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Abstract 

In Brazil, hospital admissions represent almost 50% of the total claims cost of health insurance 

companies while they only represent 1% of the total medical procedures. Therefore, modeling 

hospital admissions is extremely useful for health insurers to assess their claim costs over time 

and actuaries should be capable to include that information in their analyses, in order to 

preserve the financial sustainability of the companies.  

This dissertation analyses the use of the Lee-Carter model for predicting the general level of 

hospital admissions in the state of São Paulo, Brazil, using the traditional ARIMA model and 

contrasting it with the LSTM neural network. Publicly available data between the years 2008 

and 2019, divided by gender, were used. The function auto.arima from the R package forecast 

was used to find the best ARIMA model for the data while the LSTM neural network model 

was searched in a combination of 20 models, varying the learning rate and decay factor. The 

results showed that the LSTM model and the ARIMA have similar RMSE and MAE 

performance.  

Keywords: Lee-Carter; Neural Network; LSTM; Hospitalizations; Time Series 
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Resumo 

No Brasil, hospitalizações representam quase 50% dos custos totais de sinistros em operadoras 

de planos de saúde enquanto representam apenas 1% dos procedimentos médicos. Portanto, 

estimar hospitalizações é extremamente útil para que operadoras de planos de saúde possam 

estimar seus custos ao longo do tempo e atuários devem ser capazes de incluir essas 

informações em suas análises para garantir a sustentabilidade financeira das companhias.  

Essa dissertação analisa o uso do modelo de Lee-Carter para prever o nível geral de 

hospitalizações no estado de São Paulo, Brasil, utilizando o modelo ARIMA tradicional e 

comparando-o com a rede neuronal LSTM. Dados públicos entre os anos de 2008 e 2019, 

divididos por sexo, foram utilizados. A função auto.arima do pacote R forecast foi utilizada 

para encontrar o melhor modelo ARIMA enquanto que a rede neuronal LSTM foi selecionada 

entre a combinação de 20 modelos, variando a learning rate e o decay factor. Os resultados 

mostraram que o modelo LSTM e o modelo ARIMA possuem RMSE e MAE similares.  

Palavras-chave: Lee-Carter Model; Redes Neuronais; LSTM; Internações; Séries Temporais 
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Chapter 1 - Introduction 

1.1 - Overview and motivation 
 
The main purpose of this dissertation is to add a contribution to the set of possible applications 

of neural network techniques in the actuarial science field. More specifically, the aim is to 

model the general level of hospital admission rates using recent neural network developments 

and to contrast results with the results supplied by the Lee-Carter model (Lee & Carter, 1992). 

By doing so, we intend to come to an understanding about neural network models being useful 

to model hospital admissions and, if they are, whether they show considerable improvement 

over the Lee-Carter model. 

The Lee-Carter model is vastly used for mortality modeling, with few applications 

outside this area (Frees, 2006). The first application for health insurance was proposed by (Lee 

& Miller, 2002) to forecast Medicare expenditures in the period 2020-2075, in the United 

States. Although mostly used in the mortality field, it was shown by (Rodrigues, Andrade, 

Queiroz & Machado, 2013) that it is also suitable to forecast admission rates in hospitals. 

According to the authors, its major advantage over the traditional forecast methods in health 

insurance is the fact that it is possible to construct confidence intervals in this approach.   

More recently, researchers have made numerous developments in the use of neural 

networks for mortality modeling, which have shown great improvement over the Lee-Carter 

model, see (Nigri, Levantesi, Marino, Scognamiglio & Perla, 2019; Hainaut, 2018; Deprez, 

Shevchenko & Wüthrich, 2017; Richman & Wüthrich, 2018).    

Considering the elements described above, this dissertation intends to model the general 

level of hospital admissions rates in São Paulo, Brazil, as done by (Rodrigues, Andrade, 

Queiroz & Machado, 2013), using publicly available data. The idea is to model the admission 

rates again, in light of the recent studies that combine the Lee-Carter model with neural 
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networks and to contrast the models. The purpose is to determine if these new models with 

neural networks can provide improvements over what was done before. 

In Brazil, hospital admissions represent almost 50% of the total claim cost of health 

insurance companies while they only represent 1% of the total medical procedures (Cechin & 

Lara, 2020). Given that, modeling hospital admissions is extremely useful for health insurers 

to assess their claim costs over time. Adverse events can seriously strain their liabilities, and 

actuaries should be well prepared to assess that to keep the financial sustainability of the 

companies. 

This dissertation aims to contribute to the development of machine learning techniques 

in the actuarial field while also adding a contribution to forecasting models in healthcare. As 

will be seen in the literature review section, the use of neural networks combined with the Lee-

Carter model is a new subject in the actuarial field. The first papers on this topic only appeared 

in 2018, see (Hainaut, 2018). Even though some contributions have been made since then, the 

lack of literature on the subject imposes difficulties for new studies but, at the same time, it is 

motivating.  

1.2 - Literature Review 
 
This section starts by briefly reviewing the Lee-Carter model. Then it presents a short survey 

of healthcare forecasting. Finally, it reviews the combined use of neural networks and the Lee-

Carter model. 

1.2.1 - Some Applications of the Lee-Carter Model 

In 1992, (Lee & Carter, 1992) proposed a new model for estimating mortality rates. It became 

widely spread and the leading statistical model for mortality forecasting (Deaton & Paxson, 

2004) and it started to be used as a benchmark model for population mortality (Hollmann, 

Mulder & Kallan, 2000). Still today, several developed countries such as Denmark, Sweden, 
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Canada, and Italy use the Lee-Carter model to forecast mortality (Kjærgaard & Bergeron-

Boucher, 2022). 

         Lee and Carter seek to summarize an age-period surface of log-mortality rates in terms 

of an average age profile of mortality, mortality changes over time, and how much each age 

group changes when mortality changes.  

           Despite the simplicity of the model, it resulted in good outcomes in fitting mortality 

rates for several countries (Steeghs, 2020). It was used by (Wilmoth, 1996) in Japan, by 

(Tuljapurkar, Li & Boe, 2000) for estimating mortality in the G7 countries, and by several other 

authors that applied the Lee-Carter for many different populations, see for instance (Kjærgaard 

& Bergeron-Boucher, 2022) who forecasted mortality for age 65 or above for four European 

countries and (Rabbi & Mazzuco, 2020) who applied the model with smoothed mortality rates 

for 20 low-mortality countries. 

            However, its popularity and simplicity did not prevent the model from being criticized, 

mostly because it assumes that all information about future mortality is contained in the past 

observed data, not including important covariates such as tobacco use, alcohol consumption or 

comorbidity (Girosi & King, 2008). Moreover, exogenous shocks such as new medical 

technologies, economic crises, pandemics, etc. are ignored (Gutterman & Vanderhoof, 1998). 
 
1.2.2 - Healthcare forecasting 
 
In recent years, most healthcare systems are going through reforms, attempting to control the 

raising costs of healthcare. Generally, most reforms focus on strengthening primary care, 

adopting mechanisms for supply-induced demand, new forms of care (i.e. home care and long-
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term care), and promoting changes to achieve a better lifestyle (Paris, Devaux & Wei, 2010; 

Menec, Lix, Nowick & Ekuma, 2007; Rodrigues, Andrade, Queiroz & Machado, 2013).  

 With these reforms in mind, several studies have focused on forecasting health service 

expenditures and frequency of utilization. Traditional methods of forecasting healthcare 

expenditures use a fixed utilization rate by age to estimate the pure demographic effect on 

health costs (Tate, MacWilliam & Finlayson, 2005; Lindberg & McCarthy, 2021). The pure 

demographic effect assumes that healthcare costs stay the same and are impacted only by the 

size and age structure of the population (Lindberg & McCarthy, 2021). Because of this 

assumption, traditional methods assume that costs are only impacted by the demographic 

changes of the population. The main caveat is that they can only be used in short-period 

analyses since changes in utilization patterns are not incorporated (Lindberg & McCarthy, 

2021). 

 Other (non-traditional) methods have tried to forecast healthcare expenditure based on 

time series analyses (Tate, MacWilliam & Finlayson, 2005). Other studies have relied on the 

use of panel data to estimate healthcare utilization. These studies include other covariates such 

as income per capita and educational level (Xu, Saksena & Holly, 2011; European 

Commission, 2013). 

 In the first study using the Lee-Carter model to forecast health expenditures (Lee & 

Miller, 2002), the authors applied the model by setting a fixed age pattern of expenditures. 

Following (Lee & Miller, 2002),  (Rodrigues, Andrade, Queiroz & Machado, 2013) were 

successful in predicting healthcare admission rates by applying the Lee-Carter model in Brazil.   

1.2.3 - Neural networks & Lee-Carter 
 
Research contributions, such as the ones mentioned below, that combine the use of the Lee-

Carter model and neural networks in the demographic field of study have been growing 

recently. In the work of (Deprez, Shevchenko & Wüthrich, 2017), the authors used machine 
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learning algorithms to assess the goodness of fit of standard mortality models. They analyze 

how a standard mortality model could be improved based on feature components of an 

individual, such as age. This work was further extended by (Levantesi & Pizzorusso, 2019), 

who used machine learning algorithms to calibrate a parameter that was applied to mortality 

rates fitted by standard mortality models. 

 Although both papers applied machine learning techniques in the field of mortality 

modeling, none of them have specifically used neural networks. The use of neural networks to 

predict mortality rates started with (Hainaut, 2018), by proposing a neural network that detects 

the non-linearities in the structure of the log forces of mortality. In the same year, (Richman & 

Wüthrich, 2018) proposed a Lee-Carter approach for multiple populations, where the 

parameters were estimated by neural networks. In the work of (Nigri, Levantesi, Marino, 

Scognamiglio & Perla, 2019), the authors use the Long Short-Term Memory (LSTM) neural 

network, which will be detailed in the next chapter, to improve the accuracy of predictions of 

the general level of mortality given by the Lee-Carter model.   

In the paper of (Nigri, Levantesi & Marino, 2021), the authors consider an LSTM model 

to predict mortality and lifespan in five developed countries. Comparing the results with 

standard models, they conclude that their predictions provide a more accurate portrait. As stated 

by the authors, an LSTM model was chosen because: “This type of neural network leads to 

predicting future values of longevity indexes while maintaining the significant influence of the 

past trend, but at the same time adequately reproducing the recent trend into forecasting.” 

(Nigri, Levantesi & Marino, 2021, p. 1).  

In another recent study, (Perla, Richman, Scognamiglio & Wüthrich, 2021) tested 

several neural networks to simultaneously predict mortality in all countries of the Human 

Mortality Database from 1950 onwards, showing that great accuracy can be achieved in a large-

scale prediction. 
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1.3 - Organization 
 
This dissertation is divided into five chapters. Chapter 1 presents the organization of this work, 

an overview, and motivation for the study, and the literature review of the subject. Chapter 2 

defines and introduces the approaches used in the research, namely the Lee-Carter model and 

the neural network framework. Chapter 3 discusses the data used. In Chapter 4, the models are 

built and compared. Finally, Chapter 5 presents the conclusions and discusses further 

recommendations for future works on the topic.  
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Chapter 2 - Concepts and Models 

2.1 - The Lee-Carter model 
 
The Lee-Carter model (Lee & Carter, 1992) was developed for mortality forecasting and states 

that:   

log(𝑢!,#) = 𝑎! +	𝑏!𝑘# +	𝑒!,# ,																			(1) 

where 𝑢!,# is the death rate for age x in year t, 𝑎! is the average log of mortality at age 𝑥, 𝑏! is 

the rate of change of the log mortality with time at age 𝑥, 𝑘# is the general level of mortality 

for calendar year 𝑡, and 𝑒!,#  is the residual term at age 𝑥 and time 𝑡, with mean 0 and variance 

𝜎$%.  

It is a two-fold model. First, parameters 𝑎!, 𝑏! and 𝑘# need to be estimated. In the 

second stage, the fitted 𝑘# values are modeled as an ARIMA(p, q, d) process. As explained by 

(Lee & Carter, 1992), the model cannot be fitted by ordinary regression methods because there 

are no given regressors; on the right side of the equation, there are only parameters to be 

estimated and the unknown index 𝑘#. 

To solve this problem, the authors applied the singular value decomposition (SVD) to 

the matrix of log mortality rates, normalized by subtracting the average log mortality at each 

age from each row of the matrix. The model is not identifiable, which means that parameters 

are not uniquely estimable. To avoid this problem, (Lee & Carter, 1992) imposed location and 

scale constraints on 𝑏 and 𝑘,	as follows: 

3𝑏!% = 1,								(2) 

3𝑘# = 0.								(3) 

Besides SVD, there are other ways to estimate the parameters, namely the Weighted 

Least Squares (WLS) and the Maximum Likelihood Estimation (MLE), as done by (Wilmoth, 
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1993). Even though other methods to estimate the parameters could be applied, in this 

dissertation it was chosen to stick with the original SVD approach, see (Lee & Carter, 1992). 

The performance of the three methods was compared by (Koissi, Shapiro & Högnäs, 2005) and 

the authors concluded that the values estimated for 𝑎! and 𝑏! are almost identical regardless of 

the method used, supporting the decision to use the original SVD in this work. 

In this dissertation, the Lee-Carter model is used to model the general level of 

hospital admission rates. In this new context, the variables of the model assume a new 

interpretation. By referring back to equation (1), in this new context the variable 𝑢!,# is now 

the hospitalization rate for age x in year t, 𝑎! is the average log of hospitalization at age 𝑥, 𝑏! 

is the rate of change of the log hospitalization with time at age 𝑥, 𝑘# is the general level of 

hospitalization for calendar year 𝑡 and 𝑒!,#  is the residual term at age 𝑥 and time 𝑡, with mean 

0 and variance 𝜎$%.  
 
2.2 - Neural Network 
 
2.2.1 - Overview  
 
This section intends to give a brief explanation of a general neural network and present the 

Recurrent Neural Networks (RNNs) and the Long Short-Term Memory (LSTM) neural 

networks. Being the latter the one used in this work. 

Neural networks are mathematical models based on the biological neural network 

structures of the brain (Minsky & Seymour, 2017; McCulloch & Pitts, 1943; Wiener, 1948). 

Similar to the brain, neural networks are composed of neurons and synaptic connections linking 

them. The general neural network model is formed by an input layer, one or several hidden 

layers, and an output layer, and each of them is composed of several neurons (Nigri, Levantesi, 
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Marino, Scognamiglio & Perla, 2019). Figure 1 below shows the structure of a classical neural 

network.  

 

Figure 1 - General structure of a neural network  

Source: (Bre, Gimenez & Fachinotti, 2017) 

This structure is called feedforward neural network since the information passes 

through it in only one direction. Each circle represents a neuron while each line represents the 

synapse connections between neurons. Each neuron is connected to those neurons in the 

neighboring layers via adaptative weights (Bre, Gimenez & Fachinotti, 2017). Synapses take 

the output of a given neuron and multiply it by a given weight. Neurons add the outputs from 

all synapses and apply an activation function (Nigri, Levantesi, Marino, Scognamiglio & Perla, 

2019). 

2.2.2 - The artificial neuron 

In this section, we give a brief explanation of the artificial neuron, to further understand the 

neural network model. A neural network can be seen as a series of artificial neurons arranged 

together (Bre, Gimenez & Fachinotti, 2017). An artificial neuron is an information-processing 

unit that receives inputs and, by the weighted sum of these inputs, returns an output (Haykin, 

2008). 
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Figure 2 shows what happens inside a generic neuron 𝑗 in a given hidden layer 𝑘. The 

values 𝑎&'()* represent the input from 𝑖#+ neuron of the previous layer 𝑘 − 1, 𝑤&'(  is the weight 

connecting to the previous 𝑖#+ neuron output, 𝑏'( 	is the bias applied to neuron 𝑗 in layer 𝑘, 𝑧'( 

is the output of the weighted sum in neuron 𝑗 at layer 𝑘, 𝑔(𝑧'() is any activation function applied 

to 𝑧'( and 𝑎'( is the output of the neuron 𝑗 in layer 𝑘.  

 

Figure 2 - The artificial neuron 

Source: Adapted from (Bre, Gimenez & Fachinotti, 2017) 

In analytical terms, Equation (4) and Equation (5) translate the process explained above.  

𝑧'( =3(𝑤,'( ∙ 𝑎,'()* + 𝑏'(
&

,-*

),																					(4) 

where 𝑤,'(  is the weight of the connection between the 𝑖#+ neuron of the previous layer and 

neuron 𝑗 of layer 𝑘, 𝑎,'()* is the output from the 𝑖#+ neuron from the previous layer 𝑘 − 1 being 

applied to neuron 	𝑗 and 𝑏'( 	is the bias applied to neuron 𝑗 in layer 𝑘. 

The output 𝑧'( then passes through the activation function as defined below: 

𝑎'( = 𝑔@𝑧'(A,					(5) 

where 𝑎'( is the output of the neuron 𝑗 in layer 𝑘, 𝑔(∙) is any activation function and 𝑧'( is the 

weighted input to the activation function. 
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The weighted sum then passes through an activation function, a process that will be 

explained in the next section.  There is also an externally applied bias 𝑏'(. It has the effect of 

increasing or decreasing the net input of the activation function, depending on if it is positive 

or negative (Haykin, 2008).  

2.2.3 - The activation function 
 
In the previous section, it was stated that the output of the artificial neuron passes through an 

activation function to limit the amplitude of the neuron’s output. Without an activation 

function, the output of the neuron would be only a linear operation. It would consist of a dot 

product between the weights and the input of the neuron. This result is then added to the bias. 

To add non-linearity to the neural network model, an activation function is needed (Chollet, 

2018). The reason why it is necessary to add non-linearity to the model is that, otherwise, it 

would only be able to learn linear transformations from the input data. So, for the model to be 

able to learn non-linear representations of the data, the activation function must be included 

(Chollet, 2018).   

 There are several activation functions in the neural network literature. Some examples 

of the ones commonly used are shown in Table 1: 

 
Name Definition Plot 

Linear 𝑓(𝑥,) = 	𝑥, 

 

Logistic Sigmoid 𝑓(𝑥,) = 	𝜎(𝑥,) 

 

Hyperbolic Tangent 𝑓(𝑥,) = 	𝑡𝑎𝑛ℎ(𝑥,) 
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Rectified Linear Unit (ReLU) 𝑓(𝑥,) = 	max	{0, 𝑥,} 

 
Table 1 - Commonly used activation functions 

Source: Adapted from (Neves, 2018) 

 
 
2.2.4 - Cost function 
 
In a neural network, to calculate the errors between the predicted values and the actual values, 

an error function needs to be defined. It is generally called cost function in the neural network 

literature for instance in (Krogh, Hertz & Thorbergsson, 1990). Several cost functions can be 

used, depending on the problem to solve. 

Consider, for example, the cost function 𝐽, defined as the Mean Squared Error (MSE)  

𝐽(𝜃) = 	
1
𝑚
((ℎ𝜃*𝑥("), −	𝑦("))$
%

"&'

,											(6) 

where 𝜃	represents the set of weights 𝑤 and biases 𝑏 of the neural network, 𝑚 is the total 

number of training examples, ℎ/@𝑥(,)A is the prediction made for 𝑖#+ training example, using 

the set of parameters 𝜃, 𝑥(,) is the 𝑖#+ training example, 𝑦(,) is the true value for the 𝑖#+ training 

example.  

The cost function needs to fulfill two conditions (Nielsen, 2015):  

1. It must be written as a function of the outputs of the neural network. This always 

needs to hold because we want to calculate the difference between the output of 

the neural network and the actual values. 

2. It must be written as an average, for 𝑚	individual training examples. It means 

that the cost function is calculated as an average of 𝑚 individual differences 

between the output and the actual value.  



 13 

Since the cost function is a function of the differences between the predicted and the 

actual values, it needs to be minimized. The weights and biases in the network need to be 

adjusted in such a way that the value of the cost function is as small as possible.  

 
 
 
2.2.5 - Gradient Descent 
 
The idea of defining a cost function to evaluate the predictions made by the neural network 

was introduced in the previous section. This function needs to be minimized so that the errors 

are minimized too. Frequently, optimization problems are solved by using techniques of 

differential calculus to find the minimum or maximum of an appropriate function. In the case 

of neural networks, such an approach cannot be used since the network can take several weights 

and biases and the use of traditional differential calculus would be not effective in finding the 

minimum or the maximum of a function (Nielsen, 2015). 

 To overcome this problem, gradient descent is used. It was first proposed by (Cauchy, 

1847), motivated by astronomical calculations (Lemarechal, 2012). It was also presented by 

(Hadamard, 1908) and further developed by (Curry, 1944) in the research of minimizing non-

linear problems. 

 Gradient descent is an algorithm that iteratively minimizes a cost function by moving 

in the direction of the negative gradient of that function. The algorithm relies on the following 

equality: 

𝜃 ∶= 𝜃 − 	𝜂 ⋅ ∇/𝐽(𝜃),															(7) 

where 𝜃	represents the set of weights 𝑤 and biases 𝑏 of the neural network, 𝜂 is the learning 

rate (explained next), ∇/ is the gradient and 𝐽(𝜃) is the cost function.  

2.2.6 - Learning Rate 
 
Learning rate is a parameter that determines the step size at each iteration while moving 

towards a minimum of a cost function (Murphy, 2012, p. 247). The choice of the learning rate 
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𝜂 is important since a small value will lead to many iterations, making the algorithm slow, 

while a large value could not allow convergence to the minimum of the function (Nigri, 

Levantesi, Marino, Scognamiglio & Perla, 2019). Figure 3 illustrates how the learning rate 

works. 

 

Figure 3 - Comparison between learning rates 

Source: Author 
 

When the learning rate is too small, the algorithm needs several iterations to adjust the 

values of the weights and find the minimum of the cost function. It is time-consuming and can 

be inefficient in real-life applications. If the learning rate is too high, the algorithm will rebound 

and never reach the minimum. The optimal learning rate should be one that allows the 

algorithm to converge within a desired time. There is no right or wrong value for the learning 

rate and one should try several values to find the one that best fits a given problem (Bengio, 

2012). 

2.2.7 - Backpropagation algorithm 
 
In a neural network, weights and biases are randomly assigned and they need to be adjusted by 

several iterations until their optimal values are found. There are several ways in which they can 

be randomly initialized but, in general, random values are taken from a probability distribution 

such as Normal or Uniform, see (Narkhede, Bartakke & Sutaone, 2022) for an in-depth review 

on the topic.  
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The weights and biases are adjusted by backpropagating the errors through the neural 

network, in order to minimize the errors (Rumelhart, Hinton & Williams, 1986). The 

backpropagation algorithm is used to iteratively update the weights and biases of the network. 

It uses gradient descent to calculate the gradient of the cost function. The negative of the 

gradient points in the direction that minimizes the cost function. 

 Ultimately, the backpropagation algorithm iteratively computes the partial derivatives 

of the cost function in relation to the weights and biases of the network. Then, it updates the 

values of the weights and biases in the negative direction of the gradient. It computes again the 

cost function and evaluates if it has reached a given desired value. Figure 4 below summarizes 

how backpropagation pseudocode works. 

  
Figure 4 - Backpropagation Pseudocode 

Source: Author 
 

 The algorithm receives a given learning rate 𝜂 and a randomly assigned set of weights 

and biases 𝜃, as input. It computes the cost function 𝐽(𝜃), the gradient ∇/ and updates 𝜃 while 

the cost function is not smaller than a stop criterion. This criterion normally relies on human 

decisions and can be set in many different ways, such as defining a given threshold or stopping 

the algorithm after a given number of iterations (Lalis, Gerardo & Byun, 2014). 

2.2.7.1 – Partial derivatives in relation to the weights 
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In this section, we explain how the partial derivative of the cost function in relation to the 

weights in the network is computed. First, let us define the cost function 𝐽. The derivative of 

the cost function in relation to the weight is 23
24!"

# . This can be computed by the chain rule as: 

𝜕𝐽
𝜕𝑤,'(

=	
𝜕𝐽
𝜕𝑎'(

𝜕𝑎'(

𝜕𝑤,'(
=	

𝜕𝐽
𝜕𝑎'(

𝜕𝑎'(

𝜕𝑧'(
𝜕𝑧'(

𝜕𝑤,'(
,						(8) 

The first factor on the right-hand side of equation (8) computes the derivative of the 

cost function 𝐽 in relation to the output of neuron 𝑗, in layer 𝑘. This means that we are 

calculating how the input of the neuron influences the cost function. If the neuron is in the 

output layer it is straightforward to compute it. In this case, the neuron’s output 𝑎'( is simply 

the prediction 𝑦V(𝑥) made by the network and we only need to calculate how the prediction 

influences the cost function. In this case, the derivative is: 

𝜕𝐽
𝜕𝑎'(

=
𝜕𝐽

𝜕𝑦V(𝑥),											(9) 

When neuron 𝑗 is in any arbitrary hidden layer 𝑘 of the network it is less obvious how 

to calculate the derivative. In this case, the neuron’s output 𝑎'( influences the cost function 

through multiple paths. The output 𝑎'( is connected to several other neurons in layer 𝑘 + 1 and 

we need to take this into account, summing all these paths. Equation (10) shows it: 

𝜕𝐽
𝜕𝑎'(

= 3 X𝑤,'(5* ∙ 𝑔6@𝑧'(5*A
𝜕𝐽

𝜕𝑎'(5*
	Y .

&#$%)*

'-7

						(10) 

The second factor on the right-hand side of equation (8) calculates the derivative of the 

weighted input of the activation function in relation to the weights. Equation (11) calculates it: 

𝜕𝑧'(

𝜕𝑤,'(
=
𝜕(∑ (𝑤,'( ∙ 𝑎,()* + 𝑏'(&

,-* ))
𝜕𝑤,'(

=	𝑎,()*,									(11) 

This result means that the effect of a small change in the weight in neuron 𝑗, in layer 𝑘, 

depends on how strong the previous neuron’s output	𝑎,()*	 was. 
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Finally, the last factor of equation (8) calculates the derivative of the output of neuron 

𝑗, in layer 𝑘, with respect to the weighted input 𝑧'( is simply the derivative of the activation 

function 𝑔(∙) shown below:  

𝜕𝑎'(

𝜕𝑧'(
=	
𝜕𝑔(𝑧'()
𝜕𝑧'(

=	𝑔6@𝑧'(A,											(12) 

Inserting equations (9), (10), (11) and (12) in equation (8) we obtain: 

𝜕𝐽
𝜕𝑤,'(

=	
𝜕𝐽
𝜕𝑎'(

𝜕𝑎'(

𝜕𝑧'(
𝜕𝑧'(

𝜕𝑤,'(
=	

𝜕𝐽
𝜕𝑎'(

𝜕𝑎'(

𝜕𝑧'(
	𝑎,()* =	𝛿' ∙ 𝑔6@𝑧'(A ∙ 𝑎,()*, (13)	 

with 

𝛿' =	
𝜕𝐽
𝜕𝑎'(

=

⎩
⎪
⎨

⎪
⎧

𝜕𝐽
𝜕𝑦V(𝑥)

,																																																										𝑖𝑓	𝑗	𝑖𝑠	𝑎𝑛	𝑜𝑢𝑡𝑝𝑢𝑡	𝑛𝑒𝑢𝑟𝑜𝑛

3 X𝑤,'(5*𝑔6@𝑧'(5*A
𝜕𝐽

𝜕𝑎'(5*
	Y , 𝑖𝑓	𝑗	𝑖𝑠	𝑎	ℎ𝑖𝑑𝑑𝑒𝑛	𝑛𝑒𝑢𝑟𝑜𝑛
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			(14) 

 
2.2.7.2 – Partial derivatives in relation to the biases 
 
Computing the partial derivatives of the cost function in relation to the biases is almost identical 

to what was done for the weights. We have: 

𝜕𝐽
𝜕𝑏,'(

,										(15) 

which can be computed by the chain rule as: 

𝜕𝐽
𝜕𝑏,'(

=	
𝜕𝐽
𝜕𝑎'(

𝜕𝑎'(

𝜕𝑏,'(
=	

𝜕𝐽
𝜕𝑎'(

𝜕𝑎'(

𝜕𝑧'(
𝜕𝑧'(

𝜕𝑏,'(
,									(16) 

Comparing equation (16) with equation (8), we see that the only difference is in the last 

term of the right-hand sides. It now depends on the bias instead of the weight. The calculation 

is as follows: 

𝜕𝑧'(

𝜕𝑏,'(
=
𝜕(∑ (𝑤,'( ∙ 𝑎,()* + 𝑏'(&

,-* ))
𝜕𝑏,'(

= 	1,									(17) 
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So, similarly to equation (13), now we have: 

𝜕𝐽
𝜕𝑏,'(

=	
𝜕𝐽
𝜕𝑎'(

𝜕𝑎'(

𝜕𝑧'(
𝜕𝑧'(

𝜕𝑏,'(
=	

𝜕𝐽
𝜕𝑎'(

𝜕𝑎'(

𝜕𝑧'(
1 = 	𝛿' ∙ 𝑔6@𝑧'(A,												(18)	 

 
 
 
 
 
2.2.8 - Recurrent Neural Networks  
 
Classical neural networks represented in Figure 1 are also called feedforward neural networks 

because information moves from the input to the output layer in a single direction. In the 

recurrent neural networks (RNN) structure, the information moves cyclically in the network 

using additional synapses. They are a special case of neural networks where the objective is to 

predict future steps in a sequence of observations (Namini & Namin, 2018). This means that 

the output of an RNN is based on previous elements of a given sequence, while the output of a 

standard feedforward neural network depends only on the current input (Lindholm & 

Palmborg, 2022). Figure 5 below shows a typical RNN. 

To predict future steps in a sequence of observations, earlier stages of data need to be 

“remembered” and the hidden layers of RNNs act as memory storage for keeping information 

captured in earlier stages (Namini & Namin, 2018). 

Although they are a powerful structure, the major drawback of RNNs is that they only 

remember a few steps in the sequence of data and therefore are not appropriate to work with 

long sequences (Abiodun et al., 2019; Namini & Namin, 2018). Another issue results from the 

fact RNNs are recurrent, making the same function to be composed with itself many times, and 

this leads to the vanishing gradient problem (Lindholm & Palmborg, 2022). When the 

backpropagation algorithm advances backward from the output layer to the input layer, the 

gradients often get smaller and smaller, which eventually leaves the weights of the initial layers 
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nearly unchanged. Because of that, the algorithm never converges to the optimal value. This is 

the vanishing gradient problem. 

 

Figure 5 - Typical structure of an RNN.  

Source: Adapted from Abiodun et al. (2019) 

 
2.2.9 - Long Short-Term Memory  
 
As RNNs are not suitable to model long-term dependencies, they are not a natural choice for 

time series modeling. To overcome the problem presented by RNNs, the LSTM model was 

developed as an improvement by (Hochreiter & Schmidhuber, 1997) and further extended by 

(Gers, Schmidhuber & Cummins, 2000). LSTMs are RNNs whose architecture is built in such 

a way that it allows for considering the relationships between the data of the sequence, even if 

it is long, and eliminates the vanishing gradient problem. Hence, LSTMs acquire both long and 

short-term memory (Nigri, Levantesi, Marino, Scognamiglio & Perla, 2019). 

 Figure 6 shows the basic structure of an LSTM neural network. The network receives 

an input, which is processed by a neuron in the input layer. After that, its output passes through 

an LSTM cell and part of the output of this cell goes to the other neurons in the network and 

another part goes to another LSTM cell.  
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Figure 6 - Neural network with LSTM cell 

Source: Author 
 

Figure 7 illustrates what is inside an LSTM cell. 

 

Figure 7 - LSTM Cell 

Source: Adapted from (Choi & Lee, 2020) 

In Figure 7, the red line is the cell state vector, which represents the long-term memory 

of the LSTM model (Choi & Lee, 2020). In the cell state vector, the information 𝐶#)* enters 

the LSTM cell at learning step 𝑡 − 1 and leaves it as 𝐶# at learning step 𝑡. The three structures 

called gates (forget gate, input gate, and output gate) determine how much information should 

be carried out to the next step (Mirzaei, Kang & Chu, 2022). In Figure 7, the + symbols 
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represent the mathematical addition, × symbols represent the element-wise multiplication and  

ℎ# is the short-term duration memory of the LSTM cell at time step 𝑡. 

To understand the LSTM cell, we need to understand what each of the three gates does. 

The forget gate is responsible for information filtering (Škrlj, Kralj, Pollak & Lavrač, 2019). 

The forget activation 𝑓# takes the output of the previous hidden state and the input of data. 

Then, it outputs a value between 0 and 1, where 0 means “forgets everything” and 1 means 

“remembers everything”. Finally, the output of 𝑓# is multiplied by 𝐶#)*, the long-term memory 

of the LSTM cell, determining to what extent to forget from the previous data. 

In the input gate, the model decides which new information is going to be added to the 

cell state vector. For doing this, it multiplies 𝑖# by Ĉ# (called the candidate state) and adds the 

result to the cell state. In equations (19) and (22) below we see that 𝑖# is the output of a sigmoid 

function, bounding between 0 and 1, and that Ĉ# is the output of a tangent hyperbolic function, 

which bounds between -1 and 1. In practical terms, what happens in the input gate is that Ĉ# 

decides which new candidate values should be added to the cell state 𝐶# while 𝑖# controls to 

what extent they should be added. 

In the output gate, the LSTM cell controls the new values of the hidden state (the short-

term memory of the model). These values are based on the cell state but are filtered for relevant 

information. The cell state is run through the hyperbolic tangent function to regularize values 

between -1 and 1. Then this output is multiplied by 𝑜# to decide which part of the information 

should be taken. Equations (19)-(24) summarize how each part of the LSTM cell is calculated: 

𝑓# = 	𝜎@𝑊8[𝑥# , ℎ#)*] 	+ 	𝑏8A,									(19) 

𝑖# = 	𝜎(𝑊,[𝑥# , ℎ#)*] 	+ 	𝑏,),									(20) 

𝑜# = 	𝜎(𝑊9[𝑥# , ℎ#)*] 	+ 	𝑏9),								(21) 

𝐶# =	𝑓#	⨀	𝐶#)* +	𝑖#	⨀	Ĉ# ,													(22) 

Ĉ# = 	𝑡𝑎𝑛ℎ(𝑊:[𝑥# , ℎ#)*] 	+ 	𝑏:),					(23) 
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ℎ# =	𝑜#	⨀	𝑡𝑎𝑛ℎ(𝐶#),															(24) 

where 𝑓# is the forget activation, 𝜎 is the logistic sigmoid function, 𝑊 is the matrix of weights, 

𝑥# is the input data, ℎ#)* is the short-term memory at time step 𝑡 − 1, 𝑏 is the bias, 𝑖# is the 

input activation, 𝑜# is the output activation, 𝐶# is the cell state, 𝐶#)* is the cell state at time step 

𝑡	 − 1, Ĉ# is the candidate values to update the cell state 𝐶#, 𝑡𝑎𝑛ℎ is the hyperbolic tangent 

function, 𝑡 is learning time step and ⨀ is the element-wise multiplication. The subscripts 𝑓, 𝑖 

and 𝑜 represent the forget, input and output gate, respectively.  

  



 23 

Chapter 3 - Data 

Hospitalization data from the state of São Paulo was gathered from Serviço de Informações 

Hospitalares do Sistema Único de Saúde (Hospital Information System of the Unified Health 

System - SIH/SUS) and the data from the population resident in the state of São Paulo was 

gathered from Pesquisa Nacional por Amostragem de Domicílios do Instituto Brasileiro de 

Geografia e Estatística (National Sample Household Survey of the Brazilian Institute of 

Geography and Statistics - PNAD/IBGE), both from Jan/2008 until Nov/2019. The 

hospitalization data encompasses all private and public hospital admissions. 

The hospitalization data is monthly available while the data from the population 

resident in the state of São Paulo is only available at the end of the year. This annual data was 

transformed into monthly data, assuming that each observed annual increase/decrease in the 

resident population occurred uniformly during the year, a very common method described in 

(United Nations, 1952).  

The choice of gathering data from 2008 onwards was made because this is the first year 

when the dates of hospital admissions started to be registered. Also, the date of Nov/2019 was 

chosen as the final year because of the COVID-19 pandemic in Brazil. The first COVID 

infection was reported in Feb/2020 by Brazilian authorities but even though we already can see 

great distortions in data from Dez/19 onwards. 

The data provided by SIH/SUS is disposed in 18 age groups, being them: < 1 year old, 

1-4 years old, …, 75-79 years old, 80+ years old. On the other hand, the data provided by 

PNAD/IBGE is disposed in 15 age groups: 0-4 years old, …, 70+ years old. To overcome this 

mismatch, the data from SIH/SUS was standardized to the same standard as the PNAD/IBGE 

data. Therefore, the data is disposed in 15 five-year age groups, starting from 0-4 years to 65-

69 years, and the last group 70+ years. 
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Figure 8 illustrates how the age group data from SIH/SUS was put in the same standard 

as the data of PNAD/IBGE. It was simply done by summing the SIH/SUS data into the 

PNAD/IBGE age group standard.  

 
              Figure 8 - SIH/SUS and PNAD/IBGE data standardization 

          Source: Author 
 

Figure 9 and Figure 10 show boxplots for each age group of the hospital admission 

dataset, from 2008 until 2019. The number of hospital admissions is similar for both genders, 

except between age groups 10-14 to 40-44 years old. By further analyzing the data, we see that 

this is driven by pregnancy, childbirth, and puerperium, accounting for an overall of 60.8% of 

hospital admissions within these age groups for females.  

 

Figure 9 - Hospital admissions of females by age group 

Source: Author, based on SIH/SUS data 
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Figure 10 - Hospital admissions of males by age group 

Source: Author, based on SIH/SUS data 
 

Table 2 shows in detail the percentage of female hospital admissions that are related to 

pregnancy, childbirth, and puerperium. For the other age groups, the percentage is roughly 

zero and, therefore, they are not shown in the table. 

Age Group Percentage 
10 – 14 years 14.9% 
15 – 19 years 74.4% 
20 – 24 years 78.3% 
25 – 29 years 70.8% 
30 – 34 years 59.8% 
35 – 39 years 43.6% 
40 – 44 years 18.6% 

Overall 60.8% 
Table 2 - Hospital admissions related to pregnancy, childbirth, and puerperium 

Source: Author, based on SIH/SUS data 
 

 Figure 11 shows the female hospitalizations from Jan/2008 until Nov/2019, by age 

group. We see how the number of hospitalizations is distributed, being the age group 70+ years 

the highest one in the absolute number of hospital admissions.   
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Figure 11 - Female hospital admissions from Jan/2008 until Nov/2019  

Source: Author, based on SIH/SUS data 
 
 
 Similarly to Figure 11, Figure 12 shows the number of hospitalizations for males, by 

each age group. We can see that the age groups 0-4 years and 70+ years are the ones with the 

highest number of hospitalizations. In the other age groups, differently to what happens to 

females, the numbers of hospital admissions, by age group, are more similar.    

 

 
Figure 12 - Male hospital admissions from Jan/2008 until Nov/2019 

Source: Author, based on SIH/SUS data 
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Figure 13 and Figure 14 show the residents’ data, by age group, for each gender. As 

shown by the charts, the distribution is similar for both genders. In Table 3, we see that in 

general females are more numerous than males, especially in older age groups. This is related 

to the fact that females have higher life expectancy than males. 

 
Figure 13 - Female population by age group 

Source: Author, based on PNAD/IBGE data 
 

 
Figure 14 - Male population by age group 

Source: Author, based on PNAD/IBGE data 
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Age Groups Females Males 

0-4 years 49.0% 51.0% 

5-9 years 49.2% 50.8% 

10-14 years 48.8% 51.2% 

15-19 years 49.3% 50.7% 

20-24 years 49.9% 50.1% 

25-29 years 51.2% 48.8% 

30-34 years 51.7% 48.3% 

35-39 years 52.0% 48.0% 

40-44 years 52.3% 47.7% 

45-49 years 53.0% 47.0% 

50-54 years 53.3% 46.7% 

55-59 years 53.4% 46.6% 

60-64 years 54.1% 45.9% 

65-69 years 55.3% 44.7% 

70+ years 59.2% 40.8% 

Total 51.6% 48.4% 

Table 3 - Population distribution by gender 

Source: Author, based on PNAD/IBGE data 
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Chapter 4 - Estimation and Prediction 

In this chapter, we will obtain the parameters 𝑎! and 𝑏! as in (Lee & Carter, 1992) and we will 

estimate the 𝑘# trend by an 𝐴𝑅𝐼𝑀𝐴(𝑝, 𝑑, 𝑞) model, divided by gender. We follow (Nigri, 

Levantesi, Marino, Scognamiglio & Perla, 2019) and estimate the 𝐴𝑅𝐼𝑀𝐴(𝑝, 𝑑, 𝑞) by using 

the auto.arima function from the R package forecast see (Hyndman & Khandakar, 2008; 

Hyndman et al., 2022).  

This package applies the Hyndman-Khandakar algorithm (Hyndman & Khandakar, 

2008), to automatically select the best 𝐴𝑅𝐼𝑀𝐴(𝑝, 𝑑, 𝑞) model for a given time series. This 

algorithm works in two steps. In the first one, it chooses the best differencing order d by 

checking the stationarity of the time series using a unit root test. In the second step, the 

algorithm selects the best values of auto-regressive and moving average orders, p and q, using 

an information criterion (AIC or BIC).   

The result obtained by the 𝐴𝑅𝐼𝑀𝐴(𝑝, 𝑑, 𝑞) model is compared with the forecasts made 

by the LSTM neural network. The estimations intend to predict the last 12 months of the fitted 

𝑘#.  

4.1 - Estimation of the Lee-Carter model  

We obtain the parameters of the Lee-Carter model as explained in Chapter 2. The process was 

developed for both genders, obtaining 𝑘# for males and females from 2008 to 2019. Figure 15 

shows 𝑘# for both genders. 
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Figure 15 - Male and female fitted kts 

Source: Author 
 
 
 Table 4 shows the fitted 𝑎! and 𝑏! for each age group and gender 
 

Age  
Group 

Female Male 
𝒂𝒙 𝒃𝒙 𝒂𝒙 𝒃𝒙 

0-4 -5.065297 0.10449056 -4.845265 0.08736755 
5-9 -6.391685 0.07711722 -6.002098 0.06256431 

10-14 -6.613553 0.07728216 -6.405589 0.05413556 
15-19 -5.176530 0.06819218 -6.368512 0.04540376 
20-24 -4.826560 0.02003936 -6.106506 0.03171212 
25-29 -4.974457 0.02094504 -6.049290 0.04420463 
30-34 -5.197766 0.02922902 -5.972261 0.06880108 
35-39 -5.416896 0.04026236 -5.862534 0.07340256 
40-44 -5.656251 0.06463627 -5.762601 0.08326992 
45-49 -5.690644 0.07470302 -5.599314 0.06810099 
50-54 -5.621203 0.08955646 5.397862 0.07876780 
55-59 -5.479867 0.08348134 -5.181277 0.06963178 
60-64 -5.301539 0.08582828 -4.965034 0.08479263 
65-69 -5.091800 0.07347616 -4.740753 0.06855017 
70+ -4.668532 0.09076058 -4.391226 0.07929514 

Table 4 - Fitted 𝑎! and 𝑏! for females and males, by age group 

Source: Author 
 
4.2 - Time series model 

Since the 𝑘#  presents monthly seasonality, a SARIMA model was used for the prediction. The 

auto.arima package in R deals with it easily. The series was split into two, one for training the 

model with the first 131 data points of the series and another one for testing the model with the 
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final 12 months of data. In the prediction, the next 12 months of 𝑘# were predicted. The 

auto.arima package chose the same 𝐴𝑅𝐼𝑀𝐴(𝑝, 𝑑, 𝑞) for both genders. This is not a surprise 

since both genders have similar trends, as it was shown in Figure 15. Below, there are the plots 

for both genders with a 95% prediction interval. The results are summarized in Table 7, in 

section 4.4. Further results of the model are shown in Appendix I. 

 
Figure 16 - Male kt prediction for the next 12 months 

Source: Author 

 
Figure 17 - Female kt prediction for the next 12 months 

Source: Author 
 
 The results obtained are in line with the results of (Rodrigues, Andrade, Queiroz & 

Machado, 2013) although not directly comparable. In their work, they used annual data from 

the state of Minas Gerais, Brazil while in this dissertation we used monthly data from the state 

of São Paulo, Brazil. The choice for using monthly data is to have more data points that can 
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improve the estimations while the choice of the state of São Paulo is because it is the largest 

state in Brazil, accounting for 22% of the Brazilian population, more than double the state of 

Minas Gerais, which accounts for 10% of the population (IBGE, 2021). 

 
4.3 - LSTM model 

In this chapter, we describe in detail how the LSTM neural network model was built. The model 

was implemented in R, using the packages Keras (Chollet, 2015) and TensorFlow (Abadi et 

al., 2015). A major aspect is that the neural network demands great data preparation before the 

model can be fit. 

4.3.1 - Data scaling 
 
As done in section 4.2, the data was split into training and test. For the neural network, it also 

needs to be scaled before fitting the model. The backpropagation algorithm, presented in 

section 2.2.7, converges faster when the data provided as input has its mean close to zero 

(LeCun, Bottou, Orr & Muller, 2012). For standardizing the data, the mean and standard 

deviation of the training dataset is calculated, and their values can be seen in Table 5. 

Statistic Female 𝒌𝒕 Male 𝒌𝒕 

Mean 0.09714466 0.1279912 

Standard Deviation 0.91980280 0.9871962 
Table 5 - Mean and standard deviation of females and males from the training dataset 

Source: Author 

 With these figures, the training and test datasets were then standardized by applying the 

usual formula, see Equation (25).  

𝑧 =
𝑥 −	 �̅�	
𝜎V ,				(25) 

where 𝑧 is the standardized data, 𝑥 is the original data, �̅� is the mean and 𝜎 is the standard 

deviation. 
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It is important to note that the test dataset also needs to be standardized with the same 

parameters used to standardize the training dataset. In this way, both the test and training data 

will be on the same scale. 

4.3.2 - Sliding window and differencing 
 
After being standardized, the data keeps the same dimensions as the original data (a single 

vector), but it needs to be put in a sliding window format for the neural network (Brownlee, 

2018). To do so, the data is split into two different datasets, one called input and the other one 

called output. Figure 18 shows how the sliding window is applied. 

 
                                               Figure 18 - LSTM sliding window 

            Source: Adapted from (Neves, 2018) 
 

𝑇 represents the length of the time series, 𝑝 represents the length of the training sequence and 

𝑛 represents the length of the output sequence.  

In the sliding window, the input and output data have the same length, being the output 

equal to the input shifted one-time step (Neves, 2018). The values of (𝑘#	*, …, 𝑘#	*%) are used 

to predict the values of (𝑘#	*>, …, 𝑘#	%?), the values of (𝑘#	%, …, 𝑘#	*>) are used to predict the 

values of (𝑘#	*?, …, 𝑘#	%@), and so on. This is how sliding works in the training step of the 

model. After this step, the neural network has learned the input-output relationship of the data 

and it should be able to predict future values (Nigri, Levantesi, Marino, Scognamiglio & Perla, 

2019). 
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In this work we want to predict the next 12 months (𝑛 = 12). Therefore, we build the 

datasets in such a way that 12 data points are predicted by the past 12 data points. It is important 

to note that differencing was not applied to the data used for the neural network model. LSTMs 

do not require previous information of the time series structure and are less subject to time 

series stationarity (Silva, Steen & Darley, 2019).  Research suggests that these models are more 

flexible to work with non-stationarity data (Silva, Steen & Darley, 2019). 

4.3.3 - Tridimensional form 

Another characteristic of the LSTM neural network is that it needs to be fed with tridimensional 

data in the form of [samples, time steps, features] (Brownlee, 2018). Where: 

• samples specify the number of observations in the dataset  

• time steps specify the number of time steps we want the neural network to look back in 

time 

• features specify the number of predictors of the series 

The training dataset has the dimensions [96, 12, 1]. The first dimension is 96 because of 

the number of observations in the training dataset (as shown in Figure 18), the second 

dimension is 12 because it is the number of time steps used as input and the last dimension is 

1 because it is a univariate time series, so it has only one predictor.  

The test dataset has the dimensions of [1, 12, 1]. The first dimension is 1 because the test 

dataset has only one line of observations, composed of 12-time steps. The third dimension is 

again 1 because it is a univariate time series. 

4.3.4 - LSTM general architecture 

The past three sections presented how the data needs to be preprocessed before being used by 

the neural network. This section explains how the model structure was chosen and how it was 

fitted. The first task is to determine the general structure of the neural network (i.e. the number 

of neurons and layers). Unfortunately to choose the number of neurons and layers is not easy. 
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 Neural network architecture typically relies on human knowledge and trial and error 

(Dong, Kedziora, Musial & Gabrys, 2021). Neural architecture search (NAS) has been 

proposed to automatically search for the best architecture for neural networks, but currently, 

algorithms suffer from computational cost (Jin, Song & Hu, 2019). For further readings into 

the NAS field see (Dong, Kedziora, Musial & Gabrys, 2021; Hu, Chu, Pei, Liu & Bian, 2021). 

 Given that it is not trivial to find the appropriate architecture for a neural network 

model, this work proposed to have a simple neural network model, without sophistication, that 

could be contrasted with the ARIMA model. The final architecture used in this work can be 

seen below in Figure 19. 

 
Figure 19 - LSTM architecture used in this work 

       Source: Author 
 

 The input layer has 12 neurons because each neuron represents one data point of the 

input sequence shown in Figure 18. Regarding the hidden layer, problems that require two or 

more hidden layers are not commonly seen (Heaton, 2005, p. 128), since training can be too 

difficult due to the increase in the number of parameters, overall complexity, and time to 

execute the model (Uzair & Jamil, 2020). Considering the complexities that adding hidden 

layers imposes and since in this work we are dealing with a univariate time series (only one 

predictor), we chose to have only one hidden layer in the neural network. The output layer is 

composed of a single neuron that outputs a sequence of 12 predictions. Even though the used 
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architecture seems to be simple, it has 685 adjustable parameters. Details of the model are in 

Appendix II. 

4.3.5 - Learning Rate 

Recall from section 2.2.6 that the learning rate is a parameter that should be empirically chosen. 

It is one of the most important parameters to adjust in neural network architecture (Bengio, 

2012). A default value of 0.01 typically works for default neural networks but other values 

should be tested as well (Bengio, 2012). Values tested are usually small e.g., a learning rate 

within the set {0.1, 0.01, 10-3, 10-4, 10-5} (Goodfellow, Bengio & Courville, 2016, p. 436). 

Despite only choosing a fixed value for the learning rate, some authors such as (Wang, 

You, Long & Jordan, 2019) have shown that using a learning rate decay can provide benefits 

for training neural networks. In this approach, the learning rate starts with a given value that 

decays by a factor during the iterations. 

 Considering that, in this work we have tested four learning rates and five decay values, 

comprising a total of 20 model combinations, per gender, to find the combination that 

minimizes the cost function. All models have the same structure, only varying the learning rate 

and decay factor. Table 6 shows the LSTM models combination made. 

Model Learning rate Decay Factor 
Model 1 0.001 0 
Model 2  0.001 0.0000001 
Model 3 0.001 0.00001 
Model 4 0.001 0.001 
Model 5 0.001 0.1 
Model 6 0.002 0 
Model 7 0.002 0.0000001 
Model 8 0.002 0.00001 
Model 9 0.002 0.001 

Model 10 0.002 0.1 
Model 11 0.01 0 
Model 12 0.01 0.0000001 
Model 13 0.01 0.00001 
Model 14 0.01 0.001 
Model 15 0.01 0.1 
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Model 16 0.02 0 
Model 17 0.02 0.0000001 
Model 18 0.02 0.00001 
Model 19 0.02 0.001 
Model 20 0.02 0.1 

Table 6 - LSTM models 

Source: Author 
 
 
4.3.6 - Epochs 

In the fitting step of the neural network, the model is iterated several times to adjust its 

parameters, in order to reduce the cost function. These number of iterations are called epochs. 

A training epoch refers to the number of passes of the entire training dataset through the neural 

network algorithm (Hastie, Tibshirani & Friedman, 2017, p. 397).  

 The number of epochs can be determined using a graphic approach, by plotting the cost 

function in relation to the number of epochs. Figure 20 shows the Mean Squared Error (MSE) 

cost function in relation to the number of epochs. By further analyzing the chart, we see that 

the error starts to rebound around the 25th epoch. This means that the gradient descent has 

already reached the minimum of the cost function and, since the iterations did not stop, it 

continues iterating around the minimum and rebounding. Also, we see that between the 20th 

and 25th epoch the error is still basically the same, it did not considerably decrease. Given that, 

the number of 20 epochs was chosen to be used in this work.  

 

Figure 20 - Cost function in relation to the number of epochs 

Source: Author 
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As explained in Chapter 2, the parameters of a neural network are randomly assigned. 

The backpropagation algorithm takes random weights and biases to minimize the cost function. 

Since it receives random parameters as input, each time the model is run it outputs a different 

result. Because of this stochastic behavior, to evaluate the model’s performance it is necessary 

to run it several times and calculate the average of the error metrics (Brownlee, 2017). The 

minimum number of 30 times is recommended by (Brownlee, 2017), limited only by 

computational resources and time expend running the model. 

 Section 2.3.5 described that a total of 20 model combinations were made, by varying 

the learning rate and decay rate. It is worth noting that 30 random seeds were generated. That 

means that each round of each model has been initialized with the same weights and biases so 

any difference in performance can only be attributed to differences in the learning rate and 

decay. The LSTM models with the smallest average errors are shown in Table 7, in the next 

section. In Appendix II, the statistics are shown in detail. 

4.4 - Comparison between models 

To evaluate the forecast performance made by the standard ARIMA and the LSTM models, 

the Root Mean Squared Error (RMSE) and the Mean Absolute Error (MAE) error metrics were 

calculated. The models presented in the 4.2 and 4.3 sections were used to predict the 𝑘# from 

Dec/18 to Nov/19 and their results were then contrasted with the fitted 𝑘# to calculate the error 

metrics. 

 Table 7 summarizes the performance of the ARIMA model, LSTM Model 3, and LSTM 

Model 20. The lowest errors are highlighted in bold. Model 3 is the one that presented the 

lowest errors for males and Model 20 is the one with the lowest errors for females.  
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Model 
Female Male 

RMSE MAE RMSE   MAE 

𝑘# ARIMA 0.4714 0.3452 0.4550 0.3655 

𝑘# LSTM - Model 3 0.4974 0.4050 0.5635 0.4760 

𝑘# LSTM - Model 20 0.4633 0.3582 0.5993 0.5059 

Table 7 - Comparing forecast performance between ARIMA and LSTM 

Source: Author 
 

The error presented in Model 3, for males, is higher than the error presented by the 

ARIMA model. For the females, in Model 20, only the RMSE is lower than the RMSE of the 

ARIMA model. Overall, both RMSE and MAE showed no great differences for females. 

With these error metrics calculated, we also performed the prediction of the next 12 

months of 𝑘#, between Dec/2019 and Nov/20, for both genders, predicting how the 𝑘# would 

behave in the absence of the Covid-19 pandemic. The results are shown in Figure 21 and Figure 

22. We can see that the ARIMA and the LSTM models have a similar pattern, which is not a 

surprise since the errors shown in Table 7 are similar. 

 

Figure 21 - Male kt prediction from Dec/19 to Nov/20 

Source: Author 
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Figure 22 - Female kt prediction from Dec/19 to Nov/20 

Source: Author 
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Chapter 5 - Conclusions 
 

The main purpose of this work is to add a contribution to the set of possible applications of 

machine learning techniques in the actuarial science field. This dissertation focused on how to 

model the general level of hospital admission rates using the Long Short-Term Memory 

(LSTM) neural network and to contrast its results with the results obtained by the Lee-Carter 

model (Lee & Carter 1992), as done in the work of (Rodrigues, Andrade, Queiroz & Machado, 

2013). 

 This study used publicly available datasets about hospital admissions and population 

from the state of São Paulo, Brazil. The auto.arima function from the R package forecast was 

used to search for the best ARIMA(p, d, q) and this result was compared with the result provided 

by a neural network model. A simple neural network architecture was implemented, and 20 

LSTM models were built to search for the best combination of learning rates and decay factors, 

by each gender. 

Each of these 20 models was run 30 times to average its RMSE and MAE results. This 

was performed on a personal computer, and it took around three hours, per gender, to run. In 

contrast, the auto.arima function took only a few seconds to find the best set of ARIMA 

parameters. Despite the much greater time spent in preparing the data and effectively running 

the neural network model, the results for females provided by the neural network and by the 

ARIMA model were similar. On the other hand, for males, the ARIMA model performed better 

than the LSTM, showing lower RMSE and MAE.  

A 12-month 𝑘# prediction between Dec/2019 and Nov/2019 was presented in Figure 21 

and Figure 22, showing similarities between the predictions made by the ARIMA and LSTM 

models. These results intended to predict how the 𝑘# of each gender would have behaved if the 

Covid-19 pandemic did not break through. 
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In practical terms, by modeling hospital admission rates actuaries can better assess the 

technical provisions of health insurance companies. Considering that hospital admissions 

account for approximately 50% of claim costs in the Brazilian health insurance market (Cechin 

& Lara, 2020), even small variations in hospital admission rates can put a serious strain on the 

liabilities of insurers. Additionally,  in Brazil, there are the so-called verticalized health 

companies, which are health insurers that own hospitals and clinics in an attempt to control 

costs and frequency of use. For this kind of companies, modeling hospital admissions is even 

more important, since they can not only better assess their technical provisions but also better 

plan human and medical resources considering the level of predicted hospital admissions. 

Even though a small data sample was used in this work, the performance of the LSTM 

and ARIMA models was similar. It is well known that neural networks models demand huge 

amounts of data to be fitted but his similar performance suggests that future works could rely 

on two approaches to test if the LSTM model can be significantly better than the ARIMA: 

1. Work with longer data sequences. For example, health insurance companies 

always dispose of daily data. Comparing the ARIMA and LSTM on a daily 

sequence of data instead of a monthly one could show a significant difference 

in model performance. 

2. Fine-tune the LSTM model. The structure of the LSTM model could be adjusted 

until finding a structure that best described the problem.  

Considering point 2 introduced above, future work could explore the automatic search 

of parameters to adjust the neural network, but researchers and practitioners should be aware 

that it can be computationally costly. The work of (Jin, Song & Hu, 2019) proposed the package 

AutoKeras for this search, implemented in Python, which they claim to be efficient when 

compared to existing auto-search algorithms. Since this dissertation was done in R, this 

package could not be tested.  
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The use of regularization techniques in neural networks (i.e. L1 and L2 regularization 

and dropout) should also be explored, see (Hastie, Tibshirani & Friedman, 2017; Chollet, 

2018). This gives a possibility to improve results and to study how the use of different 

regularization techniques impacts the performance of a neural network. 

This research has shown that, for the given problem and available data, the LSTM and 

ARIMA models performed similarly in predicting the the general level of hospital admissions 

𝑘#. It is known that neural networks depend on huge amounts of data but, even though the data 

used was small, the neural network was able to have a similar result to the ARIMA model. This 

indicates that the LSTM model could perform better than the ARIMA model with longer data 

sequences and/or fine-tuning the LSTM model with a different structure and set of parameters. 

Modeling hospital admissions is useful for health actuaries to better estimate technical reserves 

and liabilities of insurers and also for verticalized companies to better plan resources 

accordingly to the predicted admission rates. 
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Appendix I - Time Series Outputs 
 
Residuals for Females - ARIMA(3, 0, 0)(2, 1, 0)[12] 
 
 Ljung-Box test 
 
data:  Residuals from ARIMA(3,0,0)(2,1,0)[12] 
Q* = 31.292, df = 19, p-value = 0.03749 
 
Model df: 5.   Total lags used: 24 
 

 
 
Residuals for Males - ARIMA(3, 0, 0)(2, 1, 0)[12] 
 
 
 
 Ljung-Box test 
 
data:  Residuals from ARIMA(3,0,0)(2,1,0)[12] 
Q* = 29.717, df = 19, p-value = 0.05551 
 
Model df: 5.   Total lags used: 24 
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Appendix II - LSTM Outputs 
 
 
Model summary - Females and Males 

 
 
Female LSTM - RMSE metrics 

 
 
Female LSTM - MAE metrics 
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Male LSTM - RMSE metrics 

 
 
Male LSTM - MAE metrics 

 


