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Abstract

In risk aggregation we are interested in the distribution of the sum of dependent risks. The
objective of risk aggregation and dependence modeling is to model adequately dependent in-
surance portfolios in order to evaluate the overall risk exposure. This master thesis investigates
some practical aspects of modeling risk aggregation and dependency. We give an introduction
to copula-based hierarchical aggregation model through reordering algorithm. This approach can
be easily applicable in high dimensions and consists of a tree structure, bivariate copulas, and
marginal distributions. This method is empirically illustrated using data set of Danish Fire
Insurance Data. These data were collected at Copenhagen Reinsurance over the period 1980 to
1990 and every total claim has been divided into three risks consisting of a building loss, a loss
of contents and a loss of profits caused by the same fire.
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1. Introduction

Dependence modelling can not be ignored. This motivated me to write my master’s thesis
in this field. The 2008 financial crisis have shown that the modelling dependence between
risks is necessary for prudent risk aggregation. Most regulatory frameworks such as Solvency
II need such a dependence modelling. I am interested in new risk aggregation techniques in
this thesis and I will focus on practical aspects of modelling risk aggregation and dependency.
From a practical point of view, copula-based hierarchical model through reordering algorithm is
a flexible approach proposed for risk aggregation. My master’s thesis is inspired by the work of
Dr. Philipp Arbenz, especially his paper on Copula based hierarchical risk aggregation through
sample reordering (see Arbenz et al. [2012]) and his PhD thesis (see Arbenz [2012]). To illustrate
hierarchical aggregation method empirically, we apply this approach to Danish Fire Insurance
Data. I use the statistical software package R many times in my thesis.

This thesis is organized as follows. We give a brief introduction to multivariate models and
their applications in Chapter 2 and we present three multivariate models popular in insurance.
Copula models are the most popular method in modelling dependence among the risks. Chap-
ter 3 deals with the concept of copula and various forms of copulas and practical aspects of
copulas. In Chapter 4, we explore copula-based hierarchical approach for risk aggregation and
dependence modeling and we introduce reordering algorithm that allows us to numerically ap-
proximate the hierarchical risk aggregation structure. In Chapter 5, we apply this approach to
the danish fire insurance data and present some conclusions.
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2. Multivariate Models

Life is full of risks. Probability Theory as a special language is being applied to the area of
risk modeling. Risks represented by random variables mapping unpredictable future events into
actual amounts standing for profits and losses. In this thesis we are interested in aggregate risks
as the overall risk or the risk of a portfolio. Risk aggregation is the aggregation of individual
risks using a model for aggregation. Different methods for risk aggregation can be considered in
practice. A good aggregation model is providing at the same time both probabilistic descriptions
of individual risks and of their dependence or correlation structure.

A multivariate model has many applications in insurance mathematics and one of its most
important application is risk aggregation model. A multivariate model for risks in the form of
a joint cdf, survival function or density allows us to understand and approximate the unknown
true joint distribution and dependence structure among the risks. There are many methods for
modeling multivariate risks and their dependencies. Depending on the available input and the
required output and constraints such as regulatory rules, different multivariate models can be
selected. In this chapter and next chapter, briefly we talk about multivariate models and we
explain basically three popular multivariate models for risk aggregation (see Arbenz [2012]);

• variance-covariance method

• risk factor models

• copula models

Let Xi : Ω→ R for i ∈ N denote individual risks describing values of losses or gains. Assume
we are exposed to d risks X = (X1, ..., Xd). In this case, our interest is the distribution of the
random vector;

(X1, ..., Xd) : Ω→ Rd

The marginal cdf of individual risk Xi, Fi(x) = P (Xi ≤ x), does not have any information on
dependence structure and it is only characterizing the stochasticity of the single risk Xi. We call
FX(x) the joint cdf of the random vector of risks X = (X1, ..., Xd). When we fix the joint cdf
FX(x), we state a multivariate model containing the all marginal behaviour distributions and
the dependence structure of the risks. This joint cdf contains all information on the distribution
of random vector X = (X1, ..., Xd):

FX(x) = FX(x1, ..., xd) = P (X1 ≤ x1, ..., Xd ≤ xd), (x1, ..., xd) ∈ Rd

This distribution captures the important properties of (X1, ..., Xd) and a multivariate model is
a model that allows us to approximate it.
In some cases it is useful to work with the survival function of random vector X = (X1, ..., Xd)
defined by

FX(x) = FX(x1, ..., xd) = P (X1 > x1, ..., Xd > xd)

2



The marginal cdf of the risk factor Xi, written Fi, is easily calculated from the joint cdf. For
all i ∈ N we have

Fi(x) = P (Xi ≤ xi) = FX(∞, ...,∞, xi,∞, ...,∞)

If Fi(x) is absolutely continuous, so then we refer to its derivative fi(x) as the marginal density
of Xi . It is possible to define the cdf of a random vector X = (X1, ..., Xd) based on its joint
density fX ;

FX(x1, ..., xd) =

∫ x1

−∞
...

∫ xd

−∞
fX(u1, ..., ud) du1... dud

Note that existence of a joint density fX implies existence of marginal densities f1, ..., fd (but
not vice versa).
We can make conditional probability statements. For instance, the conditional distribution of
X2 given X1 = x1 has density

fX2|X1
(x2|x1) =

fX(x1, x2)

fX1(x1)

and its corresponding cdf is FX2|X1
(x2|x1).

For the bivariate random vector X = (X1, X2), in the case of existing a joint density, if the joint
density of X factorizes into fX(x) = fX1(x1)fX2(x2), then we say X1 and X2 are independent.
We recall that X1 and X2 are independent if and only if

F (x) = FX1(x1)FX2(x2), ∀x

In general X1, ..., Xd are said to be mutually independent if and only if FX(x) =
∏d
i=1 Fi(xi)

for all x ∈ Rd or, in the case of existing a joint density fX(x) =
∏d
i=1 fi(xi). In many situations

the risk factors Xi cannot be assumed to be independent. In these cases, the joint cdf can not
decouple into marginal cdfs:

P (X1 ≤ x1, ..., Xd ≤ xd) 6=
d∏
i=1

P (Xi ≤ xi)

In the following sections, we give a brief introduction to the variance-covariance method and
to risk factor models, and in the next chapter we explore copula models. Each of these three
popular models in finance and insurance has its own advantages and disadvantages. I discuss
their own weaknesses and I give an alternative approach in Chapter 4.

2.1. Variance-Covariance method

Value at Risk (VaR) is a widely used risk measure of the risk of loss. What is Value-at-
Risk(VaR)? We start this section with this question. The best answer is the following: VaR is
the maximum loss value (measured in monetary units) that an institution is likely to face on a
portfolio, not exceeded with a specified probability level of confidence over a given time period.
There are three main methods that are used to estimate the Value-at-Risk (see Skoglund [2010]).
It can be estimated by Monte Carlo simulations or by running a Historical simulation, or finally
by Variance-Covariance method that is the most straightforward method of estimating the
Value-at-Risk. This approach is widely used and is also known as Linear VaR or Delta normal
VaR. Variance-Covariance method observes historical data over time, makes assumptions about
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theoretical distribution of asset returns (usually normal distribution), and uses the variances
and covariances to compute the likely maximum loss.

In Variance-Covariance method, random variables Xi and their correlations are characterised
by their mean µi = E(Xi) and variance σ2

i = var(Xi) and covariance σij = σiσjρij =
cov(Xi, Xj). The dependence structure is characterised through the (Pearson) correlation coef-
ficients, defined by

ρij = ρ(Xi, Xj) =
cov(Xi, Xj)√
var(Xi)var(Xj)

=
σij
σiσj

i, j = 1, . . . , d.

Therefore, the model is specified by a mean vector and a covariance matrix. The mean vector
of X = (X1, ..., Xd) is given by

E(X) =

 µ1
...
µd

 ∈ Rd
The covariance matrix is the matrix cov(X) defined by

cov(X) =

 σ11 . . . σ1d
...

. . .
...

σd1 . . . σdd

 ∈ Rd×d
Note that the diagonal elements are the variances of the components of X.
The correlation matrix is given by

C =

 1 . . . ρ1d
...

. . .
...

ρd1 . . . 1


We now can see the application of Variance-Covariance method in risk aggregation. In this
method, the characteristics of the distribution of the sum of all risks S = X1 + . . . + Xd are
given by

E[S] = µ1 + . . .+ µd

and

V ar[S] =
d∑
i=1

d∑
j=1

cov(Xi, Xj) =
d∑
i=1

d∑
j=1

σiσjρij

As can be seen above, this model is restricted to the first and second moments, i.e. mean,
variance and covariances of the risks X1, . . . , Xd. Thus further properties of the distribution of
sum of risks, S, cannot be understood.

2.2. Risk factor models

Risk factors are different types of systematic factors affecting portfolio losses. The assets and
liabilities are exposed to many risk factors. Risk factors are important in understanding the
sources of risk in a portfolio. Risk factor models are now often used in finance and insurance. For
example, Swiss Re is using a risk factor model to estimate the distribution of the Profit-and-Loss
distribution in its Solvency II internal model (see Arbenz [2012]).
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Here we focus on the simplest form of risk factor models that is the linear factor model. In
this model with k risk factors, each risk Xi can be written in the form of

Xi = µi + ri,1Y1 + . . .+ ri,kYk + εi

Where;

- µi is the unconditional expectation, µi = E(Xi).

- The Yj are the risk factors, that can be assumed to be distributed according to the
standard normal distribution, Yj ∼ N (0, 1).

- The ri,j represent the sensitivity of risks Xi with respect to the risk factors Yj .

- The εi denote the residuals, which are commonly assumed to be independent.

If the distribution of the risk factors Yj , the distribution of residuals εi and the parameters µi,
ri,j and σ2

i are known, then a sample of the random vector (X1, . . . , Xd) can easily be obtained
by simulating the risk factors Yj and residuals εi using Monte Carlo simulations.

A risk factor model is a dimension reduction tool, as it allows us to model high number d
of risks with just few risk factors (k � d). The risks’ variability can be explained through a
potentially low number of risk factors and the dependence between risks is understood through
dependence structure between the risk factors.
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3. Copula Models

In this chapter we concentrate on the concept of a Copula and we will be interested in how
dependence among the risks, Xi, can be understood and modeled using Copula. Dependencies
happen in many other fields, not only in finance and insurance. Copula is a popular tool in
multivariate modeling for understanding relationships among random variables. In actuarial
science, copulas are frequently used in modeling dependence structure.

We begin our discussion about Copulas with Sklar’s Theorem [1959] that allows us to separate
the dependence structure from the marginal distributions (see Panjer [2006]).

3.1. Sklar’s Theorem [1959] and Copulas

A copula C : [0, 1]k → [0, 1] is a function with the following properties (see McNeil et al. [2010]):

(1) C(u1, u2, . . . , uk) is increasing in each component ui.

(2) C(1, . . . , 1, ui, 1, . . . , 1) = ui for all i ∈ 1, ..., k, and ui ∈ [0, 1].

(3) For all (a1, . . . , ak), (b1, . . . , bk) ∈ [0, 1]k with ai 6 bi we have

2∑
i1=1

. . .

2∑
ik=1

(−1)i1+...+ikC(u1i1 , . . . , ukik) > 0,

where uj1 = aj and uj2 = bj for all j ∈ {1, . . . , k} �

If a function C fulfills the above properties, then it is a copula. A copula function is a mul-
tivariate distribution whose marginal distributions are all Uniform(0, 1). We define a copula
function C as the joint distribution function of standard Uniform(0, 1) random variables;

C(u1, u2, . . . , uk) = Pr(U1 ≤ u1, U2 ≤ u2, . . . , Uk ≤ uk).

Copula functions are helpful to simulate a dependence structure independently from the marginal
distributions. The idea behind a copula is to translate any multivariate distribution F (x1, x2, . . . , xk)
into its marginal distributions F1(x1), F2(x2), . . . , Fk(xk) and its copula C(F1(x1), F2(x2), . . . , Fk(xk))
describing the dependence among the random variables X1, . . . , Xk.

We know from basic probability that the probability integral transforms F1(X1), F2(X2)
, . . . , Fk(Xk) are each distributed as Uniform (0, 1), hence the copula at F1(x1), F2(x2), . . . , Fk(xk)
can be written as

C(F1(x1), F2(x2), . . . , Fk(xk)) = Pr(U1 ≤ F1(x1), U2 ≤ F2(x2), . . . , Uk ≤ Fk(xk))
= Pr(F−1

1 (U1) 6 x1, . . . , F
−1
d (Ud) 6 xd)

= Pr(X1 6 x1, . . . , Xd 6 xd)

= F (x1, . . . , xd)

6



where we define the quantile function as F−1
j (u) = inf{x : Fj(x) > u}

Sklar’s theorem states the above result that there is a unique copula C for any joint distri-
bution function F , that satisfies

F (x1, . . . , xd) = C(F1(x1), F2(x2), . . . , Fk(xk)) (3.1)

Sklar’s theorem shows that we can form a multivariate joint distribution F from a group
of marginal distributions F1(x1), F2(x2), . . . , Fd(xd), and a selected copula C. The function
C(F1(xl), . . . , Fd(xd)) is the multivariate joint distribution function F . In practice, usually
distributions of different risk types are modeled separately. The dependence structure in the
copula function is independent of the form of the marginal distributions. Sklar’s theorem allows
us to use different copulas while keeping identical marginal distributions.

In the rest of this chapter, we focus on dependency structures among pairs of random variables
- in other words, on bivariate copulas. Here I cite two examples mentioned in Frees and Valdez
[1998]. Although Sklar’s theorem proves that a copula function always exists, Example (1.1)
shows that it is not always easy to discover the copula. Example (1.2) considers the important
question of how to build a copula function for a existing problem and provides a useful way of
building a copula, using the method of compounding.

Example 1.1 Marshall-Olkin (1967) Exponential Shock Model Suppose that we wish to mod-
el p = 2 lifetimes that we suspect are subject to some common disaster that may cause
a dependency between the lives. For simplicity, let us assume that Y1 and Y2 are two
independent lifetimes with distribution functions H1 and H2. We further assume there
exists an independent exponential random variable Z with parameter λ that represents
the time until common disaster. Both lives are subject to the same disaster, so that ac-
tual ages-at-death are represented by X1 = min(Y1, Z) and X2 = min(Y2, Z). Thus, the
marginal distributions are

Pr(Xj ≤ xj) = Fj(xj)

= 1− exp(−λxj)(1−Hj(xj)), j = 1, 2

Basic calculations show that the joint distribution is

F (x1, x2) = F1(x1) + F2(x2)− 1 + exp(λmin(x1, x2))(1− F1(x1))(1− F2(x2)).

This expression is not in the form of the copula construction (Equation (3.1)) because the
joint distribution function F is not just a function of the marginals F1(x1) and F2(x2). �

Example 1.2 Bivariate Pareto Model Consider a claims random variable X that, given a risk
classification parameter γ, can be modeled as an exponential distribution; that is,

Pr(X ≤ x | γ) = 1− e−γx

As is well known in probability theory, if γ has a gamma(α, λ) distribution, then the
marginal distribution (over all risk classes) of X is Pareto;

F (x) = 1− (1 + x/λ)−α

7



Suppose, conditional on the risk class γ, that X1 and X2 are independent and identically
distributed. Assuming that they come from the same risk class γ induces a dependency.
The joint distribution is

F (x1, x2) = F1(x1) + F2(x2)− 1 + [(1− F1(x1))−1/α + (1− F2(x2))−1/α − 1]−α

This yields the copula function

C(u1, u2) = u1 + u2 − 1 + [(1− u1)−1/α + (1− u2)−1/α − 1]−α

With this function, we can express the bivariate distribution function as F (x1, x2) =
C(F1(x1), F2(x2)). �

The Sklar’s theorem and copula approach allows us to separate the marginal distributions from
the copula. The marginals contain the information of the different individual risks. The copula
contains the information on the dependence structure.

3.2. Frechet bounds for copulas

Here we establish the important Frechet bounds for copulas (see Panjer [2006]). In the bivariate
case, it is interesting to note from basic probability that

Pr(Ui > ui, Uj > uj) = 1− ui − uj + C(ui, uj)

Then we have

C(ui, uj) = ui + uj − 1 + Pr(Ui > ui, Uj > uj)

> ui + uj − 1

Therefore, we have got a Frechet lower bound on the copula cdf;

C(ui, uj) ≥ max{0, ui + uj − 1}

We can obtain Frechet upper bound on the copula cdf from the simple fact that both

Pr(Ui 6 ui, Uj 6 uj) 6 Pr(Ui 6 ui) = ui

and
Pr(Ui 6 ui, Uj 6 uj) 6 Pr(Uj 6 uj) = uj

so that
Pr(Ui 6 ui, Uj 6 uj) 6 min{ui, uj}

Thus we have got Frechet bounds on the copula cdf;

max{0, ui + uj − 1} ≤ C(ui, uj) ≤ min{ui, uj}

8



3.3. Dependency and Association Measures

The linear correlation coefficient ρ, also called Pearson’s coefficient, of random variables (X1, X2)
is defined as;

ρ(X1, X2) =
cov(X1, X2)√
var(X1)var(X2)

=
E(X1X2)− E(X1)E(X2)√

var(X1)var(X2)

Correlation plays a central role in financial theory. It is important to remember that dependence
and correlation are different concepts. We have X1 and X2 are independent ⇒ X1 and X2 are
uncorrelated or ρ(X1, X2) = 0 but the converse is in general false. The classical measure of
dependence is the correlation coefficient. The correlation coefficient is a measure of the linearity
between random variables. For two random variables X1 and X2, the correlation coefficient is
exactly equal to 1 or -1 if there is a perfect linear relationship between X1 and X2, that is, if
X2 = aX1 + b. If a is positive, the correlation coefficient is equal to 1; if a is negative, the
correlation coefficient is equal to -1. This explains why the correlation described here is often
called linear correlation.

ρ(X1, X2) = 1⇐⇒ X2 = aX1 + b, a > 0

ρ(X1, X2) = −1⇐⇒ X2 = aX1 + b, a < 0

We know that the linear correlation coefficient is related to the marginal distributions that
its value will change according to the form of the marginals. But the copula does not depend
on the form of the marginals. Therefore, it would be much more natural to have dependency
measures using copulas that depend only on the copula and not on the marginal distributions
F1 and F2.

As mentioned in Frees and Valdez [1998], Schweizer and Wolff (1981) showed that two de-
pendence measures could be expressed only in terms of the copula. These two measures of
association among random variables are Spearman’s rho (explained in subsection 3.3.1) and
Kendall’s tau (explained in subsection 3.3.2). Similar to the linear correlation coefficient, these
measures of dependence take on values of 1 for perfect positive dependence and -1 for perfect
negative dependence.

3.3.1. Spearman’s rho

Here we introduce Spearman’s rho as given in Panjer [2006]. The measure of association Spear-
man’s rho ρS(X1, X2), also sometimes called rank correlation, of a couple of random variable
(X1, X2) with marginal distributions F1(x1) and F2(x2) is given by

ρS(X1, X2) = ρ(F1(X1), F2(X2))

where ρ denotes linear correlation coefficient.
Because U1 = Fl(X1) and U2 = F2(X2) are both Uniform(0, 1) random variables with mean

1/2 and variance 1/12, we can easily rewrite Spearman’s rho as

ρS(X1, X2) =
E[F1(X1)F2(X2)]− E[F1(X1)]E[F2(X2)]√

V ar(F1(X1))V ar(F2(X2))

= 12E[F1(X1)F2(X2)]− 3

9



It is straightforward to write the Spearman’s rho ρS(X1, X2) in terms of copula function C and
we get;

ρS(X1, X2) = 12E[U1U2]− 3

= 12

∫ 1

0

∫ 1

0
u1u2 dC(u1, u2)− 3

= 12

∫ 1

0

∫ 1

0
C(u1, u2) du1 du2 − 3

Spearman’s rho ρS replaces the bivariate random variable (X1, X2) by the bivariate (F1(X1), F2(X2))
before considering linear correlation. Hence, in the same way as Sklar’s theorem, Spearman’s
rho ρS only depends on the copula function and not on the marginal distributions F1 and F2.

3.3.2. Kendall’s tau

The measure of association Kendall’s tau, τK(X1, X2), of bivariate random variables (X1, X2)
is given by;

τK(X1, X2) = Pr[(X1 −X∗1 )(X2 −X∗2 ) > 0]− Pr[(X1 −X∗1 )(X2 −X∗2 ) < 0]

where (X∗1 , X
∗
2 ) is a bivariate random variable distributed as (X1, X2) and independent from

(X1, X2), i.e. the same marginal distribution F1(x1) for X1 and X∗1 and the same marginal
distribution F2(x2) for X2 and X∗2 .
The first term is the probability of concordance, the differences between the random variables
have the same signs. The second term then is the probability of discordance, the differences
between the random variables have opposite signs. It is easy now to obtain an expression for
Kendall’s tau in terms of the copula function as follows;

τK(X1, X2) = Pr[(X1 −X∗1 )(X2 −X∗2 ) > 0]− Pr[(X1 −X∗1 )(X2 −X∗2 ) < 0]

= Pr[(X1 −X∗1 )(X2 −X∗2 ) > 0]− {1− Pr[(X1 −X∗1 )(X2 −X∗2 ) > 0]}
= 2Pr[(X1 −X∗1 )(X2 −X∗2 ) > 0]− 1

Because the random variables are interchangeable;

τK(X1, X2) = 4Pr[(X1 < X∗1 , X2 < X∗2 )]− 1

= 4E{Pr[(X1 < X∗1 , X2 < X∗2 )|X∗1 , X∗2 ]} − 1

= 4

∫ ∞
−∞

∫ ∞
−∞

Pr[X1 < x1, X2 < x2] dF (x1, x2)− 1

= 4

∫ ∞
−∞

∫ ∞
−∞

F (x1, x2) dF (x1, x2)− 1

= 4

∫ ∞
−∞

∫ ∞
−∞

C(F1(x1), F2(x2)) dC(F1(x1), F2(x2))− 1

= 4

∫ 1

−1

∫ 1

−1
C(u1, u2) dC(u1, u2)− 1

10



Thus, Kendall’s tau in terms of the copula function C(u1, u2) with Uniform(0, 1) marginals is
given by

τK(X1, X2) = 4

∫ 1

−1

∫ 1

−1
C(u1, u2) dC(u1, u2)− 1

= 4E[C(U1, U2)]− 1

which proves that Kendall’s tau measure only depends on the dependence structure among the
two variables and not on their marginal distributions.

3.4. Tail Dependence

The deviation from normality in actuarial science is called fat-tails or tail dependence. We
represent here the dependence measure of tail dependence that is a very useful measure in
describing a copula and it is especially important in risk management. It has been observed in
risk management that especially in bad times there may be significant correlation between risks.
Thus it is important to focus on the extreme events, in other words how strong the correlation
is in the upper or lower tails.

As given in Denuit et al. [2006], for the bivariate random variables (X1, X2), the tail depen-
dence measures the concordance between the extreme events of X1 and X2. We are concerned
with the probability of observing an unusually large loss for X1 given that an unusually large
loss has occurred for X2. The upper tail dependence λU measures the probability of X1 is very
large if it is known that X2 is very large, thus is defined as;

λU (X1, X2) = lim
u→1

P (F1(X1) ≥ u | F2(X2) ≥ u).

This tail dependence measure does not depend on F1 and F2 and only depends on the dependence
between X1 and X2. Because F1(X1) = U1 and F2(X2) = U2 are both Uniform(0, 1) random
variables, thus for the random variable couple (X1, X2) with copula C we can rewrite:

λU (X1, X2) = lim
u→1

P (F1(X1) ≥ u | F2(X2) ≥ u)

= lim
u→1

P (U1 ≥ u | U2 ≥ u)

= lim
u→1

1− P (U1 < u)− P (U2 < u) + P (U1 < u,U2 < u)

1− P (U2 < u)

= lim
u→1

1− 2u+ C(u, u)

1− u
In a similar way, the lower tail dependence λL is defined as;

λL(X1, X2) = lim
u→0

P (F1(X1) ≤ u | F2(X2) ≤ u)

= lim
u→0

P (U1 ≤ u | U2 ≤ u)

= lim
u→0

P (U1 ≤ u, U2 ≤ u)

P (U2 ≤ u)

= lim
u→0

C(u, u)

u

According to these formulas, the tail dependency of X1 and X2 can be measured only by looking
at copula C. These measures help us to understand the tail events. We say that the random
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variable couple (X1, X2) has upper (lower) tail dependence when λU > 0 (λL > 0). In practice
they are used to in order to choose suitable copula to describe the dependence structure among
the risks. For more details on tail dependence, see Embrechts et al. [2003].

Among many different copula families, only a few are used in practice. The most important
families are the Archimedean Copulas and Elliptical Copulas. There are many books and papers
on Copulas families, Archimedean and Elliptical copulas, see for instance Embrechts et al. [2003],
Frees and Valdez [1998], Bürgi et al. [2008], Nelsen [2007], Panjer [2006].

3.5. Elliptical Copulas

Elliptical copulas are the copulas associated with elliptical distributions, which have a elliptical
form and symmetry in the tails. An elliptical distribution is an extension of multivariate normal
distribution. An elliptical distribution is uniquely determined by its mean, correlation matrix
and the type of its margins, hence the copula of an elliptical distribution is uniquely determined
by its correlation matrix and knowledge of its type. For further details on elliptical distributions
we refer to Embrechts et al. [2003]. Elliptical copulas are generally defined as copulas of elliptical
distributions. Important copulas in this copula family are the Gaussian copula associated with
the multivariate normal distribution and the Students T copula associated with the multivariate
t distribution. We describe Gaussian (Normal) copula in the following subsection.

3.5.1. Gaussian (Normal) Copula

The Gaussian copula is based on the multivariate normal distribution. The Gaussian copula
generated by a multivariate normal distribution with linear correlation matrix Σ is given by:

C(u1, . . . , uk) = ΦΣ(Φ−1(u1), . . . ,Φ−1(uk)).

where Φ is the cdf of the standard univariate normal distribution, Φ−1 denotes the inverse of a
standard normal distribution and ΦΣ denotes the joint cdf of the standard multivariate normal
distribution (with zero mean and variance of 1 for each component). The correlation matrix Σ
is defined as:

Σ =


1 ρ12 . . . ρ1k

ρ21 1 . . . ρ2k
...

...
. . .

...
ρk1 ρk2 . . . 1


where ρij denotes the correlation coefficients.

Here we refer to a part of abstract of paper on ”The Role of Copulas in the Housing Crisis”
(see Zimmer [2012]):

”Due to its simplicity and familiarity, the Gaussian copula is popular in calculating
risk in collaterized debt obligations, but it imposes asymptotic independence such
that extreme events appear to be unrelated. This restriction might be innocuous in
normal times, but during extreme events, such as the housing crisis, the Gaussian
copula might be inappropriate.”
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Figure 3.1.: Scatter plot of the Gaussian copula for ρ = 0.3
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Figure 3.2.: Scatter plot of the Gaussian copula for ρ = 0.6
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Figure 3.3.: Scatter plot of the Gaussian copula for ρ = 0.9

It is interesting to note that Gaussian (Normal) copulas have zero tail dependence (λU =
λL = 0). See Embrechts et al. [2003] for a proof of this result. Using R, scatter plots of the
bivariate Gaussian copula for various values of the correlation parameter ρ = 0.3 , ρ = 0.6
and ρ = 0.9 are shown in Figures 3.1, 3.2 and 3.3 respectively. The symmetry of the Gaussian
copula can also be seen in these scatter plots.

The Gaussian copula plots for ρ = 0.3 and ρ = 0.6 (Figures 3.1 and 3.2) show that Gaussian
copulas do not have upper tail dependence and lower tail dependence (λU = λL = 0) except in
the special case with ρ close to 1 (Figure 3.3), where there is perfect correlation. However, this
approach does not show tail dependence.

As mentioned in Economist [2009] and Bogard [2011], the Gaussian copula was used widely
before the housing crisis to simulate the dependence between housing prices in various geo-
graphic areas. Looking at the scatter plots for the Gaussian copulas above, it can be seen that
extreme events (very high values of U1 and U2 or very low values of U1 and U2) seem very weakly
correlated. Archimedean copulas, e.g. Clayton and Gumbel copulas are good alternatives to
Gaussian copula.

3.6. Archimedean Copulas

Archimedean copulas are widely used because they can be easily constructed and many cop-
ula functions belong to this copula family. In comparison to Elliptical copulas, Archimedean
copulas have only one dependency parameter θ instead of a correlation dependency matrix
parameter. As mentioned in Embrechts et al. [2003], Elliptical copulas are restricted to have
radial symmetry. In many finance and insurance applications it seems reasonable that there is
a stronger dependence between big losses (e.g. a stock market crash) than between big gains.
Such asymmetries cannot be modeled with Elliptical copulas. For simplicity, we consider bi-
variate copulas. Let ϕ be a continuous, strictly decreasing convex function with domain (0, 1]
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and range [0,∞) satisfying ϕ(0) = ∞ and ϕ(1) = 0. Use ϕ−1 for the inverse function of ϕ.
Then Archimedean copulas are defined as;

Cϕ(u1, u2) = ϕ−1(ϕ(u1) + ϕ(u2)) u1, u2 ∈ (0, 1]

where ϕ is called a generator function of te Copula Cϕ. The Archimedean representation allows
us to reduce the study of a multivariate copula to a single univariate function. Archimedean
copulas have a commutative property, i.e. Cϕ(u1, u2) = Cϕ(u2, u1). This class family of copulas
have many different forms and you can see three often used Archimedean copulas in the following
subsections.

3.6.1. Clayton Copula

The Clayton copula is also known as Cook-Johnston copula, whose generator ϕθ is defined by

ϕθ(u) =
1

θ
(u−θ − 1)

Hence, the Clayton copula is in the form of:

Cθ(u1, u2) =
(
u−θ1 + u−θ2 − 1

)−1/θ

The upper tail dependence measure for Clayton copula is zero (λU = 0) and the lower tail
dependence measure is positive (λL = 2−1/θ > 0). See Panjer [2006] for a proof of these results.
The Clayton copula has a single parameter θ that can be estimated from data using a statistical
methods, such as maximum likelihood. Using R, scatter plots of the bivariate Clayton copula for
various values of θ = 0.5 , θ = 2 and θ = 10 are shown in Figures 3.4 , 3.5 and 3.6 respectively.
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Figure 3.4.: Scatter plot of the Clayton copula for θ = 0.5
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Figure 3.5.: Scatter plot of the Clayton copula for θ = 2
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Figure 3.6.: Scatter plot of the Clayton copula for θ = 10

Note that there is a strong correlation in the lower left corner of each plot and it represents
positive lower tail dependence. In the upper right corner, there is no evidence of dependence
and it indicates zero upper tail dependence. It can be seen in rank scatter plots of the bivariate

16



Clayton copula 3.4, 3.5 and 3.6 above that the higher the value of θ, the more the two random
variables depend on each other in lower tail. As mentioned in Bürgi et al. [2008], the Clayton
copula is not symmetric and acts on the lower tail of the distribution, whereas for upper tail the
random variables are hardly dependent on each other. In insurance, however, the dependence
should be modeled for the upper tails. This can easily be obtained by mirroring the copula by
a transformation (u1, u2) −→ (1− u1, 1− u2).

3.6.2. Gumbel Copula

The Gumbel copula is also known as the Gumbel-Hougaard copula and has the generator:

ϕθ(u) = (− lnu)θ θ ≥ 1

Hence, the Gumbel copula has the form:

Cθ(u1, u2) = exp

(
−
[
(− lnu1)θ + (− lnu2)θ

]1/θ
)

The measure of upper tail dependence is λU = 2− 21/θ. See Panjer [2006] for a proof of this
result. The Gumbel copula also has a single parameter θ. Using R, scatter plots of the bivariate
Gumbel copula for various values of θ = 1.5 , θ = 2 and θ = 5 are shown in Figures 3.7 , 3.8
and 3.9 respectively.
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Figure 3.7.: Scatter plot of the Gumbel copula for θ = 1.5
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Figure 3.8.: Scatter plot of the Gumbel copula for θ = 2
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Figure 3.9.: Scatter plot of the Gumbel copula for θ = 5

The upper tail dependence is evident in the upper right corner of each plot in above figures.
Note that the dependence of the random variables grows with increasing of θ and also there is
no upper tail dependence when θ = 1 because we have λU = 2−21/θ. As mentioned in the paper
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Bürgi et al. [2008], in comparison to the Clayton copula, the Gumbel dependence acts on both
upper and lower tails. Nevertheless, the Gumbel copula is not symmetric, i.e. the dependence
of high Quantiles is stronger than the one of low Quantiles.

Simulations using copulas can be implemented in R package copula (see Yan et al. [2007]
”Enjoy the joy of copulas: with a package copula”). The R codes that I have used to create
the scatter plots of the bivariate Gaussian, Clayton and Gumbel copulas above, can be found
in Appendix A.
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4. Copula-based hierarchical model for risk
aggregation

We discuss copula-based hierarchical approach for risk aggregation and dependence modeling
here. In the next chapter, to empirically illustrate this method we will apply the hierarchical
aggregation model to the real data, Danish fire insurance data, in detail and present some
conclusions. This chapter is inspired by the paper on ”Copula based hierarchical risk aggregation
through sample reordering” (Arbenz et al. [2012]).

The objective of risk aggregation and dependence modeling is to model adequately dependent
insurance portfolios in order to evaluate the overall risk exposure. In risk aggregation we are
interested in the distribution of sum of insurance claims:

S =

d∑
i=1

Xi

where Xi are the value of losses due to some risks that are correlated. Dependence between risks
cannot be ignored and their dependence must be modelled appropriately. As outlined in the
previous chapters, there are three popular risk aggregation methods and modeling dependence
structure in insurance:

• variance-covariance method

• risk factor models

• copula models

But each of these three models has its own weaknesses and in high dimensions, they become
problematic (see Arbenz [2012]):

- In variance-covariance method, the conclusions that can be drawn from this model are
only limited to the first and second moments, i.e. mean, variance and covariance of the
risks X1, . . . , Xd, and thus further properties of the distribution of sum of the risks, S,
cannot be understood. Number of correlation parameters in this method (= d(d − 1)/2)
become confusingly large in high dimensions.

- In risk factor method, modelling risk factors and estimating risk factor sensitivities for all
risks can be difficult in high dimensions.

- In copula models, fitting a copula in high dimensions is problematic. The number of
parameters is not appropriate in high dimensions, e.g. for large d number of margins,
the number of parameters is too many for Elliptical copulas (= d(d − 1)/2) and too few
for Archimedean copulas (= 1). Copula model simulation is numerically slow in high
dimensions.
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Hierarchical risk aggregation model can avoid the above problems. In this method we do not
need to specify the whole multivariate dependence structure. It is enough to specify lower
dimensional dependence structures for each of the aggregation steps. We can obtain the distri-
bution of sum of the risks using partial sums. This method is appropriate for high dimensional
problems, but for making it clearer we will consider a simple three-dimensional problem exam-
ple.

4.1. Hierarchical aggregation

This model consists of an aggregation tree structure, marginal distributions for each risk and
bivariate copulas for each aggregation step. Suppose we have three risks X,Y, Z and we want
to compute the distribution of sum of these three risks, i.e. the total aggregate S;

S = X + Y + Z

The classical copula approach consists of modelling the joint distribution of (X,Y, Z) using one
trivariate copula CX,Y,Z(FX(x), FY (y), FZ(z)) and directly computing the distribution of sum,
S. Instead, we do the ”hierarchical aggregation approach”, in the following steps;

(1) We set the aggregation tree structure. Number of tree structures to aggregate 3 risks
is equal to 3, to aggregate 4 risks is equal to 15 and so on. To set the aggregation tree
structure, first we select the greatest dependencies either positive or negative, i.e. we select
the two risks Xi, Xj that are most dependent (based on Kendall’s tau τ) and combine
them. The aggregation tree structure of this example is shown in Figure (4.1). In this
specific case, a joint model for the pair (X,Y ) would first be constructed. For further
details on existence and uniqueness of aggregation tree structure we refer to Arbenz et al.
[2012].

Figure 4.1.: An aggregation tree structure involving three risks.
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(2) We have to specify the marginal distributions for each three risks X, Y , Z and estimate
their parameters:

FX(x) = P [X ≤ x] FY (y) = P [Y ≤ y] FZ(z) = P [Z ≤ z].

(3) We model the dependence structure among X and Y with a bivariate copula CX,Y :

P [X ≤ x, Y ≤ y] = CX,Y (FX(x), FY (y)).

This determines the distribution of the bivariate random vector (X,Y ), and as a result,
it determines the distribution of the sub-aggregate T :

T = X + Y.

The cumulative distribution function (FT ) of sub-aggregate T is given by:

FT (t) = P [X + Y ≤ t] =

∫
R2

1{x+ y ≤ t} dCX,Y (FX(x), FY (y)).

where 1{x+ y ≤ t} is an indicator function defined as:

1{x+ y ≤ t} =

{
1 if x+ y ≤ t
0 if x+ y � t

(4) Having fixed the distribution of T = X + Y in the previous step, we would build a joint
model for the pair (T,Z) by combining FT and FZ using the bivariate copula CT,Z :

P [T ≤ t, Z ≤ z] = CT,Z(FT (t), FZ(z)).

This determines the distribution of the bivariate random vector (T,Z), and as a result, it
determines the distribution of the total aggregate S:

S = T + Z = X + Y + Z.

The cumulative distribution function FS of total aggregate S is given by:

FS(s) = P [T + Z ≤ s] =

∫
R2

1{t+ z ≤ s} dCT,Z(FT (t), FZ(z)).

�

This approach has many advantages. As mentioned above, in the classical copula approach for
the calculation of the distribution of the sum of three risks, S = X+Y +Z, we would determine
the trivariate copula CX,Y,Z . As opposed to the classical approach, the hierarchical aggregation
model involves only two bivariate copulas CX,Y and CT,Z . This is an advantage when the
number of risks is large, i.e. in higher dimensions. In general, the hierarchical aggregation
for d risks (X1, X2, . . . , Xd) can be modelled as follows. First, select and combine the two
risks (Xi, Xj) that are most dependent through a bivariate copula model CXi,Xj . Kendall’s
tau dependence measure can used to determine the order in which risks are aggregated. Next,
replace the individual risks Xi and Xj by their sum Sij = Xi + Xj and repeat these steps for
the new combined risk and the remaining risks, i.e. it leaves one new aggregation tree with
d− 1 risks, that the procedure can be repeated for the new tree. Continue this procedure in a
iterative way until all the risks have been aggregated in a single sum S = X1 + . . .+Xd. This
procedure involves d marginal distributions and d− 1 bivariate copulas. (see Côté and Genest
[2015])
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4.2. Reordering algorithm for the numerical approximation

After the above steps in the hierarchical aggregation approach, i.e. selecting the aggregation
tree structure, finding the marginal distributions for each risk, and fitting the bivariate copulas
for each aggregation step, we need to numerically approximate the hierarchical risk aggregation
structure. The ”reordering algorithm” allows us to do it. Classical multivariate models use
approximations through i.i.d. sampling (Monte Carlo simulations), but generating i.i.d. samples
from this aggregation tree is not possible because it is not easy to deal numerically with the
joint density (if existing) of all risks (X,Y, Z) and the copula function between all risks CX,Y,Z .
Instead of the classical i.i.d. sampling, we suggest the reordering algorithm for approximation
that is inspired by the the Iman-Conover method (see Arbenz et al. [2012]). In this section we
discuss the reordering algorithm that obtains numerical approximations through a bottom-up
approach. For illustrative purposes, we again suppose we have three risks X,Y, Z example as
described in the previous section. Therefore, our purpose is to approximate the distribution
function of total aggregate:

S = T + Z = (X + Y ) + Z.

Assume the marginal distributions of X,Y, Z are estimated and given by:

FX(x) = P [X ≤ x] FY (y) = P [Y ≤ y] FZ(z) = P [Z ≤ z].

And two bivariate copulas CX,Y and CT,Z are fitted and given by;

P [X ≤ x, Y ≤ y] = CX,Y (FX(x), FY (y))

P [T ≤ t, Z ≤ z] = CT,Z(FT (t), FZ(z)).

We do the reordering algorithm using the following steps;

(1) Fix number n.

(2) Simulate independently marginal samples of size n from X, Y and Z;

- Xi ∼ FX
- Yi ∼ FY
- Zi ∼ FZ

for i = 1, . . . , n.

(3) Simulate independently copula samples of size n from CX,Y and CT,Z ;

- Ui ∼ CX,Y
- Vi ∼ CT,Z

for i = 1, . . . , n.

(4) For the first aggregation step, construct the bivariate reordered samples of (X,Y ) by
reordering the marginal samples Xi and Yi based on the joint ranks of the copula sample
Ui. Thus we get a sample of T by summing up T = X + Y .

(5) For the second aggregation step, construct the bivariate reordered samples of (T,Z) by
reordering the marginal samples Zi and Ti based on the joint ranks of the copula sample
Vi. Thus we get a sample of total aggregate S by summing up S = T +Z = (X +Y ) +Z.
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(6) Define the empirical distribution function for S.

Thanks to Dr. Philipp Arbenz for putting the reordering algorithm R code program in
his web page https://sites.google.com/site/philipparbenz/. For illustrating hierarchical
aggregation through reordering algorithm, we give a trivariate example here:

We choose equal marginal distributions for all three risks. As mentioned in (Bürgi et al.
[2008]), the biggest effect of dependence can be seen when aggregating equal risks. A canonical
type of aggregate loss model used in insurance is the lognormal distribution. Therefore, we
choose lognormal marginal distributions with parameters meanlog µ = 1 and sdlog σ = 1 for
each risk in our example. For generating the copula samples, we use Clayton copulas that is the
most asymmetric one of the copulas (Clayton copula with parameter θ = 2 for first aggregation
step and with parameter θ = 1 for second aggregation step). Recall that the Clayton copula

is in the form of Cθ(u1, u2) =
(
u−θ1 + u−θ2 − 1

)−1/θ
. We do the reordering algorithm example

using the following steps:

• Fix number of simulations n = 4.

• Generate lognormal marginal samples i.i.d. Xi ∼ Lognormal(µ = 1, σ = 1), for i =
1, 2, 3, 4, and then sort them. We denote the sorted Xi with notation X(i). This gives:

X(1) = 0.56 X(2) = 0.64 X(3) = 1.60 X(4) = 5.83

• Generate lognormal marginal samples i.i.d. Yi ∼ Lognormal(µ = 1, σ = 1), independent
of the Xi. Then sort them. We denote the sorted Yi with notation Y(i). This gives:

Y(1) = 0.67 Y(2) = 2.40 Y(3) = 4.53 Y(4) = 19.37

• Generate Clayton copula i.i.d. samples Ui = (U1
i , U

2
i ), independent of the Xi and Yi. the

copula simulation yielded the following samples:

(U1
1 , U

2
1 ) = (0.74, 0.54) (U1

2 , U
2
2 ) = (0.46, 0.92)

(U1
3 , U

2
3 ) = (0.92, 0.70) (U1

4 , U
2
4 ) = (0.35, 0.38)

• Obtain the joint ranks of the copula samples. We denote the joint ranks with notation
(R1

i , R
2
i ). This gives:

(R1
1, R

2
1) = (3, 2) (R1

2, R
2
2) = (2, 4)

(R1
3, R

2
3) = (4, 3) (R1

4, R
2
4) = (1, 1)

• Reorder and couple the samples X(i) and Y(i) such that the new bivariate sample has the
same joint ranks as the copula samples. This gives the bivariate sample (X(R1

i ), Y(R2
i )) of:

(X(R1
1), Y(R2

1)) = (X(3), Y(2)) = (1.60, 2.40) (X(R1
2), Y(R2

2)) = (X(2), Y(4)) = (0.64, 19.37)

(X(R1
3), Y(R2

3)) = (X(4), Y(3)) = (5.83, 4.53) (X(R1
4), Y(R2

4)) = (X(1), Y(1)) = (0.56, 0.67)

• Calculate samples of the sub-aggregate T = X + Y by taking the component wise sum of
the bivariate reordered samples (X(R1

i ), Y(R2
i )) above. This gives:

T1 = X(3) + Y(2) = 1.60 + 2.40 = 4.00 T2 = X(2) + Y(4) = 0.64 + 19.37 = 20.01

T3 = X(4) + Y(3) = 5.83 + 4.53 = 10.36 T4 = X(1) + Y(1) = 0.56 + 0.67 = 1.23
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• Repeat the previous procedure for samples Ti and Zi ∼ Lognormal(µ = 1, σ = 1) and
reorder the samples Ti and Zi such that their linked ranks are equal to the joint ranks of
the copula samples V = (V 1

i , V
2
i ). This gives the following results:

Sorted sub-aggregate samples T(i):

T(1) = 1.23 T(2) = 4.00 T(3) = 10.36 T(4) = 20.01

Sorted lognormal marginal samples Z(i):

Z(1) = 1.15 Z(2) = 1.53 Z(3) = 2.01 Z(4) = 21.97

Clayton copula simulation V = (V 1
i , V

2
i ) yielded:

(V 1
1 , V

2
1 ) = (0.02, 0.28) (V 1

2 , V
2

2 ) = (0.34, 0.06)

(V 1
3 , V

2
3 ) = (0.33, 0.40) (V 1

4 , V
2

4 ) = (0.17, 0.09)

Joint ranks of the copula samples:

(R1
1, R

2
1) = (1, 3) (R1

2, R
2
2) = (4, 1)

(R1
3, R

2
3) = (3, 4) (R1

4, R
2
4) = (2, 2)

Reordered bivariate sample (T(R1
i ), Z(R2

i )) according to the joint ranks of the copula V
samples:

(T(R1
1), Z(R2

1)) = (T(1), Z(3)) = (1.23, 2.01) (T(R1
2), Z(R2

2)) = (T(4), Z(1)) = (20.01, 1.15)

(T(R1
3), Z(R2

3)) = (T(3), Z(4)) = (10.36, 21.97) (T(R1
4), Z(R2

4)) = (T(2), Z(2)) = (4.00, 1.53)

• Calculate samples of the total aggregate S = T +Z = X+Y +Z by taking the component
wise sum of the bivariate reordered samples (T(R1

i ), Z(R2
i )) above. This gives:

S1 = T(1) + Z(3) = 1.23 + 2.01 = 3.24 S2 = T(4) + Z(1) = 20.01 + 1.15 = 21.16

S3 = T(3) + Z(4) = 10.36 + 21.97 = 32.33 S4 = T(2) + Z(2) = 4.00 + 1.53 = 5.53

This defines the empirical distribution function for the total aggregate S as:

FnS (s) = F 4
S(s) =

1

4
1{3.24 ≤ s}+

1

4
1{21.16 ≤ s}+

1

4
1{32.33 ≤ s}+

1

4
1{5.53 ≤ s}

where 1{.} is an indicator function. �

The reordering algorithm produces the approximations of the distributions of (X,Y ), (T,Z),
and S. The final result, F 4

S , is an empirical distribution function for the total aggregate S.
Suppose the FS is the cumulative distribution function of S, then F 4

S is an approximation
of FS . In general, for fixed number of simulations n, the FnS is an approximation of FS . A
theorem given in (Arbenz et al. [2012], subsection 3.2, page 7) proves that when n → ∞, we
obtain convergence FnS → FS .

The R programming code that used for the implementation of the reordering algorithm for
the described trivariate example, can be found in Appendix B.
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5. Application to Danish Fire Insurance Data

These Danish Fire Insurance Data were collected at Copenhagen Reinsurance and comprise
2167 fire losses over the period 1980 to 1990 and are expressed in millions of Danish Krone
(DKK). Every total claim has been divided into three risks consisting of a building loss, a loss
of contents and a loss of profits caused by the same fire. These three risks in our study are
denoted by:

X = loss of building Y = loss of content Z = loss of profit

As mentioned in Esmaeili and Klüppelberg [2010], Haug et al. [2011] and Dreesa and Müllerb
[2007], the claims are recorded only if the sum of all three risks is greater or equal to 1 million
Danish Kroner (DKK). Because of this, there is an artificial negative dependence between the
risks components X, Y and Z, i.e. if one risk component is smaller than 1 million DKK, the
sum of the others must be accordingly larger. Therefore, we assume the values in each risk
component had been truncated from below at 1 million DKK. The risks X , Y and Z
are clearly dependent, as can be seen from Figure 5.1. Note that the number of observations is
not the same each time I consider a pair of risks.

Figure 5.1.: Bivariate scatterplots of Danish Fire Insurance Data
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5.1. R Packages fitdistrplus and copula

Here we briefly introduce two important R packages. In the following subsections we are
frequently using these R packages to statistically analyze this data set. The copula package
provides a platform for multivariate modeling with copulas in R (see Yan et al. [2007] and Ko-
jadinovic et al. [2010]). We are using copula package for constructing Archimedean copula and
Elliptical copula class objects with its corresponding parameters and dimension, goodness-of-fit
tests and parametric estimation for copulas, and multivariate independence test of continuous
random variables based on the empirical copula process.

In fitdistrplus package, the multivariate Danish Fire Insurance Data set is stored in ”dan-
ishmulti”. This data set has been divided into a building loss, a loss of contents and a loss of
profits (see Delignette-Muller and Dutang [2014]). In this package, ”danishmulti” contains five
columns:

- Date: The day of claim occurence.

- Building : The loss amount (mDKK) of the building coverage.

- Contents: The loss amount (mDKK) of the contents coverage.

- Profits: The loss amount (mDKK) of the profit coverage.

- Total : The total loss amount (mDKK).

where all columns are numeric except Date columns of class Date. We can import the multi-
variate Danish Fire Insurance Data set in R by:

> library(fitdistrplus)

> data(danishmulti)

5.2. Determination of the tree structure, hierarchical clustering

As mentioned in section 4.1 in the previous chapter, to determine the aggregation tree structure,
first we select the two risks that are most dependent and combine them. Kendall’s tau depen-
dence measure can be used to determine the order in which risks are aggregated. A procedure
for selecting the tree structure based on Kendalls tau τ is called ”hierarchical clustering tech-
nique”. Consider two arbitrary risks Xi and Xj . The measure of distance D(Xi, Xj) between
these two risks based on Kendall’s tau τ is defined as:

D(Xi, Xj) =
√

1− τ2(Xi, Xj) (5.1)

where τ(Xi, Xj) denotes Kendall’s tau dependence measure between pair Xi and Xj . The
principle of hierarchical clustering method is to identify the two risks that are the closest, i.e.
the measure of distance D is minimal for them, and then to combine them into a group. Then
we repeat this procedure until only one risk is left (see Côté and Genest [2015]). As can be
seen from equation (5.1), the minimal measure of distance D is related to the largest Kendall’s
tau τ dependence measure. Therefore, first we select and model the two risks with the largest
Kendall’s tau τ .

To test if Kendall’s tau τ is greater than zero at 0.05 significance level for components of our
data set, we could test the null hypothesis that τ = 0 by applying the function ”cor.test” with
the ”kendall” option in R. For instance:

27



> cor.test(contents, profits, method = "kendall", alternative = "greater")

We found p-values of 2.495e−08 for (X,Y ), 0.001346 for (X,Z) and 4.629e−06 for (Y, Z) that
they are all less than 0.05 significance level. Hence we reject the null hypothesis and Kendall’s
tau τ is significantly greater than zero. It can be seen this result from Figure 5.1 also, that the
risks are clearly dependent. Recall that X = loss of building, Y = loss of content, Z = loss of
profit.

We apply the function ”cor” with the ”kendall” option in R for comparison of Kendall’s tau
τ between three different pairs of components of danish fire insurance data. For instance:

> cor(contents, profits, method="kendall")

After applying function ”cor”, we got these results:

τ(X,Y ) = 0.211032, τ(X,Z) = 0.261722, τ(Y,Z) = 0.328090

From equation (5.1) we could calculate the measure of distance D:

D(X,Y ) = 0.977480, D(X,Z) = 0.965143, D(Y, Z) = 0.944646

The measure of distance D(Y,Z) is the smallest one, i.e. Y and Z are the closest. Thus we
first construct the joint model for the pair (Y =”loss of contents” , Z =”loss of profits”). The
aggregation tree structure of this data set is shown in Figure 5.2.

Figure 5.2.: An aggregation tree structure of Danish Fire Insurance Data.

5.3. Choice of marginal distributions for the risks

We have to specify the marginal distributions for the X = loss of building, Y = loss of contents,
Z = loss of profits. Note that when estimating the marginals I consider the situation risk by
risk and when I estimate the copulas I consider each pair of risks separately. As explained
before about danish fire insurance data, we assume the values in each risk component
had been truncated from below at 1 million DKK.
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Histogram of loss of building

Building

D
en
si
ty

0 50 100 150

0.
0

0.
1

0.
2

0.
3

0.
4

0.
5

Histogram of loss of contents

Contents

D
en
si
ty

0 20 40 60 80 100 120

0.
0

0.
1

0.
2

0.
3

0.
4

Histogram of loss of profits

Profits

D
en
si
ty

0 10 20 30 40 50 60

0.
0

0.
1

0.
2

0.
3

0.
4

0.
5

Figure 5.3.: Histograms of loss of building, loss of contents and loss of profits
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The most direct way to see how well a distribution fits a data set is to plot the respective
histogram, which can suggest a kind of distribution to use to fit the model. These plots are
a very useful guide to heavy-tailedness. We present the histogram of each risk X, Y and
Z in Figure 5.3. A first glance at Figure 5.3 clearly shows heavytailedness and skewness to
the right for each data set. The danish fire insurance data show Pareto tail behaviour. The
Single-parameter Pareto distribution is a classical skewed, heavy-tailed distribution. We
estimate parameter shape (α) of Single-parameter Pareto distribution fitted to loss of building
by maximum likelihood estimation method.

The Single-parameter Pareto distribution with parameter shape = α has PDF and CDF:

f(x) =
αθα

xα+1
x > θ.

F (x) = 1−
(
θ

x

)α
x > θ.

Although there appears to be two parameters, only parameter shape = α is a true parameter.
The value of lower bound = θ must be set in advance. In our case θ = 1.

The Maximum Likelihood Estimation method (MLE) is the most popular method to estimate
the distribution parameters from an empirical sample. It finds the model parameters that
maximize the likelihood of the observed data with respect to the theoretical model. One of the
attractive properties of the Single-parameter Pareto distribution is the ease of calculation of the
maximum likelihood estimate of the parameter.

In general, the likelihood function for Single-parameter Pareto distribution with parameter
shape = α, given data truncated from below at θ, is:

L(α) =

n∏
j=1

f(xj | α)

1− F (θ | α)

Note that in Single-parameter Pareto distribution the lower bound is equal to truncation point
(θ = 1) and the Survival function at lower bound (1 − F (θ | α)) = 1. Therefore the likelihood
function is:

L(α) =
n∏
j=1

α

xα+1
j

The logarithmic likelihood function is:

l(α) =

n∑
j=1

(lnα− (α+ 1)ln(xj))

= nlnα− (α+ 1)
n∑
j=1

ln(xj)

To find the estimator for α, we compute the corresponding partial derivative and determine
where it is zero:

∂l

∂α
=
n

α
−

n∑
j=1

ln(xj) = 0

Thus the maximum likelihood estimator for α is:

α̂ =
n∑n

j=1 ln(xj)
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As a result of above formula, we got parameter shape estimation α = 1.587 and lower bound
θ = 1 for loss of building.

These real data are surely not exactly Single-parameter Pareto distributed, and for most
practical applications the question would be ”how good is the Single-parameter Pareto approx-
imation?”. The Q-Q plot is a good way to show the quality of such an approximation. A Q-Q
plot represents the quantiles of the theoretical fitted distribution against the empirical quantiles
of the data. The Q-Q plot of loss of building data against its estimated Single-parameter Pareto
distribution is shown in Figure 5.4.

Figure 5.4.: Q-Q plot of loss of building data against its estimated Single-parameter Pareto
distribution.

Any way we can do our test with the Kolmogorov-Smirnov statistic, after estimating the
parameters by maximum likelihood. The KolmogorovSmirnov statistic quantifies a distance be-
tween the empirical distribution function of the sample and the cumulative distribution function
of the reference distribution. We perform K-S test using ks.test function in R:

> ks.test(Building, "ppareto1", shape = 1.587, min = 1)

We got the following R output:

###################################################

One-sample Kolmogorov-Smirnov test

data: Building

D = 0.0699, p-value = 1.324e-06

alternative hypothesis: two-sided

###################################################

which shows this data do not follows Single-parameter Pareto distribution.
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Many articles have used the same danish fire insurance data and concluded that this data
follows different distributions (see Esmaeili and Klüppelberg [2010], Haug et al. [2011], Dreesa
and Müllerb [2007] and McNeil [1997]). Although these data are surely not exactly Single-
parameter Pareto distributed, I assume they follow Single-parameter Pareto distribution in this
thesis for the purposes of illustration of the hierarchical aggregation model.

Therefore, we select a marginal distribution Single-parameter Pareto for loss of building with
parameter shape α = 1.587 and lower bound θ = 1. In a similar way, we select the marginal
Single-parameter Pareto distribution for loss of contents with parameter shape α = 1.085 and
loss of profits with parameter shape α = 1.038.

5.4. Choice of bivariate copulas

After determination of the aggregation tree structure, we select an appropriate bivariate copula
at each aggregation step. I am analyzing the dependence only in the tails. As explained
above, we first construct the joint model for the pair (Y =”loss of contents” , Z =”loss of
profits”) at first aggregation step because they are the two risks that are most dependent. To
check the null hypothesis of independence of loss of contents and loss of profits, we implement an
independence test using functions indepTestSim and indepTest of the copula package in R. This
independence test consists of two steps: (i) indepTestSim function: a simulation step, which
consists of simulating the distribution of the test statistics under independence for the sample
size under consideration; (ii) indepTest function: the test itself, which consists of computing the
approximate p-values of the test statistics with respect to the empirical distributions obtained in
the first step (see Kojadinovic et al. [2010]). We apply the independence test to loss of contents
and loss of profits:

> cp <- cbind(contents , profits)

> empsamp <- indepTestSim(nrow(cp), p = 2, N=1000)

> indepTest(cp,empsamp)

We obtain the R output:

########################################################################

Global Cramer-von Mises statistic: 0.2200595 with p-value 0.0004995005

Combined p-values from the Mobius decomposition:

0.0004995005 from Fisher’s rule,

0.0004995005 from Tippett’s rule.

########################################################################

These p-values give strong evidence against the null hypothesis of independence at the 0.05
significance level. The independence is rejected, and the next step is to fit an appropriate
parametric copula CY,Z function to the pair (Y =”loss of contents” , Z =”loss of profits”).
As candidate copulas, we consider Gaussian (Normal), Clayton and Gumbel copula families
to model the dependence among Y and Z. We perform several goodness-of-fit tests for these
copula families using gofCopula function in copula package:

> normal.cop <- normalCopula(0.6, dim=2)

> gofCopula(normal.cop, cp)

> clayton.cop <- claytonCopula(2, dim=2)
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> gofCopula(clayton.cop, cp)

> gumbel.cop <- gumbelCopula(2, dim=2)

> gofCopula(gumbel.cop, cp)

We found approximate p-values of 0.004496 for Normal copula, 0.0004995 for Clayton copula and
0.1683 for Gumbel copula respectively. Therefore, among all candidate copula families that we
have tested, the Gumbel copula is the only one that is not rejected at the 0.05 significance level
because its p-value is greater than 0.05. The parameter estimate for the copula fit is computed
by the pseudo maximum likelihood method. The gofCopula function also returns the estimate
of the parameters of the Gumbel copula, θ = 1.534. In a similar way, we select an appropriate
bivariate parametric copula CX,T , Gumbel copula with parameter estimate θ = 1.282, for the
pair (X,T ) at the second aggregation step where

X = loss of building T = (Y + Z) = (loss of contents + loss of profits)

5.5. Hierarchical aggregation through reordering algorithm

After determining the aggregation tree structure, finding the marginal distributions for each risk,
and fitting the bivariate copulas for each aggregation step, we need to numerically approximate
the hierarchical risk aggregation structure. We do it through reordering algorithm. As explained
in the previous chapter, we do the reordering algorithm using the following steps:

(1) Fix number of simulations n = 1000.

(2) Generate Single-parameter Pareto marginal i.i.d. samples of size n = 1000 from X, Y and
Z;

- Xi ∼ Single-parameter Pareto(α = 1.587)

- Yi ∼ Single-parameter Pareto(α = 1.085)

- Zi ∼ Single-parameter Pareto(α = 1.038)

for i = 1, . . . , 1000.

(3) Generate copula i.i.d. samples of size n = 1000 from CY,Z , Gumbel copula with parameter
θ = 1.534, and CX,T , Gumbel copula with parameter θ = 1.282;

- Ui ∼ CY,Z
- Vi ∼ CX,T

for i = 1, . . . , 1000.

(4) For the first aggregation step, construct the bivariate reordered samples of (Y,Z) by
reordering the marginal samples Yi and Zi based on the joint ranks of the copula sample
Ui. Thus we get a sample of T by summing up T = Y + Z.

(5) For the second aggregation step, construct the bivariate reordered samples of (X,T ) by
reordering the marginal samples Xi and Ti based on the joint ranks of the copula sample
Vi. Thus we get a sample of the total aggregate S by summing up S = X+T = X+(Y +Z)
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(6) Calculate the samples of the total aggregate S. Denote by S1, . . . , S1000 the simulated
samples of S. The empirical distribution function for S is defined as:

FnS (s) = F 1000
S (s) =

1

1000

1000∑
i=1

1{Si ≤ s}

where 1{.} is an indicator function. �

5.6. Conclusions and results

Suppose that FS is the cumulative distribution function of S, then F 1000
S is a good approximation

of FS . R provides a very useful function ecdf for working with the empirical distribution
function. It computes or plots an empirical cumulative distribution function. The ecdf function
applied to a data sample returns a function representing the empirical cumulative distribution
function. Let’s use the ecdf() function to obtain some empirical CDF values of S. For example
it is possible to see what the output looks like below:

> Fn <- ecdf(S)

> Fn(3.04)

[1] 0.001

> Fn(40)

[1] 0.943

> Fn(100)

[1] 0.976

The empirical cumulative distribution function of S is shown in Figure 5.5.

Figure 5.5.: The empirical cumulative distribution function of S
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We present the histogram plot of the total aggregate samples S in Figure 5.6 to examine the
distribution of S.

Figure 5.6.: Histogram and Density estimate of the total aggregate S

As can be seen in this master thesis, the copula-based hierarchical aggregation model through
reordering algorithm provides a simple and practical framework to model the distribution of the
sum of dependent risks. In general, a hierarchical aggregation model for d risks is defined with
a tree structure, d − 1 bivariate copulas and d marginal distributions. This approach can be
easily applicable in high dimensions. The only restriction being that the marginal distributions
for each risk, and the bivariate copulas for each aggregation step can be simulated. It would be
interesting to try to find out more about this aggregation method in future research.
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A. Appendix A

The R codes that I used to create the scatter plots of the bivariate Gaussian, Clayton and
Gumbel copulas:

> library("copula")

> set.seed(1)

# Gaussian Copula

> norm.cop <- normalCopula(0.3)

> norm.cop

> u <- rcopula(norm.cop, 500)

> plot(u)

> title("Gaussian Copula")

# Clayton Copula

> clayton.cop <- claytonCopula(0.5)

> clayton.cop

> u <- rcopula(clayton.cop,500)

> plot(u)

> title("Clayton Copula")

# Gumbel Copula

> gumbel.cop <- gumbelCopula(1.5)

> gumbel.cop

> u <- rcopula(gumbel.cop,500)

> plot(u)

> title("Gumbel Copula")
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B. Appendix B

The R programming code that used for the implementation of the reordering algorithm for the
mentioned trivariate example:

# load package ’copula’ library

> library(copula)

# fix number of simulations

> n

# generate marginal samples. Here, lognormal distributions is used.

> X = rlnorm(n, 1, 1)

> Y = rlnorm(n, 1, 1)

> Z = rlnorm(n, 1, 1)

# generate copula samples. Here, Clayton copulas is used.

> U = rcopula(claytonCopula(param = 2, dim = 2), n)

> V = rcopula(claytonCopula(param = 1, dim = 2), n)

# reordering according to U

> X[order(U[,1])] = sort(X)

> Y[order(U[,2])] = sort(Y)

> print(cbind(X,Y) , digits=3)

# calculate samples of the sub-aggregate T

> T = X+Y

# reordering according to copula V

> T[order(V[,1])] = sort(T)

> Z[order(V[,2])] = sort(Z)

> print(cbind(T,Z) , digits=3)

# calculate total aggregate S

> S = T+Z

# final result

> print(S , digits=3)
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