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ABSTRACT 

Nowadays, maize is the most important cereal in the world and its production has 

been increasing both worldwide and in Portugal, over the years. The constant 

technological development has led to the creation of new techniques such as precision 

agriculture, to better meet the global needs of this primordial cereal as well as optimize 

its production. 

This research was developed jointly with the firm Agro Analítica from the 

agriculture sector, whose area of expertise is Precision Agriculture and System 

Optimization. In this manner, the present work aims to estimate a function for the maize 

yield identifying the relevant determining factors, and their effect, on maize productivity 

on an exploitation of a firm in Azinhaga, Golegã, district of Santarém, Portugal for the 

year 2020. 

Using appropriate software, this dissertation applies the most recent spatial 

econometric methods to cross-sectional data, in order to properly include spatial 

dependence in the estimation. Thus, the appropriate models were estimated: Spatial Lag 

Model (SLM), Spatial Error Model (SEM) and SARAR(1,1) Model, whose use was 

recommended by the diagnosis to OLS (Ordinary Least Square) residuals. The elected 

model was the SARAR(1,1), capturing the spatial dependence and heteroscedasticity in 

the data, with an accuracy of approximately 90%.   In this framework, it was concluded 

that maize yield, in the year and area under study, is positively influenced by factors such 

as the sowing density, applied sulfur trioxide (SO3) and a specific variety of seed. 

Regarding the fertilization, nitrogen and potassium, and irrigation of the crop, presented 

a non-linear (quadratic) relationship with the maize yield. Also influencing the yield, 

there are weather-related variables measured by stage of the maize life cycle, that proved 

to be significant at explaining the variable under study such as the relative humidity, the 

temperature, and the wind velocity. 
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RESUMO 

Atualmente, o milho é o cereal mais importante do mundo tendo a sua produção 

vindo a aumentar tanto a nível mundial como em Portugal ao longo dos anos. O constante 

desenvolvimento tecnológico resultou na criação de novas técnicas, como a agricultura 

de precisão, para melhor satisfazer as necessidades globais deste cereal primordial bem 

como otimizar a sua produção.  

Esta investigação foi desenvolvida em conjunto com a empresa Agro Analítica do 

sector da agricultura, cuja área de especialização é Agricultura de Precisão e Otimização 

de Sistemas. Desta forma, o presente trabalho visa estimar uma função que explique a 

produtividade do milho identificando os fatores, e o seu efeito na produtividade do milho, 

numa exploração da empresa em Azinhaga, Golegã, distrito de Santarém, Portugal, para 

o ano 2020. 

Utilizando o software apropriado, esta dissertação aplica os mais recentes métodos 

e ferramentas econométricas espaciais para dados cross-section (dados transversais), de 

modo a incluir devidamente a dependência espacial na estimação. Assim, foram 

estimados os modelos apropriados: Modelo Spatial Lag (SLM), Modelo Spatial Error 

(SEM) e Modelo SARAR(1,1) (Kelejian & Prucha, 2010), cuja utilização foi recomendada 

pelo diagnóstico aos reísduos OLS (Ordinary Least Square). O modelo escolhido foi o 

SARAR(1,1), captando a dependência espacial e heterocedasticidade presente nos dados. 

Desta forma, concluiu-se que a produtividade do milho, no ano e na área em estudo, 

encontra-se positivamente influenciado por fatores como a densidade de sementeira, o 

trióxido de enxofre aplicado (SO3) e uma variedade específica de sementes. Quanto à 

fertilização, com azoto e potássio, e quanto à irrigação da cultura, estes fatores 

apresentaram uma relação não linear (quadrática) com a produtividade do milho. Também 

influenciando a produtividade, existem variáveis relacionadas com o clima, medidas pela 

fase do ciclo de vida do milho, que provaram ser significativas para explicar a variável 

em estudo, tal como a humidade relativa, a temperatura e a velocidade do vento. 

 

 

Palavras-passe: Produtividade do Milho; Econometria Espacial; Regressão Espacial; 

Dados de corte transversal; Dependência Espacial. 
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1. INTRODUCTION 

Understanding phenomena resulting from the spatial distribution of data in space 

presents a major challenge for several areas of knowledge. It wasn’t until recently that the 

use of spatial econometrics started to being incorporated in the field of agriculture. The 

1990’s came with the realization that crops and, especially their yields, are influenced by 

factors as soil characteristics, type of seeds planted, applied fertilization and weather 

conditions, among others (Bockstael, 1996). Meanwhile, the evolution of technology and 

the introduction of precision farming in this field has brought more efficiency and 

optimization of crop production.  

In PortugaL, in the agricultural sector, maize (Zea Mays L.) is considered the most 

important cereal in the world (ANPROMIS, 2017). The productivity of this crop is the 

result of the interaction of many factors controllable, or not, by the farmer, ranging from 

the choice of seed and, hence, the genetic traits of the plant, to climatic conditions in a 

given growing season (Cruz et al, 2008). It is within this framework and with the data 

provided by the firms Agro Analítica and Quinta da Cholda that this research on maize 

yield in the Quinta da Cholda exploitation, in 2020, arises. In view of the above, the main 

objective of this essay is to identify the factors and their effect on maize yield in the area 

under study for the year of 2020.  

To this regard, this dissertation applies the most recent spatial statistical methods 

and tools to the cross-sectional data, in order to properly include factors such as spatial 

dependence and heterogeneity, commonly observed in studies related to agricultural 

econometrics. As a result, it’s possible to correctly investigate the spatial causal 

relationship between the maize yield and soil classification, soil attributes and the 

agrometeorological variables. To analyze the maize yield and its explanatory variables, 

in conjunction with the study of spatial dependence using the global Moran´s I, spatial 

regression models are applied such as the SLM (Spatial Lag Model), SEM (Spatial Error 

Model) and the SARAR(1,1) Model (Kelejian & Prucha, 2010), after spatial correlation 

has been detected by means of hypothesis testing (Anselin, 2005). 

This thesis is structured in seven chapters, including this introduction as the first. 

Chapter two contains a brief framework in which this research was developed. Chapter 

three presents a summary of the literature on the maize crop, a brief historical review of 

spatial econometric analyses carried out over the years in agriculture, with special 
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attention to maize cereal, as well as the existing literature on the maize crop. Chapter four 

outlines the methodology adopted in this work. Chapter five describes the data, the steps 

for building the data base and the description of all variables. Chapter six contains the 

estimated models as well as the detailed analysis of the results. And, finally, the 

conclusions of the study, together with its limitations and suggestions for future work are 

displayed in chapter seven. 

 

2. DISSERTATION FRAMEWORK 

This research was jointly developed with the firm Agro Analítica, whose area of 

expertise is Precision Agriculture and System Optimization. This firm, from the 

agriculture sector, is based in Lisbon and was recently founded in 2017. Its work in Smart 

Farming | Precision Agriculture aims to fill the technological gap that exists in Portugal 

in this area (Agro Analítica, 2021).  

The exploitation where the data for this study was collected is situated in Quinta 

da Cholda in the region of Azinhaga, Golegã, district of Santarém, Portugal (Quinta da 

Cholda, 2021). The firm holds a wide range of data regarding maize production as well 

as other variables, namely weather variables that may influence the production of this 

cultivar. Specifically, the exploitation under study cultivates grain maize (monoculture) 

that is later used for animal feed. Figure 1 below illustrates the aerial map of Portugal 

zooming in on the holding under study depicted in orange.  

 

 
Figure 1 – Aerial map of the maize crop exploitation under study 

Source: Own Elaboration; Software: QGIS. 
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3. LITERATURE REVIEW 

Maize is considered the most important cereal in the world (ANPROMIS, 2017), 

currently exceeding the annual production of both rice and wheat. This cereal presents 

now numerous applications whether for silage, animal feed or the food industry, such as 

flour and starches, or even to produce renewable energy (bioethanol and biogas) and 

biodegradable materials (fibers and bioplastics). Nowadays, according to the FAOSTAT 

(2021), maize is grown in more than 160 countries, from the most advanced to the self-

subsistent, being one of the most productive crops with an annual world production, in 

2019, of 1148 million tonnes per hectare (Figure 5, Appendix A). 

In the Portuguese agricultural context, the cultivation of maize appears intimately 

linked to irrigation, especially crucial in Mediterranean environments (ANPROMIS, 

2017). Presenting itself as the most important arable crop in Portugal, it occupied, in 2019, 

around 83360 hectares of cultivated area with an annual production of 748780 tonnes per 

hectare, in the same year (FAOSTAT, 2021).  

 

 
Figure 2 - Production quantities of maize in Portugal, from 1994 to 2019 

Source: FAOSTAT (2021) 

 

Figure 2 shows that, in the Portuguese case, there are many oscillations, and it 

shows precisely the opposite with respect to the world case. Both the planted area and the 

production of maize have been decreasing. It also shows that maize production decreased 

until 2004 and then exhibits an increasing trend with oscillations until 2019. However, it 

shows that with less planted acreage, production is higher, contrary to what happened in 

the 1990s. This outcome can be explained by the beginning of the use of more 

sophisticated and complex techniques in the field of agriculture, as well as the 

introduction of new varieties of maize better adapted to the soil and climatic conditions.  
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In Figure 6, in Appendix A, one can now look at the yield of maize, whereas in 

the previous figures only the total production was measured. A similar conclusion to the 

previous one follows. Maize production has become more efficient. Since yield is 

measured by planted area, usually in hectares, as the harvested area decreases, the 

production has been increasing. Both Portugal and the world follow an increasing trend, 

with some oscillations registering, in 2018, an average maize yield of 8.56 and 5.92 

tonnes/ha per year, respectively. 

It is within this context that the concept of precision farming is introduced. ISPA 

(2021) states that "Precision Agriculture is a management strategy that takes account of 

temporal and spatial variability to improve sustainability of agricultural production". 

Typically, indicators of the crop's potential yield are built using soil studies. However, 

the emergence of precision farming has brought a more precise and thorough analysis of 

spatial variations with the use of complex technologies such as the global positioning 

system (GPS) and the geographical information systems (GIS) (Stafford & Bolam, 1998). 

Based on this, and on the complexity of the interactions between variables influencing 

maize yield and quality, in time and space, a multivariate approach to the problem is 

required. 

 

3.1. Time and Space in Agricultural Econometrics 

Despite the extensive literature about planted acreage by agricultural economists, 

there are gaps in literature that remain to address. Most of the studies conducted disregard 

the spatial dependence and heterogeneity present in the data, thus ignoring the spatial and 

over time variability of crops, which an econometric analysis could explain. Only a small 

number of studies applied spatio-temporal regression and techniques to analyze and 

understand the complex phenomena studied in precision agriculture (Bongiovanni & 

Lowenberg-Deboer, 2002; Lambert et al., 2006; Liu et al., 2006). 

It was in the early 1990s, that farmers started to use yield monitors to produce 

yield maps for their fields (Bockstael, 1996). However, the interpretation of these maps 

can be complicated since crop yield is associated with both transient and permanent crop 

factors. Transient factors, include insects, diseases, planter or applicator malfunctions and 

measurement errors that result from the transport, mixing and cycling of the grain (Lark 

et al., 1997). This are site-specific factors that vary from year to year. Permanent spatial 

effects, landscape position, terrain attributes, erosion, and soil properties can also alter, 
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alongside the transient factors, the spatial patterns in yield maps (Kravchenko & Bullock, 

2000; Stone et al., 1985). According to Sudduth et al. (1997), data from multiple years 

are needed to identify recurring spatial yield patterns and, therefore, understand the effect 

of this factors in the crop yield.  

As for the terrain attributes, topography is one of the most obvious causes for yield 

variation. Being mostly part unchangeable, can be used to explain variation. For example, 

maize silage yields are highest at lower positions rather than at mid-slope or summit 

positions (Afyuni et al., 1993; Spomer & Piest, 1982). Usually, the combination of the 

effect of terrain attributes, such as elevation, slope and curvature, with the plant available 

water, highly influence the crops yield. In years with below-normal rainfall, areas with 

greater slopes and convex curvatures normally have less available water and lower yields 

than areas lower on the hillslope and concave curvatures (Kaspar et al., 2003).   

Still with regard to soils, the area of soil nutrition is where the greatest difficulties 

and expenses arise. Soil fertilization, especially with the maize macronutrients such as 

nitrogen (N), potassium (K) and phosphorus (P), is linked to several factors.  Depending 

on the crop sowing density, soil type, i.e., its texture, and the characteristics of the 

macronutrient itself and its absorption by the plant, the crop will be more or less 

productive that year (Barros & Calado, 2014). 

In the field of weather data, there’s still no agreement regarding the appropriate 

spatial or temporal aggregation of the data. In a study done by Dixon et al. (1994), these 

variables were measured differently. Typically, monthly measurements are used in most 

maize yield response models (Huff & Neill, 1980; Offutt et al., 1987). However, a 

monthly data proxy doesn´t provide a good specification for the climatic effects because 

of the year-to-year variability of the crop. Each month varies by location and year since 

the planting dates and weather events also vary, putting the maize at different 

development stages at different months each year. Hence, the author suggests measuring 

them by growth stage of the crop allowing for a better specified model where all the 

different crop planting dates can be taken into account. 

Typically, studies only included precipitation and temperature as weather 

variables in regression analysis, mainly due to the lack of estimates available for other 

climatic data as is the case with solar radiation. According to Daughtry et al. (1983), 

there’s a positive relationship between the final maize yield and the cumulative solar 
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radiation available which can be observed, especially in the 3rd and 4th stage of maize’s 

life cycle, since the plant’s leaves are fully developed intercepting more efficiently solar 

radiation for the photosynthesis. 

 

3.2. Maize Crop 

Maize, scientifically named Zea Mays L., is a species belonging to the family 

Gramineae/Poaceae family, whose subspecies, Zea mays, originated in South and Central 

America more than 8000 years ago. This extremely adaptable crop is grown in climates 

that are tropical, subtropical and temperate, and also supporting altitudes of over 3600 

meters (Barros & Calado, 2014).  

It’s great adaptability and successful cultivation depends mostly on the right 

choice of varieties, so that the length of the growing stage of the crop matches the length 

of the growing season and the purpose for which the crop will be grown. The optimal 

choice of sowing date is the cheapest tool to improve the grain yield. Each variety has an 

optimal sowing date and the greater the deviation from this optimal date (early or late 

sowing), the greater the yield losses (Chhetri et al., 2018; Sárvári & Futó, 2001). 

Regarding the types of soil and, especially in Mediterranean environments, under 

irrigation conditions, a good circulation of water and air, a high usable capacity for water, 

the availability of nutrients in the soil and ideal weather conditions, grant this crop a better 

response.  

With respect to the ideal temperature, it differs according to the stage in which the 

crop is at. In the germination stage the optimum temperature is 15ºC and should always 

be higher than 10ºC. In the vegetative development and flowering stage, the optimum 

temperatures range between 24 and 35ºC. According to Bellido (1991), in negative 

temperatures, the growth of the plant is compromised, and its aerial part ends up dying. 

Likewise, maximum temperatures above 35ºC, especially during flowering and 

fertilization, greatly diminish the productivity of the crop, due to the decrease in the 

number of grains.  

Furthermore, high temperatures, especially in the south of Portugal, combined 

with water deficiency may compromise the development of the plant and, thus, causing a 

drop in productivity. Being a spring-summer crop, sown in the months of March to May, 



 

7 

MARIANA CANAVARRO ESTEVES  

 
7 

and under the climatic conditions in Portugal, it is extremely important to pay attention 

to the crop's water requirements.  

The stages of plant development that are most critical to water deficiency 

correspond to the beginning of flowering, the fertilization period and, finally, the grain 

filling phase. Maize growth stages are divided into vegetative stages (V) and reproductive 

stages (R) as illustrated in the figure 3 bellow.  

 
Figure 3 - Growth and development stages of the maize 

Source: Pionner (2021) 

 

The vegetative phases are divided by the number of leaf collars visible on the plant, 

presenting, normally, 6 sub-stages (Dekalb Asgrow Deltapine, 2020):  

1. VE (emergence), when maize seedlings emerge from the soil occurring up to 5 

days under ideal conditions, or up to 2 weeks in dry/cool conditions;  

2. V1-V5, from the appearance of the first collar leaf until the fifth;  

3. V6-V8, 4 to 6 weeks after emergence the number of kernel rows is defined, 

reaching approximately 60 cm high;  

4. V9-V11, maize begins rapid and steady growth followed by dry matter 

accumulation;  

5. V12-Vnth, the tassel is almost visible and water and nutrients deficiency results 

in a lower yield of maize; 

6. And, finally, in VT, the plant has reached full size and the tassels are visible. A 

successful pollination is critical to make the kernels viable during for 1 to 2 weeks.  

Maize plants normally develop up to the V18 stage before reaching 

maximum height and transitioning to the next step of growth.   
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Concerning the reproductive growth stages, this are now determined by kernel 

development (Dekalb Asgrow Deltapine, 2020):  

1. R1, also called Silking, is one of the most critical stages for yield starting when 

the silks are visible, and the pollination begins;  

2. R2, or Blister, kernels are white and cointain a clear fluid, and the silks dry out;  

3. R3, also called Milk since the clear fluid turns milky and the kernels turn yellow;  

4. R4, or Dough, it’s when kernels begin to dent at the top, and the milky fluid turns 

into a dough-consistency;  

5. R5, the kernels only present about 55% moisture regarding the silking stage and 

harvesting may start;  

6. And, finally, in R6, maturity is reached, and yield determined (kernels cointain a 

maximum of 30 to 35% moisture).  

An extremely important climatic factor identified in several agronomic studies for 

predicting maize yield is solar radiation (Daughtry et al., 1983). A large part of maize's 

dry matter comes from the fixation of CO2 by the photosynthetic process being 

considered a highly efficient plant in the use of light. Long periods of cloudiness 

associated with frequent rainfall, thus suppressing active photosynthesis, are associated 

with a decrease in maize yield (Cruz et al, 2008). 

Regarding the physical attributes of the crop, there are a few matters to consider. 

The planting density defined as the number of seeds per unit area, plays an important role 

in the yield of a maize crop, since the maize is the most sensitive Gramineae to variations 

in plant density. Depending on water availability, humidity level, soil characteristics, the 

maize’s life cycle, sowing time and inter-row spacing, the optimum number of seeds per 

hectare varies substantially. Generally, the cause of low maize yields is the low number 

of plants per area (Cruz et al, 2008).  

On to elevation, which is the heigh above the sea level, several studies indicate 

that lower elevation areas have a lower maize yield (Seffrin, 2017). This can be due to 

water accumulations in lower regions. With the crop being waterlogged and coupled with 

lower/higher temperatures and solar radiation exposure, the maize yield diminishes. 

Finally, fertilization is very important to obtain the potential yield of the maize 

crop. The most absorbed nutrients by this plant, and fundamental to its growth, hence 
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being called macronutrients, are Nitrogen, Potassium, and Phosphorus. Starting with 

Nitrogen, its management is something difficult to do. Because it is a very soluble 

compound, it is easily lost by washing along the soil profile. Especially in irrigated 

conditions, this can happen if the amount of water used for irrigation is very high causing 

surface runoff, dragging the nitrogen and, consequently, its leaching (Barros & Calado, 

2014). Because of this, it is very difficult, or practically impossible, to forecast a precise 

amount of nitrogen fertilization. To compensate for nitrogen excess, phosphorus has the 

function of stimulating root growth, increasing the mechanical resistance of the stems, 

and positively influencing flowering. This macronutrient is now poorly soluble and can 

easily become unavailable to plants. In addition, if the soil has an acid pH, phosphorus 

tends to bind to the iron and aluminum present in the soil, thus becoming unavailable for 

plant uptake. If the soil is alkaline, phosphorus binds to calcium forming a poorly soluble 

compound becoming difficult for plants to absorb. Lastly, potassium is the macronutrient 

most absorbed after nitrogen, contributing to the improvement of the quality of the maize. 

In other words, it is less washed out than nitrogen and more than phosphorus. In addition, 

if bound to clays, it becomes unavailable and impossible for plants to absorb (Barros & 

Calado, 2014). 

 

4. METHODOLOGY 

This chapter describes the methodology applied to achieve the objectives 

presented in this research, where the details of the procedures used to treat and build the 

database, and the applied spatial econometrics techniques, are discussed. 

 

4.1. Underlying Hypothesis of the Climatic Variables 

For the weather-related variables, it will be followed the approach previously 

mentioned used by Dixon et al. (1994). These authors decided to include in their models, 

climate variables measured by maize development stage rather than by month, as is 

commonly seen in most agricultural econometric studies. The  reason for this is the year-

to-year variability of the crop and all factors with it associated. In this manner, in order 

to create variables by growth stages rather than by month, information was gathered on 

important dates in the maize life cycle, including: Sowing date, emergence date, start of 

irrigation, 2nd leaf date, 4th leaf date, 6th leaf date, 8th leaf date, weeding date, 10th leaf 

date, 12th leaf date, 14th leaf date, flowering start date, flowering end date, irrigation end 
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date, black spot date and harvest date. From these, and in agreement with the literature 

reviewed previously, four stages of maize growth were defined:  

 

Table I - Definition of the maize growth stages 

Stage Plant Activity Starting date Ending date 

1 Emergence of the seedling from 

below the soil 

Planting date 

(March/April/May) 

Emergence date 

(April/May/June) 

2 Early vegetative growth Emergence date 

(April/May/June) 

Flowering start date 

(June/July) 

3 Flowering Flowering start date 

(June/July) 

Flowering end date 

(June/July/August) 

4 Grain fill until maturity (harvest) Flowering end date 

(June/July/August) 

Harvest date 

(September) 

Note: Both stages 1 and 3 only last about 15 and 10 days, respectively. 
Source: Own elaboration.  

 
Each parcel of the exploitation, and hence, each spatial unit (id), has its own 

sowing date. Depending on the variety of maize planted, i.e., whether the maize cycle is 

longer or shorter, yield results from previous years and weather conditions, sowing takes 

place in different months. In the year under study, maize was all sown between April and 

May. 

4.2. Spatial Econometric Methods 

4.2.1.  Spatial Weights Matrix W 

 

The first notions of spatial dependence, or, more precisely, spatial autocorrelation, 

introduced by Moran (1948) and Geary (1954), were based on the simple concept of 

binary contiguity between spatial units. The idea of neighborhood based on contiguity 

implies that two contiguous regions are neighbors if they share a common physical border 

(Almeida, 2012). In this case, the value of 1 is assigned, which otherwise would be 0. In 

1981, this notion was extended by Cliff and Ord in order to include a more general 

measure of the potential interaction between two spatial units, resulting in the Cliff-Ord 

weight matrix, also kwon as the spatial weight matrix W.  

Later defined by Anselin and Bera (1998),  

 A spatial weights matrix is a N by N positive and symmetric matrix which expresses for 

each observation (row) those locations (columns) that belong to its neighborhood set as 

nonzero elements. More formally, ⱳij = 1 when i and j are neighbors, and ⱳij = 0 

otherwise.  

(Anselin & Bera, 1998, p.243) 
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It is also to be noted that the elements of the weight matrix are nonstochastic and 

exogenous to the model, being defined a priori to avoid spurious relationships. 

Giving the geographical regularity of the spatial units in this research, it is 

essential to correctly define the spatial weights matrix in order for the econometric model 

to be well specified. The geographic connection criterion of the spatial weight matrix 

relies on the idea of proximity, which, in turn, can be defined according to contiguity or 

geographic distance in accordance with a given metric (Almeida, 2012). For this study, 

the idea of contiguity will be applied, where two regions are neighbors if they share a 

common physical boundary. 

There are several ways of defining contiguity that are distinguished simply by the 

way in which the concept of geographical boundary is defined. The queen criterion, in 

addition to common physical boundaries, also considers vertices in common. The tower 

criterion only takes into account common physical boundaries. And finally, if only 

vertices are considered to define contiguity, we are faced with the bishop criterion 

(Almeida, 2012). 

 

4.2.2.  Spatial Effects 

After the spatial weights matrix has been specified, it is now possible to analyze 

the spatial effects of spatial dependence and heterogeneity in a spatial model. 

According to Anselin and Florax (1995), Moran´s I statistic is one of the most 

widely used techniques to measure spatial autocorrelation. This statistic was first 

suggested by Moran in 1948 and then popularized through the classic work on spatial 

autocorrelation by Cliff and Ord (1973). In essence, it’s the cross-product statistic 

between the vectors of values observed at time and the weighted average of the 

neighborhood values, or spatial lags, with the variable expressed in deviations from its 

mean. In other words, is a measure of linear association between a variable and its special 

lag (Almeida, 2012).  

This statistic provides a general measure of the linear degree of spatial association 

between the variable in time and weighted average of neighborhood values, or spatial lag, 

of the variable in question. This value can be visualized in the Moran diagram, first 

proposed by Anselin in 1996, were the slope of the linear fit of the scatter plot between 

the spatially lagged variable, on the y-axis, and the original variable, on the x-axis, equals 
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Moran’s I. Values close to zero indicate the nonexistent significant spatial 

autocorrelation, that is, the closer to the unitary value, the more autocorrelated it will be. 

Regarding the sign of this linear association, if the coefficient value is positive, then it 

reveals positive spatial autocorrelation, contrasting with a negative coefficient value that 

represents negative spatial autocorrelation. 

Even more, the scatter plot can easily be decomposed into four quadrants. The 

upper-right quadrant and the lower-left, also known as the high-high and low-low 

quadrants, respectively, correspond to positive spatial autocorrelation (similar values at 

neighboring locations). In contrast, the lower-right and upper-left quadrant, or, 

respectively, the low-high and high-low  quadrant, correspond to negative spatial 

autocorrelation (dissimilar values at neighboring locations). 

However, it is important to refer that the classification above listed does not imply 

significance. In order to assess significance, inference for Moran’s I is performed under 

the null hypothesis of spatial randomness, that is, the evidence of no spatial 

autocorrelation (Anselin, 1996).  

The second type of spatial effects, spatial heterogeneity, manifests itself when 

structural instability occurs in space. In other words, this implies that parameters vary 

with location, i.e., are not homogeneous throughout the data set (Anselin, 1988). Due to 

the large heterogeneity associated with agriculture, there are unobservable factors that are 

specific to the terrain and are maintained over time.  

 

4.3.  Spatial Econometric Models 

As most geo-referenced variables are spatially autocorrelated or/and present 

spatial heterogeneity, spatial regression models are more appropriate than models that do 

not take spatial autocorrelation into account, as is the case of the Linear model estimated 

by OLS. As a non-spatial model, is referred to as the Best Linear Unbiased Estimator 

(BLUE) only when the assumptions of homoscedasticity and no autocorrelation are 

satisfied. Even when a lagged dependent variable is introduced, the OLS estimator 

remains consistent, as long as the error term does not show any serial autocorrelation. 

Hence, even though the estimator may no longer be unbiased, it can still be used as the 

basis for asymptotic inference (Anselin, 1988). The OLS model is first fitted to obtain 

regression diagnostics for the spatial dependence of the residuals, being then conducted 

four statistical tests to detect the presence of this spatial effect in linear models such as 
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the simple Lagrange Multiplier (LM Lag and LM Error) and the Robust version (Robust 

LM lag and Robust LM Error) (Anselin, 1988; Anselin et al., 1996). Thus, this section 

discusses some of the most commonly used models in cross-section data analysis that can 

be estimated when the assumption of absence of spatial autocorrelation of errors is 

violated. 

The first model discussed is the Spatial Lag Model (SLM), also known as the 

spatial autoregressive (SAR) Model. Spatial dependence is incorporated in this model as 

an additional regressor in the form of a spatially lagged dependent variable (Anselin, 

2003). Formally, a SLM is expressed as  

𝑦 =  𝜌𝑊𝑦 + 𝑋𝛽 +  𝜀                                                  (1) 

where 𝜌 is a spatial autoregressive coefficient, 𝑊 is a N×N spatial weights matrix, 𝑊𝑦 

represents a vector (N×1) of a weighted sum of the outcomes of the neighbouring 

locations of 𝑦, and 𝜀 is a vector of the error terms. Thereby, this model is specified so that 

the value of the dependent variable observed in a given region, is determined by the 

weighted sum of the values of the dependent variable observed in the neighboring region 

(W𝑦), by the values of the exogenous explanatory variables (𝑋) and, also, randomly 

influenced by an error term (𝜀) (Almeida, 2012). As a result, the spatial lag term, Wy, is 

correlated with the disturbances, arising an endogeneity problem, even when the latter are 

independent and identically distributed. Consequently, the spatial lag term must be treated 

as an endogenous variable and this model cannot be estimated using the OLS method 

since this estimator would be biased and inconsistent due to the simultaneity (Anselin, 

2003). In turn, the Generalized Methos of Moments (GMM), originally presented by 

Kelejian and Prucha (1998, 2010), is used to deal with the spatial effect, and the equation 

(1) can be written the reduced form,   

𝑦 = (𝐼 − 𝜌𝑊)−1𝑋𝛽 +  (𝐼 − 𝜌𝑊)−1𝜀 .                              (2) 

 

Moving on to the next model, the Spatial Error Model (SEM), known for the 

spatial dependence in the regression disturbance term, is referred to as nuisance 

dependence. This model can be represented by 

𝑦 = 𝑋𝛽 +  𝜀  𝑤𝑖𝑡ℎ 𝜀 = 𝜆𝑊𝜀 + 𝑢 ,                                      (3) 

were 𝜆 represents the spatial lag coefficient of the error term (Almeida, 2012). The spatial 

dependence in this model now manifests itself in the error term rather than in the 

dependent variable. According to Almeida (2012), the errors associated with any 
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observation represent the weighted average of the errors in the neighboring locations plus 

a random error component. Therefore, the assumptions of uncorrelated errors and/or the 

assumptions of homoscedastic (constant variance) are not satisfied and the OLS 

estimation loses its optimal properties. It is necessary to resort to another estimator as the 

GMM (GS2SLS). 

And finally, Kelejian and Prucha (1998), advocated models that include both 

endogenous interaction effects and interaction effects among the error terms. The 

SARAR(1,1) Model assumes both hypotheses of the models presented above and 

determines those outcomes simultaneously (Kelejian & Prucha, 2010), 

𝑦 =  𝜌𝑊𝑦 + 𝑋𝛽 +  𝜀 𝑤𝑖𝑡ℎ 𝜀 = 𝜆𝑀𝜀 + 𝑢                                  (3) 

with the (N×N) spatial weigh matrices 𝑊 and 𝑀 taken to be known and nonstochastic, 

may be different or equal. Note that in order to avoid unstable behavior, the constraints 

on the spatial parameters require that |𝜌| < 1 and |𝜆| < 1. Here, besides the errors being 

autocorrelated, they are heteroscedastic. In what concerns the ordinary least-squares 

estimator, it will be inconsistent due to the presence of the variable Wy (Anselin, 1988). 

However, because of its properties, in a more restricted model becomes the most 

appropriate to properly estimate the regression at hand since it accounts for both spatial 

effects. 

This will suggest that a robust inference will be carried out, based in LM tests of 

Anselin (1988) of spatial autocorrelation and heteroscedasticity. For the linear OLS 

Model and the SLM, White Standard Errors were performed with the estimation and, for 

the SEM and SARAR(1,1) Model it’s also necessary to estimate a robust inference of the 

estimator covariance matrix in presence of both spatial heteroskedasticity and 

autocorrelation (KP-HET) (Kelejian & Prucha, 2010). 

 

5. EXPLORATORY SPATIAL DATA ANALYSIS 

5.1. The Data Base 

The data used in this study has the primary and only source the data provided by 

Agro Analítica and Quinta da Cholda firms. The maize exploitation in question is 

considered to be large, with approximately 542.5 hectares. The mapping of the area was 

done by using a grid divided into 10 by 10-meter squares (100 square meters) each 

representing a spatial unit (id). In addition to having data about the spatial unit, id, for the 
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year 2020, information is also available on the spatial coordinates of each id and its 

insertion on each Parcel and Sub-Parcel. This way, the exploitation has a total of 54265 

geo-referenced spatial units (ids). 

The analysis is carried out at a spatial unit level, using cross-sectional data from 

the growing season of the year 2020. After an initial cleaning of the data and for it to be 

correctly interpreted in Geoda and GeodaSpace software, observations with missing 

values were eliminated, resulting in a data base with 53891 observations. This way, only 

0.7% of the observations were dropped. 

Concerning the data collection method, at the end of the season, the harvesters 

enter the farm and collect the maize. From these machines, with a width of 6 meters, a 

shapefile is created with the kilograms of the harvested maize on those meters. This data 

is then processed and filtered, and the errors due to the fragility of the machines are 

corrected. 

Among the vast data collected, the two main sources used in this study are the 

production results obtained by the harvesters and the climatic data from the firm’s own 

weather station. Concerning the first source, i.e., the structural information of the parcels, 

the different data refers to: the different soils textures and families, elevation and 

irrigation information and nutrient maps. Regarding the climatic data, the weather station 

provided a set of daily observations measured every 10 or 15 minutes, since January first 

of 2020 until January first of 2021, with a total average of 123 daily observations. For 

this data a daily average was taken, and the data aggregated by stage as stated before. 

As stated earlier, the spatial matrix used in this study is based in contiguity. For 

this purpose, it was chosen the queen’s criterion given that, besides considering the 

regions that have a physical border in common, also considers the ones with vertices in 

common. Presented in the appendix A, Figure 7, it’s possible to observe the histogram of 

the number of neighbors of the contiguity matrix constructed from the queen’s criterion. 

It’s possible to conclude that the more frequent number of neighbors of a spatial unit is 

six, followed by five neighbors and then 7 neighbors. Because the grid is too small and 

there is a lot of spatial units, the W matrix has the following properties presented in table 

II. 
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Table II - Spatial W matrix properties 

Minimum number of neighbors 3 

Maximum number of neighbors 35 

Median number of neighbors 6 

Source: Own elaboration; Sofware: GeoDa. 

 

In Figure 8, from Appendix A, it’s possible to analyze the Moran dispersion 

diagram for the variable maize yield in tonnes per hectare, by id, through which the slope 

of its line corresponds to the value of Moran’s index (I=0.876). In order to access 

significance, it was computed a test with randomization and 999 permutations for the 

global Moran’s index of the variable Yield under the null hypothesis of no spatial 

autocorrelation between spatial units. Given the Moran’s I-statistic (t) is 0.8762 and its 

standardized value (z) is 359.9061, the null hypothesis is rejected at a 1% level of 

significance with a p-value of 0.001, and a spatial specification is the most appropriate to 

handle spatial dependency and/or heterogeneity in the data. That is, the test suggests 

positive and significant spatial dependence (Figure 9, Appendix A). 

In Figure 8 it is also visible that there is a higher density of observations in the 

first and third quadrant, meaning that, spatial units with high values of maize yield are 

surrounded by spatial units that also have above average values for the variable, and 

spatial units with low values of maize yield are surrounded by spatial units that also have 

below average values for the variable. This is to say, that there is a need to include spatial 

dependence in the estimation. 

 

5.2.Variables Explanation 

Dependent Variable Selection 

For this study, the dependent variable is the one representing the average annual 

maize yield measured in tonnes per hectare by id. This is determined by the dry weight 

of the harvested maize in a parcel/sub-parcel indexed by the number of hectares of maize 

planted over the time. Analyzing the spatial distribution map of the variable Yield per 

quantile, in Figure 4, it is possible to observe a great variability in the space of the 

dependent variable. Spatial units with a high maize yield appear as neighbors of spatial 

units with the minimum maize yield.  
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Figure 4 - Spatial distribution map of the variable Yield per quartile, in 2020 

Source: Own Elaboration; Software: QGIS 

 

Explanatory Variables Selection 

Starting with the climatic data, after obtaining the daily measurements of the 

average temperature [T] (ºC), precipitation [P] (mm), relative humidity [H] (%RH), 

global solar radiation [R] (W/m²) and wind velocity [W] (km/h) for each growth stage in 

the Dixon et al. (1994) approach, as mentioned before, by spatial unit, this information 

was standardized as follows:  

a) It was calculated the maximum and minimum mean and median values of each 

climatic variable; 

b) Then, measures of dispersion such as the first and third quantile of maximum, 

minimum and average temperatures were calculated. The same was performed to 

the remaining 4 weather climatic variables; 

c) Finally, variables of amplitude, interquartile and between maximum and 

minimum, were created, as well as a variable representing the sum of the number 

of days when the maximum daily temperature was above 35ºC and another one 

when the minimum daily temperature was below 0ºC, in all 4 stages, for all 

climatic variables. It´s important to mention that these values were chosen based 

on previously mentioned literature.  
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In this regard, more than one hundred climatic variables were analyzed and tested. 

The majority was drooped due to being a constant or insignificant in relation to the 

dependent variable. Therefore, for the remaining climate variables, the specification of 

each and their possible nonlinearity was explored. 

In relation to the structural variables, the data collected and delivered by the firm 

Agro Analítica and Quinta da Cholda, refers to: 

a) Land parcel and sub-parcel; 

b) Coordinates (X and Y); 

c) Sowing density (seeds/ha); 

d) Variety of the maize (Dekalb or Pionner); 

e) Type of soil (clay or sandy); 

f) Elevation; 

g) Total irrigation (mm/ha); 

h) Conductivity of the soil; 

i) Macronutrients: organic nitrogen (Kg/ha), mineral nitrogen (Kg/ha) and total 

nitrogen (organic plus mineral); organic potassium (Kg/ha), mineral potassium 

(Kg/ha) and total potassium (organic plus mineral); organic phosphorus ( Kg/ha), 

mineral phosphorus ( Kg/ha) and total phosphorus (organic plus mineral); 

j) Applied SO3 (Kg/ha) and Organic Matter (Kg/ha); 

k) Nitrates in the water (Kg/ha). 

 

For these variables, the same transformations and procedures done to the climatic 

variables were computed. Most have not been shown to be significant in explaining the 

behavior of maize production, mostly because they are constants between the spatial 

units, and, as a result, were dropped from the estimation. Table III provides a summary 

of all the variables used in the empirical analysis after a preliminary selection. 
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Table III - Regression variables 

VARIABLE DESCRIPTION 

Yield The dependent variable for the analysis, maize yield (tonnes/ha) 

Density Sowing density (seeds/ha) 

Elevation The height above the sea level (km) 

MOApplied Organic matter applied (Kg/ha) 

SO3Applied Applied sulfur trioxide (SO3) (Kg/ha) 

Tot_Irrig Total Irrigation (mm/ha) 

Tot_Nit Total Nitrogen applied (Kg/ha) 

Tot_Phos Total Phosphorus applied (Kg/ha) 

Tot_Pot Total Potassium applied (Kg/ha) 

HMeanMin1 Minimum average Relative Humidity on stage 1 (%RH) 

RMeanFQ1 First quantile of mean Solar Radiation on stage 1 (W/m²) 

HMeanMean2 Mean of the mean Relative Humidity on stage 2 (%RH) 

TSup35_2 Number of days with temperatures above 35ºC on stage 2 (days) 

TMinFQ3 First quartile of minimum temperatures on stage 3 (ºC) 

RMeanMean3 Mean of the mean solar radiation on stage 3 (W/m²) 

VMeanMax3 Maximum average wind speed on stage 3 (km/h) 

Hminmax4 Range between maximum and minimum relative humidity on stage 4 (%RH) 

TS Dummy variable equal to 1 if the soil is clayey and equal to 0 when the soil 

is sandy 

V_DKC6492 Dummy variable equal to 1 if the maize seed variety is DKC6492 

V_DKC6808 Dummy variable equal to 1 if the maize seed variety is DKC6808 

V_P0937 Dummy variable equal to 1 if the maize seed variety is P0937 

V_P1551 Dummy variable equal to 1 if the maize seed variety is P1551 

V_P1574 Dummy variable equal to 1 if the maize seed variety is P1574 

V_P1772 Dummy variable equal to 1 if the maize seed variety is P1772 

Source: Own elaboration; Software: Stata.  

 

It should be noted that the base group of seed variety dummies is represented by 

the variety P0937 and, as such, will be omitted from the estimation of the models in order 

to protect from the dummy variable trap.  

Furthermore, together with the variables described in the table above, the variables 

SO3ApplSQ, TotIrrigSQ, TotNitSQ, TotPhosSQ and TotPotSQ were also introduced 

which represent, respectively, the square transformation of SO3Applied, Tot_Irrig, 
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Tot_Nit, Tot_Phos and Tot_Pot. The motivation for the creation of the listed variables is 

due to the suspicion of its non-linearity relationship with the dependent variable under 

study. 

In Table VI, in Appendix B, are presented the basic summary statistics for the data 

where it’s possible to conclude that, in the year 2020, the maize yield (Yield) assumed 

values between 6.46 and 24.88 tonnes/ha by id, with a mean of approximately 16.76 

tonnes/ha.  

 

6. ANALYSIS OF RESULTS 

This chapter presents the results of the estimation of the proposed models. Due to 

the high number of observations and the computation requirments, the econometric 

estimation was performed with GeoDaSpace software. This software has the advantage 

of the possibility of estimating spatial models that control for both spatial autocorrelation 

and heteroscedasticity, allowing for robust estimation. In order to start the analysis on the 

variables that might explain the maize yield in the Azinhaga exploitation, in the year 2020, 

it was first estimated the OLS Model as a diagnostic model, followed by the SLM, SEM 

and SARAR(1,1) Model. Below, in Table IV are the coefficients, and respective 

significances, and standard errors of the OLS model for all the variables under study.  
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Table IV – Linear OLS Model for the dependent variable maize yield 

  OLS (Non-spatial Model)  

Variables Coefficients Std. Error 

Constant -140.924457*** 9.264613 

Density 0.000049*** 0.000003 

Elevation 0.071802*** 0.010045 

HMeanMean2 0.141577** 0.060173 

HMeanMin1 0.061728*** 0.007041 

Hminmax4 -0.077222*** 0.006003 

MOApplied 0.000611 0.000484 

RMeanFQ1 0.012033*** 0.001324 

RMeanMean3 0.399709*** 0.02171 

SO3Applied 0.109899*** 0.012606 

SO3ApplSQ -0.000496*** 0.000111 

TMinFQ3 1.86542*** 0.092077 

TS 1.162607*** 0.106856 

TSup35_2 -0.331708*** 0.035633 

Tot_Irrig -0.047609*** 0.002403 

TotIrrigSQ 0.000035*** 0.000002 

Tot_Nit -0.087637*** 0.003208 

TotNitSQ 0.000335*** 0.000012 

Tot_Phos -0.060328*** 0.005973 

TotPhosSQ -0.000111*** 0.000024 

Tot_Pot -0.034638*** 0.003915 

Tot_PotSQ 0.000419*** 0.000049 

VMeanMax3 1.1965*** 0.055723 

V_DKC6492 -6.16626*** 0.210507 

V_DKC6808 -0.236221*** 0.062065 

V_P1551 -6.399422*** 0.218422 

V_P1574 -7.5359*** 0.202598 

V_P1772 -8.034694*** 0.187707 

Pseudo R2 0.4028   

Nº of Observations 53891   

Significance levels: ***1%, **5%, and *10%.  

Source: Own Elaboration; Software: GeoDaSpace. 

 

 

On standard errors, the OLS model and the SLM were based on the White standard 

errors, and the SEM and SARAR(1,1) models were based on the KP HET standard errors 

(Kelejian & Prucha, 2010).  

After the initial estimation of the OLS Model, a Breusch-Pagan (BP) test was 

performed to verify the presence of heteroscedasticity (Table VII, Appendix B). Since the 

p-value is lower than the significance level of 1%, the null hypothesis of homoscedasticity 
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is strongly rejected and, therefore, suggests the presence of heteroscedasticity. However, 

the result of this test should be viewed with caution because it is distorted by the presence 

of spatial dependence. 

Regarding the diagnostics for spatial dependence, Moran's I test was executed on 

the residuals (Table VIII, Appendix B). The rejection of  the null hypothesis of the 

absence of autocorrelation indicates strong evidence supporting the existence of spatial 

autocorrelation in the residuals of the model. In addition, the Robust Lagrange and the 

Lagrange Multiplier (Robust LM and LM) were also realized to test the presence of this 

spatial effect. The simple LM (lag), tests for a missing spatially lagged dependent 

variable, whereas the LM (error), tests for error dependence. In terms of its robust 

approaches, the first one tests for a missing lagged variable in the possible presence of 

error dependence, while the second one tests for the reverse (Anselin, 1988; Anselin et 

al., 1996). Still in Table VIII, in Appendix B, it’s possible to note that both null hypothesis 

of the simple LM tests are significant, resulting in the rejection of the null hypothesis of 

no autocorrelation suggesting, therefore, the presence of spatial dependence. The same 

happens with the robust tests of no spatially lagged dependent variable (LM (lag)) and 

the hypothesis of no spatially autocorrelated error term (LM (error)). All must be rejected 

at a 1% significance level. 

Undoubtedly, a spatial model is needed to accommodate the two spatial effects. 

In Output 1 and Output 2 (Appendix C) can be found the Spatial lag and Spatial Error 

Models for all variables, respectively.  

First analyzing Output 1 (Appendix C), of the Spatial Lag Model, it was 

introduced the Spatial Weights Matrix W, computed and analyzed in the previous chapter, 

resulting in the new spatial lag term of W_Yield. Its coefficient, Rho, measures the degree 

of spatial dependence between observations in the sample data (Anselin, 1988). This 

parameter appears in this model as positive and highly significant. As a result, the general 

fit of the model is greatly improved (Pseudo R-Square equal to 0.9082). However, despite 

this large improvement, resorting to the Anselin-Kelejian Test (Table IX, Appendix B), 

there’s strong evidence of spatial autocorrelational in the residuals still in the model 

(Anselin & Kelejian, 1997). This way, although the new specification with a spatial lag 

term, it didn’t filter all the spatial dependence in the data.  
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With regard to the Spatial Error Model (Output 2, Appendix C), the spatially 

correlated error variable was generated and its coefficient, Lambda, appeared as positive 

and also highly significant. However, the Pseudo R-Square of this model decreased 

drastically and the Lambda parameter is equal to 1 when it should be less than 1, to ensure 

a stability behavior. This corroborates the hypothesis that spatial effects have not yet been 

entirely modelled. 

A solution to incorporate both mechanisms of spatial dependence mentioned 

before, is to consider the SARAR(1,1) Model, suggested by Kelejian and Prucha (2010), 

estimated through robust inference with the generalized two-step least squares estimator. 

In Output 3, Appendix C, it’s possible to confirm the validity of the model, with the 

Pseudo R-Square being very high and the coefficient estimates for the Rho and Lambda 

parameters high and significant. On this basis, non-significant variables were 

successively removed from the elected SARAR(1,1) model until a restricted model was 

reached in which all variables were statistically significant at a 1% level (except for the 

intercept). The output of the elected restricted model is illustrated in Table V. 

 

Table V - Restricted SARAR(1,1) Model 

 Restricted SARAR(1,1) Model 

Variables Coefficients Std. Error 

Constant 1.363689** 0.667142        

Density 0.000012*** 0.000002 

Hminmax4 -0.035190*** 0.005733 

SO3Applied 0.009744*** 0.001770 

TSup35_2 -0.047774***        0.006197 

Tot_Nit 0.003269***        0.000990        

TotNitSQ -0.000008***       0.000003       

Tot_Irrig 0.006443***        0.002006        

TotIrrigSQ -0.000004*** 0.000001       

Tot_Pot -0.009229***        0.002053       

Tot_PotSQ 0.000040***        0.000010 

VMeanMax3 0.036827***        0.014257        

V_DKC6808 0.359631***        0.040937        

V_P1574 -0.319528*** 0.049419       

Pseudo R2 0.8959  

Nº of Observations 53891  

Significance levels: ***1%, **5%, and *10%. 

Source: Own Elaboration; Software: GeoDaSpace. 
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This model presents a Pseudo R-Square of 0.8959, meaning that about 90% of the 

variation in maize yield is explained by the independent variables and the spatially lagged 

variables included in the model. It’s also worth noting that, in variables such as 

HMeanMean2, TMinFQ3 and RMeanMean3, due to the fact that they vary so little in the 

sample, there is not enough information to conclude their non-significance by the absence 

of causality in the year 2020. All variables are statistically significant at a 1% level and, 

both the coefficient of the spatially lagged dependent variable (W_Yield), Rho, and, the 

coefficient of the spatially correlated error, Lambda, are positive and highly significant. 

Starting the analysis with the variable Density, on average, spatial units with a 100 

seed per hectare increase with regards to sowing density, increases maize yield by 12 

kg/ha, in the same spatial unit, ceteris paribus. As far as the total irrigation, total nitrogen 

and potassium applied, one must also take into account its squares. About the nutrients, 

on average, an increase of 1 Kg/ha of SO3 applied in a spatial unit, increases maize yield 

by 9,7 kg/ha regarding the same spatial unit, all other variables being equal.  

Regarding TotIrrigSQ, its negative coefficient indicates a maximum (turning 

point) of the parabola. This maximum is given by the symmetric of the ratio between 

Tot_Irrig coefficient and the double of the TotIrrigSQ coefficient. As a result, the turning 

point is 870.6351 mm, meaning that before the turning point, the maize yield rises when 

the total irrigation increases and, after that point, as the total irrigation increases the maize 

yield decreases, ceteris paribus. Given that this variable ranges between 556.3 and 911.5 

mm/ha and presents a mean of 641.1 mm/ha (Table IV, Appendix B), the value at which 

the yield starts to decrease is well above the mean of the Tot_Irrig variable, being for the 

most part positively correlated with the yield. 

The same happens to TotNitSQ that presents a maximum at 196.9458 kg/ha. 

Initially, an increase of total nitrogen applied causes an increase the yield and, after the 

dosage of the turning point, as the total nitrogen applied increases the maize yield 

decreases. Ranging between 32.4 and 318.9 Kg /ha with a mean of 260.16 Kg/ha, the 

turning point is below the average. 

Finally, due to the positive coefficient associated with the variable TotPotSQ, the 

parabola presents a minimum turning point. This value stands at 115.6466 kg/ha and now, 

as the total potassium applied increases, the maize yield decreases. After the turning point, 

an increase of total potassium causes the maize yield to rise, ceteris paribus. Also looking 
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at Table VI, in Appendix B, the total potassium applied goes from 0 to 180.88 Kg /ha, 

placing the turning point slightly under the mean of the variable. 

For the varieties of maize planted in 2020, only two of them were significant in 

the SARAR(1,1) restricted model. On average, spatial units where the variety DKC6808 

was planted, increased maize yield by almost 360 kg/ha tonnes/ha comparing to when the 

variety P0937 was applied, ceteris paribus. Also, spatial units where the variety P1574 

was planted, decreased maize yield by almost  320 kg/ha then when the variety P0937 is 

applied, ceteris paribus. 

Regarding the climatic variables, it was only possible to assess statistically 

significance in three variables. On average, a one unit increase of the range between 

maximum and minimum relative humidity, that is, an increase of  1 percentage point in 

the range between the maximum and minimum relative humidity, on stage 4, decreases 

maize yields by 35.2 kg/ha regarding a spatial unit, all other variables being equal. In the 

same way, on average, spatial units where there´s an increase of 1 more day with 

temperatures above 35ºC, on stage 2, decreases the maize yield by almost 48 kg/ha, in 

that spatial unit, with all other variables remaining constant. And finally, on average, an 

increase of 1 km/h of the maximum average wind speed, on stage 3, in one spatial unit, 

increases the maize yield by almost 37 kg/ha, in that spatial unit, ceteris paribus. 

 

7. CONCLUSIONS, LIMITATIONS AND FUTURE WORKS 

This research sought to apply different spatial regression models to estimate a 

function for the maize yield with the aim to identify the relevant determining factors, and 

their effect, on maize yield on the exploitation of Quinta da Cholda firm, in Azinhaga, 

Golegã, district of Santarém, Portugal for the year 2020. 

To this end, data analysis and cross-section estimations were performed with 

different estimation methods (OLS and GS2SLS) in order to find the most suitable spatial 

specification to describe the data. Firstly, by means of the global Moran’s I,  the existence 

of spatial autocorrelation of the dependent variable, in the year 2020, was verified 

employing the spatial weights matrix construction criterion queen. With this statistic it 

was possible to conclude that regions with high maize yield are neighbors of regions also 

with high values of yield. In contrast lower yield regions, present neighbors with lowers 

yields as well.  
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Following this, the OLS diagnostic and spatial econometric models were 

estimated, were the SARAR(1,1) Model was chosen since it is the only one that allows the 

incorporation of both mechanisms of spatial dependence. Considering the cross-sectional 

data analysis done earlier, after the elimination of non-significant variables, the majority 

of the results produced by the restricted SARAR(1,1) Model, shown to be in agreement 

with the existing literature on maize crop. 

For the variables considered, Density is one of the variables that has a positive 

effect on maize yield. As reviewed on the literature, and modeled in several studies, an 

increase in the sowing density reflects on an increase of maize yield. At low densities 

many modern hybrid maize varieties do not grow as effectively as they do with a larger 

sowing population. Similarly, although small, the applied SO3 nutrient also presents a 

positive effect on the dependent variable. Just as essential as the other macronutrients 

discussed, sulfur trioxide deficiencies are reflected in suboptimal yield. 

With respect to total irrigation, this variable influence was well captured by a 

quadratic function whose parabola has a maximum. This means that, from a certain point, 

high values of irrigation have a negative impact in the maize yield. This value is very 

close to the maximum quantity of irrigation applied by the firm and, allows to conclude, 

as in the literature, that too much water can be harmful to the crop, creating situations of 

waterlogged land. This means that the quantity of irrigation chosen, depends on the terrain 

topography as well as other factors such as density and precipitation, as stated by the 

literature reviewed. The same nonlinearity with the dependent variable happens to the 

macronutrient’s nitrogen and potassium. The first one is also well described by a parabola, 

whose maximum is now not so close to the maximum applied value. Nitrogen is a very 

soluble compound that is easily washed away by the excessive irrigation or precipitation, 

being very difficult to be properly measured, an armful at very high quantities. As for the 

potassium, this presents a minimum in the respective quadratic function. Being the most 

absorbed macronutrient after nitrogen, in line with nonlinear relation with maize yield, 

only after a certain value of applied potassium (minimum) does the yield start to increase 

alongside with the nutrient. Since potassium contributes to the improvement of the quality 

of the maize and hence its yield, higher values of this nutrient make the maize yield rise. 

And finally, each stage of corn, except for stage 1, presented a statistically 

significant independent variable. For stage 2, the number of days with temperatures above 
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35ºC has a negative implication on the maize yield. According to the literature reviewed, 

in this stage, the early vegetative growth stage, a large number of days with temperatures 

above the indicated threshold, cause the aerial part of the plant to die. For stage 3, the 

maximum wind speed presents a positive effect on the yield. This is due to the fact that 

during this stage, the flowering stage, wind can indeed help spreading the pollen shed to 

improve pollination, resulting in a more optimal final maize yield. And finally, an 

increase in the range between the minimum and maximum relative humidity, on stage 4, 

negatively influenced the maize yield. Relative humidity variables are poorly documented 

in the literature. However, this result is expected because, in the last stage of the maize 

life cycle, kernels moisture contents at maturity must be in average 30% in order to be 

harvested and the maize yield calculated. This way, an increase in the air relative humidity 

is likely to degenerate this process. 

Regarding the seeds used, their influence on maize yield depends on all the factors 

observed in this study such as the soil characteristics, fertilization applied and the climatic 

conditions, in the year 2020, in the exploitation in question. No literature has been found 

on the inclusion of seed variety in estimation models. This research concluded that, for 

the Dekalb brand, the DKC6808 variety was shown to have a more positive effect on 

maize yield then when the P0937 variety, of the Pionner brand, is seeded. However, when 

the P1574 variety is planted, the yield is lower than when the P0937 variety is seeded. 

One limitation encountered throughout the development of this essay was the lack 

of information in some spatial units. In particular, variables such as soil pH and amounts 

of pesticides and herbicides administered, could not be included in the analysis since these 

variables  only had data for some spatial units. 

In future development of this research, it would be interesting to include in the 

analysis the application of herbicides and pesticides measured by development stages and 

see their effect on the yield. In the same line of thinking, it could be performed a more 

economic analysis with variables such as costs and corn profitability.  
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Appendix A 

 

 

 
Figure 5 - Production quantities of maize in world, 1994-2019 

Source: FAOSTAT (2021). 

 

 

 

 

 

 
Figure 6 - Average maize yield in Portugal and the world, 1961-2018 

Source: UN Food and Agriculture Organization (FAO, 2020) 
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Figure 7 - Histogram of the number of neighbors of the queen contiguity matrix 

Fonte: Own elaboration; Software: GeoDa. 

 

 

 

 

 

 

 
Figure 8 - Moran dispersion diagram of the variable Yield 

Source: Own elaboration; Software: GeoDa 
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Figure 9 - Significance test for the global moran index of the variable Yield 

under the assumption of absence of spatial autocorrelation 

Source: Own elaboration; Software: GeoDa 
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APPENDIX B 

 

Table VI - Summary statistics of the regression variables 

 
Source: Own Elaboration; Software: Stata. 

 

 

 

Table VII - Breusch-Pagan Test to the OLS Model 

 Statistic Value P-value 

Breusch-Pagan Test 10322.191 0.0000 

Source: Own Elaboration; Software: GeodaSpace. 

   SO3ApplSQ       53,891     1874.15    1102.724     864.36       5929

    TotPotSQ       53,891    18478.34    12245.19          0   32717.58

  TotIrrigSQ       53,891    414438.3    80201.27   309469.7   830832.3

   TotPhosSQ       53,891    13011.25    7633.742          0   20620.96

                                                                       

    TotNitSQ       53,891    72729.39    26414.49    1049.76   101697.2

     V_P1772       53,891    .0214322    .1448213          0          1

     V_P1574       53,891     .135904    .3426897          0          1

     V_P1551       53,891    .2147112    .4106256          0          1

     V_P0937       53,891    .4345995    .4957089          0          1

                                                                       

   V_DKC6808       53,891    .0240485    .1532013          0          1

   V_DKC6492       53,891    .0793825    .2703373          0          1

    Hminmax4       53,891    33.16561    2.242951      32.44      41.13

  HMeanMean2       53,891    75.05453    2.545814      71.55      78.64

   HMeanMin1       53,891    66.12295    6.316151       57.4      83.92

                                                                       

   VMeanMax3       53,891    3.989184    1.541798       1.73        5.6

  RMeanMean3       53,891    316.5332    7.654035     305.11     324.93

     TMinFQ3       53,891     12.3364    .9533009       10.8         14

    TSup35_2       53,891    7.572693    5.485655          2         18

    RMeanFQ1       53,891    177.9588    100.5307      61.73        332

                                                                       

   MOApplied       53,891    1251.686    1220.018          0     3351.6

  SO3Applied       53,891    41.81926    11.19382       29.4         77

     Tot_Pot       53,891    124.4212    54.75174          0     180.88

    Tot_Phos       53,891    106.0019    42.12934          0      143.6

     Tot_Nit       53,891    260.1625    71.02801       32.4      318.9

                                                                       

   Elevation       53,891    55.80501    26.06193        1.1      73.18

   Tot_Irrig       53,891    641.0956    58.60684      556.3      911.5

          TS       53,891    .5304225    .4990782          0          1

     Density       53,891    88414.34    2899.101      70000     125000

       Yield       53,891    16.75507    2.002042       6.46      24.88

                                                                       

    Variable          Obs        Mean    Std. dev.       Min        Max
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Table VIII - Spatial dependence diagnostic tests for OLS Model 

 Statistic Value P-value 

Moran's I (error)   328.653 0.0000 

LM (lag) 106331.325 0.0000 

LM (error) 107636.573 0.0000 

Robust LM (lag) 101.228 0.0000 

Robust LM (error) 1406.476 0.0000 

Source: Own Elaboration; Software: GeodaSpace. 

 

 

Table IX - Anselin-Kelejian test to the Spatial Lag Model 

 Statistic Value P-value 

Anselin-Kelejian Test 57.805 0.0000 

Source: Own Elaboration; Software: GeodaSpace. 
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APPENDIX C 

Output 1 - Spatial Lag Model (SLM) for all variables 

 
Source: Own Elaboration; Software: GeoDaSpace 
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Output 2 - Spatial Error Model (SEM) for all variables 

 
Source: Own Elaboration; Software: GeoDaSpac 
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Output 3 - SARAR(1,1) Model for all variables 

 
Source: Own Elaboration; Software: GeoDaSpace 


