (2014) concludes that taking 

time dummies as explanatory variables performs slightly better than models with 

macroeconomic variables. That is, instead of introducing a set of macroeconomic 

variables, Volk (2014) concludes that the inclusion of a dummy variable accounting for 

the reference year of the financial information is sufficient. Other factor variables that 

usually have a good explanatory power include firm’s size and sector of activity, as in 

Volk (2014). 
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Transversally to all referred papers, explanatory variables are considered with some 

lag. Particularly, before estimating a model, Bonfim (2009) starts by analysing the lag 

effect that must be considered in each variable through its correlation with credit 

overdue some years later. Intuitively, this is a natural effect to account for, since the 

default of a company in a given year is the realization of its past activity and 

performance.  

 

The choice of the framework under which the estimation is going to be performed is 

also a point to highlight. Huang and Fang (2011) analyse six major credit risk models, 

including the logit and probit model. According to their results, these two are among the 

ones with better accuracy ratio, although there is not a significant difference between 

them. The models in Bonfim (2009) and in Volk (2014) are probit models. However, 

when comparing logit and probit, Gurny and Gurny (2013) concludes that logit model is 

more appropriate. 

 

It should be remarked that all these conclusions, which are presented in the papers 

considered, are naturally data biased. As it is observed in Altman (1968), the possibility 

of bias is inherent in any empirical study, since the effectiveness of a set of variables in 

the sample under study does not imply its effectiveness in any other sample. 

Nevertheless, we are going to ground our estimation procedure in these conclusions as 

far as possible, depending obviously on its applicability to our particular database and 

taking into account the limitations in terms of data provided. 

 

2.3. The Database 
 

In this section, our database is introduced and the proper choice of the linear predictor 

and its estimation is discussed.  

 

The portfolio under study in this work consists of the portfolio owned by a Portuguese 

bank institution of loans granted to enterprises. It was provided information about the 

obligors, namely several ratios based on the companies’ balance sheet and profit and 

loss account throughout some years, as well as the monthly default record and 

exposure since the beginning of 2014. For confidentiality reasons, the content of this 

information will not be shown. 
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Because the format of the information provided was not in a structure that fit our needs, 

particularly because the information was spread in several files, a new database was 

constructed to compile the relevant information of each file. In this process, some 

information was purposely lost, both in terms of variables and of obligors. 

 

The file that contains the economic information has roughly 1.2 million lines of 

information related to 74 667 different obligors. For each obligor, there might be 

information in more than one line of the file to account for different reference years and, 

if the case, different loan contracts. After an insight analysis of this database, we could 

conclude that there is a considerable number of lines with incomplete information. For 

estimation purposes, complete data is needed. If only the lines with complete 

information in all variables were considered, too much information would be lost. To 

overcome this, we based our analysis in a study conducted by an independent entity 

on the rating model of the bank. In this study, univariate analysis to both quantitative 

and qualitative variables led to a conclusion of what variables might be significant in a 

regression, based on the correlation between them. There are 5 quantitative and 5 

qualitative variables to draw attention to and therefore the database is filtered by the 

obligors which have complete information on all these ten variables. Table I and    

Table II identify these variables, while Annex A and Annex B shows more detail. 

 

Table I 
Quantitative variables description 

 

Category column is based on the classification attributed by the bank 
 
 

Table II 
Qualitative variables description 

 
 

Factor variables that take value “Sim” or “Nao” if the answer is positive or 
negative, respectively 

 

 

 

Variable Description Category

ROCEL Operating Income / Net Economic Capital Profitability

TVV (Sales and Services(year n) - Sales and Services(year n-1)) / Sales and Services(year n-1) Activity

FMNFV Working Capital / Sales and Services Operational

AF Equity / Assets Financial Structure

JVPS Interest Expenses / Sales and Services Banking financing

Variable Description

info3 Did the exposure  of the loan increased in the last 6 months?

info5 Is the company internally identified as a critical case?

info16 Has the company delayed the payment to the bank by more than 30 days?

info18 Has the company delayed any other payment by more that 30 days?

info31 Is the company registering a decrease in the average net income?
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Taking all this considerations into account, the database under study comes down to 

11 140 obligors for the year of 2014. This sub-portfolio is going to be considered as if it 

was the whole portfolio of loans and hence, no conclusion is to be taken for the whole 

portfolio of loans of the bank. Furthermore, from the 11 140 obligors of our portfolio, 

391 were in default. In 2015, the bank continues to be exposed to 10 215 of them. No 

information was given regarding the reason for the exits. 

 

2.3.1. Estimation Results 
 
In this section, the linear predictor that explains the default variable is discussed and 

estimated using the software R. Taking into account the limitations of the database that 

was provided, the ideas and conclusions presented in Section 2.2 are applied as far as 

possible and considering our sub-portfolio as the entire one.  

 

The chosen link function is the canonical one and so, the probability of default is going 

to be estimated through a logit model. The idea is, through the estimation of a model 

for the default in 2014, to apply the model to predict the default in 2015.  

 

In the estimated models presented hereafter, the response variable is naturally the 

default during 2014. Given the monthly record provided, it is going to be considered 

that the loan is in default if, in any month of 2014, a delay of 90 days or more in some 

payment is registered, which is consistent with the definition of default by the bank.  

 

In terms of explanatory variables, default is going to be predicted with information from 

previous years. Therefore, both quantitative and qualitative variables for reference year 

2013 are considered. Furthermore, and to allow for the lag effect of the economic 

indicators, quantitative variable for reference year 2012 are also considered. The idea 

is to incorporate all these variables at first into the estimated model and then to check 

its individual statistically significance. 

 

Along with quantitative and qualitative information, firm’s characteristics such as its size 

and sector of activity are considered too. The variable firm’s size, called Dimensao in 

our database, is a factor variable which can take the values “GRE”, “PME” and “PE” 

which stand for large, medium and small firm, respectively. The sector of activity 

variable, Setor in R, takes the values “comercio”, “industria” and “servicos”, which 

stand for commerce, manufacturing and services sectors, respectively. Annex C show 
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more detail on these variables. 

 

Before going over the estimation of the model, the macroeconomic context of the years 

we are considering should be mentioned. The European debt crisis started in 2009, but 

its effects are still being felt, particularly in Portugal. The year of 2013 was maybe the 

hardest year for companies in general. It was actually the last year ever since to 

register a negative real Gross Domestic Product growth rate. Because of this, given 

that our data is under pressure conditions, all conclusions taken might be limited. 

 

The R output of the model incorporating all these variables, which is presented in 

Annex D, allows for some interesting conclusions. First, quantitative information for 

reference year 2012 seems not to be statistically significant as well as firm’s size, 

contradicting the lag effect of more than 1 year in the financial indicators on this 

particular database. In contrast, all qualitative variables seem to explain default. When 

it comes to the variable sector of activity, while the estimated parameter 
 

industria


 is 

statistically significant, the estimated parameter 
 

servicos


 is not.  

 

In order to reach the best model, the procedure is to eliminate the variable with highest 

p-value, step by step, ending up only with variables whose estimated parameter is 

statistically different from zero. In the particular case of the variable Setor, instead of 

disregarding this variable because of the non significance of 
 

servicos


, it was substituted 

by the dummy variable SetorIndustria. This variable takes the value “Sim” if the sector 

of activity is the industry one and “Nao” otherwise. The substitution of Setor by 

SetorIndustria permits to conclude about the following hypothesis test 

  

0 : servicos comercioH  
 


 

 

Given that the reduction in the residual deviance from the model that has 

SetorIndustria as explanatory variable to the model that has Setor is of 0.1, 0H  is not 

rejected as the reduction in deviance is less than 3.841, the 95th percentile of  2 1 . 

 

Following this procedure the best model, in terms of variables significance, is reached. 

However, the output of the estimation carried out by the software R for this model 
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returns a warning message that there are obligors where the fitted probability equals 0 

or 1. This might be related with the problem of the so-called complete separation. In its 

simplest form, this problem occurs when running a logit estimation if there is a variable 

among the whole set of explanatory variables that explains the response variable 

perfectly. For instance, if in our database we would have some variable which took 

negative values for firms in default and positive values for firms not in default, then this 

variable would explain perfectly the event of default. Actually, by the simple knowledge 

of this variable, default could be predicted. After a careful analysis, no evidence of this 

situation was found in our database. However, and with no apparent reason, it was 

discovered that by removing the variable TVV from the estimation, no warning 

message was returned. Because of this, we restarted the estimation by considering all 

the variables as before except TVV and, following the procedure explained before, we 

ended up again with only statistically significant variables. The output by R software of 

these two models is shown in Annex E, where the model that includes TVV variable is 

referred to as Model 1a and Model 1b does not. After an analysis to the sign of the 

estimated parameters of both models, we come to the conclusion that these cannot be 

our final models. 

 

Given that the inverse of the canonical link function is an increasing function, the 

highest the linear predictor is, the highest the probability of default. Therefore, in the 

case of the quantitative variables of both models, we can conclude that their negative 

sign is reasonable. Theoretically, the higher these ratios are, the better the economic 

situation of the company, the lower the estimated linear predictor and hence the lower 

the probability of default of the obligors.  

 

Regarding the qualitative information, we claim that all the sign are reasonable but one. 

Firstly, when the variable info3 takes the value “Sim”, then the exposure of the loan 

was increased in the last 6 months. This might mean that the economic situation of the 

company was reviewed carefully by the bank and so, if the increase in exposure was 

approved, then this obligor must show good indicators. Hence, the negative sign on 

this parameter seems reasonable. Secondly, the positive sign on info5, info16 and 

info18 seems also legitimate, given that if the company has been identified as a critical 

case or if the company delayed some payment by 30 days or more, then it is more 

likely to expect a default coming from this obligor. Lastly, concerning info31 variable, its 

negative sign is at least counterintuitive. This negative sign means that the companies 
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that have been registering a decrease in the average net income are less likely to 

default. This might be a sign of multicollinearity between explanatory variable. Hence, it 

is considered appropriate to disregard this variable from the model. 

 

Given this, estimation was started again in the way described before. First, all variables 

were included but info31, and step by step, eliminating the variables with highest p-

value, the best model in terms of residual deviance was reached. Again, and 

disregarding TVV variable because of the warning message already described, another 

best model was reached. This last model is going to be referred to as Model 1, while 

the best model including TVV as Model 2. 

 

 

Figure 1 – R software output for the estimation of Model 1 

 

 

Figure 2 – R software output for the estimation of Model 2 

 

Statistically speaking, we can remark that both models show an acceptable goodness-

of-fit, since the residual deviance of each is less than 11 378, the 95th percentile of 
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 2 11131 . When comparing both models, given that they are nested models, Model 2 

is preferable in terms of residual deviance, as expected. This is because the increase 

by one degree of freedom from Model 2 to Model 1 is not worth, since the increase in 

deviance is greater than 3.841, the 95th percentile of  2 1 . With an illustrative 

purpose, Figure 3 shows the probabilities of default estimated by Model 1.  

 

Figure 3 – Fitted probabilities of default for obligors not in default (left) and in default 

(right) for 2014 according to Model 1 

 

In terms of the fitted probabilities, we can see that the great majority of obligors not in 

default have a probability of default close to 0. This is not verified for the ones in 

default. Actually the dispersion of the probability of default is not centred on 0. 

However, for a considerable number of obligors in default, the estimated probability of 

default is close to 0, which might show the weaknesses of the model already 

discussed. Economic conjuncture might also be an important point, since default might 

have occurred in cases where it was not expected at all. 

 

The prediction power of a model is usually quantified through the Receiving Operator 

Characteristic (ROC) curve and the area under it. The ROC curve corresponds to the 

plot of the true positive rate against the false positive rate, for each threshold for 

considering that default is predicted. These rates are estimated, in our case, as the 

percentage of obligors for which default was predicted and actually happened and the 

percentage of obligors for which default was predicted and did not happen, 

respectively. The closer the area under this curve is to one, the better the model is.  

 

Applying the estimated models to information of 2014, the probability of default for the 

year of 2015 is estimated. As it was provided data on the default record for the year of 
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2015, the prediction power of these two models can be calculated. Using the package 

ROCR of the software R, the ROC curves for both models are shown in Annex F. In 

terms of predictability, we can conclude that both Model 1 and Model 2 show a good 

explanatory power, given the area under the curve of 0.9139 and 0.9140, respectively. 

 

Given all similarities between models, we are going to consider only Model 1 in the 

application of what follows. 

 

3. AGGREGATE LOSS 
 

A proper risk management of an insurance policy portfolio asks for the monitoring of its 

risks. These risks are quantified in the future, when the company is liable to pay the 

claim amount. However, it is of interest to predict today the total loss that may arise 

from the portfolio in the future. 

 

Risk Theory is a branch of actuarial mathematics that aims to describe technical 

aspects of the insurance business through mathematical models. It might have its roots 

when a portfolio was first thought as a sum of insurance policies. Considering this, the 

aggregate loss from the portfolio is the sum of the losses arising from each individual 

policy. 

 

Let S  be the aggregate loss random variable of a portfolio of n  independent policies in 

a given period of time. Therefore, if iX  is the random variable for the loss arising from 

policy i , then 

1

n

i

i

S X


  

where  iX  are independent random variables, not necessarily identically distributed. 

This is actually known as the individual risk model. Under this model, we consider that 

each iX  has a mass point at 0, as it is not expected that all policies result in a claim. 

 

Another way of modelling the random variable S  is considering claims as arising from 

the whole portfolio instead of individual policies. This means that another source of 

randomness must be taken into account: the claim frequency, i.e. the number of claims 

that may arise from the portfolio. Therefore, if N  is the claim frequency random 
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variable, then the aggregate loss random variable is modelled as  

0

N

i

i

S X



 

with 0 0X  .  

 

For it to be possible to deduct some interesting results, it is usually assumed that the 

random variables  iX  are independent and identically distributed, and independent of 

N , where iX  denotes the severity of the 
thi  claim in the portfolio in the period of time 

under consideration. Under these assumptions, this model is known as the collective 

risk model. 

 

As a matter of fact, the choice of the risk model depends on the framework of the 

problem under study. In this work, we want to model aggregate losses from a portfolio 

of loans of a bank. In fact, besides the fact that Risk Theory was first thought to 

insurance portfolios applications, it is possible to apply these models to the portfolio in 

question. By changing the interpretation of the variables in the model, this portfolio of 

loans is perfectly comparable to a portfolio in the life insurance context.  

 

Let us consider a group life insurance portfolio that pays a fixed amount in the event of 

death. Interpreting policyholders as obligors, probability of death in a period of time as 

the probability of default and the amount that the insurance company is liable to pay in 

the event of death as the amount of money in default, we are in the context of the loans 

portfolio. In this work, and for prudent reasons, the amount of money in default is going 

to be considered as the amount lent at the time that the default happens.  

 

In practice, individual risk model is more used in the life insurance context while the 

collective risk model captures general insurance characteristics the best. This is 

because individual risk model permits individual specification for the claim severity 

random variable. Furthermore, assuming claim severity random variables are 

identically distributed, as we do in the collective risk model, might not be the most 

proper assumption for life insurance since either the probability of death or the sum 

assured can be different from policyholder to policyholder. However, methods to 

approximate an individual risk model to a collective one have been studied. For this, 

both claim frequency and claim severity distributions are needed. 
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Considering claim frequency, we remark that a reasonable assumption is that it is 

Poisson distributed. Let us consider a portfolio of n  loans, and group obligors with 

equal probability of default. Let in  be the number of obligors with probability of default 

ip . In each group, we can say that the number of defaults random variable iN  is 

binomial distributed, i.e.  Bi ,i i iN n p . However, for a sufficiently large portfolio and 

given that ip  is expected to be small, the distribution of iN  can be approximated       

by a Poisson distribution with parameter i i in p   . It is worth noting that this 

approximation of a binomial to a Poisson random variable preserves its expected 

value. Another possible approximation would be by matching the value of                       

the probability at zero, i.e.  Pr 0iN  , which results in a Poisson parameter 

 ln 1i i in p    . At portfolio level, as the sum of independent Poisson random 

variables is still Poisson distributed, these approaches result respectively in 

i i

i

n p   and  ln 1i i

i

n p    , where   is the parameter of the claim frequency 

random variable N . 

 

For small values of ip , these two approaches are expected to give similar results. 

However, in our recent economic situation, this was not the case for many obligors. 

Therefore, both approaches will be considered further up, being referred to as 

Approach A and Approach B, respectively. 

 

In terms of claim severity, when an obligor defaults, the amount of default is fixed and 

equal to the amount of the loan. This means that the claim severity random variable is 

a multiple of a binomial random variable. Particularly, if iL  is the amount of the loan of 

obligor i , then the claim severity random variable equals i iL N . In this context, it is 

worth considering the following theorem and its corollary. 

 

THEOREM 1: Suppose that jS  has a compound Poisson distribution with Poisson 

parameter j  and severity distribution with distribution function  
jXF x , for 

1, 2, ...,j n . Suppose that 1 2, , ..., nS S S  are independent. Then 1 2 ... nS S S S     is 
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compound Poisson with Poisson parameter 1 2 ... n        and severity 

distribution function 

   
1

j

n
j

X X

j

F x F x




  

 

COROLLARY 1: Let 1 2, , ..., nx x x  be different numbers and suppose that 1 2, , ..., nN N N  

are independent random variables, each of them Poisson distributed with parameter  

i . Then, the random variable 1 1 2 2 ... n nS x N x N x N     is compound Poisson with 

1 2 ... n        and claim severity probability density function 

  
, if , 1,2,...,

0 , otherwise                 

i
i

X

x x i n
f x






 

 



  

 

Given this corollary, we can conclude that the aggregate loss random variable S  of our 

portfolio of loans can be approximated by a compound Poisson random variable. In 

fact, if we divide our portfolio into groups of obligors with the same characteristics, i.e. 

same probability of default ip  and same amount of loan jL , then we have 

j ij

i j

S L N
 

where  Poij ijN  , with ij ij in p   or  ln 1ij ij in p    , is the claim frequency 

random variable of the group of the ijn  obligors with probability of default ip  and 

amount of loan jL . The collective risk model consists in considering the claim 

frequency random variable N  to be Poisson distributed with parameter   and, when a 

default occurs, it can take values jL  for 1, 2, ...j   with probability equal to  

ij

i

ij

j i








 

 

The validity of this assumption in our particular problem may be questionable. Actually, 

by estimating the probability of default through a logit model, it is not expected that two 

obligors have precisely the same probability of default. Therefore, the partition of the 
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portfolio into groups with the same probability of default and same amount of the loan 

would result in one obligor per group. This fails to verify that the parameter ijn  is large 

enough. We are going to ground this assumption on Credit Suisse Financial Products 

(1997, p. 35), where it is referred that besides the fact that the probabilities of default 

are all different, the approximation of the claim frequency random variable to a Poisson 

random variable is a good approximation. On the other hand, by comparing the 

probability generating function of the aggregate loss under the individual risk model 

context with the probability generating function of an approximation by the 

corresponding compound Poisson distribution, Gerber (1990, p. 97) points out that the 

smaller the probabilities of default are, the better the compound Poisson approximation 

is. In our particular case, even with relatively large fitted probabilities of default, given 

that the variance of the Poisson random variable is higher than the Binomial one, this 

assumption will actually be applied since it is a prudent one.  

 

The next step after defining the aggregate loss random variable is to find its distribution 

function, which depends upon the distribution of the random variables N  and  iX . It 

is possible to find its exact distribution function by convoluting the distribution functions 

of  iX . However, when considering practical applications on relatively large portfolios, 

this method is time consuming in terms of calculations. To overcome this, iterative 

methods involving fewer amounts of computations were developed to approximate the 

distribution function of the aggregate loss random variable. 

 

3.1. Panjer's recursion formula 
 

Let us consider the set of discrete random variables X  that satisfy the following 

formula, being  Prnp X n   and ,a b , 

1 , 1, 2, ...n n

b
p a p n

n


 
   
   

 

This set of random variables is known as ( , ,0)a b  family and to it belong distributions 

such as Poisson, Binomial and Negative Binomial (which includes Geometric), as 

pointed in Panjer (1981). Actually, these are the only members of this family, as proved 

by Sundt and Jewell (1981). In the particular case of the Poisson distribution, we have 
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that it belongs to the  , ,0a b  family with 0a   and b  , since 

 

1

1
! 1 !

n n

n n

e e
p p

n n n n

      

  


 

 

Panjer’s recursion method is an iterative method to find aggregate loss probability 

density function in the context of the collective risk model. For an aggregate loss 

random variable such that the claim frequency distribution belongs to the  , ,0a b  

family, let g  the aggregate loss density function and f  the claim severity density 

function, taking only values on the non-negative integers. Panjer’s recursive formula is  

 

1

1
( ) ( ) ( ) , 1, 2, ...

1 (0)

(0) (0)

x

j

N

j
g x a b f j g x j x

af x

g P f



  
    

  
 



 

where NP  is the probability generating function of N . 

 

If we consider the aggregate loss to be compound Poisson distributed, Panjer’s 

recursive method is 

 1 (0)

1

(0)

( ) ( ) ( )

f

x

j

g e

g x j f j g x j
x





 



 



 



 

 

3.2. Discretization of the claim frequency random variable 
 

Considering the application of Panjer’s recursion method in a practical environment, 

one should be aware of the frequent need for a discretization of the claim severity 

distribution. In fact, beyond this need, it is actually needed to transform claim severity 

distribution into an arithmetic distribution. An arithmetic distribution is meant to be a 

discrete distribution function such that all points at which a step happens are multiples 

of some positive number.  

 

In the case under study in this work, as all loans are integer numbers, the claim 

severity distribution is discrete. Nonetheless, as the amounts of the loans vary widely, it 

is convenient to set a reasonable monetary unit. After the determination of this unit, 

criteria need to be set on how to deal now with non integer amounts. For instance, if a 
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monetary unit of 1500 is defined, a loan of then 7500 is now considered as a loan of 5. 

However, it might be the case that there is a loan of 14000, which corresponds to a 

loan amount of 9.33 in the unit set. 

 

There are sundry methods to “arithmitize” the claim severity distribution. The simplest 

ones are methods of rounding, either up, down or to the nearest. According to these 

methodologies, and considering the previous example, a loan of 9.33 would be 

considered as a loan of 10 in the first method and a loan of 9 in the last two methods. 

In terms of probability density function, the value  9.33f  is now accounted as  10f 
 

or  9f 
, respectively. Gerber (1990, p. 94) describes a forth method, which he calls 

Rounding and which consists of a rounding method to the nearest that keeps the 

expected value of the distribution, after an adjustment to the individual probability of 

default. 

 

Another possible method, which is the one to be considered in this work, is called the 

method that matches the mean of the distribution. Again, and as the name suggests, 

after the transformation of the claim severity random variable X  into an arithmetic 

random variable X 
, the expected value of the distribution is maintained. Formally, for 

a monetary unit h , the density function f 
 of X 

 is defined recursively as 

 
1

0 1: ...
j

j j X
j

f f f f F hy dy


         

 

In practical terms and because in our particular case XF  is a step function, instead of 

allocating  9.33f  into  10f 
 or  9f 

 as in the methods of rounding, the method 

that matches the means implies that  9.33f  is proportionally split contributing to both 

 10f 
 and  9f 

. Gerber (1990, p.95) calls this method Dispersion and describes it 

in the context of discrete random variables, where this conclusion is clearly seen. In the 

context of the example given, we would have that  9.33f  would contribute 

 
10 9.33

9.33
10 9

f



 to  9f 

 and  
9.33 9

9.33
10 9

f



 to  10f 

.  

 

The term “contribute” is being used to account for cases where two or more loans in 
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the portfolio have the same upper or lower bound in terms of the chosen monetary unit. 

For instance, if we would have also a loan of 16000 in our example, which corresponds 

to 10.67 in the monetary unit set, then besides the contributions already described, 

 10f 
 would have to have reflected a contribution of  

10.67 10
10.67

11 10
f




 from this 

loan. 

 

In the case of our database, the exposure amount of the loans ranges widely. Due to 

confidentiality reasons, the amount of the loans will not be shown and therefore the 

choice of the monetary unit will not be discussed. After expressing all loan amounts in 

the monetary unit, the highest loan is of 80 000. It was not considered a higher 

monetary unit, and thus a less thin “arithmatization”, because nearly 56% of the 

obligors have loans whose amounts are below 50 in the chosen monetary unit. 

 

All in all, after approximating the claim severity distribution accordingly to Corollary 1, it 

is discretized applying the methodology discussed in this section.  

 

3.3. Results 
 

In this section we are going first to discuss the fitted values for the year of 2014, 

comparing them to the actual experience. Then, we are going to project the default for 

the year of 2015.  

 

As already said, for the year of 2014, 391 defaults were registered. According to 

Approach A, the fitted probabilities sum up 391. This is obviously an expected figure, 

as the expected number of the Poisson distribution   is the sum of individual 

probabilities according to this approach. 

 

For Po(391)N , we have that   391 170Pr 0 1.55 10N e     . However, taking into 

account the fitted probabilities ip , the probability of no default in the portfolio actually 

equals   2101 1.43 10i

i

p    . Therefore, it is expected that the Poisson parameter 

accordingly to Approach B increase, compared to Approach A. Actually, for the year of 

2014, we have that the expected number of defaults is 483.19 under Approach B. 
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Applying Panjer’s algorithm for the year of 2014, the aggregate loss distribution 

function is estimated. Thus, the percentile of the curve at which the registered loss is 

can be found. In this year, a total amount of 2 469 693 was lent, in the chosen 

monetary unit, being the total amount in default equal to 117 700. According to the 

adopted definition of loss, the actual loss equals 117 700, 4.77% of total loan amount. 

Given this percentage, the estimated percentile is a curious result. 

 

 Table III 
Percentile of the loss that actually occurred in 2014 

 

 

At first these figures seem not to be reasonable. Actually, this emphasizes the 

questions already pointed out regarding the validity of the model. Besides this, there 

are three important facts that support why these figures were obtained with this model. 

First, the majority of the loans in our portfolio are small loans (after expressing its value 

in the monetary unit): as already pointed out, 56% of the loans are below 50. Second, 

the estimated probability of defaults for loans greater than 10% of 117 700, which are 

only 23 loans, are considerably small, having a mean default rate of 1.83%. Therefore, 

the model for the estimation of the probability of default is limited in predicting default 

from obligors with the largest loans, which are the ones where principal focus should 

be. Finally, and concerning the values of the loans that actually defaulted, 385 loans 

were between 0 and 2000, 4 loans between 2000 and 6000 and 2 loans between 

24 000 and 26 000. In fact, the two largest defaulted loans are amongst the largest 12 

of the portfolio, which is the reason for the large percentile of the registered loss. 

 

Regarding the year of 2015, the one we are interested in projecting, the following table 

shows the Poisson parameter, which actually is the expected number of defaults, under 

Approach A (Po_A) and Approach B (Po_B). 

 

Table IV 
Poisson parameter for year of 2015 

 
 

Concerning the aggregate loss distribution, R software was used, particularly its 

Po_A 0.9497

Po_B 0.9114

Model
Percentile of 

117 700

Model Poisson parameter

Po_A 384.70

Po_B 586.61
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package actuar, which includes Panjer’s algorithm. Given the considerable large values 

for  , Panjer’s approximation may be questioned about its validity, as its starting value 

is a very small value. The function aggregateDist of the referred package of R draws 

attention to this problem, saying that Panjer’s algorithm might not start or end if the 

value of   is too large. The truth is that no error or warning was returned, maybe 

because our values for   do not reach the too large threshold. 

 

In this section and subsequent, the analysis of the estimated aggregate loss 

distribution will be made considering five percentiles in the tail of the distribution. 

Besides this, the estimated probability density functions for both models are shown in 

Annex G. In terms of percentile amounts, results are presented in Table V. 

 

Table V 
Tail percentiles of the compound Poisson aggregate loss for the year of 2015 

 

 

 

4. CREDITRISK
+
 

 

There are four credit risk models that are recurrently considered as the most relevant 

ones: CreditMetrics, KMV PortfolioManager, CreditPortfolioView and CreditRisk+. 

 

Briefly describing them, CreditMetrics and KMV Portfolio Manager are usually classified 

as market value models. In the case of CreditMetrics, risk groups are defined 

accordingly, for instance, to credit quality classification of the company, being the worst 

risk group related to default. The probability of default is therefore equal to all obligors 

in the same risk group. Then, and based on historical record, the probability of moving 

from one state to another is estimated, entering in the credit migration framework. 

Using Monte Carlo simulation, portfolio default loss distribution is then generated 

according to the market value change of the asset portfolio of the company due to 

credit migration only. Market value change is tracked consistently with Merton’s Model, 

an option pricing model for the valuation of equity based on Black-Scholes, extending it 

to incorporate credit migration. 

 

90 95 97.5 99 99.5

Po_A 96 018 112 194 131 101 149 531 161 686

Po_B 120 154 136 323 153 942 173 136 185 783

Model
Percentile
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Concerning KMV PortfolioManager, the approach is to derive individual probabilities of 

default, the Expected Default Frequency (EDF), of each obligor rather than historical 

transition frequency. Following Merton’s Model too, the term “distance to default” is 

defined. An extension to Merton’s Model is also done, to account for the refinancing 

abilities of companies. EDF is defined as a function of the “distance to default”, which 

depends on the firm’s financial structure. Based on the estimation of the correlation 

between default probabilities and default record, credit rating migration matrix can be 

derived as well as default loss distribution. 

 

CreditPortfolioView is classified as the econometric model, as the probability of default 

is defined to depend on macroeconomic scenarios. By setting up a multi-factor model 

to account for systemic risk, probability of default is estimated through a logit model. 

According to this model, default loss distribution is derived taking into account the 

relationship between credit migration matrix and macroeconomic indicators.  

 

Among credit risk models, CreditRisk+ is classified as the actuarial model. It is going to 

be studied and described in detail in the next two subsections. In the first one, we are 

going to compare the simplest form of this model to the work developed in Section 3. 

Then, it is going to be briefly shown how to reach CreditRisk+ formula in its generalized 

form and put it into practice in our database.  

 

By the end of Section 4, it should be clear the reason why CreditRisk+ is considered to 

be the actuarial model.  

 

4.1. CreditRisk+ with fixed default rate 
 

CreditRisk+ model does not include a methodology for the estimation of the 

probabilities of default.  Nevertheless, this is required as an input to the model. 

 

Assuming that the probabilities of default of each individual obligor are known, Credit 

Suisse Financial Products (1997), referred henceforward as CSFP (1997), deduces the 

probability generating function of the claim frequency random variable, concluding by a 

Poisson random variable. Concerning the Poisson parameter, Approach A is used, 

assuming probabilities of default are small enough. 
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Concerning the arithmatization of the default severity random variable, exposure is 

adjusted by some unit amount. Then, and to preserve the expected loss, a rounding 

adjustment is made to the expected number of defaults. This is actually the referred 

Rounding method described by Gerber (1990, p. 94). 

 

The next step is to find the probability generating function of the aggregate loss arising 

from the portfolio. Without referring to the theoretical background, CSFP (1997) 

concludes that the probability generating function of the aggregate loss random 

variable is of the form of a compound Poisson random variable, besides that they do 

not classify it as a compound Poisson explicitly. Actually, the probability generating 

function of the claim severity is consistent with Corollary 1. 

 

Finally, an iterative algorithm to find the density function of the aggregate loss is 

deduced. In their notation, the algorithm is presented as  

:
j

j

j

n n

j n

A A
n









   

where nA  is the probability that an aggregate loss of amount n  occurs and j  and j  

are respectively the exposure amount and the expected loss in exposure band j , 

expressed in the settled monetary unit. The relation between these two quantities is 

j j j     

where j  is the expected number of defaults in exposure band j . 

 

In our notation, j  is j  and j  is simply j . Therefore, the algorithm presented in 

CSFP (1997) in our notation is 

1 1

( ) ( ) ( )
n n

j j

j j

j
g n g n j j g n j

n n

 

 

      

 

This is in fact Panjer’s recursive formula since, according to the Corollary 1, 

( )
j

f j



  

Concluding, as it is now perfectly clear, the simplest form of CreditRisk+ is a direct 

application of Panjer’s algorithm within the formalization described in Section 3.  
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4.2. CreditRisk+ with variable default rate 
 

CreditRisk+ model generalizes the simpler model discussed in the previous section. 

After introducing volatility to the probability of default and sector analysis, a new 

iterative formula is deduced following the same reasoning. 

 

The concept of sector is user adaptable. A sector might be interpreted as the sector of 

activity, the size of the company or even the country of domicile of the obligor. The idea 

is to make a partition in the set of obligors in such a way that the probability of default 

of the obligors in a specific sector is influenced by the same external uncontrollable 

factors. As in CSFP (1997), we are going to assume that each sector is driven by only 

one factor.  

 

The underlying factor of each sector will influence it through the total expected rate of 

defaults. Therefore, the total number of defaults arising in sector k  is going to be a 

random variable kN  with mean k  and standard deviation k . 

 

Formally, instead of having  Pok kN  , where k  is the expected number of losses 

in sector k , which corresponds to the sum of individual probabilities of default of 

obligors in that sector, we are now going to assume that kN  given k k   follows a 

Poisson distribution with Poisson parameter k k  . Therefore, k  is a random variable 

that accounts for the volatility in the individual probability of default. The key 

assumption of CreditRisk+ is that k  follows a Gamma distribution. For the 

parameterization of the Gamma distribution, we are going to follow the one also used 

by Klugman et al. (2004). 

 

To find the parameters of this distribution, we are going to impose that the expected 

value of k  is 1, so that the expected the number of claims in sector k  is k . Hence, 

being 
2

k  the variance of  Gamma ,k k k  , we have that 

2

2

1
Gamma ,k k

k




 
  

 
. 
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We can easily deduct that 

          2

1
1 21 1 1k kk k

k
k k

zN N

N k k k kP z E z E E z E e M z z


  
 


                   

where 
k

M   is the moment generating function of k . This last expression is the 

probability generating function of a Negative Binomial random variable with parameters 

21 kr   and 2

k k   , in the Klugman et al. (2004) parameterization. We can 

therefore conclude that kN  follows a Negative Binomial distribution. 

 

After finding the distribution of the claim frequency, we are interested in finding the 

aggregate loss distribution within each sector. Let us find its probability generating 

function. For simplicity reasons, the subscript k  is going to be dropped in the following 

proof, but it must be kept in mind that we are within the sector. Hence, in the context of 

mixed frequency models, it is known that 

     S S
P z P z f


 

   

where SP  is the probability generating function of S  and f  the probability density 

function of  . It is important to remark that S    is the aggregate loss random 

variables for the fixed default rate case. Knowing  , S    is a compound 

Poisson random variable with probability generating function 

    1XP z

S
P z e








  

where  XP z  is the probability generating function of the claim severity random variable 

with density function accordingly to Corollary 1, eventually after arithmatization. Hence, 

we have that 

    
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Given that the expression inside the integral is the probability density function of a 

Gamma random variable with parameters  21 w  and     21 1Xw P z  
  , then   

       
 

  
 

2

2

1
2 2

1
2

1 1

1 1

w

S X

w

X

P z w w P z

w P z









   
 

    

 

 

The last expression allows reaching the conclusion that the aggregate loss random 

variable within each sector k  follows a compound Negative Binomial distribution, with 

Negative Binomial parameters  21k kr w  and 2

k k kw  , and claim severity 

distribution as in Corollary 1. In other words, given k k  , if kS  is a compound 

Poisson  ,k k XCP F  , then kS  is unconditionally a compound Negative Binomial with 

the same severity distribution  XF . 

 

Regarding the whole portfolio, the sum of independent compound Negative Binomial 

random variables might not be compound negative Binomial distributed. In our case, 

the aggregate loss is not a compound negative Binomial random variable, as k  are 

different in each sector. Therefore, to find the aggregate loss distribution, convolution 

techniques are applied. For instance, if the portfolio is divided into two sectors, then the 

probability density function of aggregate loss of the whole portfolio would be such that 

       1 2 1 2

0

Pr Pr
n

m

S n S S n f m f n m


       

 

Considering the case in which the portfolio is divided into three sectors, then 

       

     

1 2 3 1 2 3

0

1 2 3

0 0

Pr Pr
n

m

n m

m s

S n S S S n f n m f m

f n m f m s f s





 

      

  



 
 

 

In CSFP (1997) an iterative formula to find the aggregate loss probability density 

function of the whole portfolio is deduced. In their notation, 

 
 

min( , ) min( 1, 1)

1 1

0 00

1

1

r n s n

n i n i j n j

i j

A a A b n j A
b n

 

   

 

 
   

  
   
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where  PrnA S n   and ia  and jb  are the coefficients of the polynomials ( )A z  and 

( )B z  such that 

  
 

   

 
0 1

0 1

...1
log

...

r
S r

S s

S s

P z A z a a z a z
P z

z P z z B z b b z b z

   
  

    
 

 

In the form this formula is presented, it is first needed to find the coefficients ia  and jb   

and then apply the recursive formula. This might be computationally demanding, when 

comparing to the algorithms already available in R software. Because of this, in the 

practical application R commands are going to be used for the calculation of the 

distribution function within each sector and then convolve them to find the aggregate 

loss distribution function of the whole portfolio.  

 

4.2.1.  Results 
 

As remarked in the previous section, kN  follows a Negative Binomial distribution 

whose parameters depend on k  and 
2

k , from which we only know k . To determine 

2

k , as we lack data to estimate it empirically, we are going to ground our assumption 

on CSFP (1997), where it is said that, according to historical experience, the standard 

deviation of the number of defaults observed, year on year in the same sector, is 

typically of the same order as the average annual number of defaults. Therefore, we 

are going to assume that, for some constant   

   var Ek k k k      

 

Given that the expected value and the standard deviation of the number of default are 

k  and k k  , respectively, solving the equation leads to k  . In the practical 

application, we considering 1.1   and 1.5  . This implies that kN  is such that 

2

2

1
NB  ,  k kN  



 
 
 

 

 

When it comes to the number of sectors, two approaches will be addressed. At a more 

simple level, we are going to consider only one sector. This might be interpreted, for 

instance, as partition by domicile country, as all obligors in the portfolio are Portuguese 
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entities. Then, we are going to consider three sectors, accounting for the sector of 

activity: commerce, manufacturing and services. In this case, as we are not following 

CreditRisk+ formula directly, we are going to apply Panjer’s algorithm in each sector, 

and then apply convolution to find the aggregate loss distribution in each sector. 

 

Let us first analyse the one sector case. Let NB1 and NB2 stand for the compound 

Negative Binomial models studied within one sector for 1.1   and 1.5  , 

respectively. For each value of  , both Approach A and B that determine the values 

k  are applied. Table VI shows the values obtained for the chosen percentiles. 

 

Table VI 
Tail percentiles of the compound Negative Binomial aggregate loss 

considering 1 sector for the year of 2015 

  

 

In the three sectors case, let NB3 and NB4 stand for the compound Negative Binomial 

models studied within three sector for 1.1   and 1.5  , respectively. The obtained 

percentiles for the same models as above are shown in Table VII. 

 

Table VII 
Tail percentiles of the compound Negative Binomial aggregate loss 

considering 3 sectors for the year of 2015 

 

 

As we can see in both Table VI and Table VII, percentiles increase when considering 

1.5   instead of 1.1  . As the volatility in the number of claims is now higher, 

higher amounts of losses are more likely to occur. 

 

Comparing Table VI to Table V, the compound Negative Binomial model considering 

only one sector is comparable to the compound Poisson model, as it only introduces 

more volatility to the number of defaults. By increasing the standard deviation by 10% 

90 95 97.5 99 99.5

NB1_A 169 422 226 514 284 170 360 975 419 396

NB1_B 221 281 295 164 369 783 469 188 544 802

NB2_A 192 473 279 190 370 182 494 868 591 560

NB2_B 252 268 365 475 484 274 647 070 773 318

Model
Percentile

90 95 97.5 99 99.5

NB3_A 139 880 174 710 209 228 254 632 288 939

NB3_B 180 381 223 897 266 974 323 654 366 483

NB4_A 157 405 208 000 260 326 331 826 387 380

NB4_B 204 572 268 894 335 155 425 361 495 286

Model
Percentile
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and 50%, much higher percentiles are obtained.  

 

When comparing the results considering different number of sectors, we can remark 

that the tail percentiles of the aggregate loss distribution decrease when considering 

three sectors instead of only one. Again, this is an expected result, because the 

volatility of the number of defaults within the three sectors framework is lower, as 

sectors are assumed to be independent and because it was assumed the same value 

of   for the one-sector case and for each sector in the three-sector case. Given this, 

being iN  the claim frequency random variable in sector i , we have that the variance of 

the default frequency when considering three sectors is  

     
3 3

2

1 2 3

1 1

var var 1i i i

i i

N N N N   
 

       

 

Comparably, the variance of the number of claims when default volatility is driven by 

only one sector is higher, given that we are always assuming the same value for  . 

        

        

     

2 2

1 2 3 1 2 3

2 2 2

1 1 2 3 2 1 2 3 3 1 2 3

2 2 2

1 1 2 2 3 3

var 1 1

1 1 1

1 1 1

N          

              

        

       

           

     

 

 

 

5. APPROXIMATIONS TO THE AGGREGATE LOSS 
DISTRIBUTION  

 

In this chapter, other methods of approximating the aggregate loss distribution are 

going to be presented. They are usually considered as an alternative to Panjer’s 

recursive algorithm because, as any other iterative process, Panjer relies heavily on 

the first term, namely Pr( 0)S  . For a large portfolio, as in our case, this term is very 

small, which might imply that the algorithm will have some problems. The Normal 

Power (NP) and the Translated Gamma approximations are usually used when the 

skewness coefficient S  of the aggregate loss distribution is higher than 0.1, giving 

good approximation for the tail of the distribution. 

 

Despite this, it is important to highlight that these approximations rely only on the 
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knowledge of the first three moments of the aggregate loss distribution. Therefore, they 

might be preferable to Panjer’s, as they are much less time consuming.  

 

5.1. NP approximation 
 

Let Z  be the standardized aggregate loss random variable, i.e. 

S

S

S
Z








 

 

The NP approximation is based on a formula known as Edgeworth series. 

Approximating the distribution function of Z  by the first two terms of this series,  

     (3)

6

S
ZF z z z


   

 

 

where   is the distribution function of a standard normal random variable and 
(3)  its 

third derivative. After some mathematics,  

   2 1
6

S
ZF z z z

 
    

 
 

 

Therefore, solving the equation  2 1
6

Sz z y


    in z , we have that 

   2 2

3 9 6 3 9 6
1 1 S

Z S

S S S S S S S

x
F y y F x



      

   
                 

   
 

 

This last formula is known as NP approximation.  

 

5.2. Translated Gamma approximation 
 

The Translated Gamma approximation, as the name suggests, approximates the 

aggregate loss random variable S  by a Gamma ( , )   random variable Y  translated 

k  units, in such a way that both random variables S  and k Y  have the same mean, 

variance and skewness coefficient. Therefore, given S , 
2

S  and S , the following 

equations define this approximation 
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2 2       

2
      

S

S

S

k 

 





 





 


 

After solving these equations for k ,   and  , we can conclude that S  is 

approximated by the random variable 
2 S

S

S

Y





  , where 
2

4
Gamma ,

2

S S

S

Y
 



 
 
 

. 

5.3. Results 
  

In this chapter we are going to compare the percentiles for the models presented in 

both Table V and Table VI, according to the NP and the Translated Gamma 

approximations. As already pointed out, both these approximations rely on S , S  and 

S . Here, being under a collective risk model, calculations become simpler, as the 

moments of S  depend on the moments of N  and of X , according to 

     

         

               

2

3

3 3 3

E E E

var E var var E

E 3var E var E

S N X

S N X N X

S N X N X X N X  

 


 


  

 

where  3 S  stands for the third central moment of S . From this, skewness coefficient 

may be derived as  

 

  
3

3 2

var
S

S

S


   

 

For each model presented in both Table V and Table VI, expected value, standard 

deviation and skewness coefficient information is displayed in Annex H. In addition, it is 

also included the compound Binomial case (Bi model) such that 

j ij

i j

S L N  

where 
,

S ij i j

i j

n p L  ,   2

,

1S ij i i j

i j

n p p L    and    3

3

,

( ) 1 1 2ij i i i j

i j

S n p p p L    . 

 

The pth percentile of the aggregate loss under the NP approximation is given by  
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     
2

1 1 1
6

S
p S Sx p p


    

      
 

 

while under the Translated Gamma approximation, being py  the pth percentile of Y , 

2 S
p S p

S

x y





    

Given this, Table VIII and Table IX show the results obtained.  

 

Table VIII 
Tail percentiles of the NP approximation for the aggregate loss for the year 

of 2015 

 
  

Table IX 
Tail percentiles of the Translated Gamma approximation for the aggregate 

loss for the year of 2015 

   

 

There are interesting conclusions to be taken. For this, Annex I shows the percentage 

variation of each percentile considering these two approximations when compared to 

the percentile obtained following Panjer’s algorithm. 

 

Regarding the NP approximation, some tendencies on the goodness of this 

approximation are clear. The least the variance of the claim frequency random 

variables is, the better the NP approximation. In fact, from the Poisson model to the 

Negative Binomial with 1.1   and then to Negative Binomial with 1.5  , NP 

approximation worsens. Nevertheless, the approximation is quite good when 

considering the claim frequency as Poisson distributed.  

90 95 97.5 99 99.5

Po_A 101 594 116 560 130 892 149 131 162 521

Po_B 124 960 139 853 153 989 171 848 184 884

NB1_A 185 819 241 930 296 137 365 635 416 939

NB1_B 243 272 317 261 388 855 480 764 548 680

NB2_A 234 811 325 428 414 568 530 525 617 061

NB2_B 308 443 428 267 546 253 699 858 814 556

Bi 99 678 114 324 128 432 146 474 159 768

Model
Percentile

90 95 97.5 99 99.5

Po_A 98 538 113 159 127 529 146 263 160 292

Po_B 122 634 137 289 151 485 169 722 183 342

NB1_A 170 973 225 211 179 387 350 940 405 033

NB1_B 222 778 294 129 365 622 460 278 531 964

NB2_A 195 399 279 658 367 311 486 678 578 864

NB2_B 254 940 365 999 481 844 639 914 762 147

Bi 96 122 110 336 124 454 143 017 157 005

Model
Percentile
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Generically speaking, Translated Gamma gives a better approximation. Interestingly, it 

overestimates the first two percentiles considered (except for NB1) and underestimates 

the other ones. This means that the Gamma distribution has a comparatively less 

heavy tail, still not significant. There is actually no pattern to deduce in what cases the 

approximation would be even better, as it relies on matching the moments of both 

distributions. 

 

Besides the fact that the Translated Gamma is generically a better approximation in the 

percentiles considered, it underestimates the highest percentile considered. On the 

other hand, as we consider higher percentiles in the NP approximation, the better it is, 

being actually better than the Translated Gamma one for Po and NB1 models. 

 

As a conclusion, and from the perspective of the risk management of a bank, it is 

important to highlight that the underestimation of a loss in the future might be critical. 

Nevertheless, and from the practical point of view, after the computation of the 

moments of the aggregate loss, these approximation methods return instantaneous 

results. Depending on the portfolio size, these methods are definitely worth to consider. 

 

6. AVERAGE INTEREST RATE 
 

Interestingly, by finding the pth percentile of the aggregate loss distribution, which can 

be done by recurring to the aggregate loss distributions estimated on the previous 

chapters of this work, the average interest rate r  can be determined. Let us denote by 

U  the surplus of the bank after one year with respect to this portfolio of loans. Being u  

the initial reserve that the bank might have to account for future losses, then U  equals 

in outU u Cashflows Cashflows    

 

In the context of the problem under study, we have that the cashflows in equal the 

interest rate earned on the loans that do not default. On the other hand, cashflows out 

equal the amount of the aggregate loss registered in the one year period considered. 

Therefore, being V  the total amount lent by the bank, we have that  

 U u r V S S     
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Thus, the probability that the bank has enough money to cover losses within one year, 

which might be interpreted as a survival probability, is given by 

    Pr 0 Pr 0 Pr
1

u rV
U u r V S S S

r

 
        

 
 

Defining k  such that  Pr S k p  , the interest rate r  can be determined as 

Pr
1 1

u rV u rV k u
S p k r

r r V k

   
      

   
 

On the other hand, if the interest rate is settled, the amount of money that should be 

reserved in the beginning of the year to account for losses is given by  

   1u r k rV k r V k       

 

6.1. Results 
 

For the application part of this chapter, the percentiles of models Po_A and NB1_A 

shown in Table V and Table VI, respectively, are used. To determine the interest rate  

r , the worst case scenario is considered in terms of initial reserve, i.e. 0u  .  

 

Table X 
Average interest rate for the models obtained from Panjer algorithm 

 
 

As a matter of fact, the higher the percentile amount and the probability level of survival 

are, the higher the average interest rate to be charged. These interest rates might be 

thought of as the maximum interest rate to be charged, for each survival probability, 

given that we are considering that the bank has no reserve to cover defaults. On the 

other hand, the initial reserve can be determined as a function of the average interest 

rate charged. In Table XI, we can conclude that it naturally increases as the survival 

probability increases and the average interest rate decreases. 

 

Table XI 
Initial reserve considering the models obtained from Panjer algorithm 

  

90 97.5 99.5

Po_A 4.80% 6.67% 8.36%

NB1_A 8.79% 15.68% 25.01%

Model
Survival probability

90 97.5 99.5 90 97.5 99.5

Po_A 36 001 72 137 103 640 -4 010 32 828 64 942

NB1_A 111 608 229 798 369 081 73 065 193 550 335 537

r = 3% r = 5%

Survival probability
Model

Survival probability
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7. CONCLUSION 
 

All calculations performed throughout this work depend on the estimated probabilities 

of default. As identified, the chosen logit model has some limitations, as it was 

estimated using data from a year where firm were under stressed conditions. 

Therefore, it should be advised the model to be reviewed in the coming years. As 

remarked before, the ultimate purpose was not to study this particular portfolio of loans, 

but use it to illustrate the application of the theories discussed. 

 

In this work we were interested in quantifying default risk. This was done through some 

percentiles of the aggregate loss distribution function, obtained with a varied set of 

methodologies. First, the simpler version of CreditRisk+, which is actually Panjer’s 

algorithm for a compound Poisson distribution, was applied. Then, and approximating 

the methodology to the CreditRisk+ one, Panjer’s algorithm was again applied but now 

for a compound Negative Binomial distribution. As remarked, this transition is 

accomplished by changing the claim frequency distribution. In terms of aggregate loss 

distribution, the more volatile the claim frequency random variable is, the more 

significant the right tail of the aggregate loss distribution is. This was noted by the 

increasing amount of each percentile. 

 

Questioning if similar results could be obtained with more simple approximation 

methods, the NP and the Translated Gamma approximation were tested and results 

were satisfactory, supporting that these methods can be used instead. Generally, 

Translated Gamma approximation gives better results. However, NP approximation 

might be an alternative for really high percentiles. 

 

The work developed in the last section was limited. As our estimated probabilities for a 

given year depend on the financial information of the previous year, it is not possible to 

project future probabilities of default. This could be interesting, for instance, to apply 

Ruin Theory reasoning in order to quantify whether this portfolio of loans might be 

profitable. For this, a Markov chain could have been estimated, where obligors were 

mapped to a given state which would have a probability of default associated. 

Intrisically linked to a Markov process, transitions between states would allow for the 

estimation of the future probability of default. This idea stays as suggestion for future 

investigation.  
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8. ANNEX 
 
A. Summary of the quantitative variables to be considered 
 

 

Table A.I – Summary of the quantitative variables for the year of 2013 

 

 

Table A.II – Summary of the quantitative variables for the year of 2014 

 

 

 

B. Summary of the qualitative variables to be considered 

 

 

Table B.I – Summary of the qualitative information for the year of 2013 

 

 

 

Table B.II – Summary of the qualitative information for the year of 2014 

 

 

 

Variable min
1st 

quartile
median mean

3rd 

quartile
max

ROCEL -29 0.015 0.059 0.188 0.143 161

TVV -1 -0.107 0.027 1.199 0.191 4180

FMNFV -1622 0.066 0.233 4.981 0.519 29210

AF -14 0.147 0.284 0.265 0.455 1

JVPS 0 0.003 0.012 0.256 0.029 1127

Variable min
1st 

quartile
median mean

3rd 

quartile
max

ROCEL -680 0.010 0.062 0.087 0.150 580

TVV -1 -0.094 0.030 0.761 0.183 3104

FMNFV -542 0.068 0.231 2.833 0.492 11610

AF -47 0.144 0.294 0.242 0.465 1

JVPS 0 0.004 0.012 1.077 0.029 8784

Variable Sim Nao

info3 2632 8508

info5 700 10440

info16 416 10724

info18 797 10343

info31 9043 2097

Variable Sim Nao

info3 2616 7599

info5 668 9547

info16 393 9822

info18 773 9442

info31 8629 1586
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C. Summary of the variables Dimensao and Setor 
 

 

Table C.I – Summary of the variable Dimensao 

 

 

Table C.II – Summary of the variable Setor 

 

D. Linear predictor estimation taking into account all variables 

 

 

Figure D.1 – R software output for the estimation of the linear predictor of a logistic 

regression taking into account all variables 

Year GRE PME PE

2014 108 3527 7505

2015 101 3294 6820

Year comercio servicos industria

2014 4109 2650 4381

2015 3763 2385 4067
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E. Linear predictor estimation of Model 1a and Model 1b 
 

 

Figure E.1 – R software output for the estimation of Model 1a 

 

 

Figure E.2 – R software output for the estimation of Model 1b 

 

F. ROC curves of Model 1 and Model 2 

 

Figure F.1 – ROC curve for Model 1 (left) and for Model 2 (right) 
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G. Aggregate Loss probability density functions for models Po_A 

and Po_B for the year of 2015 

 

 
Figure G.1 – Compound Poisson aggregate loss probability density function 

for the year 2015 for Model Po_A (black) and for Model Po_B (red) 

 
 
 
 

H. Expected value, standard deviation and skewness coefficients for 

the estimated Aggregate Loss 

 

  
Table H.I – Expected value, standard deviation and skewness coefficients for 

the estimated Aggregate Loss under some models 

 
 
 
 

Expected 

value

Standard 

deviation

Skewness 

coefficient

Po_A 68 421 22 720 1.67

Po_B 90 141 24 313 1.41

NB1_A 68 421 78 617 1.98

NB1_B 90 141 102 093 2.04

NB2_A 68 421 105 116 2.81

NB2_B 90 141 137 380 2.87

Bi 68 421 21 099 1.87

Model

Aggregate Loss
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I. Percentage increase of NP and Translated Gamma approximation 

percentiles when compared to Panjer  

 

 
Table I.I – Percentage increase of the percentiles according to NP and Translated Gamma approximation 

percentiles when compared to percentiles obtained with Panjer’s algorithm. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

90 95 97.5 99 99.5 90 95 97.5 99 99.5

Po_A 5.8% 3.9% -0.2% -0.3% 0.5% 2.6% 0.9% -2.7% -2.2% -0.9%

Po_B 4.0% 2.6% 0.0% -0.7% -0.5% 2.1% 0.7% -1.6% -2.0% -1.3%

NB1_A 9.7% 6.8% 4.2% 1.3% -0.6% 0.9% -0.6% -1.7% -2.8% -3.4%

NB1_B 9.9% 7.5% 5.2% 2.5% 0.7% 0.7% -0.4% -1.1% -1.9% -2.4%

NB2_A 22.0% 16.6% 12.0% 7.2% 4.3% 1.5% 0.2% -0.8% -1.7% -2.1%

NB2_B 22.3% 17.2% 12.8% 8.2% 5.3% 1.1% 0.1% -0.5% -1.1% -1.4%

Translated Gamma vs. PanjerNP vs. Panjer
Model
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