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Abstract

Installment options are financial derivatives in which part of the initial premium is paid 

up-front and the other part is paid discretely or continuously in installments during the 

option’s lifetime.

This work deals with the numerical valuation of European installment options. Trough 

the study of the continuous case, we can show that numerical inversion of Laplace 

transform works well for computing the option value. In particular, we will investigate 

the De Hoog algorithm and compare it to other methods for the inverse Laplace 

transformation, namely Euler summation, Gaver-Stehfest and Kryzhnyi methods.

Keywords: Installment options, compound options, Laplace transform, numerical 

inversion, stopping boundaries, De Hoog algorithm

Resumo

Installment options são derivados financeiros cuja parte inicial do prémio é paga 

antecipadamente e a outra parte é dividida, discretamente ou continuamente, em 

parcelas durante o “tempo de vida” do contrato.

Este trabalho estuda a valorização numérica de installment options do tipo Europeu. 

Estudando principalmente o caso contínuo podemos mostrar que a inversão numérica 

da transformada de Laplace é um bom método para calcular o valor da opção. Em 

particular, vamos investigar o algoritmo conhecido por De Hoog e compará-lo a outros 

métodos numéricos, sendo eles conhecidos por Euler summation, Gaver-Stehfest e 

método de Kryzhnyi.

Palavras-chave: Installment options, compound options, Laplace transform, 

numerical inversion, stopping boundaries, De Hoog algorithm
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1 Introduction

Derivatives have been cited as a key factor behind the 2008 financial crisis due mainly 

to their complexity and lack of transparency that caused capital markets to undervalue 

credit risk. Options enjoyed great popularity within this class of financial assets and a 

particular type of options has recently emerged: the installment option. Unlike most 

basic derivatives, installment options present a valuation challenge as analytical 

methods like the Black-Scholes model are unable to offer a closed solution; therefore, 

a numerical approach is required.

There are a number of alternatives in solving the valuation problems of this type of 

options. The best practice known so far is to apply the Laplace transform method and 

then use numerical algorithms to invert it. Kimura [21] had success on valuating these 

options numerically using Euler-summation and Gaver-Stehfest methods; the Kryzhnyi 

method was additionally tested by Ehrhardt et al. [14].

The main goal of this work is to test a new method known as the De Hoog algorithm 

and compare it to the previous methods. This algorithm is a Fourier Series Expansion

[6,13]  that uses an acceleration algorithm for its quotient-difference and has proven 

to be suitable for the long time integration of dissipative equations. In fact, and 

regarding the computational results, it appears to be the best candidate to valuate 

these options numerically.

Please note that some parts of this work follow closely the work of Kimura [21].

The remainder of this paper is organized as follows: Section 2 provides the available 

literature of the topic. Section 3 gives all the theoretical background needed to 

formulate the valuation problem of installment options. Section 4 describes the 

methods of the inverse Laplace transform used for the numerical valuation. Section 5 

presents the computational results and finally Section 6 gives the main conclusions.
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2 Literature Review

There has not been much research on installment options, mainly because it is an 

recent topic. The first publication was an article by Karsenty and Sikorav [20]. Davis et 

al. [9,8] derive no-arbitrage bounds for the initial premium of an installment option, 

which are used not only to set up static hedges but also to compare them with

dynamic hedging strategies within a Black–Scholes framework considering stochastic 

volatility. Also, it concerns the European discrete installment options only, allowing an 

analogy with compound options, as covered by Geske [16] and Hodges and Selby [19]. 

Ben-Ameur et al. [3] develop a dynamic programming procedure to price American 

discrete installment options and investigate some theoretical properties of the 

installment option contract regarding the geometric Brownian motion. Griebsch et al. 

[18] deduce a closed form solution to the initial premium of a European discrete 

installment option in terms of multidimensional cumulative Normal distribution 

functions. When examining the limiting case of an installment option with a 

continuous payment plan, it is found to be equivalent to a portfolio consisting of a

European vanilla option and an American put on this vanilla option with a time-

dependent strike. Kimura and Kikuchi [22] develop a valuation of installment options 

based on the Laplace transform while Ciurlia and Roko [4] apply the multipiece 

exponential function (MEF) method to define an integral form of the value of an 

American option. However, this method is critically restricted since it generates a 

discontinuity in the optimal stopping and early exercise boundaries.

Alobaidi et al. [1] attempt the Laplace transformation to solve the free boundary 

problem for the European case, but the employed method is rather specific and not 

appropriate for a numerical computation. Kimura [21] applies the Laplace transform 

approach to solve the valuation problems of both American and European continuous-

installment options.
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3 Theoretical Framework

While in a conventional option contract the buyer pays the total premium up-front and 

acquires the right, but not the obligation, to exercise the option at maturity (European 

type) or at any time until maturity (American type), in an installment option the buyer 

pays a lower up-front premium, paying its remaining part in a series of “installments” 

or further premium payments, to be paid during the lifetime of the option up to 

maturity. At each installment date the holder has the right to decide if he continues to 

pay for the contract or he terminates the payments, in which case the option lapses 

with no further payments from either side. The opportunity to end the contract at any 

time before maturity turns the valuation of these options into a free boundary 

problem.

There are two cases of the installment payments: discrete and continuous. 

An installment option with payments at pre-specified dates is usually referred to as a 

“discrete-installment option”. 

The continuous case means that the holder pays a stream of the installments at a given 

rate per unit time. It is like accumulating the premium sum by a certain continuous 

rate that will be paid by the holder in the case of exercising.

Installment options will appeal to investors who are willing to pay a little extra for the 

opportunity to terminate payments and reduce losses if their investment position is 

not working out. They have been traded actively in actual markets as they have 

significant advantage over other options: the prevention of losses through possibility 

of termination; the low initial premium that is easy to schedule in the firm’s budget, 

etc. Typically these options are traded in Foreign Exchange markets between banks 

and corporates. Also, many life insurance contracts and capital investment projects can 

be thought of as installment options (cf. Dixit and Pindyck [11]).

Primary investigations of the installment options were related to compound options. 
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In general, the compound option is a particular case of an installment option. Alobaidi

et al. [1], Davis et al. [9] and others have mentioned that in the case of two discrete 

installment payments, we have a compound option, or in other words, an option on an 

option.

Note that the compound options were the initial point for further study of installment 

options. In fact, these two types of options look rather similar, so it is important to 

distinguish between them.

A compound option is an option on an option and as a consequence it has two strike 

prices and two expiration dates. In the moment of buying the compound option, the 

holder pays the initial premium and on the first expiration date he can choose either to 

buy the option or not.  At this time the compound option turns into a European vanilla 

option which can be exercised or not on the second expiration date. Note that the 

initial price of the compound options is obviously smaller than the vanilla option price 

since the premium is split over time.

Figure 2.1: The lifetime of a compound option. 0t is the inception date, 1t is the first expiration 
date, T is the time of maturity, 0k is the initial premium, 1k is the first strike price, K is the 
strike price at the time of maturity.

For both compound and installment options we have that their total premium is 

always higher than the price of the standard ones. This is explained by the additional 

right to terminate the contract without paying the whole sum of the premium.

In 1984, the so-called “sequential compound option” (SCO) or “multi-fold compound 

option” was introduced by Geske and Johnson [17]. A multi-fold compound option is 

simply the composition of the European vanilla options presenting an option on an 
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option on an option and so on. Each fold option may be either call or put. Actually a 

multi-fold compound option is nothing else than the discrete installment option, 

although the first published paper devoted to this type of options was written later in 

1993 by Karsenty and Sikorav [20].

Figure 2.2: The classification of installment options (cf. Ehrhardt et al. [14]).
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the discrete case. Let tS be the price of the underlying asset following a 

geometric Brownian motion described by the stochastic differential equation (SDE)

is the constant risk-free rate and  denotes the continuous 

Is the volatility coefficient of the asset price and tdW is a standard 

neutral probability space.

0t is the initial date and 0k is the initial premium equal to 

the initial value of the option, 0V . The discrete installment option has n installment 

At each of these dates, the holder has to pay the premium 1 2 1k k k

order to continue the contract.

e want to compute the initial value of the installment option to enter the contract.

We know that the option payoff at the time of maturity T is given by

t t t tdS S dt S dW  

  max ,0n n nV s k 

The lifetime of a discrete installment option.
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is a standard 

is the initial premium equal to 

installment 

1 2 1, .., nk k k  in 

e want to compute the initial value of the installment option to enter the contract.
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where 
Ts S is the price of the underlying asset at T , nk is the strike price and, as 

usual, 1n   for the underlying vanilla call option and 1n   for a put option.

At time 1nt  the option value is given by the discount expectation of the value nV . 

Repeating this procedure, we can define the payoff function of this option. 

We also know that at time it the holder can stop paying the premiums, terminating 

the contract, or pay ik to continue.

In the case of continuation, the value of the option at time it is given by the backward 

recursion

(3.2)

Thus, the unique arbitrage-free price of the installment option is

     1 0

1 00 0 1 .r t t
t tV s k e V S S s       

Using the Curnow and Dunnet integral reduction technique to solve (3.2), a closed-

form solution to valuate the installment option was derived (cf. Griebsch et al. [18] for 

details).

There are other methods to valuate discrete installment options (cf. Ben-Ameur et al.

[3]) but in comparison to them the presented closed-form formula seems to be the 

most suitable way to do that.

Consider now the continuous case. Let tS be the price of the underlying asset 

following a geometric Brownian motion described by the stochastic differential 

equation (SDE) described in (3.1).

The Black-Scholes initial premium V of a continuous installment option 

(3.3)

depends on the time t , the current value of the underlying asset tS , and the 

continuous installment rate q . In time dt the premium qdt has to be paid to stay in the 

option contract.

 , ,t tV V t S q

 
    

 

1

11max ,0 for 1,..., 1

for 

i i

i i

r t t
i t t i

i

n

e V S S s k i n
V s

V s i n





 


         
 
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 
2

2 2
2

1
.

2
t t t t

t t t t t

V V V V
d r S q S dt S dW

S t S S
   

                           

Applying Itô’s Lemma to (3.3) we obtain the dynamics for the option’s initial value

(3.4)

We now construct a portfolio consisting of one option and an amount  of the 

underlying asset

t t tV S   

and its dynamics is given by

(3.5)

Plugging (3.1) and (3.4) into (3.5) we obtain

To turn this portfolio riskless we choose tV S    . Also, to avoid arbitrage 

opportunities the portfolio has to yield the return r , so we must have

Finally, by rearranging this equation, we obtain an inhomogeneous Black-Scholes 

partial differential equation (PDE) for the initial premium of this option

(3.6)

We should have q greater than zero. If it is equal to zero then we get the 

homogeneous Black-Scholes PDE.

The Call case

Consider a European-style installment option with maturity date T and strike price K . 

Let  , ;tc c t S q denote the value of this call option at time t defined on the domain

      , 0, 0,tt S T   D .

 
2

2 2
2

1

2
t t t t

t t t t

V V V V
dV r S q dt S dW

t S S S
  

    
          

 .t t t td dV dS S dt   

 
2

2 2
2

1
.

2
t t t

t t t

V V V
r S S rV q

t S S
   

    
  

2
2 2

2

1
.

2
t t t t

t t t t

V V V V
r V S S q S

S t S S
 

                 
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The payoff at the maturity is  max , 0TS K . The additional opportunity to end the 

contract at any time  0,Tt  turns the valuation of continuous installment options 

into an optimal stopping problem. This is equivalent to finding the points  , tt S for 

which the termination of the contract is optimal.

Let S and C denote the stopping region and continuation region respectively. The 

stopping region is defined in terms of the value function  , ;tc t S q by

    , , ; 0t tt S c t S q  S D

for which the optimal stopping time *

c satisfies

    * inf , ,c uu t T u S   S .

Since the continuation region C is the complement of S in D , we have

    , , ; 0t tt S c t S q = DC .

The boundary that lies between regions S and C is called stopping boundary and is 

defined by

      inf 0, , ; 0 ,  0,t t tS S c t S q t T     .

Since  , ;tc t S q is nondecreasing in tS , the stopping boundary    0,t t T
S


is a lower 

critical asset price below which it is convenient to terminate the contract by stopping 

the payments.

In the continuation region C the value  , ;tc t S q is obtained by solving the 

inhomogeneous PDE

with the boundary conditions

and the terminal condition

 
2

2 2

2

1
,  

2 t

c c c
r S S rc q S S

t S S
   

     
  

 lim , ; 0,   lim 0,   lim
t tS S S S S

c c
c t S q

S S  

 
   

 
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     

   

 
21

2

21
2

1

2 1

log
, ,

, , , ,

1
,  z

2

z v

a b r
d a b

d a b d a b

N z e dv

  


 
   






  


 

  �

   , ; max ,0c T S q S K  .

The following integral representation is the value function of the continuous 

installment call option

        2, ; , , ,
T

r u t

ut t tt
c t S q c t S q e N d S S u t du    (3.7)

where

and    , , ;0t tc t S c t S is the value of the European vanilla call option

           1 2, , , , ,T t r T t

t t t tc t S S e N d S K T t Ke N d S K T t       .

This proof is given in the work of Kimura [21].

From (3.7) we can easily see that the price of the continuous installment option is the 

difference between the corresponding European vanilla call option and the expected 

present value of the installment premiums along the optimal stopping boundary. Also 

from (3.7) we immediately see that    , ; ,t tc t S q c t S for  0,t T , which means 

that the payment of installment makes the initial premium lower than the vanilla 

counterpart.

Furthermore, the optimal stopping boundary    0,t t T
S


is implicitly defined by the 

following integral equation

      2, , , 0
T

r u t

t t u
t

c t S q e N d S S u t du   

which can be solved numerically for    0,t t T
S 

, e.g., by the MEF method as in Ciurlia 

and Roko [4]. 
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However, in the current work, to find the values of options and, therefore, the optimal 

stopping boundaries, we consider an alternative approach based on Laplace 

transforms, which generates the transformed stopping boundary in a closed-form.

Regarding that we will present the Laplace-Carson transformation method and inverse 

Laplace transformation methods.

The Put case

We proceed the same way for the valuation of a continuous installment put option.

Its value at time t is defined by  , ;tp p t S q on the same domainD .

For each time  0,t T there exists an upper critical asset price above which it is 

advantageous to terminate payments by stopping the option contract.

The stopping boundary also divides the domain D into a continuation 

region

     , 0, 0,t tSt S T =C

and a stopping region

    , 0, ,t tSt S T     S .

The value  , ;tp p t S q satisfies the inhomogeneous Black-Scholes PDE in the 

continuation regionC , i.e.

subject to the following boundary and terminal conditions

Again, as in Kimura [21], the value function of the continuous installment put option is 

represented by the following integral

        2, ; , , ,
T r u t

t t t ut
p t S q p t S q e N d S S u t du     (3.8)

 
2

2 2

2

1
,  

2 t

p p p
r S S rp q S S

t S S
   

     
  

 

   
0

lim , ; 0,   lim 0,   lim

, ; max ,0

t tS S S S S

p p
p t S q

S S
p T S q K S

  

 
   

 
 

   0,t t T
S


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where    , , ;0t tp t S p t S is the value of the European vanilla put option

           2 1, , , , ,r T t T t
t t t tp t S Ke N d S K T t S e N d S K T t         .

A decomposition of the total Premium

To understand the original idea of the decomposition of the total premium let us

return to the subject of the compound options.

Davis et al. [9] recommended an alternative way of looking at the compound call on a 

call option. Actually, the price of the underlying call to be paid at time 
0t is the amount

 1 0
0 1

r t tk k k e   , i.e., the sum of the initial premium and the discounted value of the 

second premium. At the same time, the holder has the right to get rid of this option 

and selling it for the price 1k at time 1t . Hence, the total premium of the compound call 

on a call option can be viewed as the underlying call option plus a put on the call with 

exercise at time 
1t and strike price

1k 1

Following the same idea, suppose that the total premium of the installment option 

equals the underlying European vanilla call option plus the right to leave at any time at 

a pre-determined rate.

Griebsch et al. [18] proved this idea considering the limiting case of discrete 

installment options and the risk-neutral approach. They observed that the total 

premium of the continuous installment call option is the European vanilla call option 

plus an American put option on this European call

     , ; , , ;t t t c tc t S q K c t S P t S q   (3.9)

where 

(3.10)

                                                            
1

Here  , , ,
BS

tt T S Kc and  , , ,
BS

call tt T S Kp denote a European vanilla call and put on a call option respectively, with a strike 

price K maturity at T and underlying spot price
t

S

  1 r T t
t

q
K e

r
  

     1 0

0 00 1 0 0 1 1, , , , , ,
call

r t t BS BS
t tk k e c t T S K p t t S k   
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is the discounted sum of the premiums not to be paid if the holder decides to 

terminate the contract at time t , and for the set ,t TS of stopping times with values in 

 0,t T

      
,

, ; esssup max , ,0
t T

r u t
c t u S u u tP t S q e k c u S 


    F a.s.

is the value of the American compound put option with the maturity at T written on 

the European vanilla call option.

This decomposition will be used to obtain the Greeks formulas showed later on.

The Laplace Transform

Nowadays integral transforms are a common practice to solve problems of the 

mathematical modeling.

Bateman [2] was the first to consider the Laplace transform as a tool for solving 

integral equations.

Definition 1: (Laplace transformation)

Assume that ( )f t is a real valued function defined for all positive t in the range  0, . 

Then the Laplace transform of the function ( )f t is defined by

 
0

( ) ( )tf t e f t dt


 L (3.11)

if the integral
0

( )te f t dt


 converges. The parameter  is a complex number.

Applying the Laplace transform to the Black-Scholes PDE (with two variables, time and 

asset price) will reduce it to an ordinary differential equation (ODE) with respect to the 

asset price, which is a much simpler problem.

In this work we use a generalization of the Laplace transform called the Laplace-Carson 

transform (LCT).
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Definition 2: (Laplace-Carson transformation)

For the same assumptions as above, the Laplace-Carson transform of the function ( )f t

is defined by 

 
0

( ) ( )tf t e f t dt


 LC (3.12)

There is no essential difference between these two transformations, but the principal 

reason why LCT is used is that it generates relatively simpler formulas for option 

pricing problems.

From Definition 2 it follows that for any two functions ( )f t and ( )g t satisfying the

conditions of Definition 1 then

       
0

( ) ( ) ( ) ( ) ( ) ( )taf t bg t e af t bg t dt a f t b g t


    LC LC LC (3.13)

Lemma 1: Assuming that ( )f t is continuous and differentiable and '( )f t is continuous 

except at a finite number of points in any finite interval  0,T then

   '( ) ( ) (0)f t f t f  LC LC (3.14)

The proof can be viewed on Cohen [5].

The Inverse Laplace Transform

Denote by   1 F L the inverse Laplace transform for a function    ( )F f t  L , i.e.

  1 ( )F f t L

Note that for functions ( )f t and ( )g t that only differ in a finite set of values of t , we 

have

   ( ) ( )f t g t=L L .

This means that the inverse Laplace transform cannot be unique in the class of 

piecewise continuous functions.
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Hence, for applying the Laplace transform to our problem we need to be in the area of 

uniqueness. This leads us to Lerch’s theorem.

Theorem 1: (Lerch’s theorem [5])

If there are two functions ( )f t and ( )g t with the same integral transform

   ( ) ( )T f t T g t then a null function can be defined by 0 ( ) ( ) ( )t f t g t   so that the 

integral 0

0

( ) t dt


 vanishes for all 0  .

Now, if we have an ODE solution for the corresponding transformed PDE, and an exact 

formula for determining   1 F L we can easily produce a continuous solution for 

our PDE.

In general, there is an analytical formula for the Laplace transform inversion, called the

Bromwich integral.

Theorem 2: (The Inversion theorem [5])

Let ( )f t have a continuous derivative and let ( ) tf t ae where  and a are positive 

constants. Define    ( )F f t  L for  Re   . Then

where c  .

Note that this integral is too complex for computing directly, thus various numerical 

methods are applied for computing the function values from its Laplace transform.

The analytical expressions for transformed variables

Transformed option values

The next step is to apply the Laplace transform on our inhomogeneous Black-Scholes 

PDE described in (3.6) and solve it in the transformed variables. As usual, we first 

consider the call case.

1
( ) ( )

2

c i
ut

c i

f t e F u du
i

 

 

 
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 
 

 

1
*

2

,
,

,

S S K
c S

S K
S S K

r




 
  

  
   
  

 
2

2 2
2

1
0, 0,

2
        

c c c
r S S rc S

S S  

  

      
  
  



For convenience we revert the direction of time by changing the variable T t   and 

defining      , ; , ; , ;c S q c T S q c t S q    and 
T tS S S   for 0  . From Definition 2 

the Laplace-Carson transform (LCT) of these variables is as follows

Applying the LCT to (3.6) we will get an inhomogeneous ODE of the same order. But to 

solve an ODE of this type it is necessary to solve first the corresponding homogeneous 

ODE, so it makes sense to consider the transformation of the original Black-Scholes 

PDE for the vanilla options, where q is absent.

Lemma 1: Let     * , ,c S c S  LC be the LCT of the associated vanilla call for the 

backward running process. Then

(3.16)

where for 1, 2i  we have

and the parameters  1 1 1    and  2 2 0    depend on  and are two real 

roots of the quadratic equation

Proof: The original proof can be found in [21].

After changing variables, the Black-Scholes PDE reads

(3.17)

  3
1 2

1
i

i i

K r S
S

r K

  
     

         

      

   

*

0

*

0

, ; , ; , ;c S q c S q e c S q d

S S e S d




 

    

  







 

 





 

 

LC

LC

 2 2 21 1
0

2 2
r r            
 



21

�

supplied with the boundary conditions

and the initial condition      0, max ,0c S S K S K
    .

After transforming equation (3.17) and using (3.13) and (3.14), we obtain a 

corresponding ODE

(3.18)

with the boundary conditions 

Equation (3.18) is a linear homogeneous ODE of Euler-type and can be reduced to a 

linear ODE with constant coefficients by substituting yS e and solved easily yielding 

(3.16).

Theorem 3: [21]

If *S S ,

(3.19)

otherwise  * , ; 0c S q  . The stopping boundary  * *S S  is given by

Proof: For *0,S S   the result is obvious. In a similar way in the proof of Lemma 1, we 

obtain the ODE for  * , ;c S q as

(3.20)

with the boundary conditions

 
0

lim , 0, lim ,             
S S

dc
c t S

dS 
  




     
2 * *

2 2 *
2

1
0, 0,

2
       

d c dc
S r S r c S K S

dSdS
           

 
*

*

0
lim , 0, lim             
S S

dc
c S

dS


 
  

   
2

* * 1
*

1 2

, ; ,
q S q

c S q c S
r rS




 
   

 
      

   
 

1
1

*

2
2

2

1

q
S K

K


 


  



 
  

  

     
2 * *

*2 2 *
2

1
,

2
     

d c dc
S r S r c q S K S S

dSdS
           

 
* *

* *
*lim , ; 0, lim 0, lim      

SS S S S

dc dc
c S q

dS dS


 
   
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It is straightforward that the solution for (3.20) is a sum of solutions for the 

homogeneous equation and a particular solution of the inhomogeneous equation. It 

can be easily seen that the second part of the formula for  * , ;c S q is a solution for 

the corresponding inhomogeneous ODE. For a detailed proof, cf. [21].

The same approach can be used to compute the solution for the put case. The 

following theorem formulates the result2.

Theorem 4: [21]

If *SS  ,

(3.21)

and  * , ; 0p S q  otherwise, where

The stopping boundary is given by

Transformed Greeks

Recall the decomposition of the total premium of the installment option. Kimura [21]

showed that this decomposition of the option in a vanilla call option and an American 

compound option is very valuable when trying to approximate the Greeks of the 

installment options.

Using (3.9) and the integral representation (3.7) we obtain

      2, ; , ,
T

r u t
ut c t t

t

K P t S q q e N d S S u t du    .

                                                            
2

For continuous installment put options, Kimura proved theorems similar to the theorems used in the call case, via the same 
PDE/LCT approach. However, the properties of the stopping boundary for the put case are subtly different from the call case. See 
[21] for details.

   
1

* * 2
*

1 2

, ; ,
S

q S q
p S q p S

r r


 

   
       

 
 

 

1
*

2

,
,

,

S K
S S K

rp S

S S K

 
  



      
 


   
 

1
2

*
2

1

2

1
S

q
K

K


 


  



 
  

  
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q

r 

Substituting    1N z N z   and using (3.10) we obtain an integral representation for 

the American compound option

      2, ; , ,
T

r u t
uc t t

t

P t S q q e N d S S u t du    .

Regarding the linearity of the LCT and using it on (3.9) we get for time-reversed values

          , ; , ; , ;t t t c tc t S q K c t S q P t S q      LC LC LC LC

which is equivalent to

     * * * *, ; , , ;cc S q K c S P S q     .

From Theorem 3 we see that

Here, the inverse LCT of the term can be computed analytically

thus the transformed value of an American put on a call is

(3.22)

Hence, the Greeks of  , ;tc t S q , i.e. delta, gamma and theta, can be expressed by 

Greeks of the vanilla call and Greeks of the American put on a vanilla call with floating 

strike price tK .

where

 
2

* * 1
*

1 2

, ;c

q S q
P S q K

r rS





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 

      
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r T tru
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q q
q e du e K
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 
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* 1
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1 2
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q S
P S q

r S
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

  
 

     
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     
     
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Using (3.22) we find explicit formulas for the transformed Greeks of American 

compound options.

Using the same arguments for the put case we get the integral representation

      2, ; , ,
T

r u t
p t t u

t

SP t S q q e N d S u t du  

and its LCT given by

Once again we have

where

and correspondingly
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4 Numerical Methodology

4.1 Prior Methods

The Euler-summation method

The Fourier-Series method for numerically inverting Laplace transforms was first 

proposed by Dubner and Abate [12]. An acceleration technique that has proven to be 

effective in our context is Euler summation, proposed by Simon et al. [26]. This method 

is based on the Bromwich contour inversion integral, which can be expressed as the 

integral of a real-valued function of a real variable by choosing a specific contour. The 

method is described as follows (cf. C. O’Cinneide [24] for details) in dependence of the 

parameters A , l , mand n (e.g. 19, 1, 11A l m   and 38n  )

1. Compute 0,1, ,,   ka k m n  :

2 2

0 01,
2 2 2

,
A l A l

k k

A
a b k a b F

lt lt lt

e e


         
             

where 
1

2 Re 0
2

,
l

ij l
k

j

A ij ik
b F k

lt lt t
e  



  
       

   

2. Compute  
0

1 0, ,,
j

k

j k
k

s a j n m


      .

3. Approximate ( )f t using

The Gaver-Stehfest method

Another way to represent the inverse transform is given in the following result of Post 

and Widder [25,28].

Theorem 5: (The Post-Widder theorem [5])
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( ) 2
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k

m
f t s
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





 
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 


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Let ( )f t be a continuous function on the interval  0, of exponential order . If the 

integral  
0

( )tF e f t dt


  converges for every   then

1
( )( 1)

( ) lim
!

n
n

n

n n
f t F

n t t





        
   

(4.1)

The advantage of formula (4.1) lies in the fact that f is expressed in terms of the value 

of F and its derivatives on the real axis. However it has the big disadvantage of the 

convergence to ( )f t being very slow, although it can be speeded up using appropriate 

extrapolation techniques. That is how a group of numerical Laplace transform 

inversion methods called “akin to Post-Widder formula” was developed.

Davies and Martin [7] give an account of the methods they tested in their survey and 

comparison of methods for Laplace transform inversion. In their listing of methods 

which compute a sample3 they give the formula

 
0

, ( )n nI t u f t du


 

where the functions  ,n t u converge to the delta function as n increases to infinite 

and thus lim ( )n
n

I f t


 .

The Post-Widder formula may be thought of as being obtained from the function

 
 

 
,

1 !

nun t

n

nu e
t u

t n



     

Using similar arguments, Gaver [15] has suggested the use of the functions

   
   2 !

, 1
! 1 !

nau nau
n

n
t u a e e

n n
   



where ln2a t which yields a similar result to (4.1) but involves the nth finite 

difference ( )n F na , namely

As with the Post-Widder formula, the convergence of ( )nI t to ( )f t is slow.
                                                            
3 Davies and Martin [7] divide up the methods they investigated into 6 groups. Methods which compute a sample are methods that 
were available at that time. Post-Widder with 1n  and the Gaver-Stehfest method are included in this group.
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However, Gaver has showed that  ( ) ( )nI t f t can be expanded as an asymptotic 

expansion in powers of 1 n and Stehfest improved the Gaver’s method [27] giving an 

algorithm based on approximating ( )f t by the sum 
1

( )
N

n
n

a K F na

 where

        

 min , 2 2
2

1 2

(2 )!
( 1)

2 ! 1 ! ! 2 !

n N N
n N

n
k n

k k
K

N k k n k k n


   

 
   

This algorithm is called the “Gaver-Stehfest algorithm”.

The Kryzhniy method

In this work we also consider the method of inverse Laplace transform suggested by 

Kryzhniy [23], who claims that the algorithms based on the choice of different delta 

convergent sequences can be compared by analyzing the “focusing”4 abilities of the 

numerical and the exact inverse transforms of te  .

Primarily, he produced a solution in terms of the Mellin transform of equation (3.11), 

which can be inverted after multiplying it by a suitable chosen factor

   
 

sin ln
1

1R

R u
u

u



 


.

The result can be expressed by the next two equations

 

 

0

0

sin ln
( ) ( )

1 1

( ) ( ) ,

R

R

R uu
f t f tu du

u u

f t F u R tu du






 

 





where  R   as 0 (  is a regularization parameter).

Here, instead of stopping the computation after some number N we have a value of 

some function R in point  . 

After some generalization we have    
   sin ln1 1,

1 1

R
R tu


 

 
 



 
 
 

L where  u is

an arbitrary continuous function with  1 0  . 

For detailed information cf. Kryzhniy [23].

                                                            
4

Focusing abilities means how the peakness of a delta approximating function is kept while increasing t .
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4.2 The De Hoog algorithm

De Hoog et al. [10] proposed an improved procedure for numerical inversion of 

Laplace transform based on accelerating the convergence of the Fourier series 

obtained from the inversion integral using trapezoidal rule.

The initial algorithm was proposed by Crump [6] but was significantly improved by De 

Hoog et al. [10].

Given a complex-valued transform    ( )F f t  L , the trapezoidal rule gives the 

approximation to the inverse transform

   
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 
  

 
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

with 

 0

1
,    ,    1,2, ,  

2 k

ik
a F a F k

T

      
 

 and 
i t

Tz e


 .

This is the real part of the sum of a complex power series in 
i t

Tz e


 . The algorithm 

accelerates the convergence of the partial sums of this power series by using the 

epsilon algorithm to compute the corresponding diagonal Pade approximants. The 

algorithm attempts to choose the order of the Pade approximant to obtain the 

specified relative accuracy while not exceeding the maximum number of function 

evaluations allowed. The parameter is an estimate for the maximum of the real parts 

of the singularities of F and an incorrect choice of  may give false convergence, even 

in cases where the correct value of  is unknown, the algorithm will attempt to 

estimate an acceptable value. In our work we use a slight modification to the De Hoog 

method that consists of splitting the time vector in segments of equal magnitude 

which are inverted individually, giving a better overall accuracy.
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5 Computational Results

As we saw in previous sections, the LCT’s are useful for numerical computation of the 

values of the option prices and stopping boundaries by numerical inversion. Since the 

showed LCT’s are so complicated that they cannot be analytically inverted, numerical 

inversion is the best measure we can have for analyzing the real-time behaviors.

A set of MatLab functions were developed for valuing continuous installment options 

and its Greeks via the inverse Laplace transform methods.

Kimura [21] uses two algorithms for the Laplace transform: the Euler summation and 

the Gaver-Stehfest methods. Beyond these, Ehrhardt et al. [14] use the Kryzhniy

method. In this paper we present one more algorithm known as the De Hoog 

algorithm (see section 4.2).

We will use these methods for inverting the LCT’s of the stopping boundaries given in 

Theorems 4 and 5. Therefore our algorithm for valuing the continuous installment 

option consists of the following numerical procedures: it is finding the value of the 

stopping boundary, then compute numerically the integral in (3.7) or (3.8) and finally 

compute the option value by using the value of this integral and the associated vanilla 

option. Our numerical integration is made via the MatLab routine quad, which uses 

the Simpson formula for the integration and determines integration nodes 

automatically, evaluating then the stopping boundary in each node.

In Figure 5.1 we can see some optimal stopping boundaries and their sensitive to the 

continuous installment rate q . We first notice that the boundary value is an increasing 

(decreasing) function of q for the call (put) case. This can be easily seen by the 

inequalities *
0dS dq  or * 0dS dq  which are necessary conditions. In addition, we 

see from these figures that the optimal stopping boundaries are not always monotonic 

functions of t .



Figure 5.1: Stopping boundaries of continuous installment options
( 0t  , T

Also, in Figure 5.2 we see the optimal stopping boundaries in dependence of the 

dividend yield  , from which we can see that now the boundary value is an increasing 

function of  in both cases.

Figure 5.2: Stopping boundaries of continuous installment options 
( 0t  , T

Note that in these figures the stopping boundary value at maturity 

the strike price 100K  as proved in Theorems 4 and 6 in Kimura

The values of the installment option computed by numerical Laplace inv

viewed in tables 5.1 and 5.2 for the call and the put case respectively

for q and S are the same that those used by Kimura 

can compare the results and conclude about the new method used.

Stopping boundaries of continuous installment options
0 1T  , 100K  , 0.03  , 0.02r  , 0.3  )

we see the optimal stopping boundaries in dependence of the 

, from which we can see that now the boundary value is an increasing 

Stopping boundaries of continuous installment options 
0 1T  , 100K  , 10q  , 0.02r  , 0.2  )

Note that in these figures the stopping boundary value at maturity 1T  agrees with 

as proved in Theorems 4 and 6 in Kimura [21].

values of the installment option computed by numerical Laplace inversion can be 

.2 for the call and the put case respectively. The values used 

are the same that those used by Kimura [21] and Ehrhardt et al. 

and conclude about the new method used.
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we see the optimal stopping boundaries in dependence of the 

, from which we can see that now the boundary value is an increasing 

1 agrees with 

ersion can be 

The values used 

and Ehrhardt et al. [14] so we 
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In Kimura [21] we can see the results from Euler and Gaver-Stehfest method produced 

by the author, which are a little different than ours. Particularly the results of the Euler 

method differ significantly from those produced by Gaver-Stehfest algorithm, which 

caused the author to mistrust the last one. This happened because the author followed 

two different procedures for each method. For what concerns the Euler method, the 

author did not apply it to the inversion of the option values  * , ;c S q and  * , ;p S q

. Therefore he used the same procedure than ours. But for the Gaver-Stehfest method, 

the author applied it directly to the option values, hence getting greater differences 

between methods.

On Ehrhardt et al. [14] we can also see the results of three of the methods that we are 

considering, but once again these values are slightly different than ours, perhaps 

because of a little misleading in their MatLab code.

As for our results it can be seen from the tables that all the four methods produce 

practically equal values, where the absolute difference between the values is less than 

51 10 .

Table 5.1: Values of continuous installment call options 
( 0t  , 1T  , 100K  , 0.05  , 0.03r  , 0.2  )

q S Euler-based Gaver-Stehfest Kryzhniy De Hoog
1 95 3,7071 3,7071 3,7071 3,7071
1 105 8,3994 8,3994 8,3994 8,3994
1 115 14,8530 14,8530 14,8530 14,8530
3 95 2,2280 2,2280 2,2280 2,2280
3 105 6,6385 6,6385 6,6385 6,6385
3 115 12,9687 12,9687 12,9687 12,9687
6 95 0,6755 0,6755 0,6755 0,6755
6 105 4,2746 4,2746 4,2746 4,2746
6 115 10,2533 10,2533 10,2533 10,2533
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Table 5.2: Values of continuous installment put options 
( 0t  , 1T  , 100K  , 0.05  , 0.03r  , 0.2  )

Figure 5.3 presents a 3D plot of the call and the put values in dependence of time t

and the asset price tS .

Figure 5.3: The option value for the call and the put 
( 1T  , 100K  , 0.05  , 0.03r  , 0.2  , 10q  )

In order to test the performance of the numerical transform inversion for the LCT of 

the Greeks, we computed the values of the hedged parameters  (delta),  (gamma) 

and  (theta). Figures 5.4 and 5.5 plot  and  respectively as functions of S varying 

the parameter q and Figure 5.6 plots  as a function of S varying the parameter 

instead of q . Both figures plot also the associated vanilla options drawn in a dashed 

line, as well as the stopping boundaries represented by markers. Unlike the 

conclusions of Kimura who found that the Gaver-Stehfest method performed very 

poorly if the position is out-of-the-money, we concluded that both methods behave 

well in the whole region where the stopping boundary is not reached.

q S Euler-based Gaver-Stehfest Kryzhniy De Hoog
1 85 16,9438 16,9438 16,9438 16,9438
1 95 10,3046 10,3046 10,3046 10,3046
1 105 5,5703 5,5703 5,5703 5,5703
3 85 15,0005 15,0005 15,0005 15,0005
3 95 8,4283 8,4283 8,4283 8,4283
3 105 3,8486 3,8486 3,8486 3,8486
6 85 12,1253 12,1253 12,1253 12,1253
6 95 5,7647 5,7647 5,7647 5,7647
6 105 1,7011 1,7011 1,7011 1,7011
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Figure 5.4: The greek  value for the call and the put case in dependence of q

( 0t  , 1T  , 100K  , 0.04  , 0.02r  , 0.2  )

Figure 5.5: The greek  value for the call and the put case in dependence of q

( 0t  , 1T  , 100K  , 0.04  , 0.02r  , 0.2  )

Figure 5.6: The greek  value for the call and the put case in dependence of 
( 0t  , 1T  , 100K  , 0.04  , 0.02r  , 0.2  )
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At this point and looking at Tables 5.1 and 5.2 we still do not have useful information 

to compare the efficiency of the used methods. The first thing that might be 

interesting to do is to measure the performance of each method when computing the 

value of one installment option. In Table 5.3 we can find these results.

Table 5.3: The average of the time it takes to compute the 
value of one installment option per method.

As we can see the De Hoog method seems to be the best candidate to valuate these 

options numerically so far.

Another way to compare algorithms used for the inverse Laplace transform was 

proposed by Kryzhniy [23]. The method is based on inverting the function ( ) tF e  

whose analytical inverse transform is the delta function on x t . The idea is that 

finding a method that uses more “focusing” approximation to the delta function is an 

evident way for improving the provided results. If the algorithm gives us a good 

approximation of the delta function while inverting te  and preserves its peakness 

while increasing t , it will give good approximations of other functions too.

Figure 5.7 presents the results of reconstructing the delta function by each method.

Euler-based Gaver-Stehfest Kryzhniy De Hoog
time (sec) 2,6473 0,4492 122,2822 0,0625
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Figure 5.7: The reconstruction of the delta function by the various algorithms.

As we can see, both Euler-summation and De Hoog algorithms give much better results 

while showing the peaked values. But we cannot ignore the fast oscillations of the 

curves obtained by both methods, especially by the Euler-summation algorithm.

Trying to approximate a damped oscillating function we can see in Figure 5.8 that 

again neither the Gaver-Stehfest nor the Kryzhniy methods can compete with the 
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Euler-summation or the De Hoog algorithms, which values are matching with the exact 

solution.

Figure 5.8: The reconstruction of the damped oscillating function by each method.

In the current work, and once we are reconstructing non oscillating functions, both 

methods show good results. However, as for computational costs, the De Hoog 

algorithm stands out from any of the other methods.
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6 Conclusions

We can split out the study of installment options in two cases: the discrete and the 

continuous one. Griebsch et al. [18] derived a closed form solution for installment call 

and put options in the Black-Scholes model, proving the equivalence of the limiting 

case of a continuous installment plan. In this work we consider the continuous case 

and just exploit the European type, facing the stopping boundary problem. We use the 

LCT of the stopping boundaries, option values and some hedging parameters of the 

continuous installment options, as it was done by Kimura [21]. The Laplace transform 

is a powerful method for enabling solving differential equations in science. However, 

sometimes it leads us to solutions in the Laplace domain that are not readily invertible 

to the real domain by analytical means. Numerical inversion methods are then used to 

convert the obtained solution from the Laplace domain into the real domain. 

Four inversion methods were evaluated in this paper. Although there is no reason to 

mistrust any of the methods, it seems that those ones based on the fast fourier 

transform (FFT), like the Euler-summation and the De Hoog algorithms, are the most 

powerful. These methods require complex arithmetic but have benefits such as 

handling a broader class of time behaviors, still being simple to implement and only 

utilizing double precision complex data types. The Gaver-Stehfest and the Kryzhniy 

algorithms lead to accurate results for many problems. However, these methods fail to 

predict functions such as those with an oscillatory response. 

The results obtained for options and for the comparison of the methods were 

presented on a previous section. Relying on computational costs we would suggest the 

use of the De Hoog algorithm to valuate continuous installment options, since it is the 

fastest one of the presented methods.
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